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von Neumann’s entropy

For ϱ =
∑d

x=1 λx|φx⟩⟨φx| d-dimensional density matrix (λx ≥ 0,∑
x λx = 1),

S(ϱ) := −Tr[ϱ log ϱ] = −
d∑

x=1

λx log λx

with the convention 0 log 0 := 0.
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Unfortunately though:

“The expressions for entropy given by the author [previously] are
not applicable here in the way they were intended, as they were
computed from the perspective of an observer who can carry out
all measurements that are possible in principle—i.e., regardless
of whether they are macroscopic [or not].”

von Neumann, 1929; transl. available in arXiv:1003.2133
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in formula:

Theorem (least uncertainty)

For ϱ density matrix, onb = {|ϕi⟩}i orthonormal basis, and pi = ⟨ϕi|ϱ|ϕi⟩,

S(ϱ) = min
onb

[
−
∑
i

pi log pi

]
.

For a more general result, see [M. Dall’Arno and F.B., IEEE TIT, 65(4), 2018].
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“Although our entropy expression, as we saw, is completely anal-
ogous to the classical entropy, it is still surprising that it is invari-
ant in the normal [Hamiltonian] evolution in time of the system,
and only increases with measurements—in the classical theory
(where the measurements in general played no role) it increased
as a rule even with the ordinary mechanical evolution in time of
the system. It is therefore necessary to clear up this apparently
paradoxical situation.”

von Neumann, book (Math. Found. QM), 1932 (transl. 1955)
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the paradox: free expansion of an ideal gas

∆S(universe) = nR ln 2 > 0
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invariance of von Neumann entropy

Instead,

Theorem
For any unitary operator U ,

S(ϱ) = S(UϱU †) ,

for all density matrices ϱ.

=⇒ the entropy increasing during a free expansion cannot be the von
Neumann entropy

8/25



von Neumann’s insight (inspired by Szilard’s)

“For a classical observer, who knows all coordinates and mo-
menta, the entropy is constant. [...]
The time variations of the entropy are then based on the fact
that the observer does not know everything—that he cannot find
out (measure) everything which is measurable in principle.”

von Neumann, 1932 (transl. 1955)
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von Neumann’s proposal: macroscopic entropy

For

ϱ density matrix,

P = {Πi}i orthogonal resolution of identity,

pi = Tr[ϱ Πi],

Ωi := Tr[Πi],

SP(ϱ) := −
∑
i

pi log
pi
Ωi
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modern generalization: observational entropy
For

ϱ density matrix,

P = {Pi}i POVM (i.e., Pi ≥ 0,
∑

i Pi = 1),

pi = Tr[ϱ Pi],

Vi := Tr[Pi],

SP(ϱ) := −
∑
i

pi log
pi
Vi
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“observational” = “of the observer”

von Neumann defines a macro-observer as a collection of
simultaneously measurable quantities {Q1,Q2, . . . ,Qn, . . . }, where
Qn = {Qx|n}x are POVMs

=⇒ there exists one “mother” POVM P = {Pi}i and a stochastic
processing (i.e., cond. prob.) µ such that

Qx|n =
∑
i

µ(x|n, i)Pi , ∀x, n

hence, a “macro-observer” is just a POVM, from which all
macroscopic measurements (i.e., coarse-grainings) can be
simultaneously inferred by stochastic post-processing
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Mathematical properties
from arXiv:2209.03803
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Umegaki’s relative entropy

Definition
For density matrices ϱ, σ,

D(ϱ∥σ) :=

{
Tr[ϱ(log ϱ− log σ)] , if supp ϱ ⊆ suppσ ,

+∞ , otherwise

Useful properties:

D(A∥B) ≥ 0

S(ϱ) = log d−D(ϱ∥u) where u := d−11

monotonicity: D(ϱ∥σ) ≥ D(E(ϱ)∥E(σ)) for all channels (i.e.,
CPTP linear maps) E and all states ϱ, σ
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https://arxiv.org/abs/2209.03803


a bound on the observational entropy

Theorem
For any state ϱ and any POVM P = {Pi}i

S(ϱ) ≤ SP(ϱ) .

Proof.
Given a POVM P, by defining the corresponding CPTP linear map
P(•) :=

∑
i Tr[Pi •] |i⟩⟨i|, we have (u = d−11)

SP(ϱ)− S(ϱ) = D(ϱ∥u)−D(P(ϱ)∥P(u)) ,

which is non-negative due to the monotonicity property of the Umegaki quantum

relative entropy.
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Petz’s theorem
In general, D(ϱ∥σ) ≥ D(E(ϱ)∥E(σ)).
Question: for which triples (ϱ, σ, E) does the equality D(ϱ∥σ) = D(E(ϱ)∥E(σ)) hold?

