
Von Neumann’s Other Entropy
—observational entropy, coarse-grained states, Petz recovery maps—

ovvero
“The Entropy, The Paradox, and The Observer”

Francesco Buscemi (Nagoya U), 29 September 2022

29 September 2022

1/28

Collaborators
Clive Aw and Valerio Scarani (CQT@NUS, Singapore), Dominik Šafránek
(IBS, Daejeon, Korea), and Joseph Schindler (UAB, Barcelona, Spain).

The Observational Entropy Appreciation Club
(www.observationalentropy.com)

2/28



Enter the Entropy
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von Neumann’s entropy

For ϱ =
∑d

x=1 λx|φx⟩⟨φx| d-dimensional density matrix (λx ≥ 0,∑
x λx = 1),

S(ϱ) := −Tr[ϱ log ϱ] = −
d∑

x=1

λx log λx

with the convention 0 log 0 := 0.
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Unfortunately though:

“The expressions for entropy given by the author [previously] are
not applicable here in the way they were intended, as they were
computed from the perspective of an observer who can carry out
all measurements that are possible in principle—i.e., regardless
of whether they are macroscopic [or not].”

von Neumann, 1929; transl. available in arXiv:1003.2133
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in formula:

Theorem (least uncertainty)

For ϱ density matrix, onb = {|ϕi⟩}i orthonormal basis, and pi = ⟨ϕi|ϱ|ϕi⟩,

S(ϱ) = min
onb

[
−
∑
i

pi log pi

]
.

For a more general result, see [M. Dall’Arno and F.B., IEEE TIT, 65(4), 2018].
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Enter the Paradox
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“Although our entropy expression, as we saw, is completely anal-
ogous to the classical entropy, it is still surprising that it is invari-
ant in the normal [Hamiltonian] evolution in time of the system,
and only increases with measurements—in the classical theory
(where the measurements in general played no role) it increased
as a rule even with the ordinary mechanical evolution in time of
the system. It is therefore necessary to clear up this apparently
paradoxical situation.”

von Neumann, book (Math. Found. QM), 1932 (transl. 1955)
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free expansion of an ideal gas

∆S(universe) = nR ln 2 > 0
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invariance of von Neumann entropy

Instead,

Theorem
For any unitary operator U ,

S(ϱ) = S(UϱU †) ,

for all density matrices ϱ.
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von Neumann’s insight (inspired by Szilard’s)

“For a classical observer, who knows all coordinates and mo-
menta, the entropy is constant. [...]
The time variations of the entropy are then based on the fact
that the observer does not know everything—that he cannot find
out (measure) everything which is measurable in principle.”

von Neumann, 1932 (transl. 1955)
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Enter the Observer
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von Neumann’s proposal: macroscopic entropy

For

ϱ density matrix,

P = {Πi}i orthogonal resolution of identity,

pi = Tr[ϱ Πi],

Ωi := Tr[Πi],

SP(ϱ) := −
∑
i

pi log
pi
Ωi
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modern generalization: observational entropy
For

ϱ density matrix,

P = {Pi}i POVM (i.e., Pi ≥ 0,
∑

i Pi = 1),

pi = Tr[ϱ Pi],

Vi := Tr[Pi],

SP(ϱ) := −
∑
i

pi log
pi
Vi
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“observational” = “of the observer”

von Neumann defines a macro-observer as a collection of
simultaneously measurable quantities {Q1,Q2, . . . ,Qn, . . . }, where
Qn = {Qx|n}x are POVMs

=⇒ there exists one “mother” POVM P = {Pi}i and a stochastic
processing (i.e., cond. prob.) µ such that

Qx|n =
∑
i

µ(x|n, i)Pi , ∀x, n

=⇒ “a macro-observer” := “a POVM”—from which all
macroscopic measurements (i.e., coarse-grainings) can be
simultaneously inferred by stochastic post-processing
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Mathematical properties
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Umegaki’s relative entropy

Definition
For density matrices ϱ, σ,

D(ϱ∥σ) :=

{
Tr[ϱ(log ϱ− log σ)] , if supp ϱ ⊆ suppσ ,

+∞ , otherwise

Useful properties:

D(A∥B) ≥ 0

S(ϱ) = log d−D(ϱ∥u) where u := d−11

monotonicity: D(ϱ∥σ) ≥ D(E(ϱ)∥E(σ)) for all channels (i.e.,
CPTP linear maps) E and all states ϱ, σ
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a bound on the observational entropy

Theorem
For any state ϱ and any POVM P = {Pi}i

S(ϱ) ≤ SP(ϱ) .

Proof.
Given a POVM P, by defining the corresponding CPTP linear map
P(•) :=

∑
i Tr[Pi •] |i⟩⟨i|, we have (u = d−11)

SP(ϱ)− S(ϱ) = D(ϱ∥u)−D(P(ϱ)∥P(u)) ,

which is non-negative due to the monotonicity property of the Umegaki quantum

relative entropy.

18/28



Petz’s theorem
In general, D(ϱ∥σ) ≥ D(E(ϱ)∥E(σ)).
Question: for which triples (ϱ, σ, E) do we have D(ϱ∥σ) = D(E(ϱ)∥E(σ))?

Petz (1986,1988)

Answer: if and only if the “transpose channel”, i.e.,

Ẽσ(•) :=
√
σE†

[
1√
E(σ)

• 1√
E(σ)

]
√
σ

satisfies Ẽσ ◦ E(ϱ) = ϱ. (The other equality Ẽσ ◦ E(σ) = σ is satisfied by
construction.)

