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The range of a quantum measurement is the set of outcome probability distributions that can be produced by
varying the input state. We introduce data-driven inference as a protocol that, given a set of experimental data
as a collection of outcome distributions, infers the quantum measurement which is (i) consistent with the data,
in the sense that its range contains all the distributions observed, and (ii) maximally noncommittal, in the sense
that its range is of minimum volume in the space of outcome distributions. We show that data-driven inference is
able to return a unique measurement for any data set if and only if the inference adopts a (hyper)spherical state
space (for example, the classical or the quantum bit). In analogy to informational completeness for quantum
tomography, we define observational completeness as the property of any set of states that, when fed into
any given measurement, produces a set of outcome distributions allowing for the correct reconstruction of
the measurement via data-driven inference. We show that observational completeness is strictly stronger than
informational completeness, in the sense that not all informationally complete sets are also observationally
complete. Moreover, we show that for systems with a (hyper)spherical state space, the only observationally
complete simplex is the regular one, namely, the symmetric informationally complete set.
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I. INTRODUCTION

In quantum theory, as a consequence of the Born rule, a
measurement can always be seen as a linear mapping from the
set of states (i.e., density operators) into the set of probability
distributions over the measurement outcomes.1 In fact, some
axiomatic approaches identify quantum measurements with
the set of such mappings: in such a case, the resulting distribu-
tion, i.e., the image of the state of the system undergoing the
measurement, receives the natural operational interpretation
of distribution over the measurement outcomes [1].

When thinking of measurements as linear mappings, the
image of the set of all states under a given measurement—
also known as the measurement’s range—turns out to be a
very important mathematical object in quantum measurement
theory. For example, given two quantum measurements, the
range of one includes the range of the other, if and only if
the former can simulate the latter by means of a suitable sta-
tistical transformation [2–4], independently of the state being
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1Since the Born rule is, in fact, bilinear in the state-measurement

pair, also the opposite is true, namely, that any state induces a linear
mapping from measurements into probability distributions. For this
reason, in the Appendix A the formalism is developed for both
states and measurements. However, for the sake of concreteness, the
narrative in the main text mostly follows the task of measurement
inference.

measured. Quantum measurements, hence, can be compared
by comparing the corresponding ranges, thus establishing a
deep connection between quantum measurement theory and
the theory of majorization and statistical comparison [5,6],
with ramified consequences in both theory and applications
[7–16].

In this paper we exploit the correspondence between mea-
surements and their ranges to propose a method to derive an
inference about an unknown quantum measurement, based
solely on the outcome distributions observed, without any
knowledge about the exact states that gave rise to such dis-
tributions. As we observe in what follows, such a method
can be naturally divided into two parts. In the first part, one
defines an inference rule, which formulates in an abstract
way the rules that we choose to use when reasoning in the
presence of incomplete information. For the problem at hand,
such rules accept as input a set of outcome distributions and
return as output a set of quantum measurements. For this rea-
son, we name our inference rule “data-driven inference (DDI)
of quantum measurements.” The measurements inferred via
DDI are consistent with the input data and are maximally
noncommittal, in the sense that their ranges contain the input
data and are of minimum volume in the space of outcome
distributions. DDI need not aim to infer the “true” quantum
measurement, as there need not be any such “entity” at this
stage. As an application we implement an algorithm for the
machine learning of qubit measurements based on data-driven
inference, and we test it on data generated by the IBM Q
Experience quantum computer.
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In the second part, one needs to show that it is indeed
possible to construct a real experiment so that DDI leads to
the correct assignment for the unknown measurement. The
goal here is reminiscent of that of conventional quantum
measurement tomography [17–23], namely, the reconstruction
of an unknown measurement from the statistics collected in
a sequence of experimental trials. However, while the data
analysis performed in measurement tomography requires the
knowledge of the states that were fed into the unknown mea-
surement, DDI reconstruction only requires the analysis of
the bare outcome distributions: the state preparator could, for
example, emit a different unknown state at each repetition of
the experiment, and DDI reconstruction would still be appli-
cable.2

In what follows, we expound the theory of data-driven
inference and reconstruction for finite dimensional systems.
As this is based on the correspondence between measurements
and their ranges, three main problems arise and are addressed.

The first problem is to seek for a general method to infer
a range given a set of outcome distributions. As a possible
solution, in what follows, we propose that the measurement
range to be inferred, in the face of a set of experimental
data, should be the smallest one containing all the observed
data. Recalling that the range of a measurement is directly
related to the ability to simulate other measurements [2], our
principle is equivalent to say that the measurements to be
inferred should be the weakest possible, compatibly with the
data. Our inference rule hence encapsulates a principle of
“self-consistent minimality” that we believe constitutes a nat-
ural way to reason in the presence of incomplete information.
We show that the only systems for which DDI always leads
to a unique range for any set of data, among all generalized
probabilistic theories [24–30], are those with (hyper)spherical
state space, such as the classical and the quantum bit. This
can be interpreted as an “epistemic reconstruction” of such
systems, regarded as epistemic hypotheses onto which to base
our reasoning, rather than actual entities to be operationally
characterized [31–34].

The second problem consists of understanding to which ex-
tent the correspondence between a measurement and its range
can be inverted, that is, to what extent a measurement can
be characterized if only its range is given. In this respect, in
what follows, we show that the correspondence measurement
range is invertible, but only up to the action of a symmetry
transformation leaving the state space of the system invariant.
This is something to be expected when directly working in
the space of outcome distributions, and we consider this to be
a feature, rather than a limitation, of DDI.

The third problem is to understand how an experimentalist,
in complete control of their laboratory, can produce experi-
mental data, which are rich enough to reconstruct, via DDI,
the “correct” range of a measurement. That is, we want to
understand whether, in order to recover the correct range by
DDI, an infinite set of states needs to be prepared and sent

2On the contrary, we need to assume that the unknown mea-
surement to be reconstructed remains the same during the entire
experiment—otherwise the problem of reconstruction would not
even be well defined.

through the measurement apparatus, or whether a finite set
of states, and possibly the same ones for any measurements,
suffice (we remark that, in contrast to the data analysis of
quantum measurement tomography, DDI does not require the
knowledge of such states). This problem is analogous to the
problem in quantum tomography to construct a standard ap-
paratus that work whatever it is to be reconstructed. As the
problem in quantum tomography is solved by an informa-
tionally complete apparatus, the analogous problem in DDI
reconstruction is solved by what we call an observationally
complete (OC) apparatus. More precisely, OC sets of states
are sets whose image contains the same statistical information
as the entire range. Of course, since DDI does not rely on the
knowledge of the states, it is not possible for DDI to certify
whether the states fed into the measurement were OC.