Petz (1986,1988)

Answer: if and only if the “transpose channel”, i.e.,

Ẽσ(•) :=
√
σE†

[
1√
E(σ)

• 1√
E(σ)

]
√
σ

satisfies Ẽσ ◦ E(ϱ) = ϱ. (The other equality Ẽσ ◦ E(σ) = σ is satisfied by
construction.)

Remark. Notice that Ẽσ in general is not the linear inverse of E ; rather, it is related
with the idea of statistical retrodiction (more on this later).
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consequences for observational entropy

Theorem

S(ϱ) = SP(ϱ) ⇐⇒ ϱ =
∑
i

Tr[ϱ Pi]
Pi

Vi

.

We call such a state fully observable or macroscopic (w.r.t. observer P).

Proof.
This is a direct consequence of Petz’s transpose map theorem:

SP(ϱ)− S(ϱ) = D(ϱ∥u)−D(P(ϱ)∥P(u)) = 0 if and only if ϱ = P̃u(P(ϱ)). By direct

inspection, P̃u(P(ϱ)) =
∑

i Tr[ϱ Pi]Pi/Vi.

Remark. For any observer (i.e., POVM) P, we denote the subspace of
macroscopic states by M(P).
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the resolution of the paradox
start at t = t0 from a macrostate ϱt0 ∈M(P)

the system undergoes unitary evolution, i.e., ϱt0 7→ ϱt1 = Uϱt0U†; then,

SP(ϱ
t1) = −

∑
i

Tr
[
Pi (Uϱt0U†)

]
log

Tr
[
Pi (Uϱt0U†)

]
Tr[Pi]

= −
∑
i

Tr
[
(U†PiU) ϱt0

]
log

Tr
[
(U†PiU) ϱt0

]
Tr[U†PiU ]

= SU†PU (ϱ
t0)

≥ SP(ϱ
t0) = S(ϱt0) = S(ϱt1)

summarizing: in general, SP(ϱ
t1) ≥ SP(ϱ

t0)

with equality if and only if ϱt1 ∈M(P)

in words: the observational entropy of an isolated macroscopic state can (in
fact, will generically) increase, and it remains constant if and only if the state
remains macroscopic
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Generalization to finite differences
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triangle equality for observational entropy
Theorem
Given a d-dimensional system, a density matrix ϱ with diagonalization {λx, |φx⟩}dx=1,
a unitary operator U , and a POVM P = {Pi}i, let us define two joint probability
distributions:

PF (x, i) := λx Tr
[
U |φx⟩⟨φx|U† Pi

]︸ ︷︷ ︸
PF (i|x)

, PR(x, i) := pi Tr

[
|φx⟩⟨φx|

U†PiU

Vi

]
︸ ︷︷ ︸

PR(x|i)

.

Then, SP(UϱU†)− S(ϱ) = D(PF ∥PR).
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interpretation: prediction and retrodiction

in the language of Jeffrey’s “probability kinematics”

PF corresponds to the prediction λ
π−→ •: the inference about i

PR corresponds to the retrodiction • π̃u←− p: the inference about x
that a completely uninformed Bayesian agent would do, if given
information about i in the form of the probability distribution p.

The equality SP(UϱU †) = S(ϱ) occurs if and only if predictor and
retrodictor agree.
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Watanabe’s contention

“The phenomenological oneway-
ness of temporal developments in
physics is due to irretrodictability,
and not due to irreversibility.”

Satosi Watanabe (1965)

The second law of thermodynamics is not
about the “arrow of time”, but about the
arrow of inference.

F.B. and V. Scarani, Fluctuation relations from Bayesian
retrodiction, PRE (2021)

C.C. Aw, F.B., and V. Scarani, Fluctuation theorems with
retrodiction rather than reverse processes, AVS Quantum Science
(2021)
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a double bound for quantum retrodiction
Can we say something about the quantum process itself, i.e.,
independently of any particular diagonalization of ϱ?

Theorem
Given a density matrix ϱ, a unitary operator U , and a POVM P = {Pi}i,

T ln(d− 1) + h(T ) ≥ SP(UϱU †)− S(ϱ) ≥ D(ϱ∥ϱ̃r) ,

where T := 1
2
∥ϱ− ϱ̃r∥1, h(x) := −x lnx− (1− x) ln(1− x), and

ϱ̃r :=
∑

i Tr
[
UϱU † Pi

]
U†PiU

Vi
is the state retrodicted by the later

observer.

Remark. The above bound is genuinely quantum, i.e., [ϱ, ϱ̃r] ̸= 0.
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Conclusions
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take-home messages

When the use of von Neumann entropy in thermodynamics is
problematic, try consider observational entropy (OE) instead, because:

1 OE has a fully operational/inferential definition

2 OE describes thermodynamic scenarios avoiding interpretational
paradoxes

3 OE fits nicely within recent developments in quantum mathematical
statistics (e.g., approximate Petz recovery)

4 OE suggests a natural candidate for quantum retrodiction

The End: Thank You!
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