Semiquantum Tests: Closing the "Nonlocality Gap" in Space and the "Clumsiness Loophole" in Time

Francesco Buscemi

Department of Mathematical Informatics, Nagoya University

Symposium for Celebrating 60 years of Bell's theorem Shibaura Institute of Technology and online 3 September 2024

Abstract

In this presentation, I will discuss my proposal to extend nonlocal games to a semiquantum (or "measurement device-independent") framework. In this setting, questions are encoded in quantum states rather than being directly communicated to the players. I will demonstrate how this modification achieves two key objectives:

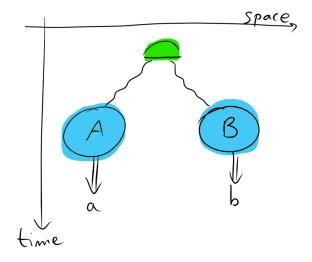
- 1. Bridging the gap between entanglement and nonlocality in games involving space-like separated parties.
- 2. Addressing the "clumsiness loophole" that affects all Legget–Garg-type tests conducted between timelike separated parties.

Semiquantum Tests: Closing the "Nonlocality Gap" in Space and the "Clumsiness Loophole" in Time

Francesco Buscemi (Nagoya University)

Symposium for Celebrating 60 years of Bell's theorem Shibaura Institute of Technology & online 3 September 2024

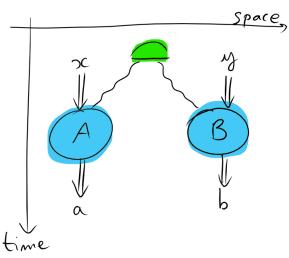
Francesco Buscemi (Nagoya University)


Semiquantum Tests: Closing the "Nonlocality Gap" in

3 September 2024

1 / 10

Two paradigms for entanglement verification


Entanglement witnesses

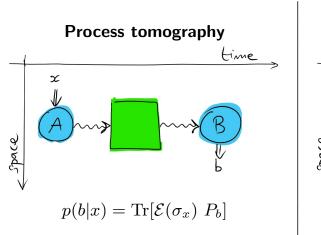
$$p(a,b) = \text{Tr}[(P_A^a \otimes Q_B^b) \rho_{AB}]$$

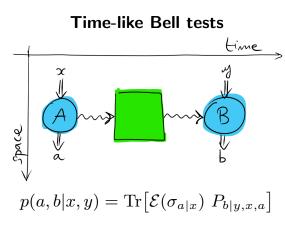
- © faithfulness: for any entangled state, there exists a witness detecting it
- © measurement devices need to be perfect

Bell tests

$$p(a, b|x, y) = \text{Tr}\left[\left(P_A^{a|x} \otimes Q_B^{b|y}\right) \rho_{AB}\right]$$

- hidden nonlocality: some entangled states never violate any Bell inequality
- © device independence

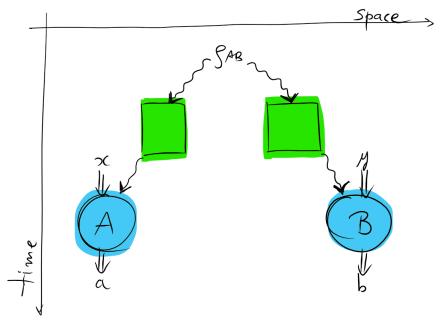

Francesco Buscemi (Nagoya University)


Semiquantum Tests: Closing the "Nonlocality Gap" in

3 September 2024

The time-like analogue: quantum memory verification

- \checkmark the Choi correspondence, $\mathcal{E}_{A\to B}\longleftrightarrow \rho_{AB}$, suggests trying the same approach in time
- ✓ encouraging fact: "classical" (i.e., separable) states correspond to "classical" (i.e., entanglement-breaking) channels



- ✓ in full analogy with entanglement witnesses, process tomography is faithful (②) but requires complete trust in the tomographic devices (©)
- time-like Bell tests trivialize: A can always signal to $B(\lim_{n\to\infty} \mathfrak{S}^{\otimes n})$

3 / 10

One way around

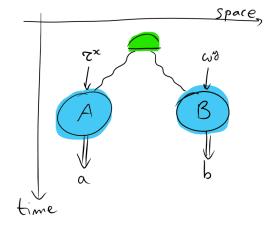
✓ suppose that two quantum memories are available: then one can imagine doing the following

- ✓ here, we need two quantum memories, and the test is assessing the pair simultaneously (and it's a Bell test, hence device-independent but not faithful)
- ✓ thus the problem remains: is it possible to certify a single given memory, without using any side-channel?

