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Closed systems evolution

According to Schrödinger’s equation, closed (isolated) quantum systems evolve by
unitary evolution:

|ω
→(t1)→ = U(t0 ↑ t1)|ω(t0)→ , U

†
U = 1 .

|ψ⟩ |ψ′ ⟩

Markov property: the state of the system at time t1 depends only on the state of the
system at time t0.
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Open systems evolution

Closability assumption: any “open system” Q can be “closed” by taking into account all
the parts of the universe (i.e., the “environment” E) that interact with it

E E′ 

=
Q Q′ 

Q′ Q

But what about the initial joint state?
And the Markov property?
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The problem of initial correlations in a nutshell

Textbooks usually begin with the factorization assumption, i.e., •Q ↓ εE.

In this case, the reduced dynamics (i.e., the “open system’s dynamics”) is always well
defined, completely positive and trace-preserving – it is a quantum channel

TrE→

[
UQE↑Q→E→ (•Q ↓ εE) U

†
QE↑Q→E→

]
=: EQ↑Q→(•Q) .

However:

• 1994: Pechukas’ PRL (what if we drop the factorization assumption?) and Alicki’s
comment on it

• 2004: Sudarshan’s group (explicit constructions and examples)

• 2009: Shabani and Lidar’s PRL (claim: quantum discord solves the problem)

• 2013: Brodutch et al.’s counterexample voiding the Shabani–Lidar PRL
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The assignment map approach (Pechukas–Alicki)

The initial conditions should be given as a linear, completely positive map A : Q ↑ QE

satisfying the consistency relation TrE[A(•Q)] = •Q

Q

QE

TrE

𝒜

Q′ E′ 

TrE′ 

Q′ 

U

However, the consistency requirement is very restrictive: “natural” interactions that
create correlations between Q and E almost never satisfy it.
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The preparability approach
FB, PRL 2014

Let us denote the set of possible initial system-environment states ϑQE by
SQE ↔ S(HQ ↓HE).

The set SQE is said to be preparable if and only if there exists an input system R and a
CP linear map P : R ↑ QE such that SQE is the filter of S(HR) under P , that is,

SQE = P(S(HR)) :=

{
P(ϖR)

Tr[P(ϖR)]
: ϖR ↗ S(HR) ↘ Tr[P(ϖR)] > 0

}
.

The set SQE is preparable if and only if it is steerable, i.e., if and only if there exists a
reference system R and a tripartite density operator ϱRQE such that

≃ϑQE ↗ SQE , ⇐ςR ↭ 0 : ϑQE =
TrR[ϱRQE (ςR ↓ 1QE)]]

Tr[ϱRQE (ςR ↓ 1QE)]
.
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CPTP reducibility

The set SQE is said to be CPTP-reducible if and only if for any interaction
U : QE ↑ Q

→
E

→, there exists a quantum channel E : Q ↑ Q
→ such that

TrE→
[
UϑQEU

†] = E ⇒ TrE[ϑQE] , ≃ϑQE ↗ SQE .

Result

Let the set SQE of initial system-environment conditions be preparable/steerable. The
following are equivalent:

• SQE is CPTP-reducible

• SQE is Markov-steerable: there exists a tripartite state ϱRQE with
I(R;E|Q)ω = 0, such that SQE is steerable from ϱRQE

The reduced open system’s dynamics can remain well-defined even in the presence of
initial correlations between the system and the surrounding environment.
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Examples

No correlations:

• fix one environment state ϑE

• define SQE = {ϖQ ↓ ϑE : ϖQ ↗ S(HQ)}

• in this case, ϱRQE = !+
RQ ↓ ϑE

• =⇑ I(R;E|Q)ω = 0 =⇑ CPTP-reducible

Classical correlations (Rodriguez-Rosario et al., 2008):

• fix N environment states: ϑ(1)
E , ϑ

(2)
E , . . . , ϑ

(N)
E

• define SQE =
{
ϖQE =

∑N
i=1 pi|i→⇓i|Q ↓ ϑ

(i)
E : {pi}i prob. dist.

}

• ϱRQE = N
↓1

∑N
i=1 |i→⇓i|R ↓ |i→⇓i|Q ↓ ϑ

(i)
E

• =⇑ I(R;E|Q)ω = 0 =⇑ CPTP-reducible

Can there be more?
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No! Shabani and Lidar (2009) published a paper claiming that the condition of null
discord would be, not only su!cient, but also necessary for CPTP reducibility.

