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Motivation

I The notion of the measurement in quantum theory (or in
more general theories) is an important constituent of the
theory for it connects the abstract theory to empirical events.

I However, little is known about the global structure of the
totality of measurements on a given physical system.



Motivation

I How should we understand the continuous-outcome
measurements (e.g. homodyne/heterodyne measurements or
position measurement)?

I It is impossible to handle true continuous data by
experimental devices with finite memories and the
mathematical descriptions of continuous measurements might
be considered as an approximation of the real measurement.

I Then what does this approximation mean?



Summary of results

I This work studies general structure of the measurement space
M(Ω), which is the set of post-processing equivalence classes
on a GPT Ω.

I Specifically we consider order and compact convex structures
of M(Ω).

I We also consider simulability of measurements based on this
formalism.
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GPT

I A generalized probabilistic theory (GPT) (with the
no-restriction hypothesis) is described by the notion of the
base-norm Banach space.

I We may derive the notion of the base-norm Banach space
from operationally natural requirements (e.g. Ludwig’s
embedding theorem).



Base-norm Banach space

A triple (V, V+,Ω) is called a base-norm Banach space :
def.⇔

1. V is a real vector space.

2. V+ is a positive cone of V , i.e. λV+ ⊆ V+ (∀λ ∈ [0,∞)),
V+ + V+ ⊆ V+, and V+ ∩ (−V+) = {0} hold. We define the
linear order on V induced from V+ by

x ≤ y :
def.⇔ y − x ∈ V+ (x, y ∈ V ).

3. V+ is generating, i.e. V = V+ + (−V+).

4. Ω is a base of V+, i.e. Ω is a convex subset of V+ and for every
x ∈ V+ there exists a unique λ ∈ [0,∞) such that x ∈ λΩ.

5. We define the base-norm on V by

‖x‖ := inf {α+ β | x = αω1 − βω2; α, β ∈ [0,∞); ω1, ω2 ∈ Ω }

We require that the base-norm ‖ · ‖ is a complete norm on V .



Base-norm Banach space

I The structure of V and V+ are uniquely up to isomorphism
determined by the structure of Ω as a convex set and thus we
write as V = V (Ω), V+ = V+(Ω).

I The base Ω is occasionally called a state space or a GPT.



Dual space

Let Ω be a GPT.

I The continuous dual space V ∗(Ω) is equipped with the dual
positive cone

V ∗+(Ω) := { f ∈ V ∗ | 〈f, x〉 ≥ 0 (∀x ∈ V+) }

and the dual linear order

f ≤ g :
def.⇔ g − f ∈ V ∗+ ⇔ [f(x) ≤ g(x) (∀x ∈ V+)].

I We occasionally write as

〈f, x〉 := f(x) (f ∈ V ∗(Ω), x ∈ V (Ω)).

I It can be shown that there exists a unique positive element,
called the unit element, 1Ω ∈ V ∗+(Ω) such that 〈1Ω, ω〉 = 1 for
all ω ∈ Ω.



Dual space and order unit Banach space

I The dual norm on V ∗(Ω)

‖f‖ := sup
x∈V, ‖x‖≤1

| 〈f, x〉 | (f ∈ V ∗(Ω))

coincides with the order unit norm with respect to 1Ω:

‖f‖ = inf {λ ∈ [0,∞) | −λ1Ω ≤ f ≤ λ1Ω } (f ∈ V ∗(Ω)).

I An ordered linear space equipped with an order unit and
complete order norm is called a order unit Banach space.

I The dual space (V (Ω)∗, V ∗+(Ω), 1Ω) is an order unit Banach
space with a predual V (Ω).



Example: quantum theory

Let H be a complex Hilbert space.

I The set Ω = D(H) of density operators on H is a state space.

I V (Ω) = T(H)sa: the set of self-adjoint trace-class operators
on H.

I V (Ω) = T(H)+: the set of positive semidefinite trace-class
operators on H.

I The dual space V ∗(Ω) is identified with the set B(H)sa of
self-adjoint bounded operators on H by the duality

〈a, b〉 := tr(ab) (a ∈ B(H)sa, b ∈ T(H)sa).