We show that the property of observational complete-
ness is strictly stronger than informational completeness, thus
constituting a new “bureau of standards” in terms of DDI
reconstruction. To this aim we show that, for systems with
(hyper)spherical state space such as the classical and quantum
bits, the only observationally complete simplex is the regular
simplex, that is, the symmetric informationally complete (SIC)
one [35–40]. Data-driven inference and reconstruction, hence,
naturally lead to the notion of SIC apparatus by looking only at
the set of outcome distributions, thus providing a completely
new viewpoint on the discussion about SIC apparatus and
their “natural occurrence” in quantum theory.

The structure of the paper follows the above discussion.
In the first section we introduce data-driven inference as the
inference of the minimal range consistent with the observed
distributions, and we show that the inferred range is unique
for any set of outcome distributions only for systems with
(hyper)spherical state space. We also prove that the range of
a measurement identifies such a measurement up to gauge
symmetries. In the second section we introduce the property
of observational completeness and show that it represents a
strictly stronger condition than informational completeness.
For systems with (hyper)spherical state space, we show that
the minimal observationally complete set of states happens to
be SIC. In the third section we implement a protocol for the
machine learning of qubit measurements based on data-driven
inference and reconstruction, and we test it on data generated
by the IBM Q Experience quantum computer.

II. DATA-DRIVEN INFERENCE

Let us consider an experimental setup involving two boxes
equipped with m buttons and n light bulbs, respectively. This
situation is depicted in Fig. 1. At each run of the experiment, a
theoretician, say Alice, presses button x and observes outcome
y. She records the vectors {px ∈ Rn}, whose yth entry is the
frequency of outcome y given input x.

We address the problem of inferring all the measurements
M̂ that are self-consistent and minimal for observed frequen-
cies {px}, in an i.i.d. hypothesis for M̂. To formalize this idea,
notice that any n-outcome measurement M induces a linear
transformation from the state space S (the set of all states
available to the system) to the space of outcome distributions
Rn. The range of such a transformation, denoted by M(S),
represents the distributions compatible with measurement M.
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x ∈ [1, . . . m] y ∈ [1, . . . n]

FIG. 1. The experimental setup consists of two uncharacterized
boxes equipped with m buttons and n light bulbs, respectively. At
each run, Alice presses button x and observes outcome y, thus record-
ing vectors {px ∈ Rn}, whose yth entry is the frequency of outcome
y given input x.

Hence, given some prior information about a state space S,
the inferred linear transformations M̂ minimize the volume3

of their ranges M̂(S) under the self-consistency constraints
M̂(S) ⊇ {px}.4 This naturally identifies two steps in the in-
ference of M̂: (i) the inference of the (possibly not unique)
minimum-volume range R̂ such that R̂ ⊇ {px}, and (ii) the
characterization of all the linear transformations M̂ with given
range M(S) = R̂.

Let us start addressing the first step, that is, the inference
of the (possibly not unique) minimum-volume range R̂ such
that R̂ ⊇ {px}. Since such an inference is solely driven by the
data, we call it data-driven inference (see also [41,42]):

Definition 1 (Data-driven inference). For any set {px}, we
denote by ddi({px}|S) the data-driven inference map

ddi({px}|S) = argminR⊇{px}V (R), (1)

where V (R) denotes the Euclidean volume of R and the
minimization is over subsets R ⊆ Rn corresponding to linear
transformations of the state space S that lie on the affine
subspace generated by {px}.

If the prior information does not specify a single state space
S, the minimum in Eq. (1) is meant to run also over all such
sets.

An intuitive geometrical interpretation for Definition 1 is
illustrated by the following two examples.

First, let S be a (hyper)sphere �. This scenario encom-
passes the cases of classical and quantum bits, where the
set S is a one-dimensional and a three-dimensional sphere,
respectively. In this case, the optimization in Eq. (1) is over
affine transformations of a sphere, that is, ellipsoids. It follows
[43,44] that the range returned by map ddi is unique for any
input set {px}, and one has that

ddi({px} | �) = {MVEE({px})}, (2)

3Notice that the choice of volume as an objective function is in-
dependent of linear transformations, since for any body the volume
under any linear transformation changes by a factor that only depends
on the linear transformation, and not on the body itself. Nonlinear
transformations are not allowed, as they do not preserve the linear
structure of the underlying space (state or effect space or probability
space).

4Notice that not any linear transformation corresponds to a legiti-
mate measurement. In the case in which none of the inferred M̂ is a
legitimate measurement, the inference fails, in the sense that Alice
declares that either the data are insufficient or that the assumption of
the state space S is inconsistent.

FIG. 2. A schematic representation of the space of distributions
when n = 3 (three outcomes, and hence the probability simplex
is two dimensional). Left: When the state space S is a sphere,
the data-driven inference defined by Eq. (1) returns the minimum
volume-enclosing ellipsoid R̂, which always exists unique, for the
given set {px}. Range R1 is not consistent with {px}, while R2,
although consistent, is not minimum volume. Right: When the state
space S is a simplex, the data-driven inference defined by Eq. (1)
returns the set of minimum volume-enclosing simplices (as these are
generally not unique) R̂1 and R̂2 for the given set {px}. Range R is
not minimum volume.

where MVEE denotes the minimum volume-enclosing ellip-
soid, which is known to be a convex problem, and for which
efficient computing algorithms are available [45]. This situa-
tion is illustrated in Fig. 2, left-hand side.

Let us consider now, as a second example, the case in
which the state space S is a regular simplex �, as it is the
case for classical systems. In this case, the optimization in
Eq. (1) is over affine transformations of the simplex �, which
turn out to be simplices themselves. It is not difficult to find
configurations of the set {px} of observed distributions, such
that the range returned by the map ddi is not unique. This
situation is illustrated in Fig. 2, right-hand side.

In light of the previous examples, it is a natural question
to ask for which state spaces S the range returned by the
data-driven inference ddi is always unique. The following
Theorem, proved in Appendix B, answers such a question.

Theorem 1. The range returned by the data-driven infer-
ence ddi({px}|S) is unique for any {px}, if and only if the
state space S is a (hyper)sphere.

This result can be lifted to the level of a principle, singling
out spherical state spaces S, such as those of the classical and
quantum bits, as those for which the map ddi always returns
a unique range. This principle rules out theories with more
exotic elementary systems, such as PR boxes [25] for which
inference is not always unique. In this case, we speak of an
epistemic principle, that is, a constraint on the state space seen
as the hypothesis used by the observer as the base of their
inference.

Let us now move on to the second step mentioned above,
that is, the characterization of all the linear transformations
M with range M(S) equal to a given inferred one R̂. Notice
first that any transformation U that leaves the state space
S invariant, that is such that U (S) = S, does not affect the
range M(S), that is M(U (S)) = M(S). We refer to any
such a transformation as a gauge symmetry. The following
Theorem shows that accuracy up to gauge symmetries is
indeed the optimal accuracy in the characterization of any
informationally complete (i.e., invertible) M, given its range.
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Outcome distributions {px} Some prior information
about state space S

Data-driven inference
Alice computes ddi({px}|S)

Minimum-volume range R̂
compatible with {px}

Range inversion

Alice computes the inverse of R̂

Maximally noncommittal M̂
consistent with {px}

FIG. 3. Algorithmic representation of data-driven inference.

