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Abstract

In his 1932 book, von Neumann not only introduced the now famil-
iar von Neumann entropy, but also discussed another entropic quan-
tity that he called ”macroscopic”. He argued that this macroscopic
entropy, rather than the von Neumann entropy, is the key measure
for understanding thermodynamic systems. In this talk I will explore
how macroscopic entropy, macroscopic states, and the emergence of
the second law in isolated systems can be seen as consequences of
a more general quantum Bayes’ rule. This rule arises from a ”mini-
mum change” principle, just like the classical Bayes’ rule, and recovers
Petz’s transpose map in several scenarios of physical interest. This talk
is an overview of work done in collaboration with: Ge Bai, Kohtaro
Kato, Teruaki Nagasawa, Valerio Scarani, and Eyuri Wakakuwa.
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von Neumann entropy

For ϱ =
∑d

x=1 λx|φx⟩⟨φx| d-dimensional density matrix (λx ⩾ 0,
∑

x λx = 1),

S(ϱ) := −Tr[ϱ log ϱ] = −
d∑

x=1

λx log λx

with the convention 0 log 0 := 0.
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Unfortunately though:

“The expressions for entropy given by the author [previously]
are not applicable here in the way they were intended, as they
were computed from the perspective of an observer who can
carry out all measurements that are possible in principle—i.e.,
regardless of whether they are macroscopic [or not].”

von Neumann, 1929; transl. available in arXiv:1003.2133
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And again:

“Although our entropy expression, as we saw, is completely
analogous to the classical entropy, it is still surprising that
it is invariant in the normal [Hamiltonian] evolution in time
of the system, and only increases with measurements—in the
classical theory (where the measurements in general played no
role) it increased as a rule even with the ordinary mechanical
evolution in time of the system. It is therefore necessary to
clear up this apparently paradoxical situation.”

von Neumann, book (Math. Found. QM), 1932 (transl. 1955)
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the paradox: free expansion of an ideal gas

∆S(universe) = nR log 2 > 0

=⇒ there is net entropy increase in an isolated system’s evolution, but von Neumann
entropy remains constant
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von Neumann’s insight (inspired by Szilard’s)

“For a classical observer, who knows all coordinates and mo-
menta, the entropy is constant. [...]
The time variations of the entropy are then based on the fact
that the observer does not know everything—that he cannot
find out (measure) everything which is measurable in princi-
ple.” von Neumann, 1932 (transl. 1955)

von Neumann recognizes that thermodynamic entropy should be a quantity relative to
the observer’s knowledge
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von Neumann’s proposal: macroscopic entropy

For a density matrix ϱ and an orthogonal resolution of identity (PVM) Π = {Πi}i

SΠ(ϱ) := −
∑
i

p(i) log
p(i)

Ω(i)
, p(i) := Tr[ϱ Πi] , Ω(i) := Tr[Πi] .

Modern version: observational entropy (OE)

For a positive operator-valued measure (POVM) P = {Pi}i

SP(ϱ) := −
∑
i

p(i) log
p(i)

V (i)
,

where p(i) := Tr[ϱ Pi] and V (i) := Tr[Pi].
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“observational” := “of the observer”

von Neumann defines a macro-observer as a collection of simultaneously
measurable quantities {X1,X2, . . . ,Xn, . . . }, where Xn = {Xj|n}j are POVMs

=⇒ there exists one most-refined “parent” POVM P = {Pi}i and a stochastic
processing (i.e., cond. p.d.) µ such that

Xj|n =
∑
i

µ(j|n, i)Pi , ∀j, n

hence, a macro-observer for von Neumann is “just” a POVM (i.e., the most-refined
parent POVM P) from which all macroscopic quantities can be simultaneously
inferred
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the meaning of OE
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Umegaki’s quantum relative entropy

Definition
For density matrices ϱ, γ,

D(ϱ∥γ) :=

{
Tr[ϱ(log ϱ− log γ)] , if supp ϱ ⊆ supp γ ,

+∞ , otherwise.

