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LAN (Local asymptotic normality)

A sequence of parametric statistical models
{pe”: 6 € c R}

IS said to be LAN )at 0, € O if

peo +h/\n

(n)
Pg,

log thgn) — % h'] h + o, (n)
where

* h € R? : local parameter

« AW A2 N(0,]) : converges in distribution
*0,(n) - 0 : converges in probability

«] > 0: dxd positive real matrix

X 1N 1.1.d. case:
- A™ is a logarithmic derivative
« ] is a Fisher information matrix



Similarity to Gaussian shift model

B Gaussian shift model
{N(Jh,]): h € R}

dN(Jh,]) ; 1
= h'X. —=h'
m[LAN
(n) . d
{p90+h/ﬁz' heR }
p : 1
log ‘90*(%@ = RiA{™ —=hTJ h+ 0p(n)

Py,




Local asymptotic representation thm

[Thm1] Suppose {pé”): 0 EOC Rd} IS LAN at 6, € ©

then
v TM:statistics s.t.

(T, P ) ™ L

3T : randomized statistics s.t.
(T,N(Jh,J)) ~ Ly,

where £, is a distribution depending on h € R

This theorem tell us any estimator of p(”) can be
mimicked by N(Jh,]).

— asymptotic local minimax theorem



quantum LAN (g-LAN)

A sequence of parametric quantum statistical models
{pg”: 6 € c R}

s g-LAN at 6, € O if

) 2 . 1
log {R (péﬁlh/\/ﬁmg;)) + ok (n)} = h‘Agn) —5 h'] h + o, (n)

where
* R(:]): square-root likelihood ratio
« ] = 0: dxd non-negative complex matrix

. (A(“),pg;)) ~ N(0,]) : quantum convergence in distribution
* N(0,]) : gquantum Gaussian state
- 0¥ (n), o (n) : infinitesimal terms




quantum likelihood ratio

2 2 . 1
log {R (Péﬂh/@lf?g;)) + ok (n)} = thgn) ~5 h'] h + o,(n)

Square-root of likelihood ratio R = R(g|p) = 0 of

density operators p, o is defined by
quantum Lebesgue decomposition

0 = RpR + o
with a singular part ¢+ > 0 s.t.
Tr pot =0

* o> 0andp >0 are not required!!



Quantum convergence in distribution

1
log {R (péﬁih/fm(n)) + ok (n)} = htA (n) hT] h+ oy (n)

(A(“),pgn)) ~ N(0,]) means

r r
lim Trp (H ev——lf:iAgn)) _ ¢ (l‘[ oV1EL Al-)
n—>0o

t=1 t=1

where ﬁ IS @ quantum Gaussian state defined by a
quasi-characteristic function

o([Te0)-om( -5 et 5. )

t=1 t=1u=t+1

with canonical observables {A;}, and {§.}{_; c R%.



Infinitesimal terms

. 1
log {R (péﬁh/\ﬂpm)) + or (n)} = h‘Agn) —5 h'] h + o,(n)

* o, (Tl) ,
lim Trp( ){ (n)} =0
n—>00
*op(n) : .
—1([ eialn i A(M)
1 gm0 s _
Nn—>00

forany § e R andn € R



Quantum Local asymptotic representation (conjecture)

[conjecture] Suppose {pg‘): 0 EBC Rd} Is g-LAN at 6, € ©

then

v MW: POVM s.t.

(n)
(M e 90+h/\/ﬁ) ™ L

IM: POVM s.t.
(M,N((Re])h, ])) ~ L,

where £, is a classical distribution depending on h € R4

— This conjecture has counter examples.



D-extension

M List of observables X = (X(") X(n)) -
asymptotically D-invariant with respect to pg" if

. (X("),pg")) A N(0,%) with rxr complex matrix £ > 0.

¢ lim Tr [peV™ f‘f(") oV nix"
T
— e_%(g) (Z#i'-r Zzgr )(757) Vf:’) = IRT

where # is the operator geometric mean

W X is D-extension of A® = (A, .., A7) if
A = Fix™ with an rxd real matrix F.



[.I.D. model

If {pg: 6 € ® c R?} is smooth at 9, € 0 then
[p¥™: 6 € © c R} is g-LAN and D-extendible

» AV is SLD at pg,

r d
. {X,El)} is D invariant extension of {A(.l)}

k=1 o)
(always exist)

1=1

« A™ and x™ are 1.1.D. extension of A" and x\!

% pg, > 0 and non-degeneracy are not necessary.



Quantum local asymptotic representation thm

[Thm] Suppose {pé"): 0 EBC Rd} IS g-LAN and D-
extensible at 6, € 0 then

v M(: POVM s.t.