(For noninformationally complete M, the statement, although
conceptually similar, becomes technically more involved,
so we postpone the general statement and its proof to
Appendix C.)

Theorem 2. For any given state space S, the range M(S)
of any informationally complete M identifies M up to gauge
symmetries.

Although Theorem 2 is valid for any state space S, for the
sake of concreteness let us revisit our running example where
S is a (hyper)sphere �, in particular a qubit.

In the qubit case, the gauge symmetries correspond to
unitary and antiunitary transformations in the Hilbert space,
hence, the range M(S) identifies linear transformation M
up to unitary and antiunitary transformations. However,
Theorem 2 only guarantees the existence of such an identifi-
cation, without providing an explicit construction. Reference
[41] fills this gap by explicitly deriving all the linear trans-
formations that correspond to any given (hyper)ellipsoidal
range. Such a result is provided with a new simpler proof as
Proposition 1 of Appendix C.

An algorithmic representation of data-driven inference is
given in Fig. 3.

III. DATA-DRIVEN RECONSTRUCTION

In the previous section we introduced a principle of self-
consistent minimality to guide the inference of a measurement
given a set of observed outcome distributions. In this section
we consider the case in which the boxes with buttons and
lights in Fig. 1 describe a physical state-preparator S and a
physical measurement M, respectively. This situation is illus-
trated in Fig. 4.

The state-preparator S is built by an experimentalist, say
Bob, with the aim of enabling Alice to correctly infer the
measurement range M(S) through DDI, that is, the inferred
range R̂ satisfying R̂ = M(S), in the limit in which Alice
presses each button infinitely many times. This task shares
similarities with conventional measurement tomography, with
the major difference that, in the latter, full knowledge of the

S

x ∈ [1, . . . m]

M

y ∈ [1, . . . n]

FIG. 4. The same experimental setup as in Fig. 1, although this
time the state preparator S is built by Bob, with the aim of enabling
Alice to correctly infer measurement range M(S), that is, for the
inferred range R̂, one has R̂ = M(S).

state-preparator S is pivotal for Alice’s data analysis, whereas
DDI solely depends on the observed outcome distributions
and the knowledge of the state space S.

Since it is sufficient to show that Bob is able to construct
one such state preparator, we can assume, without loss of gen-
erality, that each button of the state preparator emits always
the same state at each press, and that different buttons are
associated with different states. Hence, the state-preparator S
can be mathematically described as a set of states.

The probabilities {px} Alice observes are the image of the
states in S , that is, {px} = M(S ). Correct inference imposes
then that M(S ) contains all the statistical information that
is available in the measurement range M(S), and that such
information can be extracted by data-driven inference. We
call observationally complete (OC) any state preparator that
allows for the correct inference of measurement M.

Definition 2 (Observational completeness). A set of states
S is said to be observationally complete for measurement M
whenever

ddi(M(S )|S) = {M(S)}. (3)

If the set is not OC, the set of inferred measurements
may not contain the correct measurement, but measurements
with ranges smaller than the correct measurement, or even
measurements inequivalent (modulo gauge symmetries) to it.

Notice that observational completeness (OC-ness) plays an
analogous role for data-driven reconstruction as informational
completeness (IC-ness) plays for conventional measurement
tomography. However, IC sets of states allow for the correct
tomographic reconstruction of any measurement, while OC
sets of states apparently depend on the measurement to be
inferred.

Is this really the case? It turns out that, as long as the
measurement is IC, by bypassing the linear transformation M
in Eq. (3) one obtains a condition equivalent to Eq. (3), as
stated in the following theorem:

Theorem 3. A set S of states is OC complete for any IC
measurement, if and only if

ddi(S|S) = {S}. (4)

Notice that in Eq. (4) the map ddi is applied to a set of
states, as opposed to a set of probability distributions as it was
the case so far.

Hence, any set S of states that is OC for some IC measure-
ment, is also OC for any other IC measurement. Moreover,
Eq. (4) provides a characterization of any such a set S in
closed form, namely, in a form which only depends on S
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Measurement M

Observational completeness

Bob feeds in M a set S of states
which is OC for M

Outcome distributions {px} = M(S)

Data-driven inference
Alice computes ddi({px}|S)

Minimum-volume range R̂
compatible with {px}

Range inversion

Alice computes the inverse of R̂

Measurement M
up to gauge symmetries

FIG. 5. Algorithmic representation of data-driven reconstruction.

alone, in contrast with Definition 2 that also depends on M.
Such a characterization can be used to readily check if any
given set S is OC for any IC measurement.

More generally, even if M is not an IC measurement, one
can write a condition equivalent to Eq. (3) [and conceptually
analogous to Eq. (4), just technically more involved] that
depends on M only through its support. Hence, any set S of
states that is OC for M is also OC for any other measurement
with the same support. In other words, it is universally OC
on such a support. A fully general version of Theorem 3 is
provided in Appendix D.

Notice that, while OC sets of states are universal within a
given subspace, IC sets of states are universal for any subspace
and all of its subspaces. In fact, it is easy to see that the only
set of states that is OC for any measurement M is trivially the
state space S.

An algorithmic représentation of data-driven reconstruc-
tion is given in Fig. 5.

Although Theorem 3 is valid for any state space S, for the
sake of concreteness let us revisit our running example where
S is a (hyper)sphere.

In light of Eq. (2), Theorem 3 states that a set S of states is
OC for IC measurements if and only if its minimum volume-
enclosing ellipsoid coincides with the (hyper)sphere �, that
is

MVEE(S ) = �. (5)

In Appendix D (Proposition 2), as a consequence of Ref. [46],
we show that such a condition is satisfied when S is a regular
simplex. This situation is illustrated in Fig. 6, left-hand side.
Moreover, we show that, as a consequence of Ref. [47], also

S = Σ = MVEE(S)

S = Δ

MVEE(S)

S = Σ

S �= Δ

FIG. 6. A two-dimensional representation of the spherical state
space S (orange line) and of the minimum volume-enclosing ellip-
soid (blue line) for the simplicial set S of states (black vectors). Left:
When S coincides with the regular simplex �, its minimum-volume
enclosing ellipsoid coincides with the sphere �, hence, due to The-
orem 3, S is observationally complete. Right: When S does not
coincide with the regular simplex �, its minimum volume-enclosing
ellipsoid does not coincide with the sphere �, hence, due to Theorem
3, S is not observationally complete.

the converse is true, namely, that such a condition is violated
whenever S is an irregular simplex (see Fig. 6, right-hand
side). Hence, for simplices, OC-ness is equivalent to sym-
metric IC-ness and, therefore, the SIC set of states is the
minimal (in terms of cardinality) OC set. This provides an
operational interpretation of symmetric informational com-
pleteness in terms of data-driven inference and reconstruction.
It is tempting to conjecture that this equivalence holds for any
quantum system, not just the qubit.

