
Macroscopic states and operations:
a review of recent results

Ge Bai, Francesco Buscemi→, Kohtaro Kato, Teruaki
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Abstract

To understand the emergence of macroscopic irreversibility from
microscopic reversible dynamics, the idea of coarse-graining plays a
fundamental role. In this work, we focus on the concept of macro-
scopic states, i.e. coarse representations of microscopic details, defined
as states that can be inferred solely from the outcomes of macro-
scopic measurements. Building on the theories of quantum statis-
tical su!ciency and quantum Bayesian retrodiction, we characterize
macroscopic states through several equivalent formulations, ranging
from algebraic to explicitly constructive. We introduce a hierarchy
of macroscopicity-non-decreasing operations and develop a resource
theory of microscopicity that unifies and generalizes existing resource
theories of coherence, athermality, purity, and asymmetry. Finally,
we introduce the concept of inferential reference frames and reinter-
pret macroscopic entropy as a measure of inferential asymmetry, i.e.,
irretrodictability.
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von Neumann entropy

For ω =
∑d

x=1 εx|ϑx→↑ϑx| d-dimensional density matrix (εx ↭ 0,
∑

x εx = 1),

S(ω) := ↓Tr[ω log ω] = ↓
d∑

x=1

εx log εx

with the convention 0 log 0 := 0.

Fact: von Neumann entropy is invariant under unitary evolution.

3/24

the problem: free expansion of an ideal gas

!S(universe) = nR log 2 > 0

=↔ there is net entropy increase in an isolated system’s evolution, but von Neumann
entropy remains constant
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von Neumann’s insight (inspired by Szilard’s)

“ For a classical observer, who knows all coordinates and

momenta, the entropy is constant. [...]

The time variations of the entropy are then based on the fact

that the observer does not know everything—that he cannot

find out (measure) everything which is measurable in princi-

ple.” von Neumann, 1932 (transl. 1955)
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von Neumann’s proposal: macroscopic entropy

von Neumann recognizes that thermodynamic entropy should be a quantity relative to
the observer’s knowledge

Modern version: observational entropy (OE)
For a density matrix ω and a positive operator-valued measure (POVM) P = {Pi}i

SP(ω) := →
∑

i

p(i) log
p(i)

V (i)
,

where p(i) := Tr[ω Pi] and V (i) := Tr[Pi].
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What is the meaning of OE?
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the fundamental bound

Umegaki relative entropy
For density matrices ω ↭ 0 and ε > 0, the Umegaki relative entropy D(ω→ε) is defined
as Tr[ω(log ω↑ log ε)]. We can thus write

SP(ω) = log d↑D(P(ω)→P(u)) ,

where P(•) :=
∑

i Tr[• Pi] |i↓↔i|, and u := d→11.

Theorem (NJP, 2023)
For any d-dimensional density matrix ω and any POVM P = {Pi}i,

S(ω̃P)↑ S(ω) ↭ SP(ω)↑ S(ω) ↗ D(ω→u)↑D(P(ω)→P(u)) ↭ D(ω→ω̃P) ,

where ω̃P :=
∑

i Tr[ω Pi]
Pi
Vi
.

In particular, log d ↭ S(ω̃P) ↭ SP(ω) ↭ S(ω).
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OE tells us something about how much ω and ω̃P
“di!er” from each other.

Hence, the question: what is the meaning of ω̃P?
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Petz’s transpose/recovery map

Definition
Given a channel E and a prior state ε, the corresponding transpose or recovery channel

is defined as
Rω

E(•) :=
→
ε E†

[
E(ε)→1/2 (•) E(ε)→1/2

]→
ε .

Fact: ω̃P is the “recovered” state
In terms of the measurement channel P(•) :=

∑
i Tr[Pi •] |i↑↓i|, it turns out that

ω̃P = [Ru
P ↔ P ](ω) =

1

d
P†

[
P(u)→1/2 P(ω) P(u)→1/2

]
.

(Note that in this case ε = u = d→11.)
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So, the real question is: what is the meaning of Petz’s
transpose map?
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statistical su!ciency and exact recovery

Petz (1986, 1988)
Given two density matrices ω ↭ 0 and ε > 0 and a channel E , while in general we have
D(ω→ε) ↭ D(E(ω)→E(ε)), the equality

D(ω→ε) = D(E(ω)→E(ε))

holds if and only if [Rω
E ↑ E ](ω) = ω.

Note that the other equality [Rω
E ↑ E ](ε) = ε is always satisfied by construction.

Question: does Petz’s transpose map have a clear operational interpretation also when
D(ω→ε) > D(E(ω)→E(ε))?
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classically, it does: Bayesian update

consider a classical discrete noisy channel P (i|x) and a prior ω(x) on the input

when the receiver reads a definite value i0, (vanilla) Bayes’ rule says that their

posterior should be updated to Rω
P (x|i0) :=

ω(x)P (i0|x)
[Pω](i0)

but what if the observation is noisy and returns some p.d. ε(i) instead?

Theorem (Bayes–Je!rey–Pearl update)
Given a channel P (i|x) and a prior ω(x), the result of a noisy observation ε(i) is
updated to

ε̃(x) :=
∑

i

Rω
P (x|i) ε(i) .