Semiquantum nonlocal games

- ✓ quantum bipartite statistical decision games, a.k.a. semiquantum games: questions are encoded on quantum states (PRL, 2012)
- \checkmark the referee chooses questions x and yat random
- ✓ the referee encodes questions on quantum states $\tau_{A'}^x$ and $\omega_{B'}^y$
- \checkmark the system A' is sent to Alice, B' to Bob
- ✓ Alice and Bob locally compute answers a and b
- ✓ achievable correlations are given by

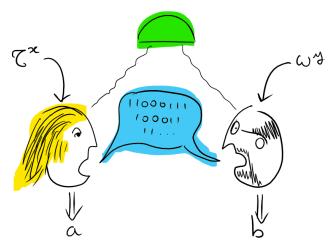
achievable correlations are given by
$$p(a,b|x,y,\rho_{AB})=\mathrm{Tr}\Big[(P_{A'A}^a\otimes Q_{BB'}^b)\ (\tau_{A'}^x\otimes \rho_{AB}\otimes \omega_{B'}^y)\Big]$$


Semiguantum Tests: Closing the "Nonlocality Gap" in

Space

Cu3

More about semiquantum nonlocal games

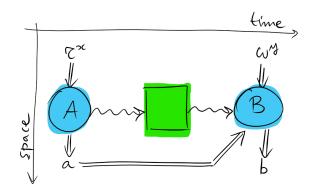

- ✓ usual Bell tests are recovered for distinguishable question states
- \checkmark defining $\mathcal{P}(\rho_{AB}) =$ $\{p(a,b|x,y,\rho_{AB}) \text{ for some semiquantum game}\},$ we have $\mathcal{P}(\rho_{AB}) \supseteq \mathcal{P}(\sigma_{CD})$ if and only if $\sigma_{CD} = \sum_{i} p_i (\mathcal{E}_A^i \otimes \mathcal{F}_B^i)(\rho_{AB})$
- ✓ namely, semiquantum games provide a complete set of monotones for the (pre-) ordering relation induced by "Local Operations and Shared Randomness" (LOSR)

- ✓ this implies faithfulness: for any entangled state, there is a semiquantum game detecting it
- ✓ interpretation as measurement-device-independent entanglement witnesses (Branciard et al., 2013; Cavalcanti et al., 2013): the referee needs to trust only the preparation devices in her lab
- ✓ this result is a special case of quantum statistical comparison: powerful link between statistics and dynamics (quantum thermodynamics, quantum resource theories, quantum information theory, measurements (in)compatibility, etc)

Robustness of semiquantum games against classical communication

- any Bell test is spoiled, as soon as one player can communicate with the other one
- ✓ ⇒ Bell tests cannot verify quantum channels
- Rosset et al., 2013: there exist semiquantum games that are robust against unlimited classical communication (in fact, up to any SEPP protocol)
- this feature is especially welcome in the time-like scenario, where signaling cannot be ruled out and hence must be assumed

$$\begin{split} p(a,b|x,y) &= \mathrm{Tr}\Big[(P_{\mathrm{LOCC}}^{ab}) \; (\tau_{A'}^x \otimes \rho_{AB} \otimes \omega_{B'}^y) \Big] \\ &\qquad \qquad \left(\mathsf{LOCC} \; \mathsf{w.r.t.} \; A'A \leftrightarrow BB' \right) \end{split}$$


Francesco Buscemi (Nagoya University)

Semiquantum Tests: Closing the "Nonlocality Gap" in

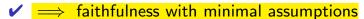
3 September 2024

7 / 10

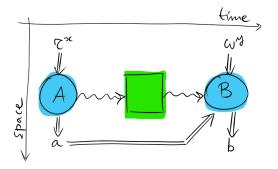
Time-like semiquantum games

(here we should think of B as "Alice after some time")

- \checkmark give Alice a state au^x at time t_0
- wait some time
- \checkmark give her another state ω^y at time t_1
- \checkmark the round ends with Alice outputting an outcome b


the input/output correlation is computed as

$$p(b|x,y) = \sum_{a} \operatorname{Tr} \left[P_{BA}^{b|a} \left\{ \omega_{B}^{y} \otimes \mathcal{E} \circ \mathcal{I}^{a}(\tau_{A}^{x}) \right\} \right]$$


where $\{\mathcal{I}^a\}$ is an instrument, so that any amount of classical communication can be transmitted through the index a

Features of time-like semiquantum games

- ightharpoonup as long as the quantum memory (channel) $\mathcal E$ is not entanglement breaking, there exists a time-like semiquantum game capable of certifying that
- ✓ assumption: we need to trust the preparation of states τ^x and ω^y , but that is anyway required in the time-like scenario (no fully device-independent quantum channel verification [Pusey, 2015])

extra feature: it is possible to quantify the minimal dimension of the quantum memory

Francesco Buscemi (Nagoya University)

Semiquantum Tests: Closing the "Nonlocality Gap" in

3 September 2024

9 / 10

Conclusions

- ✓ entanglement witnesses: faithful, but complete trust is necessary
- ✓ Bell tests: fully device-independent, but not faithful
- semiquantum tests: faithful, and trust is required only for the referee's preparation devices
- semiquantum tests are particularly compelling in the time-like scenario, in which no device-independent quantum channel verification exists anyway
- verification of non-classical correlations among any two locally quantum agents, independent of their causal separation
- ✓ the test is quantitative: a lower bound on the quantum dimension can be given

fine

References

- 1. F. Buscemi, All Entangled Quantum States Are Nonlocal. Physical Review Letters, vol. 108, 200401 (2012).
- 2. D. Rosset, F. Buscemi, and Y.-C. Liang, Resource Theory of Quantum Memories and Their Faithful Verification with Minimal Assumptions. Physical Review X, vol. 8, 021033 (2018).