I The base norm on T(H)sa is the trace norm.

I The dual norm on B(H)sa is the uniform norm.



Example: operator algebraic theory
Let M be a von Neumann algebra (i.e. ultraweakly closed
∗-subalgebra of B(H)) acting on a Hilbert space H.

I A linear functional ψ : M→ C is called a state if ψ is
nonnegative (a ≥ 0 =⇒ ψ(a) ≥ 0) and ψ(1) = 1.

I A positive linear functional ψ on M is called normal if
ψ(supi ai) = supi ψ(ai) for any upper-bouded monotone net
ai.
This condition is equivalent to the ultraweak continuity of ψ.

I Ω = Sσ(M): the set of normal states on M.

I V (Ω) =M∗,sa: the set of self-adjoint ultraweakly continuous
linear functionals on M.

I V+(Ω) =M∗,sa: the set of normal positive linear functionals
on M.

I V ∗(Ω) =Msa: the set of self-adjoint elements of M.
The duality is given by

〈a, ψ〉 = ψ(a) (a ∈Msa, ψ ∈M∗,sa).



Classical theory

A GPT Ω is called classical if Ω is affinely isomorphic to Sσ(M)
for some abelian vN algebra M. Some equivalent characterizations
of the classicality are known:

Theorem 1
Let Ω be a GPT. Then the following conditions are equivalent.

(i) Ω is classical.

(ii) The set S(V ∗(Ω)) of states on V ∗(Ω) (normalized positive
linear functionals on V ∗(Ω)) is a Bauer simplex, i.e. the set
ext(S(V (Ω)∗)) of extremal points of S(V ∗(Ω)) is weakly∗
compact and any element ψ ∈ S(V ∗(Ω)) is represented as a
unique boundary integral.



Classical theory
(iii) (Special case of the no-broadcasting theorem). There exists a

bilinear map B : V ∗(Ω)× V ∗(Ω)→ V ∗(Ω) such that

f, g ≥ 0 =⇒ B(f, g) ≥ 0,

B(f, 1Ω) = B(1Ω, f) = f

(∀f, g ∈ V ∗(Ω)).

(iii) (V (Ω),≤) is a lattice (i.e. any two elements x, y ∈ V (Ω) have
the least upper bound x ∨ y ∈ V (Ω)).

(iv) (V (Ω)∗,≤) is a lattice.

(v) Any pair of two-outcome measurements is compatible (i.e.
simultaneously measurable).
(Plávala (2016), YK (2020)).

Moreover, the bilinear map B is, if it exists, unique and satisfies

B(f, g) = B(g, f), B(f,B(g, h)) = B(B(f, g), h) (f, g, h ∈ V ∗(Ω)).

(B is the multiplication if V (Ω)∗ is an abelian vN algebra.)



Example: finite-dimensional classical space

I Sn := { (pj)
n
j=1 ∈ Rn | pj ≥ 0,

∑n
j=1 pj = 1 }: the simplex

consisting of n-outcome probabilities.

I V (Sn) = V ∗(Sn) = Rn.
I V+(Sn) = V ∗+(Sn) = [0,∞)n.

I The duality is given by 〈(aj)nj=1, (bj)
n
j=1〉 =

∑n
j=1 ajbj .

I Sn is a finite-dimensional classical GPT.

I Conversely, any d-dimensional classical GPT Ω is affinely
isomorphic to Sd+1.



Example: the classical space of probability measures

I (X,Σ): measurable space.

I P(X,Σ): the set of probability measures defined on Σ.

I ca(X,Σ): the set of signed measures defined on Σ.

I ca(X,Σ)+ := {µ ∈ ca(X,Σ) | µ(A) ≥ 0 (∀A ∈ Σ) } .
I Then (ca(X,Σ), ca(X,Σ)+,P(X,Σ)) is a base-norm Banach

space.

I The base-norm on ca(X,Σ) is the total variation norm.

