Compact convex structure and simulability of measurements

Yui Kuramochi
Department of Physics, Faculty of Science, Kyushu University yui.tasuke.kuramochi@gmail.com

Nov. 21, 2023

Largely based on arxiv:2002.03504
supported by JSPS Grant-in-Aid for Early-Career Scientists No. JP22K13977.

Motivation

- The notion of the measurement in quantum theory (or in more general theories) is an important constituent of the theory for it connects the abstract theory to empirical events.
- However, little is known about the global structure of the totality of measurements on a given physical system.

Motivation

- How should we understand the continuous-outcome measurements (e.g. homodyne/heterodyne measurements or position measurement)?
- It is impossible to handle true continuous data by experimental devices with finite memories and the mathematical descriptions of continuous measurements might be considered as an approximation of the real measurement.
- Then what does this approximation mean?

Summary of results

- This work studies general structure of the measurement space $\mathfrak{M}(\Omega)$, which is the set of post-processing equivalence classes on a GPT Ω.
- Specifically we consider order and compact convex structures of $\mathfrak{M}(\Omega)$.
- We also consider simulability of measurements based on this formalism.

Outline

GPTs

Measurements

Measurement space and compact convex structure

Simulability

Outline

GPTs

Measurements

Measurement space and compact convex structure

Simulability

GPT

- A generalized probabilistic theory (GPT) (with the no-restriction hypothesis) is described by the notion of the base-norm Banach space.
- We may derive the notion of the base-norm Banach space from operationally natural requirements (e.g. Ludwig's embedding theorem).

Base-norm Banach space

A triple $\left(V, V_{+}, \Omega\right)$ is called a base-norm Banach space $: \stackrel{\text { def. }}{\Leftrightarrow}$

1. V is a real vector space.
2. V_{+}is a positive cone of V, i.e. $\lambda V_{+} \subseteq V_{+}(\forall \lambda \in[0, \infty))$, $V_{+}+V_{+} \subseteq V_{+}$, and $V_{+} \cap\left(-V_{+}\right)=\{0\}$ hold. We define the linear order on V induced from V_{+}by

$$
x \leq y: \stackrel{\text { def. }}{\Leftrightarrow} y-x \in V_{+} \quad(x, y \in V) .
$$

3. V_{+}is generating, i.e. $V=V_{+}+\left(-V_{+}\right)$.
4. Ω is a base of V_{+}, i.e. Ω is a convex subset of V_{+}and for every $x \in V_{+}$there exists a unique $\lambda \in[0, \infty)$ such that $x \in \lambda \Omega$.
5. We define the base-norm on V by

$$
\|x\|:=\inf \left\{\alpha+\beta \mid x=\alpha \omega_{1}-\beta \omega_{2} ; \alpha, \beta \in[0, \infty) ; \omega_{1}, \omega_{2} \in \Omega\right\}
$$

We require that the base-norm $\|\cdot\|$ is a complete norm on V.

Base-norm Banach space

- The structure of V and V_{+}are uniquely up to isomorphism determined by the structure of Ω as a convex set and thus we write as $V=V(\Omega), V_{+}=V_{+}(\Omega)$.
- The base Ω is occasionally called a state space or a GPT.

Dual space

Let Ω be a GPT.

- The continuous dual space $V^{*}(\Omega)$ is equipped with the dual positive cone

$$
V_{+}^{*}(\Omega):=\left\{f \in V^{*} \mid\langle f, x\rangle \geq 0\left(\forall x \in V_{+}\right)\right\}
$$

and the dual linear order

$$
f \leq g: \stackrel{\text { def. }}{\Leftrightarrow} g-f \in V_{+}^{*} \Leftrightarrow\left[f(x) \leq g(x) \quad\left(\forall x \in V_{+}\right)\right]
$$

- We occasionally write as

$$
\langle f, x\rangle:=f(x) \quad\left(f \in V^{*}(\Omega), x \in V(\Omega)\right)
$$

- It can be shown that there exists a unique positive element, called the unit element, $1_{\Omega} \in V_{+}^{*}(\Omega)$ such that $\left\langle 1_{\Omega}, \omega\right\rangle=1$ for all $\omega \in \Omega$.

