Spontaneous Processes
as Decrease of Information(s)

Francesco Buscemi'?

Challenges in Quantum Information Science (CQIS2018)
National Institute of Informatics, Tokyo, 11 April 2018
IDept. of Mathematical Informatics, Nagoya University, buscemi®@i .nagoya-u.ac.jp

2Talk based on joint work with (in alph. ord.): Runyao Duan, Gilad Gour, David Jennings, Iman
Marvian



Jaynes’ “MAXENT Principle”

“In making
we must use that
probability distribution which has

. This is the only unbiased
assignment we can make; to use any

other would amount to arbitrary
assumption of information which by ‘ e

hypothesis we do not have.”
Jaynes, circa 1995
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What about processes?

Jaynes” MAXENT provides an information-theoretic “justification” for
the Gibbs distribution (as the "minimally committing” inference
possible, given the observations)

Can we “justify” in the same information-theoretic way
also spontaneous processes, namely,
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Thermodynamics vs Infodynamics

o : spontaneous processes are
exactly those associated with a decrease of the free energy
contained in the system

° . spontaneous processes are
exactly those associated with a decrease of the information
contained in the system

Can we as exactly
those that never increase “information”? And
in this case?
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Information: one or many?

e Jaynes clearly considers information to be
a totally ordered quantity, i.e., he
measures it by the (neg-)entropy

e however, when looking at (microstate)
distributions, information often takes on a
multi-faceted form, its “content”
depending on its “use”

e indeed, in mathematical statistics,
information is only a partially ordered
quantity and there exist many
incomparable information contents
associated with the same probability
distribution

Vishvarupa (Vishnu)
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Example: majorization

e given are two probability distributions, p and
q, of the same dimension d

e consider the truncated sums

P(k) = 25:1 piL and Q(k) = Zf:1 QQLx for
allk=1,...,d

e we say that p majorizes g, in formula,
p > q, whenever P(k) > Q(k), for all k

e remark: p > g z H(p) > H(q)
e Hardy-Littlewood-Pdlya (1929):

p = q < q = Mp, for some bistochastic
matrix M

| | (

s éJ@ 34 4/&

The order is only partial: neither

blue>-green, nor green>blue.

5/15



Information ordering in mathematical statistics

e given are two pairs of probability distributions,

(p1,p-) and (qq,q,), of possibly different
dimensions

e reorder their entries such that pi /pb > p’ /pl,
whenever i < j; do the same for (q,, q5)

e construct the linear spline
(zi ) = (S04 Py 20, P} ) joiing (0,0) with
(1,1); do the same for (g, q,)

e we say that (p,,p,) is more informative than
(41, 4), in formula (py, py) > (g1, q2), whenever ,ﬁ
the spline corresponding to the former is never e ey
below that corresponding to the latter Blackwell in 1999
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e Blackwell's theorem for dichotomies (1953):

(p1,P2) = (q1,92) <= q, = Mp;, for some
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Information ordering solves the classical case

e when p, = g, = 7, i.e., the Gibbs distribution, then
the information ordering (p,~) > (q,7) coincides
with the order of thermo-majorization

e when everything commutes with the Hamiltonian,
thermo-majorization is known to be equivalent to the
phenomenological order induced by thermal processes
(Horodecki-Oppenheim, 2013)

e information ordering can be expressed in terms of a
family {F,}, of state functions (or “free energies”):

(p,7) = (q,7) < F.(p) > F,(q) forall o
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What about the non-commuting case?

e first problem: to define a “quantum information
ordering”

e second problem: to define “quantum thermal
processes”

e third problem: given that the above two concepts
play well with each other, to find the “quantum free
energies’

e fourth problem: to provide a compelling physical
interpretation of the mathematical results
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Tackling the first and the second problem

e given are two pairs of density matrices, (p1, p2)
and (o1, 02), of possibly different dimensions

e a “quantum information ordering” is introduced
using the concept of quantum statistical
comparison (FB, Comm. Math. Phys., 2012) and
quantum relative Lorenz curves (FB, Gour; Phys.
Rev. A, 2017)

e the thermodynamically relevant case occurs for
pairs (p,7) and (o,7), where v is the thermal
distribution (FB, arXiv:1505.00535)

e ‘“quantum thermal processes” are introduced as Quantum relative
thermal operations (TO) (Janzing et al., Int. J. testing region
Th. Ph., 2000; Brandao et al., Phys. Rev. Lett.,
2013) or generalized thermal processes (GTP)
(Gour et al., arXiv:1708.04302) 9/15



TO vs GTP

Thermal Operations Generalized Thermal Processes

E(pg) = Tre[V(pe @ ve)VT] | E(pq) = Tre[V(pg ® 0p)VT]

[V,HQ®IE+[Q®HE]:O [V,HQ®IE+[Q®HE]:O

~vg: thermal state 0p: state commuting with Hg

E(1Q) =g

Remark: the final condition (Gibbs-preserving condition) is automatic for

Thermal Operations, se we do not need to enforce it explicitly.
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Third problem: second laws for GTP

The problem is to understand when the transition p — o is possible
with a GTP. Proceed as follows:

e take any third pair of “reference” states (71, 752)

e construct the bipartite states Q2 = (1, ® p + 172 ® ) and
Y=Im@c+n7)
e take their “twirling time-averages,” i.e.,

(Q) = limg 00 5 [* (6" @ e"#H)Q(- - )t and ()

e construct the functions (here |p™) is the max. entangled state)
Sinmo) (p) = maxp.cov.cpre (™ |(id @ D){(Q)|oT)

Then, p — o is possible with a GTP if and only if
fonm) (P) = fenme) (@), for all choices of (11, 1752). 11/15



Fourth problem: physical interpretation

Hic Sunt Leones!

12/15




Fourth problem: physical interpretation

0= %(7]1 Rp+m@y) | (Q) =limpr_ e % f_TT(e_“H ® e~ #H)Q (.. )T

f(m,nz)(m > f(m,nz)(a) f(m,nz)(p) = MaXP:cov.CPTP <90+|(id ® D) <Q>|99+>

with respect to the time-twirling chosen (i.e., U; ® U;), the maximally
entangled reference-system state |oT) is static, though perfectly
correlated: it serves as a perfect Page-Wootters time-energy relative state

any other static bipartite state, like (€2), can be understood as a “noisy”
PaW state

hence, the functions f,, ,,)(p) say how well the noisy PaW state (£2) can
be “locally covariantly adjusted” to simulate a perfect Pa\W state

in other words, each function f(,, ,.,)(p) measures a different
time-energy information content of state p relative to 7

in the classical case, we can replace |p™") with a classical state perfectly
correlated in energy: time-information is irrelevant in this case 13/15



Physical interpretation, part two

Summarizing, the family of inequalities

f(mmz)(p) > f(m,nz)(o-)a V(mﬂlz)a

says that the initial state p is always more informative than the final
state o, with respect to all time-energy information contents.

Quantum GTPs are exactly those associated with a

(possibly infinitely many).

Remark 1. Classically, time-information is irrelevant: only energy-information
matters.
Remark 2. Don't worry: GTPs can be decided efficiently (using SDP). 14/15



thermodynamics = time-energy
information dynamics
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