The theory of quantum statistical comparison

where do we stand

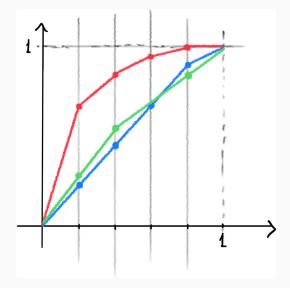
Francesco Buscemi (Nagoya University) IQSA 2022 Conference, Tropea 27 June 2022

The precursor: majorization

Lorenz curves and majorization

- two probability distributions, $p = (p_1, \dots, p_n)$ and $q = (q_1, \dots, q_n)$
- truncated sums $P(k) = \sum_{i=1}^k p_i^\downarrow$ and $Q(k) = \sum_{i=1}^k q_i^\downarrow$, for all $k=1,\dots,n$
- p majorizes q, i.e., p > q, whenever $P(k) \geqslant Q(k)$, for all k
- minimal element: uniform distribution $e = n^{-1}(1, 1, \dots, 1)$

 $p > q \iff q = Mp$, for some bistochastic matrix M.



$$(x_k, y_k) = (k/n, P(k)), \quad 1 \le k \le n$$

1/16

Blackwell's extension

Statistical experiments

Lucien Le Cam (1924-2000)

"The basic structures in the whole affair are systems that Blackwell called experiments, and transitions between them. An experiment is a mathematical abstraction intended to describe the basic feature of an observational process if that process is contemplated in advance of its implementation."

Lucien Le Cam (1984)

2/16

The formulation

Definition (Statistical models and decision problems)

$$\Omega \xrightarrow{\text{experiment}} \mathcal{X} \xrightarrow{\text{decision}} \mathcal{A}$$

$$\xi \qquad \qquad \xi$$

$$\omega \qquad \xrightarrow{w(x|\omega)} x \longrightarrow a$$

- parameter set $\Omega = \{\omega\}$, sample set $\mathcal{X} = \{x\}$, action set $\mathcal{A} = \{a\}$
- a statistical model/experiment is a triple $\mathbf{w} = \langle \Omega, \mathcal{X}, w(x|\omega) \rangle$
- a statistical decision problem/game is a triple $\mathbf{g} = \langle \Omega, \mathcal{A}, c \rangle$, where $c: \Omega \times \mathcal{A} \to \mathbb{R}$ is a payoff function

Playing statistical games with experiments

- the experiment/model is the resource: it is given
- the decision is the transition: it can be optimized

Ω	experiment	\mathcal{X}	decision	\mathcal{A}
\{		\{		\$
ω	$\overrightarrow{w(x \omega)}$	x	$\overrightarrow{d(a x)}$	a

Definition

The **(expected) maximin payoff** of a statistical model $\mathbf{w} = \langle \Omega, \mathcal{X}, w \rangle$ w.r.t. a decision problem $\mathbf{g} = \langle \Omega, \mathcal{A}, c \rangle$ is given by

$$c_{\mathbf{g}}^*(\mathbf{w}) \stackrel{\text{def}}{=} \max_{d(a|x)} \min_{\omega} \sum_{a,x} c(\omega,a) d(a|x) w(x|\omega)$$
.

4/16

Comparison of statistical models

Definition (Information Preorder)

Given two statistical models $\mathbf{w} = \langle \Omega, \mathcal{X}, w \rangle$ and $\mathbf{w}' = \langle \Omega, \mathcal{Y}, w' \rangle$ on the same parameter set but possibly different sample sets, we say that \mathbf{w} is (always) more informative than \mathbf{w}' , and write

$$\mathbf{w} > \mathbf{w}'$$
,

if and only if

$$c_{\mathbf{g}}^*(\mathbf{w}) \geqslant c_{\mathbf{g}}^*(\mathbf{w}')$$
,

for all decision problems $\mathbf{g} = \langle \Omega, \mathcal{A}, c \rangle$.

