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Open quantum systems evolution

• system–ancilla initial factorization: ρSA0 = ρS0 ⊗ ρA0

• total Hamiltonian: HS(t) +HA(t) + hSA(t), for 0 ≤ t ≤ τ

•  ρSτ := TrA
{
USA0→τ (ρS0 ⊗ ρA0 ) (USA0→τ )†

}
=: Φ(ρS0 )

• system’s average energy change:

∆E ≈ Tr{ρSτ HS(τ)} − Tr{ρS0 HS(0)} 1/18



Energy change as an information divergence

β(∆E −∆F ) = ∆S +D(Φ(γS0 )‖γSτ ) S D(Φ(γS0 )‖γSτ )

β(∆E −∆F ) = Tr{γS0 [ln Φ†(γSτ )− Φ†(ln γSτ )]}+D(γS0 ‖Φ†(γSτ ))

≥ D(γS0 ‖Φ†(γSτ )) 2/18

The “thermal pullback”

β(∆E −∆F ) ≥ D(γS0 ‖Φ†(γSτ ))

= D

(
γS0

∥∥∥∥ Φ†(γSτ )

Tr{Φ†(γSτ )}

)
− ln Tr{Φ†(γSτ )}

≥ − ln Tr{Φ†(γSτ )}

• the value Tr{Φ†(γSτ )} is called efficacy : it often appears in

fluctuation relations (e.g., Albash&al 2013, Goold&al 2015)

• the pullback mapping x→ Φ†(x)
Tr{Φ†(x)} is CPTP but (in general)

nonlinear

further discussions&applications in arXiv:2003.08548
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Does the pullback mapping

x→ Φ†(x)

Tr{Φ†(x)}
remind us of anything?
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The Bayes-Laplace Rule

Inverse Probability Formula

P(H|D)︸ ︷︷ ︸
inv. prob.

∝ P(D|H)︸ ︷︷ ︸
likelihood

P(H)︸ ︷︷ ︸
prior

where H is a hypothesis, D is the result

of observation (i.e., evidence)

postmodern Bayesianism!
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Meanings of the inverse probability

• it is the main tool of Bayesian statistics for problems like:

◦ estimation (e.g.: how many red balls are in an urn?)

◦ decision (e.g.: is ACME’s stock a good investment? should I

buy some?)

◦ predictive inference (e.g.: weather forecasts)

◦ retrodictive inference (e.g.: what kind of stellar event

possibly caused the Crab Nebula?)

• it measures the degree of belief that a rational agent should have

in one hypothesis, among other mutually exclusive ones, given the

data
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Noisy data and uncertain evidence

BUT! Bayes-Laplace Rule does not tell us how to update the prior

in the face of uncertain data...

• suppose that a noisy observation suggests a probability

distribution Q(D) for the data (e.g., the license plate no.)

• how should we update our prior P(H) given uncertain

evidence in the from Q(D)?
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Jeffrey’s rule of probability kinematics

Vanilla Bayes:

P(H|D) = P(D|H)P(H)/P(D)

Generalized Bayes:

P(H|Q(D)) =?

Jeffrey’s conditioning∗ (1965)

P(H|Q(D)) =
∑
D

P(H|D)︸ ︷︷ ︸
inv. prob.

Q(D)

=
∑
D

P(D|H)P(H)∑
H P(D|H)P(H)

Q(D)

∗ Jeffrey’s rule was introduced ad hoc, but it can be proved from Bayes-Laplace Rule and

Pearl’s method of virtual evidence (1988) 7/18

Reverse processes and fluctuation

relations in thermodynamics



Reverse processes and the second law

Crooks’ fluctuation theorem (1999)

PF (W )

PR(−W )
= eβ(W−∆F )

PF (W )
PR(−W )

= eβ(W−∆F ) =⇒
〈
e−β(W−∆F )

〉
F

= 1 =⇒ 〈W 〉 ≥ ∆F
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What’s behind this?

1. thermal equilibrium: initial distribution is P(ξ) ∝ e−βε(ξ)

2. microscopic reversibility: at equilibrium, molecular processes

and their reverses occur at the same rate (viz. probability)
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Do fluctuation relations

(and the second law)

rely on some microscopic

“balancing mechanisms”?
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A hint from Ed Jaynes

“To understand and like thermo

we need to see it, not as an ex-

ample of the n-body equations of

motion, but as an example of the

logic of scientific inference.”