Dual space and order unit Banach space

- The dual norm on $V^{*}(\Omega)$

$$
\|f\|:=\sup _{x \in V,\|x\| \leq 1}|\langle f, x\rangle| \quad\left(f \in V^{*}(\Omega)\right)
$$

coincides with the order unit norm with respect to 1_{Ω} :

$$
\|f\|=\inf \left\{\lambda \in[0, \infty) \mid-\lambda 1_{\Omega} \leq f \leq \lambda 1_{\Omega}\right\} \quad\left(f \in V^{*}(\Omega)\right)
$$

- An ordered linear space equipped with an order unit and complete order norm is called a order unit Banach space.
- The dual space $\left(V(\Omega)^{*}, V_{+}^{*}(\Omega), 1_{\Omega}\right)$ is an order unit Banach space with a predual $V(\Omega)$.

Example: quantum theory

Let \mathcal{H} be a complex Hilbert space.

- The set $\Omega=\mathbf{D}(\mathcal{H})$ of density operators on \mathcal{H} is a state space.
- $V(\Omega)=\mathbf{T}(\mathcal{H})_{\mathrm{sa}}$: the set of self-adjoint trace-class operators on \mathcal{H}.
- $V(\Omega)=\mathbf{T}(\mathcal{H})_{+}$: the set of positive semidefinite trace-class operators on \mathcal{H}.
- The dual space $V^{*}(\Omega)$ is identified with the set $\mathbf{B}(\mathcal{H})_{\mathrm{sa}}$ of self-adjoint bounded operators on \mathcal{H} by the duality

$$
\langle a, b\rangle:=\operatorname{tr}(a b) \quad\left(a \in \mathbf{B}(\mathcal{H})_{\mathrm{sa}}, b \in \mathbf{T}(\mathcal{H})_{\mathrm{sa}}\right) .
$$

- The base norm on $\mathbf{T}(\mathcal{H})_{\text {sa }}$ is the trace norm.
- The dual norm on $\mathbf{B}(\mathcal{H})_{\text {sa }}$ is the uniform norm.

Example: operator algebraic theory

Let \mathcal{M} be a von Neumann algebra (i.e. ultraweakly closed *-subalgebra of $\mathbf{B}(\mathcal{H})$) acting on a Hilbert space \mathcal{H}.

- A linear functional $\psi: \mathcal{M} \rightarrow \mathbb{C}$ is called a state if ψ is nonnegative $(a \geq 0 \Longrightarrow \psi(a) \geq 0)$ and $\psi(\mathbb{1})=1$.
- A positive linear functional ψ on \mathcal{M} is called normal if $\psi\left(\sup _{i} a_{i}\right)=\sup _{i} \psi\left(a_{i}\right)$ for any upper-bouded monotone net a_{i}.
This condition is equivalent to the ultraweak continuity of ψ.
- $\Omega=\mathcal{S}_{\sigma}(\mathcal{M})$: the set of normal states on \mathcal{M}.
- $V(\Omega)=\mathcal{M}_{*, \text { sa }}$: the set of self-adjoint ultraweakly continuous linear functionals on \mathcal{M}.
- $V_{+}(\Omega)=\mathcal{M}_{*, \mathrm{sa}}$: the set of normal positive linear functionals on \mathcal{M}.
- $V^{*}(\Omega)=\mathcal{M}_{\text {sa }}$: the set of self-adjoint elements of \mathcal{M}.