Although it is easy to see that any set of states which is
OC on a subspace, is also IC on that subspace, the previous
example shows that the vice versa is not true. Indeed, any
simplex, whether regular or not, is trivially IC on its support.
Hence, OC-ness is a strictly stronger condition than IC-ness.
In this sense, OC-ness defines a new “bureau of standards” in
terms of data-driven inference and reconstruction.

IV. MACHINE LEARNING OF QUBIT MEASUREMENTS

In this section we first provide an algorithm for the
data-driven inference of measurements of any system with
(hyper)spherical state space, and then we apply it to the data-
driven reconstruction of a qubit measurement implemented
with the IBM quantum computer.

Let us begin by discussing the algorithm for the data-driven
inference. As shown by Eq. (2), for (hyper)spherical state
space S = � the data-driven inference algorithm ddi can be
written in terms of a minimum volume enclosing ellipsoid
algorithm MVEE. Efficient algorithms for the computation of
MVEE (quadratic in the dimension and linear in the number of
points) can readily be found [45,48], but in general assume
that the affine space generated by the input set coincides with
the full linear space. Hence, given a set {px}, to compute
ddi({px}|�), one proceeds as follows:

(1) Find an isometry V such that V T V = 1 and VV T is the
projector on the linear subspace homogeneous to the affine
subspace generated by {px}.

(2) Compute MVEE(V T {px − p0}), where by construction
the affine subspace generated by V T {px − p0} is now full

062407-5
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FIG. 7. The three points V T (px − p0) (circles) for x = 0, 1, 2,
where px’s are given by Eq. (6), and their minimum-volume enclos-
ing ellipsoid, according to the second step of our algorithm for the
data-driven inference of qubit measurements.

dimensional, thus obtaining an ellipsoid in the form (p̃ −
t̃)T Q̃−1(p̃ − t̃) � 1.

(3) The output of ddi({px}|�) is the singleton given by
the ellipsoid

(1 − QQ+)(p − t) = 0,

(p − t)T Q+(p − t) � 1,

where Q := V Q̃V T and t := V t̃ + p0.
We tested our algorithm on the set {p0, p1, p2} as follows

(later on we show how this data were obtained):

p0 �

⎡
⎢⎣

0.48
0.05
0.24
0.23

⎤
⎥⎦, p1 �

⎡
⎢⎣

0.21
0.32
0.42
0.05

⎤
⎥⎦, p1 �

⎡
⎢⎣

0.17
0.33
0.11
0.39

⎤
⎥⎦. (6)

The minimum-volume enclosing ellipsoid for the set
{V T (px − p0)}, as given in the second step of our algorithm,
is depicted in Fig. 7. The correlation matrix Q and the vector
t , as reconstructed by the third step of our algorithm, are given
by

Q � 10−2

⎡
⎢⎣

3.8 −3.6 0 −0.1
−3.6 3.4 0.2 0

0 0.2 3.3 −3.4
−0.1 0 −3.4 3.6

⎤
⎥⎦, t �

⎡
⎢⎣

0.29
0.23
0.26
0.22

⎤
⎥⎦.

(7)

As a consequence of Theorem 2, through range inversion
this allows for the data-driven inference of the POVM up to
gauge symmetries, that is, an overall unitary or antiunitary
transformation. In particular, as shown in Ref. [41] (an alter-
native, more compact proof is given in given in Proposition
1 of Appendix C), any measurement {πy} compatible with

|0〉 U3(0, 0, 0) H S† H T T H S X

|0〉 H S • •
|0〉 U3(2π/3, 0, 0) H S† H T T H S X

|0〉 H S • •
|0〉 U3(−2π/3, 0, 0) H S† H T T H S X

|0〉 H S • •

FIG. 8. The orange gate (top left) represents the preparation of
the trine ensemble (from top to bottom, states φ0, φ1, and φ2). All
other gates represent a Naimark extension of a measurement consist-
ing of two mutually unbiased basis.

correlation matrix Q and vector t can be obtained by inverting
the following system:

Qx,y = 1
2 Tr[πxπy] − 1

4 Tr[πx]Tr[πy], tx = 1
2 Tr[πx].

Let us now discuss the data-driven reconstruction, that is,
the way in which the data in Eq. (6) was generated. Such data
were generated by the IBM Q Experience quantum computer.
The ideal circuit consists of the preparation of a trine set {φx}
of states, which, as observed in Fig. 6, is observationally com-
plete for any real measurement, and the measurement of two
mutually unbiased basis, as depicted in Fig. 8. This allows one
to compare the correlation matrix Q and the vector t given in
Eq. (7) (from which one can recover the inferred measurement
up to gauge symmetries through range inversion) with the
ideal ones, given by

Q = 1

16

⎛
⎜⎝

1 −1 0 0
−1 1 0 0

0 0 1 −1
0 0 −1 1

⎞
⎟⎠, t = 1

4

⎛
⎜⎝

1
1
1
1

⎞
⎟⎠.

An analysis of the noise affecting the IBM back end is how-
ever out of the scope of this paper.

V. CONCLUSION

In this work we introduced data-driven inference as a rule
to output the maximally noncommittal measurement consis-
tent with a set of observed distributions. We showed that
the inference is possible in principle up to gauge symme-
tries, that is, symmetries of the state space of the system
at hand, and that this accuracy limit is achieved for (hy-
per)spherical state spaces. Then we considered the task of
reconstructing an unknown measurement via DDI. To this
aim we introduced observationally complete sets of states, as
those enabling a correct inference universally, that is, for any
unknown measurement on a given support. Deriving a closed-
form characterization of observational completeness allowed
us to show that, while observational completeness is a strictly
stronger condition than informational completeness, in the
case of (hyper)spherical state space OC-ness with minimum
number of states is equivalent to SIC-ness. In this way, the
protocol of data-driven inference provides SIC sets with a
novel, entirely operational interpretation.
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APPENDIX A: GENERAL FRAMEWORK

While, for the sake of clarity, in the previous sections
we focused on the data-driven inference of measurements,
in these Appendixes we extend the formalism to encompass
the case of data-driven inference of families of states, thus
justifying the word “devices” in our title. Finally, rather than
restricting the presentation to the quantum case, here we con-
sider general probabilistic theories.