Yes! The above claim was disproved by the following counterexample (Brodutch et al.,
2013).

In our formalism:

• fix three distinct environment states ϑ(0)
E , ϑ(1)

E , and ϑ
(2)
E

• fix two system-environment states, φ and ↼ as follows:

φQE =
1

2
|0→⇓0|Q ↓ ϑ

(0)
E +

1

2
|+→⇓+|Q ↓ ϑ

(1)
E , ↼QE = |2→⇓2|Q ↓ ϑ

(2)
E

• SQE =
{
ϖ
p
QE = pφQE + (1⇔ p)↼QE : ≃p ↗ [0, 1]

}

• ϱRQE = 1
2 |0→⇓0|R ↓ φQE + 1

2 |1→⇓1|R ↓ ↼QE

• =⇑ I(R;E|Q)ω = 0 =⇑ CPTP-reducible
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More general examples

All counterexamples to the factorization condition only involve separable correlations.

Can we have CPTP-reducible entanglement?

Yes! Starting from tripartite states with I(R;E|Q)ω = 0, it is easy to construct a lot of
counterexamples.

✁ However, there is a tradeo” between the “strength” of the correlations and the
“size” of the possible initial state space of the system. For example, if we require that
SQ := TrE[SQE] = S(HQ), then the factorization condition is the only one that works.
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What happens when the set of possible initial
correlated states is not

CPTP-reducible/Markov-steerable?
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Information revivals

The Markov condition I(R;E|Q)ω = 0 is equivalent to the condition that, for all joint
evolutions U : QE ↑ Q

→
E

→,

I(R;Q)ω ↭ I(R;Q→)ω→ ,

where ϱ
→
RQ→E→ := (1R ↓ UQE)ϱRQE(1R ↓ UQE)†. In other words, the data-processing

inequality is never violated, also in the presence of initial correlations.

This is because

I(R;Q→)ω→ ↫ I(R;Q→
E

→)ω→ = I(R;QE)ω = I(R;Q)ω + I(R;E|Q)ω = I(R;Q)ω .

Hence, if I(R;E|Q)ω > 0, i.e., if the initial set of correlations is not CPTP-reducible,
information revivals can occur, i.e.

I(R;Q)ω < I(R;Q→)ω→ .
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An information revival is a violation of locality!

It urges an explanation.
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Explaining revivals
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Explaining !!!!!!""""""revivals magic tricks
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Casual explanations
FB, R. Gangwar, K. Goswami, H. Badhani, T. Pandit, B. Mohan, S. Das, M. N. Bera;
arXiv:2405.05326

Suppose that we have a revival: I(R;Q)ω < I(R;Q→)ω→ .

Explanation. Other parts (“regions”) of the universe are added to Q
→, until the revival

disappears, i.e., I(R;Q · · · )ω ↭ I(R;Q→
· · · )ω→ .

Causal consistency. We need to find an extension ϱRQE of ϱRQ and a unitary
operator U : QE ↑ Q

→
E

→ such that ϱ→
RQ→E→ = (1R ↓ UQE)ϱRQE(1R ↓ UQE)† is an

extension of ϱ→
RQ→ .

A causal explanation always exists

Since ϱR = ϱ
→
R, there exists a purification |!→RQE and a unitary U : QE ↑ Q

→
E

→ such
that ϱRQ→ = TrE→

[
ϱ
→
RQ→E→

]
and I(R;QE)ω = I(R;Q→

E
→)ω→ . In general, causal

explanations are not unique.

A causal explanation is also known as information backflow.

16/26



Any information revival can be explained as an
information backflow.

But is a backflow always necessary?
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A motivating example
• With HR

↖= HQ
↖= C2 and |!+

→ = 1→
2
(|00→+ |11→), consider the revival situation

ωRQ =
1R

2
↓
1Q

2
, ω↑

RQ→ = |!+
→⇓!+

|RQ→ .

• Causal explanation (Swap
Q↓E denotes the swap operator):

ωRQE = |!+
→⇓!+

|RE ↓
1Q

2
, ω↑

RQ→E→ = (1R ↓ Swap
Q↓E)ωRQE(1R ↓ Swap

Q↓E) .

This is a backflow and I(R;QE)ω = I(R;Q↑E↑)ω→ .