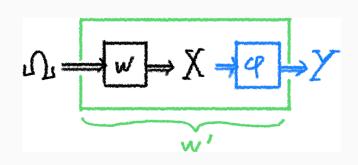
Can we visualize the information preorder more concretely?

Information preorder = statistical sufficiency

Theorem (Blackwell, 1953)

Given two statistical experiments $\mathbf{w} = \langle \Omega, \mathcal{X}, w \rangle$ and $\mathbf{w}' = \langle \Omega, \mathcal{Y}, w' \rangle$, the following are equivalent:

- 1. w > w';
- 2. \exists cond. prob. dist. $\varphi(y|x)$ such that $w'(y|\omega) = \sum_{x} \varphi(y|x)w(x|\omega)$ for all y and ω .

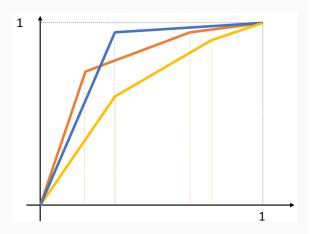


David Blackwell (1919-2010)

The case of dichotomies (a.k.a. relative majorization)

- for $\Omega=\{1,2\}$, we compare two dichotomies, i.e., two pairs of probability distributions $(\boldsymbol{p}_1,\boldsymbol{p}_2)$ and $(\boldsymbol{q}_1,\boldsymbol{q}_2)$, of dimension m and n, respectively
- \bullet relabel entries such that ratios p_1^i/p_2^i and q_1^j/q_2^j are nonincreasing
- construct the truncated sums $P_{\omega}(k) = \sum_{i=1}^k p_{\omega}^i$ and $Q_{\omega}(k) = \sum_{j=1}^k q_{\omega}^j$
- $(p_1, p_2) > (q_1, q_2)$ iff the relative Lorenz curve of the former is never below that of the latter

 $({m p}_1,{m p}_2) > ({m q}_1,{m q}_2) \iff {m q}_\omega = M{m p}_\omega$, for some stochastic matrix M.



$$(x_k, y_k) = (P_2(k), P_1(k)), \quad 1 \le k \le n$$

7/16

Quantum extensions

Quantum statistical decision theory (Holevo, 1973)

classical case

- ullet decision problems $\mathbf{g} = \langle \Omega, \mathcal{A}, c \rangle$
- models $\mathbf{w} = \langle \Omega, \mathcal{X}, \{w(x|\omega)\} \rangle$
- decisions d(a|x)
- $c_{\mathbf{g}}^*(\mathbf{w}) = \max_{d(a|x)} \min_{\omega} \cdots$

quantum case

- decision problems $\mathbf{g} = \langle \Omega, \mathcal{A}, c \rangle$
- quantum models $\mathcal{E} = \langle \Omega, \mathcal{H}_S, \{ \rho_S^{\omega} \} \rangle$
- POVMs $\{P_S^a: a \in \mathcal{A}\}$
- $c_{\mathbf{g}}^{*}(\mathcal{E}) = \max_{\{P_{S}^{a}\}} \min_{\omega} \sum_{a} c(\omega, a) \operatorname{Tr}[\rho_{S}^{\omega} P_{S}^{a}]$

8/16

Quantum statistical morphisms (FB, CMP 2012)

Definition (Tests)

Given a quantum statistical model $\mathcal{E}=\langle\Omega,\mathcal{H}_S,\{\rho_S^\omega\}\rangle$, a family of operators $\{Z_S^a\}$ is said to be an \mathcal{E} -test if and only if there exists a POVM $\{P_S^a\}$ such that

$$\operatorname{Tr}[\rho_S^{\omega} Z_S^a] = \operatorname{Tr}[\rho_S^{\omega} P_S^a] , \quad \forall \omega, \forall a .$$

Definition (Morphisms)

