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Jaynes’ “MAXENT Principle”

“In making inferences on the basis of

partial information we must use that

probability distribution which has

maximum entropy subject to whatever is

known. This is the only unbiased

assignment we can make; to use any

other would amount to arbitrary

assumption of information which by

hypothesis we do not have.”
Jaynes, circa 1995
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What about processes?

Jaynes’ MAXENT provides an information-theoretic “justification” for

the Gibbs distribution (as the “minimally committing” inference

possible, given the observations)

Question

Can we “justify” in the same information-theoretic way
also spontaneous processes, namely, spontaneous
transitions between different microstate distributions?
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Thermodynamics vs Infodynamics

• thermodynamical viewpoint: spontaneous processes are
exactly those associated with a decrease of the free energy
contained in the system

• information-theoretic viewpoint: spontaneous processes are
exactly those associated with a decrease of the information
contained in the system

In search of a rigorous link

Can we infer spontaneous thermal processes as exactly
those that never increase “information”? And what is
“information” about in this case?
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Information: one or many?

• Jaynes clearly considers information to be
a totally ordered quantity, i.e., he
measures it by the (neg-)entropy

• however, when looking at (microstate)
distributions, information often takes on a
multi-faceted form, its “content”
depending on its “use”

• indeed, in mathematical statistics,
information is only a partially ordered
quantity and there exist many
incomparable information contents
associated with the same probability
distribution

Vishvarupa (Vishnu)
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Example: majorization

• given are two probability distributions, p and
q, of the same dimension d

• consider the truncated sums
P (k) =

∑k
i=1 p

↓
i and Q(k) =

∑k
i=1 q

↓
i , for

all k = 1, . . . , d

• we say that p majorizes q, in formula,
p � q, whenever P (k) ≥ Q(k), for all k

• remark: p � q =⇒
6⇐=

H(p) ≥ H(q)

• Hardy-Littlewood-Pólya (1929):
p � q ⇐⇒ q = Mp, for some bistochastic
matrix M

The order is only partial: neither

blue�green, nor green�blue.
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Information ordering in mathematical statistics

• given are two pairs of probability distributions,
(p1,p2) and (q1, q2), of possibly different
dimensions

• reorder their entries such that pi1/p
i
2 ≥ p

j
1/p

j
2,

whenever i ≤ j; do the same for (q1, q2)

• construct the linear spline

(xk, yk) =
(∑k

i=1 p
i
2,
∑k
i=1 p

i
1

)
joining (0, 0) with

(1, 1); do the same for (q1, q2)

• we say that (p1,p2) is more informative than
(q1, q2), in formula (p1,p2) � (q1, q2), whenever
the spline corresponding to the former is never
below that corresponding to the latter

• Blackwell’s theorem for dichotomies (1953):
(p1,p2) � (q1, q2) ⇐⇒ qi = Mpi, for some
stochastic matrix M

Blackwell in 1999
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Information ordering solves the classical case

• when p2 = q2 = γ, i.e., the Gibbs distribution, then
the information ordering (p,γ) � (q,γ) coincides
with the order of thermo-majorization

• when everything commutes with the Hamiltonian,
thermo-majorization is known to be equivalent to the
phenomenological order induced by thermal processes
(Horodecki-Oppenheim, 2013)

• information ordering can be expressed in terms of a
family {Fα}α of state functions (or “free energies”):
(p,γ) � (q,γ) ⇐⇒ Fα(p) ≥ Fα(q) for all α
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What about the non-commuting case?

