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introduction

In quantum theory, some measurements necessarily exclude others.

This is what enables quantum algorithms, QKD protocols, violations of
Bell’s inequalities, etc.

Various formalizations: preparation URs, measurement
(noise–disturbance) URs, and incompatibility.
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compatible POVMs

Definition

Given a family (P
(i)
x )x∈X,i∈I of POVMs, all defined on the same system A,

we say that the family is compatible, whenever there exists a mother
POVM (Ow)w∈W on system A and a family of conditional probability
distributions µ(x|w, i) such that

P (i)
x =

∑
w

µ(x|w, i)Ow ,

for all x ∈ X and all i ∈ I.
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families of POVMs as one “programmable”
POVM

Whenever we have a family of objects (states, channels, POVMs, etc) it
can be useful to see it as a single programmable device.

In what follows, we will characterize (in)compatibility in terms of a
hierarchy of constraints on how the system and the program, seen as two
separate parties, can “communicate”.
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compatible programmable POVMs

See [F.B., E. Chitambar, W. Zhou; PRL 2020].
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from POVMs to instruments
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many different incompatibilities

While for POVMs consensus exists for a unique notion of compatibility, in
the case of instruments the situation is not so clear.
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classical compatibility 1/2

Definition

Given a family of instruments (I(i)
x )x∈X,i∈I, all defined on the same system

A, we say that the family is classically compatible, whenever there exists
a mother instrument (Hw)w∈W on A and a family of conditional
probability distributions µ(x|w, i) such that

I(i)
x =

∑
w

µ(x|w, i)Hw ,

for all x ∈ X and all i ∈ I.

We call this “classical” because it involves only classical post-processings,
but it is also called “traditional” [Mitra and Farkas; PRA, 2022].
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classical compatibility 2/2

Crucially:

no shared entanglement and communication is classical

communication goes only from I to II, i.e., the above is necessarily
II→I non-signaling, see [Ji and Chitambar; PRA (2021)]
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parallel compatibility 1/2

Without loss of generality (classical labels can be copied), compatible
POVMs may be assumed to be recovered by marginalization, i.e.,

P (i)
x =

∑
xj :j ̸=i

Ox1,x2,...,xn

The notion of “parallel compatibility” for instruments lifts the above
insight to the quantum outputs.
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parallel compatibility 2/2

Definition (Heinosaari–Miyadera–Ziman, 2015)

Given a family of instruments (I(i)
x )x∈X,i∈I, all acting on the same system

A but with possibly different output systems Bi, we say that the family is
parallelly compatible, whenever there exist

a mother instrument (Hw)w∈W from A to ⊗i∈IBi;

and a family of conditional probability distributions µ(x|w, i),
such that

I(i)
x =

∑
w

µ(x|w, i)[TrBi′:i′ ̸=i
◦ Hw] ,

for all x ∈ X and all i ∈ I.
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parallel compatibility VS classical compatibility

parallel compatibility is able to go beyond no-signaling, hence,
parallelly compatibile ≠⇒ classically compatibile

however, parallel compatibility departs from the “no information
without disturbance” tenet, because non-disturbing instruments are
never parallelly compatible. Example:

▶ take (Ix)x and (Jy)y, with Ix ∝ Jy ∝ id, i.e., both instruments do
not touch the quantum system and output purely random outcomes

▶ these two instruments are obviously classically compatible; however,
they cannot be parallelly compatible, otherwise we would violate the
no-broadcasting theorem

hence classically compatibile ≠⇒ parallelly compatibile

13/27

Closing the gap
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q-compatibility 1/2

Definition

Given a family of instruments (I(i)
x )x∈X,i∈I, all acting on the same system

A but with possibly different output systems Bi, we say that the family is
q-compatible, whenever there exist

a mother instrument (Hw)w∈W from A to C;

a family of conditional probability distributions µ(x|w, i);
and a family of channels (D(x,w,i) : C → Bi)x∈X,w∈W,i∈I

such that

I(i)
x =

∑
w

µ(x|w, i)[D(x,w,i) ◦ Hw] ,

for all x ∈ X and all i ∈ I.
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q-compatibility 2/2

Crucially:

no shared entanglement and communication is classical

only one interactive round I→ II→I

both classical and parallel compatibilities are special cases of
q-compatibility
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a strict hierarchy of resource theories of
instruments incompatibility
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classical incompatibility: free operations (Tcl)

all cassically compatible devices can be created for free

if the initial device (the dark gray inner box) is classically
compatible, the final device is also classically compatible
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q-incompatibility: free operations (Tq)

all q-compatible devices can be created for free

if the initial device (the dark gray inner box) is q-compatible, the
final device is also q-compatible
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construction of the resource monotones
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classical-quantum guessing games 1/2

Definition

Two spatially separated players, I and II, initially share a programmable
instrument (I(i)

x : A → Bi)x∈X,i∈I. A referee chooses a reference

programmable instrument (K(j)
y : C → Dj)y∈Y,j∈J. In each round, the

referee picks a program value at random from the set J and sends it to
II. At the same time, the referee prepares a maximally entangled state
Φ+

CC′ and sends the C ′ system to I. For each operational framework, Tcl

or Tq, the expected utility associated to (I(i)
x )x,i is computed as

u•((I(i)
x ); (K(j)

y )) := max
T∈T•

∑
j,y

⟨Φ+
DjD′

j
|(K(j)

y ⊗ [TI](j)y )(Φ+
CC′)|Φ+

DjD′
j
⟩ ,

where • ∈ {cl, q}.
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classical-quantum guessing games 2/2
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constraining communication by timing
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incompatibility preorders

Definition

Given two programmable instruments (I(i)
x )x,i and (J (j)

y )y,j, we write

(I(i)
x )x,i ⊇• (J (j)

y )y,j , • ∈ {cl, q} ,

whenever u•((I(i)
x ); (K(j)

y )) ⩾ u•((J (j)
y ); (K(j)

y )), for all distributed

classical-quantum guessing games (K(j)
y )y,j.

We also write

(I(i)
x )x,i ⪰• (J (j)

y )y,j , • ∈ {cl, q} ,

whenever there exists a superoperation in T• that is able to transform
(I(i)

x )x,i into (J (j)
y )y,j.
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Theorem

The equivalence relation holds, with • ∈ {cl, q}:

(I(i)
x )x,i ⊇• (J (j)

y )y,j ⇐⇒ (I(i)
x )x,i ⪰• (J (j)

y )y,j

Corollary

A programmable instrument is not •-compatible if and only if there exists
a classical-quantum guessing game (K(j)

y )y,j that is able to witness the
separation, that is

u•((I(i)
x ); (K(j)

y )) > u⋆
•((K(j)

y )) ,

where u⋆
•((K

(j)
y )) is the maximum utility that can be obtained with

•-compatible devices.
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conclusions
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for instruments we had (at least) two inequivalent notions of
compatibility (both recovering the unique notion of POVM
compatibility in the case of instruments with trivial quantum output)

q-compatibility unifies them within a hierarchy of (complete and
operational) resource theories of bipartite communication

we get a better picture of the relations between incompatibility,
no-signaling, no-broadcasting, and the “no info w/o disturbance”
principle in quantum theory

not featured in this talk and/or work-in-progress: “compatibility” VS
“no-exclusivity”, higher-order operations, incompatibility witnesses
and semiquantum tests, the case of GPTs

The End: Thank You!
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