Given two quantum statistical models $\mathcal{E} = \langle \Omega, \mathcal{H}_S, \{ \rho_S^\omega \} \rangle$ and $\mathcal{E}' = \langle \Omega, \mathcal{H}_{S'}, \{ \sigma_{S'}^\omega \} \rangle$, a linear map $\mathcal{M} : \mathsf{L}(\mathcal{H}_S) \to \mathsf{L}(\mathcal{H}_{S'})$ is said to be an $\mathcal{E} \to \mathcal{E}'$ quantum statistical morphism iff

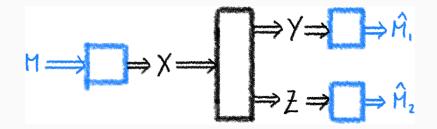
- 1. \mathcal{M} is trace-preserving;
- 2. $\mathcal{M}(\rho_A^{\omega}) = \sigma_{S'}^{\omega}$, for all $\omega \in \Omega$;
- 3. the trace-dual map $\mathcal{M}^{\dagger}: L(\mathcal{H}_{S'}) \to L(\mathcal{H}_{S})$ maps \mathcal{E}' -tests into \mathcal{E} -tests.

Quantum statistical comparison (FB, CMP 2012)

- let $\mathcal{E} = \langle \Omega, \mathcal{H}_S, \{ \rho_S^{\omega} \} \rangle$ and $\mathcal{E}' = \langle \Omega, \mathcal{H}_{S'}, \{ \sigma_{S'}^{\omega} \} \rangle$ be given
- information ordering: $\mathcal{E} > \mathcal{E}'$ iff $c^*_{\mathbf{g}}(\mathcal{E}) \geqslant c^*_{\mathbf{g}}(\mathcal{E}')$ for all \mathbf{g}
- complete information ordering: $\mathcal{E} \gg \mathcal{E}'$ iff $\mathcal{E} \otimes \mathcal{F} > \mathcal{E}' \otimes \mathcal{F}$ for all ancillary models $\mathcal{F} = \langle \Theta, \mathcal{H}_A, \{\tau_A^{\theta}\} \rangle$
- Theorem 1/3: $\mathcal{E} > \mathcal{E}'$ iff there exists a *quantum statistical* morphism $\mathcal{M}: \mathsf{L}(\mathcal{H}_S) \to \mathsf{L}(\mathcal{H}_{S'})$ such that $\mathcal{M}(\rho_S^\omega) = \sigma_{S'}^\omega$ for all $\omega \in \Omega$
- Theorem 2/3: $\mathcal{E} \gg \mathcal{E}'$ iff there exists a completely positive trace-preserving linear map $\mathcal{N}: \mathsf{L}(\mathcal{H}_S) \to \mathsf{L}(\mathcal{H}_{S'})$ such that $\mathcal{N}(\rho_S^\omega) = \sigma_{S'}^\omega$ for all $\omega \in \Omega$
- Theorem 3/3: if \mathcal{E}' is commutative, that is, if $[\sigma_{S'}^{\omega_1}, \sigma_{S'}^{\omega_2}] = 0$ for all $\omega_1, \omega_2 \in \Omega$, then $\mathcal{E} \gg \mathcal{E}'$ iff $\mathcal{E} > \mathcal{E}'$

Applications in information theory

Classical broadcast channels



How to capture the idea that Y carries more information than Z?

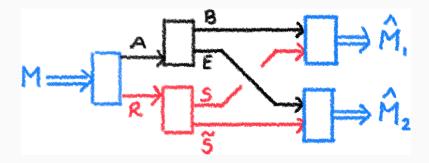
- (i) (stochastically) degradable: \exists channel $Y \rightarrow Z$
- (ii) less noisy: for all M, $H(M|Y) \leq H(M|Z)$
- (iii) less ambiguous: for all M, $\max \Pr{\{\hat{M}_1 = M\}} \geqslant \max \Pr{\{\hat{M}_2 = M\}}$
- (iv) less ambiguous (reformulation): for all M, $H_{\min}(M|Y) \leqslant H_{\min}(M|Z)$