Remark. Notice that Ẽσ in general is not the linear inverse of E—rather, it is related

with the idea of statistical retrodiction (more on this later).
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consequences for observational entropy

Theorem

S(ϱ) = SP(ϱ) ⇐⇒ ϱ =
∑
i

Tr[ϱ Pi]
Pi

Vi

.

Proof.
This is a direct consequence of Petz’s transpose map theorem:

SP(ϱ)− S(ϱ) = D(ϱ∥u)−D(P(ϱ)∥P(u)) = 0 if and only if ϱ = P̃u(P(ϱ)). By direct

inspection, P̃u(P(ϱ)) =
∑

i Tr[ϱ Pi]Pi/Vi.

Remark. For any POVM P, at least one density matrix ϱ exists such
that P̃u(P(ϱ)) = ϱ, e.g., the uniform u.
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the resolution of the paradox
let us start at t = t0 from a state of maximum knowledge, i.e., SP(ϱ

t0) = S(ϱt0)

suppose that the system undergoes a unitary evolution, i.e.,
ϱt0 7→ ϱt1 = Uϱt0U†; then,

SP(ϱ
t1) ≡ −

∑
i

Tr
[
Pi (Uϱt0U†)

]
log

Tr
[
Pi (Uϱt0U†)

]
Tr[Pi]

= −
∑
i

Tr
[
(U†PiU) ϱt0

]
log

Tr
[
(U†PiU) ϱt0

]
Tr[U†PiU ]

≡ SU†PU (ϱ
t0)

hence, in general, SP(ϱ
t1) ≡ SU†PU (ϱ

t0) ≥ S(ϱt0) ≡ SP(ϱ
t0),

the equality SP(ϱ
t1) = SP(ϱ

t0) occurring only if

ϱt0 =
∑

i Tr[Pi ϱ
t0 ] Pi

Vi
=

∑
i Tr

[
(U†PiU) ϱt0

]
U†PiU

Vi
, that is

ϱt0 =
∑
i

Tr
[
Pi ϱ

t0
]Pi

Vi
7−→ ϱt1 =

∑
i

Tr
[
Pi ϱ

t1
]Pi

Vi
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Generalization to finite differences
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a strong bound

What does a finite difference, i.e., SP(ϱ)− S(ϱ) > 0, tell us then?

Theorem
For any density matrix ϱ and any POVM P = {Pi}i,

SP(ϱ)− S(ϱ) ≥ D(ϱ∥ϱcg) ,

where ϱcg := P̃u(P(ϱ)) =
∑
i

Tr[ϱ Pi]
Pi

Vi

is the coarse-grained state

inferred from the measurement’s data.

Remark. Notice how ϱcg only depends on data available to the observer:
the outcome probabilities pi and the POVM elements Pi.
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triangle equality for observational entropy
Theorem
Given a d-dimensional system, a density matrix ϱ =

∑d
x=1 λx|φx⟩⟨φx|, and a POVM

P = {Pi}i, let us define two joint probability distributions:

PF (x, i) := λx Tr[|φx⟩⟨φx| Pi] , PR(x, i) := pi Tr

[
|φx⟩⟨φx|

Pi

Vi

]
.

Then,
SP(ϱ)− S(ϱ) = D(PF ∥PR) .
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interpretation: prediction and retrodiction
start from PF (x, i) = λx⟨φx|Pi|φx⟩ =: λxπF (i|x)
notice that

∑
i PF (x, i) = λx and

∑
x PF (x, i) = Tr[ϱ Pi] = pi

write this as λ
π−→ π[λ] ≡ p

take now PR(x, i) = pi⟨φx|Pi

Vi
|φx⟩ =: piπR(x|i)

notice that πR(x|i) = ⟨φx|Pi|φx⟩∑
x⟨φx|Pi|φx⟩ = d−1⟨φx|Pi|φx⟩∑

x d−1⟨φx|Pi|φx⟩ = uxπF (i|x)∑
x uxπF (i|x)

hence πR(x|i) is the Bayesian inverse π̃u of the process u
π−→ π[u]

in the language of Jeffrey’s probability kinematics

PF corresponds to the prediction λ
π−→ •: the inference about i

PR corresponds to the retrodiction • π̃u←−− p: the inference about x that a
completely uninformed Bayesian agent would do, if given information about
i in the form of the probability distribution p.

The equality SP(ϱ) = S(ϱ) occurs if and only if predictor and retrodictor agree.
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Watanabe’s contention

“The phenomenological oneway-
ness of temporal developments in
physics is due to irretrodictabil-
ity, and not due to irreversibility.”

Satosi Watanabe (1965)

The Second Law of Thermodynamics is
not about the “arrow of time”, but about
the arrow of inference.

F.B. and V. Scarani, Fluctuation relations from Bayesian
retrodiction, PRE (2021)

C.C. Aw, F.B., and V. Scarani, Fluctuation theorems with
retrodiction rather than reverse processes, AVS Quantum Science
(2021)
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Conclusions
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take-home messages

When the use of von Neumann entropy in thermodynamics is
problematic, try consider observational entropy (OE) instead, because:

1 von Neumann told you so!OE has a fully operational/inferential
definition

2 OE unifies Gibbs and Boltzmann entropies

3 OE solves interpretational paradoxes

4 OE fits nicely within recent developments in quantum mathematical
statistics (e.g., approximate Petz recovery)

5 OE has built-in a concept of Bayesian prediction and retrodiction

The End: Thank You!
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