Note that the usual Bayes’ rule is recovered for ε(i) = ϑi,i0 .
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It is easy to see that, when everything commutes,
Petz’s transpose map coincides with Bayes’s update
rule.

But is this just a coincidence, or is there something
deeper?
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the principle of minimum change (idea, classical case)

“To avoid unwarranted bias and remain maximally non-committal, the updated

belief should be consistent with the new information (the result of the observa-

tion), while deviating as little as possible from the initial belief.”

How Bayes’ rule has been derived from this principle:

given channel and prior, construct the forward process F ω
P (x, i) = ω(x)P (i|x); note

that
∑

i F
ω
P (x, i) = ω(x)

given the new data as ε(i), consider the optimization

min
R

D(F ω
P , R) ,

where D(•, •) is an information divergence, and the minimum is taken over all joint
probability distributions R → R(x, i) such that

∑
x R(x, i) = ε(i)

for many choices of D, it turns out that argminD(F ω
P , R) = Rω

P (x|i)ε(i)
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the principle of minimum change (formal, quantum)

Theorem (arXiv:2410.00319)
Given a qc-channel P(•in) =

∑
i Tr[Pi •] |i↑↓i|out and a prior state ωin > 0 such that

P(ω) > 0, let F ω
P :=

∑
i |i↑↓i|out ↔

(√
ωTP T

i

√
ωT

)

in
, with Trin[F

ω
P ] = P(ω) and

Trout[F
ω
P ] = ωT

, represent the “quantum forward process”.

Then, given any observation result ε(i), represented as εout =
∑

i ε(i)|i↑↓i|out, the
optimization problem maxR↭0,Trin[R]=εout Fidelity(F

ω
P , R) has a unique solution Ro,

i.e., the optimal “reverse process”, which satisfies Trout[Ro] = [Rω
P(εout)]T .

In words: in the case of quantum measurements, Petz’s map is the quantum analog
of Bayes’ rule.
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We saw that ω̃P is nothing but the state retrodicted
by the observer according to the quantum Bayes rule.

Hence, the bound SP(ω)→ S(ω) ↭ D(ω↑ω̃P) tells us that,
the larger the di!erence between OE and von
Neumann entropy, the less retrodictable ω is.
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entropy increase = lack of retrodictability (Watanabe’s thesis)

“The phenomenological onewayness of

temporal developments in physics is due

to irretrodictability, and not due to irre-

versibility.” Satosi Watanabe (1965)
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macroscopic = retrodictable

Definition (macroscopic states)
Recalling the fundamental bound SP(ω)→ S(ω) ↭ D(ω↑ω̃P) with ω̃P = [Ru

P ↓ P ](ω), we
say that a state ω is macroscopic w.r.t. measurement P and uniform prior u whenever
ω = ω̃P.

More generally, for non-uniform prior ε, we denote the set of macroscopic states as
Mω

P := {ω : ω = [Rω
P ↓ P ](ω)}.

Theorem (arXiv:2504.12738)
A state ω is in Mω

P if and only if there exists a PVM ! = {!j}j, with !j =
∑

i µ(j|i)Pi,

such that [!i, ε] = 0, together with coe!cients cj ↭ 0, such that ω =
∑

j cj!jε .

Note that ε ↔ Mω
P by construction.
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resolving the problem of entropy increase in closed systems

let the initial state of the system at time t = t0 be a macrostate Mu
P ↗ ωt0 ↘= u

its initial OE satisfies SP(ωt0) = S(ωt0); let’s see how it changes in time

the system evolves unitarily, i.e., ωt0 ≃⇐ ωt1 = Uωt0U †
, so that S(ωt1) = S(ωt0); however,

SP(ω
t1) = →

∑

i

Tr
[
Pi (Uωt0U †)

]
log

Tr
[
Pi (Uωt0U †)

]

Tr[Pi]

= →
∑

i

Tr
[
(U †PiU) ωt0

]
log

Tr
[
(U †PiU) ωt0

]

Tr[U †PiU ]

= SU†PU (ω
t0)

↭ S(ωt0) = SP(ω
t0)

summarizing: in general, SP(ωt1) ↭ SP(ωt0) even in closed systems, with equality if and

only if Uωt0U † ↔ Mu
P
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What does it mean that Uωt0U † → Mu
P?

More generally: which evolutions map macrostates
onto macrostates?
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macroscopic operations (idea)

Resource destroying map (RDM)
Recalling the form of macroscopic states ω =

∑
j cj!jε, the map

”ω
P(•) :=

∑

j

Tr[!j •]
!jε

Tr[!jε]

is such that ”ω
P(ϑ) → Mω for all ϑ, while ω → Mω

P =↑ ”ω
P(ω) = ω.

Macroscopic (RDM-covariant) operations
A CPTP linear map N is macroscopic (in the sense of RDM-covariant) whenever

N ↓”ω
P = ”ω

P ↓N .

The above framework contains the case of coherence, i.e., Mω
P = {diagonal states}, or

athermality, i.e., Mω
P = {ε}.
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Conclusions
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take-home messages

1 observational entropy quantifies the gap between microscopic states and
macroscopic knowledge, and the second law is a statement about the generic loss
of retrodictability in time

2 Petz’s transpose map is the quantum analog of Bayesian update
3 microscopicity (i.e., “unobservability”) can be framed as a resource theory,

generalizing those of coherence and athermality

The End: Thank You!
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