E.T. Jaynes (1984)

First idea: reverse process as Bayesian retrodiction
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Construction of the reverse process

• starting point:

◦ a stochastic transition rule: ϕ(y|x)

◦ a steady (viz. invariant) state:
∑

x ϕ(y|x)σ(x) = σ(y)

• define reverse transition by Bayesian inversion at steady state:

ϕ̂(x|y) =
σ(x)

σ(y)
ϕ(y|x) ⇐⇒ ϕ(y|x)

ϕ̂(x|y)
=
σ(y)

σ(x)

• two priors:

◦ predictor’s prior: p(x)

◦ retrodictor’s prior q(y)

• two processes:

◦ forward process (prediction): PF (x, y) = ϕ(y|x)p(x)

◦ reverse process (retrodiction): PR(x, y) = ϕ̂(x|y)q(y)
11/18

A picture

• at steady state: prediction = retrodiction

• otherwise: asymmetry
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Measures of statistical divergence

Second idea: fluctuation relations as measures of statistical

divergence between PF (x, y) and PR(x, y)

• f -divergences: Df (PF‖PR) :=
∑
PF (x, y)f(PF (x,y)

PR(x,y)
)

 f(r) = ln(r) =⇒ Df is KL-divergence (viz. relative entropy)

 f(r) = rα, α 6= 0 =⇒ Df is a Hellinger-Rényi divergence

• introduce probability density functions

 µfF (u) :=
∑
x,y δ[u− f(r(x, y))] PF (x, y)

 µfR(u) :=
∑
x,y δ[u− f( 1

r(x,y) )] PR(x, y)
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From f-divergences to f-fluctuation theorems

• for f : R+ → R smooth and invertible, define g := f ◦ 1
x
◦ f−1

 f(r) = ln(r) =⇒ g(r) = −r

 f(r) = rα =⇒ g(r) = 1
r

f-Fluctuation Theorem

µfF (u)

µfR(g(u))
=
|g′(u)|

f−1(g(u))
=⇒

〈
f−1(g(u))

〉
F

= 1

 for f = ln, we have
µF (u)

µR(−u)
= eu and 〈e−u〉F = 1

further discussions in arXiv:2009.02849
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Examples

Example: driven Hamiltonian evolution

• driving protocol: H(0)→ H(t)→ H(τ)

• H(0) =
∑
x εxπx, H(τ) =

∑
y ηyπ

′
y

• ϕ(y|x) = δy,y(x), i.e., one-to-one

• σ(x) = d−1 =⇒ ϕ(y|x) = ϕ̂(x|y)

• p0(x) = eβ(F−εx), qτ (y) = eβ(F
′−ηy)

In this case, for the choice f(r) = ln r (viz. g(r) = −r),

u(x, y) = ln
PF (x, y)

PR(x, y)
= ln

σ(y)p(x)

σ(x)q(y)
= ln

p(x)

q(y)

= β(F − εx + F ′ + ηy) = β(W −∆F )

=⇒ µF (W )

µR(−W )
= eβ(W−∆F )

15/18



Example: nonequilibrium steady states

• stochastic process ϕ(y|x) with non-thermal steady state σ(x)

• thermal equilibrium priors: p(x) = q(x) ∝ e−βεx

• fluctuation variable:

u = ln PF (x,y)
PR(x,y) = ln p(x)

q(y)
σ(y)
σ(x) = β(εy − εx) + (lnσ(y)− lnσ(x))

• nonequilibrium potential : V (x) := − lnσ(x) (e.g., Manzano&al

2015)

•
〈
eβ∆E−∆V

〉
F

= 1, but
〈
eβ∆E

〉
F

= “efficacy”

• =⇒ nonequilibrium potentials (usually introduced ad hoc) are

understood here as remnants of Bayesian inversion
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Example: quantum processes

• assume ϕ(y|x) = Tr[Πy E(ρx)]

• according to the formalism of quantum

retrodiction:

◦ Σ :=
∑

x σ(x)ρx

◦ ρ̂y := 1
σ(y)

√
E(Σ)Πy

√
E(Σ)

◦ Π̂x := σ(x) 1√
Σ
ρx

1√
Σ

◦ Ê(·) :=
√

Σ

{
E†
[

1√
E(Σ)

(·) 1√
E(Σ)

]}√
Σ

• Bayesian inversion carries through directly

ϕ̂(x|y) = Tr[Π̂x Ê(ρ̂y)]
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Conclusions

Summary

• role of retrodiction (viz. Jeffrey conditioning) in thermodynamics

and statistical mechanics

• reverse process not as physical time-reversal, but as retrodiction

• fluctuation relations (FRs) as quantitative measures

(f -divergences) of asymmetry between prediction and retrodiction

• FRs not from complex microscopic balancing mechanisms, but

from consistent inference (viz. Bayes-Laplace rule)

• logical origin of the perceived “one-wayness” of time

thank you

18/18


	Reverse processes and fluctuation relations in thermodynamics
	Examples
	Conclusions