Useful properties:

monotonicity: D(ϱ∥γ) ⩾ D(E(ϱ)∥E(γ)) for all channels (i.e., CPTP linear maps)
E and all states ϱ, γ

parent quantity for micro-entropy: S(ϱ) = log d−D(ϱ∥u) where u := d−11

parent quantity for macro-entropy: defining the quantum-to-classical
measurement channel P(•) :=

∑
i Tr[Pi •] |i⟩⟨i|, it is easy to check that

SP(ϱ) = log d−D(P(ϱ)∥P(u))
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the fundamental bound

Theorem (NJP, 2023)

For any d-dimensional density matrix ϱ and any POVM P = {Pi}i,

S(ϱ̃P)− S(ϱ) ⩾ SP(ϱ)− S(ϱ) ⩾ D(ϱ∥ϱ̃P) ,

where

ϱ̃P :=
∑
i

Tr[ϱ Pi]
Pi

Vi

.

In particular, log d ⩾ S(ϱ̃P) ⩾ SP(ϱ) ⩾ S(ϱ).

Remarks:

the state ϱ̃P only depends on the observer’s knowledge

in general, [ϱ, ϱ̃P] ̸= 0

in general, SP(ϱ) ≷ H({p(i)}); but while SP(ϱ) is monotonic under further
postprocessings, H({p(i)} is not
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OE tells us something about how much ϱ and ϱ̃P
“differ” from each other.

But what is the meaning of ϱ̃P?
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Petz’s transpose map

Petz (1986,1988)

Given a channel E and a prior state γ, the corresponding transpose channel is defined as

Rγ
E(•) :=

√
γ E† [E(γ)−1/2 • E(γ)−1/2

]√
γ .

The “reconstructed” state
In terms of the measurement channel P(•) :=

∑
iTr[Pi •] |i⟩⟨i|, it turns out that

ϱ̃P = [Ru
P ◦ P ](ϱ) := d−1 P†[P(u)−1/2 P(ϱ) P(u)−1/2]
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So, the question to ask is: what is the meaning of
Petz’s transpose map?
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exact recovery

Monotonicity: D(ϱ∥γ) ⩾ D(E(ϱ)∥E(γ)), for all E , ϱ, γ.

Question: for which triples (ϱ, γ, E) does the equality D(ϱ∥γ) = D(E(ϱ)∥E(γ)) hold?

Petz (1986,1988)

Answer: equality holds if and only if [Rγ
E ◦ E ](ϱ) = ϱ. (The other equality

[Rγ
E ◦ E ](γ) = γ is always satisfied by construction.)

But does Petz’s transpose map also have a clear operational interpretation when
D(ϱ∥γ) > D(E(ϱ)∥E(γ))?
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Bayesian retrodiction

consider a classical discrete noisy channel P (i|x) and a prior γ(x) on the input

when the receiver reads a definite value i0, (vanilla) Bayes’ rule says that their

posterior should be updated to Rγ
P (x|i0) :=

γ(x)P (i0|x)
[Pγ](i0)

but what if the observation is noisy and returns some p.d. σ(i) instead?

Theorem (Bayes–Jeffrey–Pearl retrodiction)

Given a channel P (i|x) and a prior γ(x), the result of a noisy observation σ(i) is
retrodicted to

σ̃(x) :=
∑
i

Rγ
P (x|i)σ(i) .

The conventional Bayes’ rule is recovered for σ(i) = δi,i0 .
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When everything commutes, Petz’s transpose map
coincides with the classical Bayes–Jeffrey–Pearl

retrodiction rule.

But is this just a coincidence,
or is there something deeper?
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the principle of minimum change

“The updated belief should be consistent with the new information (the result of
the observation), while deviating as little as possible from the initial belief.”

Theorem (arXiv:2410.00319)

Given a qc-channel P(•in) =
∑

i Tr[Pi •] |i⟩⟨i|out and a prior state γin > 0 such that

P(γ) > 0, let Qγ
P :=

∑
i |i⟩⟨i|out ⊗

(√
γTP T

i

√
γT

)
in
, so that Trin[Q

γ
P ] = P(γ) and

Trout[Q
γ
P ] = γT .