The duality is given by

$$
\langle a, \psi\rangle=\psi(a) \quad\left(a \in \mathcal{M}_{\mathrm{sa}}, \psi \in \mathcal{M}_{*, \mathrm{sa}}\right)
$$

Classical theory

A GPT Ω is called classical if Ω is affinely isomorphic to $\mathcal{S}_{\sigma}(\mathcal{M})$ for some abelian $v N$ algebra \mathcal{M}. Some equivalent characterizations of the classicality are known:

Theorem 1
Let Ω be a GPT. Then the following conditions are equivalent.
(i) Ω is classical.
(ii) The set $S\left(V^{*}(\Omega)\right)$ of states on $V^{*}(\Omega)$ (normalized positive linear functionals on $V^{*}(\Omega)$) is a Bauer simplex, i.e. the set $\operatorname{ext}\left(S\left(V(\Omega)^{*}\right)\right)$ of extremal points of $S\left(V^{*}(\Omega)\right)$ is weakly* compact and any element $\psi \in S\left(V^{*}(\Omega)\right)$ is represented as a unique boundary integral.

Classical theory

(iii) (Special case of the no-broadcasting theorem). There exists a bilinear map $B: V^{*}(\Omega) \times V^{*}(\Omega) \rightarrow V^{*}(\Omega)$ such that

$$
\begin{gathered}
f, g \geq 0 \Longrightarrow B(f, g) \geq 0 \\
B\left(f, 1_{\Omega}\right)=B\left(1_{\Omega}, f\right)=f
\end{gathered}
$$

$\left(\forall f, g \in V^{*}(\Omega)\right)$.
(iii) $(V(\Omega), \leq)$ is a lattice (i.e. any two elements $x, y \in V(\Omega)$ have the least upper bound $x \vee y \in V(\Omega))$.
(iv) $\left(V(\Omega)^{*}, \leq\right)$ is a lattice.
(v) Any pair of two-outcome measurements is compatible (i.e. simultaneously measurable).
(Plávala (2016), YK (2020)).
Moreover, the bilinear map B is, if it exists, unique and satisfies

$$
B(f, g)=B(g, f), \quad B(f, B(g, h))=B(B(f, g), h) \quad\left(f, g, h \in V^{*}(\Omega)\right)
$$

(B is the multiplication if $V(\Omega)^{*}$ is an abelian v N algebra.)

Example: finite-dimensional classical space

- $\mathcal{S}_{n}:=\left\{\left(p_{j}\right)_{j=1}^{n} \in \mathbb{R}^{n} \mid p_{j} \geq 0, \sum_{j=1}^{n} p_{j}=1\right\}:$ the simplex consisting of n-outcome probabilities.
- $V\left(\mathcal{S}_{n}\right)=V^{*}\left(\mathcal{S}_{n}\right)=\mathbb{R}^{n}$.
- $V_{+}\left(\mathcal{S}_{n}\right)=V_{+}^{*}\left(\mathcal{S}_{n}\right)=[0, \infty)^{n}$.
- The duality is given by $\left\langle\left(a_{j}\right)_{j=1}^{n},\left(b_{j}\right)_{j=1}^{n}\right\rangle=\sum_{j=1}^{n} a_{j} b_{j}$.
- \mathcal{S}_{n} is a finite-dimensional classical GPT.
- Conversely, any d-dimensional classical GPT Ω is affinely isomorphic to \mathcal{S}_{d+1}.

Example: the classical space of probability measures

- (X, Σ) : measurable space.
- $\mathcal{P}(X, \Sigma)$: the set of probability measures defined on Σ.
- $\mathrm{ca}(X, \Sigma)$: the set of signed measures defined on Σ.
- $\mathrm{ca}(X, \Sigma)_{+}:=\{\mu \in \operatorname{ca}(X, \Sigma) \mid \mu(A) \geq 0(\forall A \in \Sigma)\}$.
- Then $\left(\mathrm{ca}(X, \Sigma), \mathrm{ca}(X, \Sigma)_{+}, \mathcal{P}(X, \Sigma)\right)$ is a base-norm Banach space.
- The base-norm on $\mathrm{ca}(X, \Sigma)$ is the total variation norm.
- The GPT $\mathcal{P}(X, \Sigma)$ is classical because ca (X, Σ) is a lattice.
- (The dual space ca $(X, \Sigma)^{*}$ is the self-adjoint part of an abelian vN algebra \mathcal{M}, while we have no intuitive characterization of \mathcal{M}.)