Theorem (Körner-Marton, 1977; FB, 2016)

 $\underset{\Longrightarrow}{\textit{less noisy}} \iff \textit{degradable} \iff \textit{less ambiguous}$

11/16

Quantum broadcast channels



- (i) (CPTP) degradable: \exists channel $B \rightarrow E$
- (ii) completely less noisy: for all M and all symmetric side-channels $R \to S\tilde{S}$, $H(M|BS) \leqslant H(M|E\tilde{S})$
- (iii) completely less ambiguous: for all M and all symmetric side-channels $R \to S\tilde{S}$, $H_{\min}(M|BS) \leqslant H_{\min}(M|E\tilde{S})$

Theorem (FB-Datta-Strelchuk, 2014)

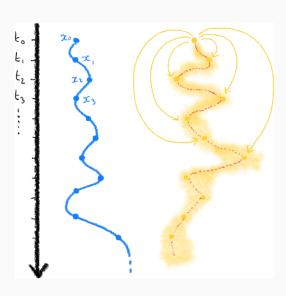
12/16

Applications in open quantum systems dynamics

Discrete-time stochastic processes

Formulation of the problem:

- for $i \in \mathbb{N}$, let x_i index the state of a system at time $t = t_i$
- given the system's initial state at time $t=t_0$, the process is fully predicted by the conditional distribution $p(x_N,\ldots,x_1|x_0)$
- if the system evolving is quantum, we only have a quantum dynamical mapping $\left\{\mathcal{N}_{Q_0 \to Q_i}^{(i)}\right\}_{i\geqslant 1}$
- the process is divisible if there exist channels $\mathcal{D}^{(i)}$ such that $\mathcal{N}^{(i+1)} = \mathcal{D}^{(i)} \circ \mathcal{N}^{(i)}$ for all $i \geqslant 1$
- **problem**: to provide a *fully information-theoretic* characterization of divisibility

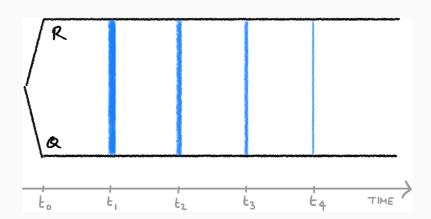


Divisibility as locality of information flow

Theorem (FB-Datta, 2016; FB, 2018)

Given an initial open quantum system Q_0 , a quantum dynamical mapping $\left\{\mathcal{N}_{Q_0 \to Q_i}^{(i)}\right\}_{i \geqslant 1}$ is divisible if and only if, for any initial state ω_{RQ_0} ,

$$H_{\min}(R|Q_1) \leqslant H_{\min}(R|Q_2) \leqslant \cdots \leqslant H_{\min}(R|Q_N)$$
.



14/16

Thermalization as relative majorization

Basic idea (FB, arXiv:1505.00535)

Thermal accessibility $\rho \to \sigma$ can be characterized as the statistical comparison between quantum dichotomies (ρ, γ) and (σ, γ) , for γ thermal state

Two main problems:

- for dimension larger than 2 and $[\sigma, \gamma] \neq 0$, we need a complete (i.e., extended) comparison
- moreover, Gibbs-preserving channels can create coherence between energy levels, while a truly thermal operation should not

Conclusions

Conclusions

- ullet the theory of statistical comparison studies morphisms (preorders) of one "statistical system" X into another "statistical system" Y
- equivalent conditions are given in terms of (finitely or infinitely many) monotones, e.g., $f_i(X) \ge f_i(Y)$
- such monotones quantify the resources at stake in the operational framework at hand, e.g.
 - the expected maximin payoff in decision problems for experiments
 - the information asymmetry for broadcast channels
 - the non-divisibility for open systems dynamics
 - the joint time-energy information for quantum thermodynamics