Then, given any observation result σ(i), represented as σout =
∑

i σ(i)|i⟩⟨i|out, the
optimization problem

max
Q⩾0 and Trin[Q]=σout

F (Qγ
P , Q) ,

where F (A,B) :=
∥∥∥√A

√
B
∥∥∥
1
is the (square-root) fidelity, has a unique solution Q̃,

which in particular satisfies Trout
[
Q̃
]
= [Rγ

P(σout)]
T .
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immediate consequences

Petz’s transpose map is “the” analogue of Bayes’ rule for quantum measurements

ϱ̃P is “the” quantum state to be retrodicted from the viewpoint of the macroscopic
observer

the difference between SP(ϱ) and S(ϱ) is a measure of “how retrodictable” ϱ is
through P, when the prior on the system is the uniform one

20/26



macroscopic = retrodictable

Definition
A state ϱ is macroscopic w.r.t. measurement P and prior γ whenever it can be perfectly
retrodicted from them, i.e., whenever it belongs to the set

Mγ
P = {ϱ : ϱ = [Rγ

P ◦ P ](ϱ)} .

Theorem (⋆)

A state ϱ is in Mγ
P if and only if there exists a PVM Π = {Πj}j, with Πj =

∑
i µ(j|i)Pi,

such that [Πi, γ] = 0, together with coefficients cj ⩾ 0, such that ϱ =
∑

j cjΠjγ.

Remark. The prior state is always macroscopic: γ ∈ Mγ
P for all POVMs P.

Remark. For uniform prior, i.e., γ = u, ϱ ∈ Mu
P =⇒ [ϱ, Pi] = 0 for all i. (In general, it may

be [γ, Pi] ̸= 0.)
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resolving the paradox of entropy increase in closed systems

suppose that Mu
P ⊋ {u} and let the initial state of the system at time t = t0 be a

macrostate ϱt0 ̸= u

the system evolves unitarily, i.e., ϱt0 7→ ϱt1 = Uϱt0U †; thus,

SP(ϱ
t1) = −

∑
i

Tr
[
Pi (Uϱt0U †)

]
log

Tr
[
Pi (Uϱt0U †)

]
Tr[Pi]

= −
∑
i

Tr
[
(U †PiU) ϱt0

]
log

Tr
[
(U †PiU) ϱt0

]
Tr[U †PiU ]

= SU†PU (ϱ
t0)

⩾ S(ϱt0) = SP(ϱ
t0) = S(ϱt1)

summarizing: in general, SP(ϱ
t1) ⩾ SP(ϱ

t0), with equality if and only if Uϱt0U † ∈ Mu
P

Corollary of Theorem (⋆): ϱt1 ∈ Mu
P =⇒ [ϱt1 , Pi] = [Uϱt0U †, Pi] = 0 for all i

hence, when the initial state is a macrostate ϱt0 ̸= u, SP(ϱ
t1) > SP(ϱ

t0) generically
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an “H-theorem” for OE

Theorem (PRR, 2025)

In a d-dimensional system, choose a state ϱ and a POVM P = {Pi}i with a finite
number of outcomes. Choose also a (small) value δ > 0. For a unitary operator U
sampled at random according to the Haar distribution, it holds:

PH

{
SP(UϱU †)

log d
⩽ (1− δ)

}
⩽

4

κ(P)
e−Cδκ(P)2d log d ,

where κ(P) = mini Tr[Pi u] and C ≈ 0.0018.

Remark. A similar statement holds for unitaries sampled from an approximate 2-design.

=⇒ in the eyes of the observer, the state of a randomly evolving system quickly becomes

indistinguishable from the maximally uniform one, regardless of the system’s initial state.
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parenthesis: Watanabe’s contention

“The phenomenological onewayness of
temporal developments in physics is due
to irretrodictability, and not due to irre-
versibility.” Satosi Watanabe (1965)

The second law is not about the arrow of
time, but about the arrow of inference.

The “mysterious” coarse-graining operation
that appears in Gibbs’ proof of the second
law is nothing but Bayesian retrodiction
done from the results of a macroscopic
observation.
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Conclusions
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take-home messages

1 macroscopic entropy emerges from a fully operational/inferential scenario

2 Petz’s transpose map emerges as the quantum Bayes rule, based on the principle of
“minimum change”

3 the second law is about the generic loss of retrodictability

The End: Thank You!
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