I The GPT P(X,Σ) is classical because ca(X,Σ) is a lattice.

I (The dual space ca(X,Σ)∗ is the self-adjoint part of an
abelian vN algebra M, while we have no intuitive
characterization of M.)
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Measurement map and EVM

We fix a GPT Ω.

I General measurement can be described by an affine map

Ψ: Ω→ P(X,Σ)

Ψ(tω + (1− t)ω′) = tΨ(ω) + (1− t)Ψ(ω′).

I For such Ψ, there exists a unique map M : Σ→ V ∗(Ω) s.t.

(i) M(A) ≥ 0 (A ∈ Σ);
(ii) M(∅) = 0, M(X) = 1Ω;
(iii) for disjoint sequence {An} ⊆ Σ, M(

⋃
nAn) =

∑
n M(An),

and
Ψ(ω)(A) = 〈M(A), ω〉 (A ∈ Σ, ω ∈ Ω).

I A map M satisfying (i)-(iii) is called an effect-valued measure
(EVM).



Measurement map and EVM

I Conversely, any EVM M : Σ→ V ∗(Ω) defines an affine map
ΨM : Ω→ P(X,Σ) by

ΨM(ω)(A) = 〈M(A), ω〉 (A ∈ Σ, ω ∈ Ω).



General channel and measurement map

I For any output GPT S, an affine map Ψ: Ω→ S is called a
channel.

I If the outcome space S is classical, Ψ is called a measurement
map.

I A channel Ψ: Ω→ S uniquely extends to a positive linear
map Ψ: V (Ω)→ V (S).

I The dual map (channel in the Heisenberg picture)
Ψ∗ : V ∗(S)→ V ∗(Ω) is a weakly∗ continuous positive linear
map that is unital

Ψ∗(1S) = 1Ω.



Post-processing relations for channels

Let Ψ1 : Ω→ S1 be Ψ2 : Ω→ S2 channels.

I Ψ1 �post Ψ2 (Ψ1 is a post-processing of Ψ2)

:
def.⇔ ∃Φ: S2 → S1: channel s.t. Ψ1 = Φ ◦Ψ2.

I �post is a preorder.

I Ψ1 ∼post Ψ2 (Ψ1 and Ψ2 are post-processing equivalent)

:
def.⇔ Ψ1 �post Ψ2 and Ψ2 �post Ψ1

I ∼post is an equivalence relation.



Measurement map is essentially an EVM

A general classical space S is not always isomorphic to some
P(X,Σ).
We can still regard each measurement map Ψ: Ω→ S as an EVM
in the following sense:

Proposition 1

For any measurement map Ψ: Ω→ S there exists an EVM s.t.
Ψ ∼post ΨM.



Finite-outcome EVM

I For any measurement map Ψ: Ω→ Sn there exists a
sequence M = (Mj)

n
j=1 ∈ V ∗(Ω)n s.t.

Ψ(ω) = ΨM(ω) := (〈Mj , ω〉)nj=1.

I M satisfies (i) Mj ≥ 0 (∀j) and (ii)
∑n

j=1 Mj = 1Ω.

I Such M is called an n-outcome (finite-outcome) EVM.

I EVM(Ω;n): the set of n-outcome EVMs on Ω.
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Ensemble and state discrimination probability functional

I A finite sequence E = (ϕj)
n
j=1 ∈ V+(Ω)n is called an ensemble

:
def.⇔

∑n
j=1 〈1Ω, ϕj〉 = 1.

I E corresponds to the situation where the state
ωj = 〈1Ω, ϕj〉−1 ϕj is prepared in the probability 〈1Ω, ϕj〉 .

I For a measurement map Ψ: Ω→ S, the state discrimination
probability functional is defined by

Pg(E ; Ψ) := sup
M∈EVM(S;n)

n∑
j=1

〈Mj ,Ψ(ϕj)〉

I Pg(E ; Ψ) is the optimal probability of guessing the index j
when we are given the measurement outcome Ψ.
The EVM M on the RHS corresponds the guessing strategy.