A physical system can be defined by giving a set of states
and a set of effects, representing, respectively, the preparations
and the observations of the system. An effect a ∈ E is a linear
map that takes a state ρ as an input and outcomes a probability
p(a|ρ) := a(ρ). Since randomization of different experimen-
tal setups is in itself another valid experiment, it is natural
to endow the set of states and the set of effects with a linear
structure and allow for any convex combination of states and
effects. By linear extension, it is also natural to introduce the
real vector spaces generated by any real linear combinations
of states and effects. Restricting to the finite dimensional case,
the linear space of states and the linear space of effects are
dual to each other and both isomorphic to R� for some natural
number � which is called the linear dimension of the system.

We assume that the physical theory is causal. A proba-
bilistic theory is causal if there exists a unique deterministic
effect e ∈ E, and deterministic states are those states such
that e(ρ) = 1. Therefore, states can always be normalized as
ρ := ρ/e(ρ) and every state is proportional to a deterministic
one. For this reason, the full set of states of any causal theory
is completely specified by the set of deterministic states. We
denote by S the set of normalized (or deterministic) states of
the theory and by E the set of effects of the theory.

By choosing an arbitrary basis, we can give a geometric
representation of S and E as a subset of R�: S will be a convex
set contained in a strictly affine (� − 1)-dimensional subspace,
while E will be a “bicon-ish” shaped solid (see Fig. 9).

Measurements are a family of effects {ay}n
y=1 such that∑n

y=1 ay = e, ∀ρ ∈ S. Since any state can be regarded as a
vector in R�, any measurement induces a linear map M ∈
Mn×� defined as follows:

M :Rl → Rn, ρx �→ px, py
x := ay(ρx )

(each row of M ∈ Mn×� corresponds to an effect). Any state
is mapped into a point in Rn (see the top of Fig. 10). Anal-
ogously, since any effect ax corresponds to a vector in R�,

y

x

z

e

0

E

y

x

z

S

0

FIG. 9. Vectorial representation of the system (S,E) of linear
dimension � = 3. Both the set of normalized states S and the set of
effects E can by represented as convex subsets of the vector space
R3. Left: The convex set of effects E corresponds to a truncated
cone. The truncated cone contains the two points (0,0,0) and (1,1,1),
which correspond to the null effect and to the deterministic effect e,
respectively. Right: The convex set of normalized states S. This set
contains all states ρ such that e(ρ ) = 1, and is then merged in an
affine space with dimension � − 1 (in this case a two-dimensional
space).

any family of states {ρy}n
y=1 induces a linear map defined as

follows:

R :Rl → Rn, ax �→ px, py
x := ρy(ax )

(each row of R ∈ Mn×� corresponds to a state). Any effect is
mapped in a point in Rn (see the bottom of Fig. 10).

For example, in quantum theory, any system is associated
with a d-dimensional Hilbert space H, states and effects are
represented by positive semidefinite operators on H, and con-
ditional probabilities are given by the Born rule: ay(ρx ) :=
Tr[ayρx]. States and effects are represented by vectors in

S

0

M

ρx

0

M(S)
px

e

0

E

0

(1, 1, 1)

R

R(E)

ax

px

FIG. 10. Top: The linear map M corresponding to a measure-
ment. Bottom: The linear map R corresponding to a family of states.
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the real space R� with � = d2. As an example, any qubit
(d = 2) normalized state ρ = 1

2

∑3
i=0 riσi is univocally asso-

ciated with a vector (r0, r1, r2, r3)T ∈ R4. Here the condition
r0 = 1 guarantees that Tr[ρ] = 1, while the condition |r| �
1 for Bloch vector r := (r1, r2, r3)T , where {σi}3

i=1 are the
Pauli matrices, guarantees that ρ � 0. The set of normalized
states, identified by the constraint r0 = 1, is geometrically
represented by a sphere (the Bloch sphere) contained in a
three-dimensional strictly affine subspace of R4.

As a second example, in classical theory the set of nor-
malized states of any system with linear dimension � is an �

simplex, e.g., a segment for the bit system � = 1 and a triangle
for the trit system � = 2.

In the literature, toy models have been proposed whose
convex set of states (and effects) differs from both the quan-
tum and the classical ones. The most notable example are
the PR boxes, whose convex set of states of linear dimension
� = 3 is a square.

APPENDIX B: DATA-DRIVEN INFERENCE

The data-driven inference (DDI) of quantum measure-
ments, presented in the main text, is a protocol that allows
us to infer a preferred (according to a maximally noncom-
mittal criterion) measurement from a set of data interpreted
as the outcome distributions of an experiment. The maxi-
mally noncommittal criterion is very natural: among the set of
measurements whose range includes the experimental points,
we choose those with minimum-volume range in the space
of outcome distributions. Hence, the algorithmic idea at the
basis of the data-driven inference of quantum measurements
is very simple: (i) the first step is the search of the minimum-
volume enclosing ranges for a given set of points, and (ii) the
second step is the search of the measurements that are able
to reproduce such ranges as the outcome distributions of an
experiment.

It is intuitive that in an analogous way one can define data-
driven inference of quantum states. Moreover, due to its purely
geometrical nature, the idea of data-driven inference of phys-
ical devices is not anchored to the quantum formalism, but
can be defined in the same way in any possible probabilistic
theory. Within this perspective, here we define the data-driven
inference of measurements and of states in the framework of
general probabilistic theories [24–31].

1. Inference of measurements

A setup comprising two boxes, one equipped with n bulbs
and the other equipped with m buttons, is given. At each run
of the experiment a theoretician, say Alice, presses button x
and records which bulb y lights up. She iterates this procedure
many times, recording the frequencies {px} whose yth element
is the probability of outcome y given input x. This situation is
illustrated in the upper part of Fig. 11.

The aim of data-driven inference is to infer the maximal
noncommittal linear maps M : Rl → Rn consistent with {px},
that is, the linear map M that minimize the volume of M(S)
such that the range M(S) contains the distributions {px} ⊆ Rn.
We recall that S is the set of all states of the system of
linear dimension �. As already noticed in the main text, not

x ∈ [1, . . . m] y ∈ [1, . . . n]

y ∈ [1, . . . n] x ∈ [1, . . . m]

FIG. 11. Top: Setup for the inference of measurements. Bottom:
Setup for the inference of families of states.

any linear transformation corresponds to a legitimate mea-
surement: in case of a nonphysical inference M, failure is
declared and a larger set {px} is required. This definition of
the problem naturally identifies two steps: (i) inferring the
(possibly nonunique) minimum-volume range R̂ consistent
with {px}, and (ii) finding the measurements M̂ whose range
is R̂.

In the following definition we formalize the first of these
two steps, that is, the inference process that consists of finding
the minimum-volume range M(S) such that M(S) ⊇ {px}.