Outline

GPTs

Measurements

Measurement space and compact convex structure

Simulability

Measurement map and EVM

We fix a GPT Ω.

- General measurement can be described by an affine map

$$
\begin{aligned}
\Psi: \Omega & \rightarrow \mathcal{P}(X, \Sigma) \\
\Psi\left(t \omega+(1-t) \omega^{\prime}\right) & =t \Psi(\omega)+(1-t) \Psi\left(\omega^{\prime}\right) .
\end{aligned}
$$

- For such Ψ, there exists a unique map $\mathrm{M}: \Sigma \rightarrow V^{*}(\Omega)$ s.t.
(i) $\mathrm{M}(A) \geq 0(A \in \Sigma)$;
(ii) $\mathrm{M}(\emptyset)=0, \mathrm{M}(X)=1_{\Omega}$;
(iii) for disjoint sequence $\left\{A_{n}\right\} \subseteq \Sigma, \mathrm{M}\left(\bigcup_{n} A_{n}\right)=\sum_{n} \mathrm{M}\left(A_{n}\right)$, and

$$
\Psi(\omega)(A)=\langle\mathrm{M}(A), \omega\rangle \quad(A \in \Sigma, \omega \in \Omega)
$$

- A map M satisfying (i)-(iii) is called an effect-valued measure (EVM).

Measurement map and EVM

- Conversely, any EVM M: $\Sigma \rightarrow V^{*}(\Omega)$ defines an affine map $\Psi^{\mathrm{M}}: \Omega \rightarrow \mathcal{P}(X, \Sigma)$ by

$$
\Psi^{\mathrm{M}}(\omega)(A)=\langle\mathrm{M}(A), \omega\rangle \quad(A \in \Sigma, \omega \in \Omega)
$$

General channel and measurement map

- For any output GPT \mathcal{S}, an affine map $\Psi: \Omega \rightarrow \mathcal{S}$ is called a channel.
- If the outcome space \mathcal{S} is classical, Ψ is called a measurement map.
- A channel $\Psi: \Omega \rightarrow \mathcal{S}$ uniquely extends to a positive linear map $\Psi: V(\Omega) \rightarrow V(\mathcal{S})$.
- The dual map (channel in the Heisenberg picture) $\Psi^{*}: V^{*}(\mathcal{S}) \rightarrow V^{*}(\Omega)$ is a weakly* continuous positive linear map that is unital

$$
\Psi^{*}\left(1_{\mathcal{S}}\right)=1_{\Omega} .
$$

Post-processing relations for channels

Let $\Psi_{1}: \Omega \rightarrow \mathcal{S}_{1}$ be $\Psi_{2}: \Omega \rightarrow \mathcal{S}_{2}$ channels.

- $\Psi_{1} \preceq_{\text {post }} \Psi_{2}\left(\Psi_{1}\right.$ is a post-processing of $\left.\Psi_{2}\right)$
$: \stackrel{\text { def. }}{\Leftrightarrow} \exists \Phi: \mathcal{S}_{2} \rightarrow \mathcal{S}_{1}:$ channel s.t. $\Psi_{1}=\Phi \circ \Psi_{2}$.
- $\preceq_{\text {post }}$ is a preorder.
- $\Psi_{1} \sim_{\text {post }} \Psi_{2}$ (Ψ_{1} and Ψ_{2} are post-processing equivalent) : $\stackrel{\text { def. }}{\Leftrightarrow} \Psi_{1} \preceq_{\text {post }} \Psi_{2}$ and $\Psi_{2} \preceq_{\text {post }} \Psi_{1}$
$-\sim_{\text {post }}$ is an equivalence relation.