Blackwell-Sherman-Stein theorem for EVMs

The post-processing relation �post is characterized by the state
discrimination probability functionals:

Theorem 2 (BSS theorem for measurements)

Let Ψ1 : Ω→ S1 and Ψ2 : Ω→ S2 be measurement maps. Then
Ψ1 �post Ψ2 ⇐⇒ Pg(E ; Ψ1) ≤ Pg(E ; Ψ2) (∀E : ensemble).

Quantum case: Buscemi (2012); Skrzypczyk and Linden (2019)



Sketch of the proof

I Ψ1 �post Ψ2 =⇒ Pg(E ; Ψ1) ≤ Pg(E ; Ψ2) (∀E : ensemble) is
easy.

I Converse implication when Ψ1 is finite-outcome: application
of the Hahn-Banach theorem.

I Converse implication for general Ψ1 reduces to the
finite-outcome case by approximating Ψ1 by finite-outcome
measurement maps.



Measurement space

For a given GPT Ω, the class Meas(Ω) of measurement maps (or
EVMs) on Ω is a proper class (a class larger than any set).
The set of post-processing equivalence classes of measurement
maps is well-defined.

Proposition 2

For any GPT Ω, there exists a set M(Ω) and class-to-set surjection

Meas(Ω) 3 Ψ 7→ [Ψ] ∈M(Ω)

s.t. Ψ1 ∼post Ψ2 ⇐⇒ [Ψ1] = [Ψ2]. We fix such M(Ω) (and [·])
and call M(Ω) the measurement space of Ω.

Each element [Ψ] ∈M(Ω) is just called a measurement.



Proof

Define [·] by

[Ψ] := (Pg(E ; Ψ))E∈Ens(Ω) ∈ REns(Ω),

where Ens(Ω) is the set of ensembles on Ω, and M(Ω) as the
image of the map Meas(Ω) 3 Ψ→ [Ψ].
Then the claim follows from the BSS theorem.



Post-processing partial order on M(Ω)

I For measurements [Ψ], [Φ] ∈M(Ω),

[Ψ] �post [Φ] :
def.⇔ Ψ �post Φ.

I �post defined on M(Ω) is a partial order.

I We may also define the state discrimination probability
functional on M(Ω) by

Pg(E ; [Ψ]) := Pg(E ; Ψ).



Weak topology on M(Ω)

I The weak topology on M(Ω) is the coarsest topology such
that

M(Ω) 3 µ 7→ Pg(E ;µ) ∈ R

is continuous for every ensemble E .

I µi
weakly−−−−→ µ ⇐⇒ Pg(E ;µi)→ Pg(E ;µ) (∀E : ensemble).

Theorem 3
The weak topology on M(Ω) is a compact Hausdorff topology.

The proof is an application of the compactness of the pointwise
convergence topology of the weak∗ topology on the set of unital
positive maps (Tychonoff’s theorem).



Density of finite-outcome measurements

Theorem 4
The set of finite-outcome measurements is a dense subset of M(Ω)
in the weak topology.



Direct sum of GPTs

I For GPTs Ω1 and Ω2, the direct sum base-norm Banach space
(V (Ω1)⊕ V (Ω2), V+(Ω1)⊕ V+(Ω2),Ω1 ⊕ Ω2) is defined by

Ω1 ⊕ Ω2 = { tω1 ⊕ (1− t)ω2 | t ∈ [0, 1], ω1 ∈ Ω1, ω2 ∈ Ω2 } .

I If S1 and S2 are classical, so is S1 ⊕ S2.



Direct mixture of measurements

I For measurements Ψ1 : Ω→ S1 and Ψ2 : Ω→ S2 and
t ∈ [0, 1], we define the direct mixture measurement map
tΨ1 ⊕ (1− t)Ψ2 : Ω→ S1 ⊕ S2 by

tΨ1 ⊕ (1− t)Ψ2(ω) := tΨ1(ω)⊕ (1− t)Ψ2(ω).