Definition 1 (Data-driven inference of measurements).
For any set {px} ⊆ Rn, we denote with ddi({px} | S) the
data-driven inference map

ddi({px} | S) = argmin
M(S)

{px} ⊆ M(S) ⊆ aff{px}

V (M(S)), (B1)

where V (R) denotes the Euclidean volume of R and the
minimization is over subsets M(S) corresponding to linear
transformations of the set of states S that lie on the affine
subspace generated by {px}.

In general the outcome of the DDI map is not unique, and
the map returns a set of ranges. We notice that, if the available
prior information does not identify a unique set S of states,
the set S itself can be considered as part of the optimization
problem in the above definition, by taking the minimum of
Eq. (B1) over any possible S.

We can now derive the main result of this section that
establishes the special role played by (hyper)ellipsoidal sets
S of states in the context of the DDI of measurements.

Before stating the main theorem we need the following
definition.

Definition 2 (U -symmetric set). Given a set of transforma-
tions U , and a set X ⊆ Rk , we say that X is U symmetric
if U (X ) := {Ux|x ∈ X } = X for any U ∈ U , where we have
chosen a k-dimensional representation of the set U .

Theorem 1. Given a set of states S the following conditions
are equivalent:

(1) ddi(X |S) is a singleton for any X ⊆ Rn and any
n ∈ N.

(2) ddi(X |S) is U symmetric for any U -symmetric X ,
where U is a set of orthogonal matrices.

(3) S is a (hyper)ellipsoid.
Proof. Let us prove each implication separately:
1 ⇒ 2
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Consider a U -symmetric X , and suppose by absurd that
ddi(X |S) is a singleton Y , but Y is not U symmetric.
Then there exists U ∈ U such that Y ′ := {Uy | y ∈ Y} �= Y .
Since Y ′ ⊇ X and V (Y ′) = V (Y ), one has the absurd Y ′ ∈
ddi(X |S).

2 ⇒ 3
The implication follows from Lemma 1, by taking X to be

a sphere and observing that {M(S) | M ∈ Mn×�} contains all
spheres if and only if S is a (hyper)ellipsoid.

3 ⇒ 1
Follows immediately from Lemma 1, due to John’s unique-

ness theorem for minimum-volume enclosing ellipsoids [43].
Notice that for (hyper)ellipsoidal S, for any n ∈ N and any

X ⊆ Rn, one has

ddi(X |S) = {MVEE(X )},
where MVEE(X ) denotes the minimum-volume enclosing el-
lipsoid [45] for X .

2. Inference of states

A setup comprising several boxes is given. One box is
equipped with n buttons, and the remaining m boxes are
equipped with one button and two light bulbs each. At each
run of the experiment, Alice presses button y of the former
box, and selects box x among the remaining boxes by pressing
its button. She iterates this procedure many times, recording
the frequencies {px} whose yth element is the probability of
the first bulb of box x to light up given y. This situation is
illustrated in the bottom part of Fig. 11.

The aim of data-driven inference is to infer the maximal
noncommittal linear maps R : Rl → Rn consistent with {px},
that is, the linear maps R that minimize the volume of R(E)
such that the range R(E) contains the distributions {px} ⊆ Rn.
We recall that E is the set of all effects of the system of linear
dimension �. Notice that not any linear map R corresponds
to a set of physical states: in case of a nonphysical inference
R, failure is declared and a larger set {px} is required. This
definition of the problem naturally identifies two steps: (i)
inferring the (possibly nonunique) minimum-volume range R̂
consistent with {px}, and (ii) finding the linear transformations
R̂ whose range is R̂.

In the following definition we formalize the first of these
two steps, that is, the inference process that consists of finding
the minimum-volume range R(E) such that R(E) ⊇ {px}.

Definition 3 (Data-driven inference of states). For any set
{px} ⊆ Rn, we denote with ddi({px} | E) the data-driven in-
ference map

ddi({px} | E) = argmin
R(E)

{px, 0, 1} ⊆ R(E) ⊆ span{px, 1}
R(e) = 1

V (R(E)), (B2)

where the minimization is over subsets R(E) ⊆ Rn cor-
responding to linear transformations of the set of effects
E that lie on the real span generated by {px} ∪ {1}, and
the two points R(0) = 0 = (0, 0, . . . , 0) ∈ Rn, R(e) = 1 =
(1, 1, . . . , 1) ∈ Rn are the images of the null effect 0 ∈ E
and of the deterministic e ∈ E effect, respectively [this last
condition poses a not trivial linear constraint R(e) = 1].

In general the output of the DDI map is not unique, and
the map returns a set. We notice that, if the available prior
information does not identify a unique set E of effects, the set
E itself can be considered as part of the optimization problem
in the above definition, by taking the minimum of Eq. (B2)
over any possible E.

In the definition of DDI of states, the set {px} has been
extended to include the two points 0 = (0, 0, . . . , 0) ∈ Rn

and 1 = (1, 1, . . . , 1) ∈ Rn, corresponding to the null 0 ∈ E
and to the deterministic effect e ∈ E, respectively. This is so
because the points 0 and 1, which could be uncollected by
Alice, strongly characterize the geometry of the range R(E)
of the linear map R (see also Fig. 10).

There are two main differences between the DDI of states
and that of measurements given in Definition 1, when re-
garded as optimization problems. The first difference is in the
set of points where the linear function to be inferred is applied.
Indeed, in DDI of states the set E is not a strictly affine sub-
space of Rl , while in DDI of measurements the convex set S
is a strictly affine subspace of Rl of dimension � − 1 (see also
Fig. 10). Moreover, the fixed points of the linear map R in the
DDI of states introduce a further linear constraint R(e) = pe to
the optimization problem. Due to these differences we cannot
provide a simple characterization of the DDI of states as for
example the one in Theorem 1 for DDI of measurements. A
more accurate geometrical analysis of the DDI map for states
will be the subject of future research.

APPENDIX C: RANGE INVERSION

In both cases of inference presented above the device to be
inferred (either a measurement or a family of states) induces
a linear map

D :R� → Rn, (C1)

for some n ∈ N.
We denote by A ∈ R� a subset of the domain of the map

D (this corresponds to the set of states S or the set of effects
E in the inference protocol) and we denote by D(A) ∈ Rn the
image of A via the map D (this corresponds to the set of points
{px}m

x=1 collected via the inference protocol):

D(A) := {Da | a ∈ A}.
Finally we denote the set of all linear transformations of A
into Rn as

Dn(A) := {D(A) | ∀D ∈ Mn×� }. (C2)

We can now introduce a notion of equivalence for maps D
based on the coincidence of their range D(A).