Measurement map is essentially an EVM

A general classical space \mathcal{S} is not always isomorphic to some $\mathcal{P}(X, \Sigma)$.
We can still regard each measurement map $\Psi: \Omega \rightarrow \mathcal{S}$ as an EVM in the following sense:

Proposition 1
For any measurement map $\Psi: \Omega \rightarrow \mathcal{S}$ there exists an EVM s.t. $\Psi \sim_{\text {post }} \Psi^{\mathrm{M}}$.

Finite-outcome EVM

- For any measurement map $\Psi: \Omega \rightarrow \mathcal{S}_{n}$ there exists a sequence $\mathrm{M}=\left(\mathrm{M}_{j}\right)_{j=1}^{n} \in V^{*}(\Omega)^{n}$ s.t.

$$
\Psi(\omega)=\Psi^{\mathrm{M}}(\omega):=\left(\left\langle\mathrm{M}_{j}, \omega\right\rangle\right)_{j=1}^{n}
$$

- M satisfies (i) $\mathrm{M}_{j} \geq 0(\forall j)$ and (ii) $\sum_{j=1}^{n} \mathrm{M}_{j}=1_{\Omega}$.
- Such M is called an n-outcome (finite-outcome) EVM.
- $\operatorname{EVM}(\Omega ; n)$: the set of n-outcome EVMs on Ω.

Outline

Measurements

Measurement space and compact convex structure

Simulability

Ensemble and state discrimination probability functional

- A finite sequence $\mathcal{E}=\left(\varphi_{j}\right)_{j=1}^{n} \in V_{+}(\Omega)^{n}$ is called an ensemble : $\stackrel{\text { def. }}{\Leftrightarrow} \sum_{j=1}^{n}\left\langle 1_{\Omega}, \varphi_{j}\right\rangle=1$.
- \mathcal{E} corresponds to the situation where the state $\omega_{j}=\left\langle 1_{\Omega}, \varphi_{j}\right\rangle^{-1} \varphi_{j}$ is prepared in the probability $\left\langle 1_{\Omega}, \varphi_{j}\right\rangle$.
- For a measurement map $\Psi: \Omega \rightarrow \mathcal{S}$, the state discrimination probability functional is defined by

$$
P_{\mathrm{g}}(\mathcal{E} ; \Psi):=\sup _{\mathrm{M} \in \operatorname{EVM}(\mathcal{S} ; n)} \sum_{j=1}^{n}\left\langle\mathrm{M}_{j}, \Psi\left(\varphi_{j}\right)\right\rangle
$$

- $P_{\mathrm{g}}(\mathcal{E} ; \Psi)$ is the optimal probability of guessing the index j when we are given the measurement outcome Ψ.
The EVM M on the RHS corresponds the guessing strategy.

Blackwell-Sherman-Stein theorem for EVMs

The post-processing relation $\preceq_{\text {post }}$ is characterized by the state discrimination probability functionals:

Theorem 2 (BSS theorem for measurements)
Let $\Psi_{1}: \Omega \rightarrow \mathcal{S}_{1}$ and $\Psi_{2}: \Omega \rightarrow \mathcal{S}_{2}$ be measurement maps. Then $\Psi_{1} \preceq_{\text {post }} \Psi_{2} \Longleftrightarrow P_{\mathrm{g}}\left(\mathcal{E} ; \Psi_{1}\right) \leq P_{\mathrm{g}}\left(\mathcal{E} ; \Psi_{2}\right)(\forall \mathcal{E}$: ensemble).

Quantum case: Buscemi (2012); Skrzypczyk and Linden (2019)

Sketch of the proof

- $\Psi_{1} \preceq_{\text {post }} \Psi_{2} \Longrightarrow P_{\mathrm{g}}\left(\mathcal{E} ; \Psi_{1}\right) \leq P_{\mathrm{g}}\left(\mathcal{E} ; \Psi_{2}\right)(\forall \mathcal{E}$: ensemble) is easy.
- Converse implication when Ψ_{1} is finite-outcome: application of the Hahn-Banach theorem.
- Converse implication for general Ψ_{1} reduces to the finite-outcome case by approximating Ψ_{1} by finite-outcome measurement maps.