I Pg(E ; ·) is affine w.r.t. the direct mixture:

Pg(E ; tΨ1 ⊕ (1− t)Ψ2) = tPg(E ; Ψ1) + (1− t)Pg(E ; Ψ2)



General convex structure

I A set S equipped with a map

[0, 1]× S × S 3 (p, s1, s2) 7→ 〈p; s1, s2〉 ∈ S

is called a convex prestructure (Gudder 1973).

I For a convex prestructure (S, 〈·; ·, ·〉) a function f : S → R
satisfying

f(〈p; s1, s2〉) = pf(s1) + (1− p)f(s2)

is said to be affine.

I If S is further a topological space, we denote by Ac(S) the set
of continuous affine functionals on S.



Compact convex structure

A convex prestructure (S, 〈·; ·, ·〉) equipped with a topology τ on S
is called a compact convex structure if τ is a compact topology
and Ac(S) separates points of S, i.e. for any s1, s2 ∈ S

s1 6= s2 =⇒ ∃f ∈ Ac(S) s.t. f(s1) 6= f(s2).

Proposition 3

A compact convex structure (S, 〈·; ·, ·〉 , τ) is always continuously
and affinely isomorphic to a compact convex set S(Ac(S)) of
normalized positive linear functionals on Ac(S) equipped with the
weak∗ topology.



Compact convex structure of measurements

Theorem 5
The measurement space M(Ω) equipped with the convex operation

(t, [Ψ1], [Ψ2]) 7→ 〈t; [Ψ1], [Ψ2]〉 := [tΨ1 ⊕ (1− t)Ψ2]

and the weak topology is a compact convex structure.

This follows from the affinity of Pg and the BSS theorem.

Thus we can and do identify M(Ω) with the concrete compact
convex set S(Ac(M(Ω))), where the direct mixture
[tΨ1 ⊕ (1− t)Ψ2] is the ordinary convex mixture in the linear space
Ac(M(Ω))∗.
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Simulability

Let L ⊆M(Ω) be an arbitrary subset.

I µ ∈M(Ω) is simulable by L :
def.⇔ ∃ν ∈ conv(L) s.t. µ �post ν.

(conv(·) denotes the convex hull.)

I sim(L): the set of measurements simulable by L.

I µ ∈M(Ω) is weakly simulable by L :
def.⇔ ∃ν ∈ conv(L) s.t.

µ �post ν.
(conv(·) denotes the closed convex hull w.r.t. the weak
topology.)

I sim(L): the set of measurements weakly simulable by L.

I It can be shown that sim(L) is the closure of sim(L) w.r.t.
the weak topology.



Characterization of the weak simulabity

For a subset L ⊆M(Ω) and an ensemble E , we define

Pg(E ;L) := sup
ν∈L

Pg(E ; ν).

Theorem 6
µ ∈ sim(L) ⇐⇒ Pg(E ;µ) ≤ Pg(E ;L) (∀E : ensemble).

Quantum case: Skrzypczyk (2019)



Simulation irreducibility

I µ ∈M(Ω) is maximal :
def.⇔ µ �post ν ∈M(Ω) implies µ = ν.

I µ ∈M(Ω) is extremal in M(Ω) ⇐⇒ there exists a
representative Ψ: Ω→ S of µ (µ = [Ψ]) s.t.
Ψ∗V ∗(S)→ V ∗(Ω) is injective.

I µ ∈M(Ω) is simulation irreducible :
def.⇔ for any subset

L ⊆M(Ω), µ ∈ sim(L) implies µ ∈ L.
Mirr(Ω): the set of simulation irreducible measurements.

I µ ∈M(Ω) is simulation irreducible iff µ is maximal and
extremal.



Krein-Milman-type theorem for measurement simulability

Theorem 7
For any GPT Ω, Mirr(Ω) 6= ∅ and M(Ω) = sim(Mirr(Ω)).

The proof is almost parallel to that of the Krein-Milman theorem
and based on Theorem 6 and the following lemma.

Lemma 1
Any weakly continuous and post-processing monotone affine
functional f : M(Ω)→ R attains its maximum value at a point
µ0 ∈Mirr(Ω).
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