Definition 4 (Equivalence). For any n ∈ N and any D ∈
Mn×�, we denote with [D] the equivalence class

[D] := {D′ ∈ Mn×� | D′(A) = D(A)}.
Notice that any two elements of [D] do not necessarily

share the same support.
In the main text we referred to any transformation U that

leaves a set A invariant, that is such that U (A) = A, as
a gauge symmetry. The following theorem shows that the
equivalence class in Definition 4 is fully specified by the
symmetries of A.
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Theorem 2. For any n ∈ N and any D ∈ Mn×� one has

[D] = {DU | ∀U s.t. D+DU (A) = D+D(A)}. (C3)

Proof. The statement can be rephrased as follows. For any
D′ ∈ Mn×� the following conditions are equivalent:

(1) There exists U ∈ Mn×� such that D′ = DU and
D+DU (A) = D+D(A).

(2) D′(A) = D(A).
Let us prove each implication separately:
1 ⇒ 2
By hypothesis U is such that D+DU (A) = D+D(A).

By multiplying both sides by D from the left one
has DD+DU (A) = DD+D(A). Since D = DD+D one has
DU (A) = D(A). Hence the thesis.

2 ⇒ 1
Since by hypothesis D′(A) = D(A), one has

span D′(A) = span D(A). Since by hypothesis spanA = R�,
one has span D(A) = rng D and span D′(A) = rng D′.
Hence, rng D = rng D′, and thus DD+ = D′D′+. Then
D′ = D′D′+D′ = DD+D′. By setting U := D+D′ one has
DU (A) = D(A). By multiplying both sides by D+ from the
left one has D+DU (A) = D+D(A). Hence the thesis. �

An immediate corollary of the theorem is:
Corollary 1. For any D such that D+D = 1, due to

Eq. (C3) one has that any D′ ∈ [D] is equivalent to D up to
a symmetry U of the set A.

Notice that if the map D is for example the linear map as-
sociated with a measurement, the corollary states that for any
informationally complete measurement M the range M(S)
identifies M up to gauge symmetries. This is the statement
of Theorem 2 in the main text of the paper.

In case of (� − 1)-dimensional spherical S one can also
explicitly derive all the linear transformations that correspond
to any given (hyper)ellipsoidal range. This is the content of
the following proposition.

Proposition 1. For (� − 1)-dimensional unit-spherical S,
for any n ∈ N and any D ∈ Mn×�, let t := Du, let T = D(1 −
uuT ), and let Q = T T T . One has

D(S) =
{

p

∣∣∣∣
{

(1 − QQ+)(p − t) = 0
(p − t)T Q+(p − t) � 1

}
.

Proof. Due to Lemma 1, without loss of generality we
take S to be the unit sphere centered in u (centering in u
might apparently require a translation of the sphere on the
affine subspace, but a linear transformation suffices due to the
Lemma; the inverse linear transformation can be performed on
the effects, so without restriction one can consider the states
centered in u).

One has a ∈ S if and only if |a − u|2 � 1 and uT a = 1.
For any a ∈ S one has D(a) = t + T a. Hence

D(S) = {p = t + T a | |a − u|2 = 1, uT a = 1}.
Solutions of T a = p − t in variable a exist if and only if

T T +(p − t) = p − t. (C4)

Since T +T and uuT are orthogonal projectors by construc-
tion, solutions are given by

a = T +(p − t) + λu + (1 − T +T − uuT )v,

for any scalar λ and any vector v.
Condition uT a = 1 imposes λ = 1. For any vector v such

that |a|2 � 1, the same condition is also verified for v = 0.
Since D(a) is independent of v, without loss of generality we
take v = 0.

Therefore one has

D(S) =
{

p

∣∣∣∣
{

(1 − T T +)(p − t) = 0,

(p − t)T T +T T +(p − t) � 1.

}
.

By the elementary properties of the Moore-Penrose pseudoin-
verse, one immediately has that T T + = QQ+ and T +T T + =
Q+. Hence the statement follows. �

APPENDIX D: DATA-DRIVEN RECONSTRUCTION

1. Data-driven reconstruction of measurements

In the protocol of data-driven reconstruction of measure-
ments, an experimentalist, say Bob, is in charge of building
the state-preparator S corresponding to the box equipped with
buttons in the upper part of Fig. 12. His aim is to enable Alice
to correctly infer measurement M, corresponding to the box
with light bulbs, up to the equivalence of Theorem 2. In this
case, we say that S is observationally complete for M.

Definition 5 (Observational complete set of states). Let
{S,E} be a physical system of linear dimension � and
M ∈ Mn×� be a measurement. A set of states S ⊆ S is
observationally complete for M if and only if

ddi(M(S )|S) = M(S), (D1)

where ddi is the data driven inference of measurements.
The following result shows that the notion of observational

completeness depends only on the support of M.
Theorem 3. Let {S,E} be a physical system of linear di-

mension � and let S ⊆ S be a set of states. Let V be a linear
subspace of R� and let 
 denote the projector on V . Then S
is observationally complete for 
 if and only if it is observa-
tionally complete for any M ∈ Mn×� such that suppM = V ,
i.e.,

ddi(
(S )|S) = 
(S) ⇐⇒
ddi(M(S )|S) = M(S) ∀M s.t. supp M = V .

(D2)

Proof. We only need to prove the ⇒ direction since
the opposite one is trivially true. Let us then suppose that
ddi(
(S )|S) = 
(S) and let us fix an arbitrary M ∈ Mn×�

such that suppM = V . Then we have M
 = M. By using
lemma 2 we have

ddi(M(S )|S) = ddi(M
(S )|S)

= Mddi(
(S )|S) = M
(S) = M(S)

and the thesis is proved.
An immediate corollary of this theorem is:
Corollary 2. A set of states S ⊆ S is observationally com-

plete for any informationally complete measurement if and
only if ddi(S|S) = S.

This is the statement of Theorem 3 in the main text.
If the set of states S is (hyper)spherical, it is possible to

give an explicit characterization of the sets of states with
minimum cardinality that are observationally complete for the
informationally complete measurements.
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ρ1 ρ2 ρ3 ρm
a1 a2 a3 an

ρ1 ρ2 ρ3 ρn

a1 a2 am
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M

R

FIG. 12. Top: Setup for the data-driven reconstruction of mea-
surements. On the right is a measurement {ay}n

y=1 that can be thought
as a box M equipped with n bulbs, one for each effect ay ∈ E,
y = 1, 2, . . . , n, corresponding to the possible outcomes of the mea-
surement. On the left is a state preparator that can be thought as a box
with m possible buttons, each button corresponding to a state ρx ∈ S,
x = 1, . . . , m. At each run of the experiment a button is pressed and
the outcome of the measurements is recorded. We iterate this proce-
dure many times recording the frequencies py

x that are our estimates
of the probabilities ay(ρx ). Since each state ρx ∈ S can be regarded as
a vector in R�, the whole experiment can be represented by a linear
map M : Rl → Rn, with ρx �→ px , py

x := ay(ρx ). Any state in the set
S = {ρx}m

x=1 is associated with a point px ∈ Rn. Bottom: Setup for
the data-driven reconstruction of families of states. On the left is
a state-preparator R that can prepare one out of a finite set {ρy}n

y=1

of states. We can think of an n-buttons state preparator: whenever
we press the button y the state ρy is prepared. On the right is a
measurement box with m possible buttons: whenever button x (with
x = 1, . . . , m) is pressed the two outcomes measurement described
by the pair of effects {ax, āx} is applied to the prepared state. Give
a state ρy the outcome ax will be obtained with probability ax (ρy )
[clearly, ax (ρy ) + āx (ρy ) = 1]. We iterate this procedure for all the
n states ρy and the m measurements {ax, āx}, thus recording the fre-
quencies py

x , which are our estimate of the probabilities ax (ρy ). Since
each effect ax corresponds to a vector in R�, the whole experiment
can be represented by a linear map R : Rl → Rn, with ax �→ px ,
py

x := ax (ρy ). Any effect in the set E = {ax}m
x=1 is associated with a

point px ∈ Rn.