Measurement space

For a given GPT Ω, the class $\operatorname{Meas}(\Omega)$ of measurement maps (or EVMs) on Ω is a proper class (a class larger than any set). The set of post-processing equivalence classes of measurement maps is well-defined.
Proposition 2
For any GPT Ω, there exists a set $\mathfrak{M}(\Omega)$ and class-to-set surjection

$$
\operatorname{Meas}(\Omega) \ni \Psi \mapsto[\Psi] \in \mathfrak{M}(\Omega)
$$

s.t. $\Psi_{1} \sim_{\text {post }} \Psi_{2} \Longleftrightarrow\left[\Psi_{1}\right]=\left[\Psi_{2}\right]$. We fix such $\mathfrak{M}(\Omega)$ (and $[\cdot]$) and call $\mathfrak{M}(\Omega)$ the measurement space of Ω.
Each element $[\Psi] \in \mathfrak{M}(\Omega)$ is just called a measurement.

Proof

Define [•] by

$$
[\Psi]:=\left(P_{\mathrm{g}}(\mathcal{E} ; \Psi)\right)_{\mathcal{E} \in \operatorname{Ens}(\Omega)} \in \mathbb{R}^{\operatorname{Ens}(\Omega)}
$$

where $\operatorname{Ens}(\Omega)$ is the set of ensembles on Ω, and $\mathfrak{M}(\Omega)$ as the image of the map $\operatorname{Meas}(\Omega) \ni \Psi \rightarrow[\Psi]$. Then the claim follows from the BSS theorem.

Post-processing partial order on $\mathfrak{M}(\Omega)$

- For measurements $[\Psi],[\Phi] \in \mathfrak{M}(\Omega)$,

$$
[\Psi] \preceq_{\text {post }}[\Phi]: \stackrel{\text { def. }}{\Leftrightarrow} \Psi \preceq_{\text {post }} \Phi .
$$

- $\preceq_{\text {post }}$ defined on $\mathfrak{M}(\Omega)$ is a partial order.
- We may also define the state discrimination probability functional on $\mathfrak{M}(\Omega)$ by

$$
P_{\mathrm{g}}(\mathcal{E} ;[\Psi]):=P_{\mathrm{g}}(\mathcal{E} ; \Psi)
$$

Weak topology on $\mathfrak{M}(\Omega)$

- The weak topology on $\mathfrak{M}(\Omega)$ is the coarsest topology such that

$$
\mathfrak{M}(\Omega) \ni \mu \mapsto P_{\mathrm{g}}(\mathcal{E} ; \mu) \in \mathbb{R}
$$

is continuous for every ensemble \mathcal{E}.

- $\mu_{i} \xrightarrow{\text { weakly }} \mu \Longleftrightarrow P_{\mathrm{g}}\left(\mathcal{E} ; \mu_{i}\right) \rightarrow P_{\mathrm{g}}(\mathcal{E} ; \mu)(\forall \mathcal{E}$: ensemble).

Theorem 3
The weak topology on $\mathfrak{M}(\Omega)$ is a compact Hausdorff topology.

The proof is an application of the compactness of the pointwise convergence topology of the weak* topology on the set of unital positive maps (Tychonoff's theorem).

Density of finite-outcome measurements

Theorem 4
The set of finite-outcome measurements is a dense subset of $\mathfrak{M}(\Omega)$ in the weak topology.

Direct sum of GPTs

- For GPTs Ω_{1} and Ω_{2}, the direct sum base-norm Banach space $\left(V\left(\Omega_{1}\right) \oplus V\left(\Omega_{2}\right), V_{+}\left(\Omega_{1}\right) \oplus V_{+}\left(\Omega_{2}\right), \Omega_{1} \oplus \Omega_{2}\right)$ is defined by
$\Omega_{1} \oplus \Omega_{2}=\left\{t \omega_{1} \oplus(1-t) \omega_{2} \mid t \in[0,1], \omega_{1} \in \Omega_{1}, \omega_{2} \in \Omega_{2}\right\}$.
- If \mathcal{S}_{1} and \mathcal{S}_{2} are classical, so is $\mathcal{S}_{1} \oplus \mathcal{S}_{2}$.