• first problem: to define a “quantum information
ordering”

• second problem: to define “quantum thermal
processes”

• third problem: given that the above two concepts
play well with each other, to find the “quantum free
energies”

• fourth problem: to provide a compelling physical
interpretation of the mathematical results
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Tackling the first and the second problem

• given are two pairs of density matrices, (ρ1, ρ2)
and (σ1, σ2), of possibly different dimensions

• a “quantum information ordering” is introduced
using the concept of quantum statistical
comparison (FB, Comm. Math. Phys., 2012) and
quantum relative Lorenz curves (FB, Gour; Phys.
Rev. A, 2017)

• the thermodynamically relevant case occurs for
pairs (ρ, γ) and (σ, γ), where γ is the thermal
distribution (FB, arXiv:1505.00535)

• “quantum thermal processes” are introduced as
thermal operations (TO) (Janzing et al., Int. J.
Th. Ph., 2000; Brandao et al., Phys. Rev. Lett.,
2013) or generalized thermal processes (GTP)
(Gour et al., arXiv:1708.04302)

Quantum relative

testing region
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TO vs GTP

Thermal Operations Generalized Thermal Processes

E(ρQ) = TrE[V (ρQ ⊗ γE)V †] E(ρQ) = TrE[V (ρQ ⊗ δE)V †]

[V,HQ ⊗ IE + IQ ⊗HE] = 0 [V,HQ ⊗ IE + IQ ⊗HE] = 0

γE: thermal state δE: state commuting with HE

E(γQ) = γQ

Remark: the final condition (Gibbs-preserving condition) is automatic for

Thermal Operations, se we do not need to enforce it explicitly.
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Third problem: second laws for GTP

The problem is to understand when the transition ρ→ σ is possible
with a GTP. Proceed as follows:

• take any third pair of “reference” states (η1, η2)

• construct the bipartite states Ω = 1
2
(η1 ⊗ ρ+ η2 ⊗ γ) and

Ω′ = 1
2
(η1 ⊗ σ + η2 ⊗ γ)

• take their “twirling time-averages,” i.e.,

〈Ω〉 = limT→∞
1
2T

∫ T
−T (e−itH ⊗ e−itH)Ω(· · · )† and 〈Ω′〉

• construct the functions (here |ϕ+〉 is the max. entangled state)
f(η1,η2)(ρ) = maxD:cov.CPTP〈ϕ+|(id⊗D)〈Ω〉|ϕ+〉

Then, ρ→ σ is possible with a GTP if and only if

f(η1,η2)(ρ) ≥ f(η1,η2)(σ), for all choices of (η1, η2). 11/15



Fourth problem: physical interpretation

Hic Sunt Leones!
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Fourth problem: physical interpretation

Ω = 1
2 (η1 ⊗ ρ+ η2 ⊗ γ) 〈Ω〉 = limT→∞

1
2T

∫ T
−T (e−itH ⊗ e−itH)Ω(· · · )†

f(η1,η2)(ρ) ≥ f(η1,η2)(σ) f(η1,η2)(ρ) = maxD:cov.CPTP〈ϕ+|(id⊗D)〈Ω〉|ϕ+〉

• with respect to the time-twirling chosen (i.e., Ut ⊗ Ut), the maximally
entangled reference-system state |ϕ+〉 is static, though perfectly
correlated: it serves as a perfect Page-Wootters time-energy relative state

• any other static bipartite state, like 〈Ω〉, can be understood as a “noisy”
PaW state

• hence, the functions f(η1,η2)(ρ) say how well the noisy PaW state 〈Ω〉 can
be “locally covariantly adjusted” to simulate a perfect PaW state

• in other words, each function f(η1,η2)(ρ) measures a different
time-energy information content of state ρ relative to γ

• in the classical case, we can replace |ϕ+〉 with a classical state perfectly
correlated in energy: time-information is irrelevant in this case 13/15



Physical interpretation, part two

Summarizing, the family of inequalities

f(η1,η2)(ρ) ≥ f(η1,η2)(σ), ∀(η1, η2),

says that the initial state ρ is always more informative than the final

state σ, with respect to all time-energy information contents.

Take-home message

Quantum GTPs are exactly those associated with a
decrease of all the system’s time-energy information
contents (possibly infinitely many).

Remark 1. Classically, time-information is irrelevant: only energy-information
matters.
Remark 2. Don’t worry: GTPs can be decided efficiently (using SDP). 14/15



thermodynamics ≡ time-energy
information dynamics
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