• Alternative explanation:

ωRQEF =
3∑

i=0

(1↓ εi
Q)|!

+
→⇓!+

|RQ(1R ↓ εi
Q)↓ |i→⇓i|E ↓ |i→⇓i|F ,

ω↑
RQ→E→F = (1R ↓ CQE ↓ 1F )ωRQEF (1R ↓ CQE ↓ 1F )

† ,

where CQE =
∑3

j=0 ε
j
Q ↓ |j→⇓j|E .

This is an explanation because I(R;QF )ω = I(R;Q↑F )ω→ , but this is not a backflow!

18/26



Non-causal explanations

Consider a revival
ϱRQ ↑ ϱ

→
RQ→ I(R;Q)ω < I(R;Q→)ω→ .

If there exists an extension ϱRQEF and a unitary U : QE ↑ Q
→
E

→ such that

TrE→F

[
(1R ↓ UQE ↓ 1F )ϱRQEF (1R ↓ UQE ↓ 1F )

†] = ϱ
→
RQ→ ,

and
I(R;QF )ω ↭ I(R;Q→

F )ω→ ,

we say that the revival is non-causal.

This is because the extension F never interacts with the system: it may reside in a
causally separated region of the universe, outside the causal past of Q→.

19/26

When is a causal backflow absolutely necessary?
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Su!cient condition for a causal backflow
• Suppose that there is a revival, i.e., I(R;Q)ω < I(R;Q→)ω→ .

• A causal explanation is the only possible explanation for the revival if and only if

≃F : non-causal extensions , I(R;QF )ω < I(R;Q→
F )ω→ .

• A su!cient condition for the above is

sup
F

I(R;Q|F )ω < inf
F

I(R;Q→
|F )ω→ .

• In turn, the above holds if

H(Q)ω < Esq(ϱ
→
RQ→) ,

where Esq denotes the squashed entanglement.

• For example: the revival ϱRQ = 1
21R ↓ |0→⇓0|Q ↑ ϱ

→
RQ→ = |”+

→⇓”+
|RQ→ can only be

explained by means of a backflow.
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Non-causal correlations
Let us go back to the problem of initial system–environment correlations, where the set
SQE of possible initial conditions is steerable from ϱRQE.

E E′ 

=
Q Q′ 

Q′ Q

If we can find an extension ϱRQEF such that I(R;E|QF )ω = 0, then, for any unitary
interaction U : QE ↑ Q

→
E

→,

I(R;QF )ω ↭ I(R;Q→
F )ω→ .

In other words, revivals may occur, but they will all be non-causal (i.e., no backflow).
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Classification of initial correlations

A hierarchy of possibilities

Let the set SQE of initial system-environment conditions be steerable from ϱRQE.

• I(R;E)ω = 0 ↬ no correlations ↬ the textbook case.

• I(R;E|Q)ω = 0 ↬ Markov correlations ↬ system–environment correlations are
present but don’t cause any revival.

• ⇐ extension ϱRQEF s.t. I(R;E|QF )ω = 0 ↬ non-causal correlations ↬ revivals
can happen, but they can all be explained without a causal backflow.
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Added bonus: closure under convex mixtures

• Consider two situations steerable initial conditions, described by ϱRQE and ↽RQE.

• Suppose that they are both Markov: I(R;E|Q)ω = I(R;E|Q)ε = 0.

• Their convex combination in general is not Markov: I(R;E|Q)pω+(1↓p)ε > 0.

• However, suppose now that they are both non-causal, i.e., there exist extensions
ϱRQEF and ↽RQEF such that I(R;E|QF )ω = I(R;E|QF )ε = 0.

• Their convex combination is automatically non-causal!

Without distinguishing between causal and non-causal information revivals, spurious
“classical” randomness may be erroneously counted as a backflow.
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Conclusion
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Take-home ideas

• In open quantum systems dynamics, the separation is not only “revival occurs”
(non-Markov) VS “revival does not occur” (Markov).

• Within revivals, we can further distinguish between “non-causal revivals” VS
“genuine backflows”.

• If H(Q→) < Esq(R;Q→→), then genuine backflow.

• Such “genuine non-Markovianity” is well-behaved under convex mixtures of
processes =⇑ resource theory of genuine non-Markovianity.

• Situation analogous to the separation of total correlations in entanglement
(monogamous) and classical correlations (broadcastable).

Thank you
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