Direct mixture of measurements

- For measurements $\Psi_{1}: \Omega \rightarrow \mathcal{S}_{1}$ and $\Psi_{2}: \Omega \rightarrow \mathcal{S}_{2}$ and $t \in[0,1]$, we define the direct mixture measurement map $t \Psi_{1} \oplus(1-t) \Psi_{2}: \Omega \rightarrow \mathcal{S}_{1} \oplus \mathcal{S}_{2}$ by

$$
t \Psi_{1} \oplus(1-t) \Psi_{2}(\omega):=t \Psi_{1}(\omega) \oplus(1-t) \Psi_{2}(\omega)
$$

- $P_{\mathrm{g}}(\mathcal{E} ; \cdot)$ is affine w.r.t. the direct mixture:

$$
P_{\mathrm{g}}\left(\mathcal{E} ; t \Psi_{1} \oplus(1-t) \Psi_{2}\right)=t P_{\mathrm{g}}\left(\mathcal{E} ; \Psi_{1}\right)+(1-t) P_{\mathrm{g}}\left(\mathcal{E} ; \Psi_{2}\right)
$$

General convex structure

- A set S equipped with a map

$$
[0,1] \times S \times S \ni\left(p, s_{1}, s_{2}\right) \mapsto\left\langle p ; s_{1}, s_{2}\right\rangle \in S
$$

is called a convex prestructure (Gudder 1973).

- For a convex prestructure $(S,\langle\cdot ; \cdot, \cdot\rangle)$ a function $f: S \rightarrow \mathbb{R}$ satisfying

$$
f\left(\left\langle p ; s_{1}, s_{2}\right\rangle\right)=p f\left(s_{1}\right)+(1-p) f\left(s_{2}\right)
$$

is said to be affine.

- If S is further a topological space, we denote by $A_{\mathrm{c}}(S)$ the set of continuous affine functionals on S.

Compact convex structure

A convex prestructure $(S,\langle\cdot ; \cdot, \cdot\rangle)$ equipped with a topology τ on S is called a compact convex structure if τ is a compact topology and $A_{\mathrm{c}}(S)$ separates points of S, i.e. for any $s_{1}, s_{2} \in S$

$$
s_{1} \neq s_{2} \Longrightarrow \exists f \in A_{\mathrm{c}}(S) \text { s.t. } f\left(s_{1}\right) \neq f\left(s_{2}\right)
$$

Proposition 3
A compact convex structure $(S,\langle\cdot ; \cdot, \cdot\rangle, \tau)$ is always continuously and affinely isomorphic to a compact convex set $S\left(A_{\mathrm{c}}(S)\right)$ of normalized positive linear functionals on $A_{\mathrm{c}}(S)$ equipped with the weak* topology.

Compact convex structure of measurements

Theorem 5
The measurement space $\mathfrak{M}(\Omega)$ equipped with the convex operation

$$
\left(t,\left[\Psi_{1}\right],\left[\Psi_{2}\right]\right) \mapsto\left\langle t ;\left[\Psi_{1}\right],\left[\Psi_{2}\right]\right\rangle:=\left[t \Psi_{1} \oplus(1-t) \Psi_{2}\right]
$$

and the weak topology is a compact convex structure.

This follows from the affinity of P_{g} and the BSS theorem.
Thus we can and do identify $\mathfrak{M}(\Omega)$ with the concrete compact convex set $S\left(A_{\mathrm{c}}(\mathfrak{M}(\Omega))\right)$, where the direct mixture $\left[t \Psi_{1} \oplus(1-t) \Psi_{2}\right]$ is the ordinary convex mixture in the linear space $A_{\mathrm{c}}(\mathfrak{M}(\Omega))^{*}$ 。

Outline

GPTs

Measurements

Measurement space and compact convex structure

Simulability

Simulability

Let $\mathfrak{L} \subseteq \mathfrak{M}(\Omega)$ be an arbitrary subset.