(M(n)' pg;lh/f ) ~ L

IM: POVM s.t.
(M, N((RezF)h,Z)) ~

where £, is a classical distribution depending on h € R4

This theorem tell us any POVM and estimator of p(") can
be mimicked by quantum Gauss shift model N((Re SF)h,X)



Estimation of quantum Gauss shift model

For a quantum Gauss shift model
{N((Re ZF)h,X): h € R%},

its unbiased estimator M satisfies
Tr G V[M] = ¢
where
« V[M] Is covariance matrix,
G > 0 Is any dxd real positive matrix
- ") is Holevo bound defined by
CC(;H) = mKin{Tr GZ + Tr‘\/EIm Z\/E‘: Z = K"K},

K is a rxd real matrix s.t. K"(Re 2F) = 1.



Asymptotic representation bound

« For D-extendible g-LAN model,

asymptotic representation bound

Cc(;rep): _ C((,‘H)

IS expected to be the bound of estimators
because of the asymptotic representation theorem.

-In i.i.d. case {pg"},,
c{"®P) is same as Holevo bound of {pg},.
G

»In non-i.i.d. case {pg’)}e, cire? is new bound



Quantum regular estimator

In classical statistics, | |
regular estimator was considered to exclude pathological

estimator like the Hodges superefficient estimator.

For {pé"): 0 EOC Rd},
sequence of estimators (POVMs) M™ s regular at 6, if

h
[ (n)
( n{M(n)—(HO +Wl)}, p90+h/\/77l),\7\1:

where L is a classical distribution independent of h



Quantum regular estimator

If {pg”: 6 € © c R} is D-extendible and g-LAN,

by using quantum local asymptotic representation th,
we can obtain

[Thm] For any dxd real positive matrix ¢ > 0

f Gijxiij(dx) > Cérep)
Rd

This inequality is sharp.




Quantum asymptotic minimax theorem

By using quantum local asymptotic representation th,
we can obtain

[Thm] Let £™ ~ (M("),pg;lh/f) be a classical distribution

with respect to estlmator M™_ Then

lim liminf sup Gl] (x — h)!(x — h)fL,(ln)(dx)

> sup liminfsup [ LA{G;j(x — h)(x — h)j}L,(ln) (dx)
HL>0 N2% heH Jrd
> C(rep)
The last inequality is sharp.
H c R?% is a finite subset.




Quantum |

odges superefficient estimator

e Let pg = %(1 + 6010, + 0%0, + /1 — |9|203) be a pure state
model on a Hilbert space C>.
- {pg’"}, is g-LAN and D-extendible at any 6.

We can see c(’”ep) = 4 when G is SLD Fisher information
matrix J$¥ at any 6.

« We can construct estimator M™ s.t.

M™ can achieve cérep) = 4.

- Another estimator N := h,,(M("V) has superefficiency,

where h,,(x) =

x if |x| =n"1/4
0 if |x| <n~1/4




Quantum Hodges superefficient estimator

- The estimator NV := h (M(‘”)) has superefficiency:

(Va(N®™ = 8), pg™) ~ <

0 if 6=0
N(0,275" ) if 9%#0

\

- However, N is not reqgular, and has bad behavior:

nxTr]éS)Ve [N™]
”60 s ”
(... n=100
wob [| | n=1000
n=10000

0.5




James-Stein superefficient estimator

~or a classical Gauss shift model {N(h,I): h € R3},

any unbiased estimator E§atisfies Cramer Rao inequality
TrV|h| =TrI = 3.

James-Stein estimator

hUS) (x) = (1 —”71”)x

(x € R3) has superefficiency
j |AYS) (x) — hHZ N(h,D)(dx) <3 (Vh € R®)
R3

% hUS is not unbiased, and minimax cost is 3.



gquantum James-Stein superefficient estimator

Let pg == (I + %01 + 60, + 630;) be a model on a Hilbert
space C?.

I.I1.D. model p$™ is g-LAN and D-extendible at any 8.

At 6 = 0, the limit quantum Gauss shift model is N(h, I).

Since I is 3x3 real identity matrix, N(h,I) is classical, and
cl(rep) = 3.

JS estimator can be mimicked by {pf}’fm}h.
This can break c¢"") uniformly.

However, it is not regular,

and minimax cost doesn’t break ¢\,




Conclusions

« If a sequence of quantum statistical mode is gLAN and D
extendible, quantum asymptotic representation theorem
can be proved.

* The quantum representation theorem tell us any
sequence of POVMs of gLAN model can be mimicked by
quantum Gauss shift model.

* The quantum representation theorem give us the lower
bound of weighted MSE of regular estimator.

» The quantum representation theorem let us prove the
asymptotic minimax theorem

* This theory is applicable to non-iid model
- This theory doesn’t require pg, > 0 and non-degeneracy

* This theory is almost parallel to classical LAN theory




Thank you