Proposition 2. Let {S,E} be a physical system of linear di-
mension � and let S be an (� − 1) dimensional (hyper)sphere.
Then the following conditions are equivalent:

(1) S is a regular (� − 1) simplex inscribed in S.
(2) ddi(S|S) = S and S has minimal cardinality.
Proof. Let us prove each implication separately:
1 ⇒ 2
Let A be the regular (� − 1) simplex inscribed in A. It is

known [46] that MVEE(A) = A.
2 ⇒ 1
Since S is (hyper)spherical ddi(S|S) = MVEE(S ) = S.

Then MVEE(S ) is the smallest (hyper)sphere which contains
S . Clearly the cardinality of S must be greater then �. On
the other hand, as the proof of the previous item shows,
the regular simplex has cardinality � and is observationally
complete. Therefore S must be a simplex. We now show that
S is regular. Let us denote with conv(S ) the convex hull of
S and let rmax be the radius of the largest sphere inscribed
in conv(S ). Since MVEE(S ) ⊆ (� − 1)conv(S ) [44] we have

(� − 1)rmax � R where R is the radius of MVEE(S ). On the
other hand, we have (� − 1)rmax � R from Euler inequality
[47]. Therefore (� − 1)rmax = R which holds if and only if
the simplex is regular. �

Let us consider the case when � = 3 and hence S is a circle.
In this case, any regular polygon S with n vertices inscribed
in A is U symmetric, where U is an orthogonal representation
of the dihedral group. Since for n � 3, the only U -symmetric
ellipse is the circle, due to Theorem 1 and Corollary 2 any
such an S is observationally complete for any informationally
complete measurement.

Let us now consider the case when � = 4 and hence S
is a sphere. In this case, any platonic solid with n vertices
inscribed in S is U symmetric, where U is an orthogonal
representation of the tetrahedral (for tetrahedra), octahedral
(for octahedra and cubes), or icosahedral (for icosahedra or
dodecahedra) group. Since the only U -symmetric ellipsoid is
the sphere, due to Theorem 1 and Corollary 2 any such an S
is observationally complete for any informationally complete
measurement.

2. Data-driven reconstruction of states

In the protocol of data-driven reconstruction of family of
states, Bob is in charge of building the tests (binary-outcome
measurements) E corresponding to the boxes equipped with
one button and two light bulbs each in the lower part of
Fig. 12. His aim is to enable Alice to correctly infer the family
of states R, corresponding to the box with n buttons, up to
the equivalence of Theorem 2. In this case, we say that E is
observationally complete for R.

Definition 6 (Observational complete set of effects). Let
{S,E} be a physical system of linear dimension � and
R ∈ Mn×� be a family of states. A set of effects E ⊆ E is
observationally complete for R if and only if

ddi(R(E )|E) = R(E), (D3)

where ddi is the data driven inference of states.
Clearly the analogous of Theorem 3 holds.
Theorem 4. Let {R,E} be a physical system of linear di-

mension � and let E ⊆ E be a set of effects. Let V be a linear
subspace of R� and let 
 denote the projector on V . Then E
is observationally complete for 
 if and only of it is obser-
vationally complete for any R ∈ Mn×� such that suppR = V ,
i.e.,

ddi(
(E )|E) = 
(E) ⇐⇒
ddi(R(E )|E) = R(E) ∀R s.t. supp R = V . (D4)

Proof. The proof of this result is completely analogous to
the proof of Theorem 3.

APPENDIX E: TECHNICAL LEMMAS

1. Affine transformations of a strictly affine set

For any n ∈ N, any D ∈ Mn×�, and any d ∈ Rn, let FD,d :
R� → Rn denote the affine map such that for any a ∈ R� one
has

FD,d(a) := Da + d.
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For any set A ⊆ R� we adopt the set builder notation

FD,d(A) := {FD,d(a) | a ∈ A}.

For any n ∈ N and any A ⊆ R�, let Fn(A) denote the set of
all affine transformations of A into Rn, that is

Fn(A) := {FD,d(A) | ∀D ∈ Mn×�, ∀d ∈ Rn }.

We say that an affine subspace is strictly affine if and only
if it is not a linear subspace. For any n ∈ N and any X ∈ Rn,
let affX denote the affine hull of X . Let u ∈ affA denote the
vector orthogonal to affA. Without loss of generality we take
u such that |u|2 = 1.

Lemma 1. For any n ∈ N and any A subset of a strictly
affine subspace of R� one has

Dn(A) = Fn(A)

[see Eq. (C2) for the definition of Dn].
Proof. Of course Dn(A) ⊆ Fn(A), so we only need to

prove the inverse inclusion. For any D ∈ Mn×� and d ∈ Rn,
one has that D′ := D + duT is such that FD,d(a) = D′(a) for
any a ∈ A. Hence the thesis follows. �

2. Commutativity of the DDI map

Lemma 2. Let D ∈ Mn×�, and A ⊆ R� such that A ⊆
suppD one has

D(ddi(A|A)) = ddi(D(A)|A). (E1)

Proof. By definition, the left-hand side and right-hand side
of Eq. (E1) are given by, respectively,

D(ddi(A|A)) := D(argminX∈XV (X )),

ddi(D(A)|A) := argminY∈YV (Y ),

with

X := {X ∈ D�(A) | A ⊆ X ⊆ affA},
Y := {Y ∈ Dn(A) | D(A) ⊆ Y ⊆ aff D(A)}.

The map D is bijective from X to Y. This can be eas-
ily seen as follows. Since A ⊆ supp D, by definition of
X for any X ∈ X one has X ⊆ supp D. Also, by defini-
tion of Y for any Y ∈ Y one has Y ⊆ suppD+. More-
over, D preserves the ordering induced by function V ,
that is

V (X ) = λDV (LD(X )) ∀X ∈ X,

for some λD > 0 that only depends on D. Hence the statement
follows. �
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