- $\mu \in \mathfrak{M}(\Omega)$ is simulable by $\mathfrak{L}: \stackrel{\text { def. }}{\Leftrightarrow} \exists \nu \in \operatorname{conv}(\mathfrak{L})$ s.t. $\mu \preceq_{\text {post }} \nu$. ($\operatorname{conv}(\cdot)$ denotes the convex hull.)
- $\mathfrak{s i m}(\mathfrak{L})$: the set of measurements simulable by \mathfrak{L}.
- $\mu \in \mathfrak{M}(\Omega)$ is weakly simulable by $\mathfrak{L}: \stackrel{\text { def. }}{\Leftrightarrow} \exists \nu \in \overline{\operatorname{conv}}(\mathfrak{L})$ s.t. $\mu \preceq_{\text {post }} \nu$. ($\overline{\operatorname{conv}}(\cdot)$ denotes the closed convex hull w.r.t. the weak topology.)
- $\overline{\mathfrak{s i m}}(\mathfrak{L})$: the set of measurements weakly simulable by \mathfrak{L}.
 the weak topology.

Characterization of the weak simulabity

For a subset $\mathfrak{L} \subseteq \mathfrak{M}(\Omega)$ and an ensemble \mathcal{E}, we define

$$
P_{\mathrm{g}}(\mathcal{E} ; \mathfrak{L}):=\sup _{\nu \in \mathfrak{L}} P_{\mathrm{g}}(\mathcal{E} ; \nu) .
$$

Theorem 6
$\mu \in \overline{\mathfrak{s i m}}(\mathfrak{L}) \Longleftrightarrow P_{\mathrm{g}}(\mathcal{E} ; \mu) \leq P_{\mathrm{g}}(\mathcal{E} ; \mathfrak{L})(\forall \mathcal{E}:$ ensemble $)$.
Quantum case: Skrzypczyk (2019)

Simulation irreducibility

- $\mu \in \mathfrak{M}(\Omega)$ is maximal : $\stackrel{\text { def. }}{\Leftrightarrow} \mu \preceq_{\text {post }} \nu \in \mathfrak{M}(\Omega)$ implies $\mu=\nu$.
- $\mu \in \mathfrak{M}(\Omega)$ is extremal in $\mathfrak{M}(\Omega) \Longleftrightarrow$ there exists a representative $\Psi: \Omega \rightarrow \mathcal{S}$ of $\mu(\mu=[\Psi])$ s.t. $\Psi^{*} V^{*}(\mathcal{S}) \rightarrow V^{*}(\Omega)$ is injective.
- $\mu \in \mathfrak{M}(\Omega)$ is simulation irreducible $: \stackrel{\text { def. }}{\Leftrightarrow}$ for any subset $\mathfrak{L} \subseteq \mathfrak{M}(\Omega), \mu \in \mathfrak{s i m}(\mathfrak{L})$ implies $\mu \in \mathfrak{L}$.
$\mathfrak{M}_{\text {irr }}(\Omega)$: the set of simulation irreducible measurements.
- $\mu \in \mathfrak{M}(\Omega)$ is simulation irreducible iff μ is maximal and extremal.

Krein-Milman-type theorem for measurement simulability

Theorem 7
For any GPT $\Omega, \mathfrak{M}_{\text {irr }}(\Omega) \neq \emptyset$ and $\mathfrak{M}(\Omega)=\overline{\mathfrak{s i m}}\left(\mathfrak{M}_{\text {irr }}(\Omega)\right)$.

The proof is almost parallel to that of the Krein-Milman theorem and based on Theorem 6 and the following lemma.

Lemma 1
Any weakly continuous and post-processing monotone affine functional $f: \mathfrak{M}(\Omega) \rightarrow \mathbb{R}$ attains its maximum value at a point $\mu_{0} \in \mathfrak{M}_{\text {irr }}(\Omega)$.

