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Abstract

Although Bayes’ rule is often considered a trivial identity, its ef-
fectiveness as an updating rule warrants further investigation. In this
talk, I revisit the classical Bayesian framework through the lens of the
minimum change principle. This principle asks that we update our
beliefs to incorporate new data while deviating minimally from the
prior. I demonstrate how this principle naturally leads to the general-
izations of Bayes’ rule proposed by Jeffrey and Pearl in noisy classical
scenarios. I then extend this idea to quantum systems and present a
fully quantum update rule that recovers the Petz transpose map as
the unique solution to a quantum optimization task. This establishes
the Petz map as more than just a mathematical artifact; it is also a
principled quantum analog of Bayesian inference.
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what this talk is not about

philosophical debates (e.g., Bayesianism VS Frequentism), interpretations of QM (e.g.,
QBism), etc.

we are postmodern Bayesians!
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what this talk is about

P (H|D)︸ ︷︷ ︸
posterior

=

prior︷ ︸︸ ︷
P (H)

likelihood︷ ︸︸ ︷
P (D|H)

P (D)︸ ︷︷ ︸
prop. constant

This talk is about Bayes’ rule and its “unreasonable effectiveness”

The wrong answer: it is a trivial consequence of the law of total probability, detailed
balance, etc.

The correct question: why Bayes’ rule provides a good update rule?
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possible justifications of the effectiveness of Bayes’ rule

“Consistency” arguments by De Finetti, (Harold) Jeffreys, Savage, and Cox.

(Richard) Jeffrey’s “probability kinematics” and Pearl’s “virtual evidence method”.
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parenthesis: the Bayes–Jeffrey–Pearl update

consider a classical discrete noisy channel P (i|x) and a prior γ(x) on the input

when the receiver reads a definite value i0, (vanilla) Bayes’ rule says that their

posterior should be updated to Rγ
P (x|i0) :=

γ(x)P (i0|x)
[Pγ](i0)

but what if the observation is noisy and returns some p.d. σ(i) instead?

Theorem (Jeffrey 1965, Pearl 1988)

Given a channel P (i|x) and a prior γ(x), the result of a noisy observation σ(i) is
updated to

σ̃(x) :=
∑
i

Rγ
P (x|i) σ(i) .

Note: the usual Bayes’ rule is recovered for σ(i) = δi,i0 .
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The problem with these derivations is that they are
based on axioms, which may appear compelling to
some but less so to others.

Alternative approach: can Bayes’ rule be derived as
the (optimal, unique) solution to a concrete task?
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the conservative stance

To avoid unwarranted bias and remain
maximally non-committal, the updated belief
should be consistent with the new information
(the result of the observation), while deviating

as little as possible from the initial belief.
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formalization: the principle of minimum change
How Bayes’ rule can be derived from this principle:

given channel P (i|x) and prior γ(x), construct the forward process
[P ⋆ γ](i, x) := P (i|x)γ(x)
given the new data as σ(i), consider the program

min
R

D(P ⋆ γ,R ⋆ σ) ,

where D(•, •) is a suitable information divergence, and the minimum is taken over
all channels R ≡ R(x|i)

Then, for many reasonable choices of D (e.g., the KL-divergence), it turns out that

argmin
R

D(P ⋆ γ,R ⋆ σ) = {Rγ
P} ,

where Rγ
P ≡ Rγ

P (x|i) =
[P⋆γ](i,x)
[Pγ](i)

is Bayes’ inverse.
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towards a quantum generalization

The minimum change principle is formulated using the joint input-output distributions.

Hence, the central idea is that the “change” to be minimized is the change relative to
the whole input-output stochastic process, not just its marginals.

But this is a problem in the quantum case...
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quantum joint distributions

Given a channel E : A → B define:

the Choi operator: CE :=
∑

i,j E(|i⟩⟨j|)B ⊗ |i⟩⟨j|A
the joint state: E ⋆ γ := (1B ⊗

√
γT
A)CE(1B ⊗

√
γT
A)

Note that:

TrB[E ⋆ γ] = γT
A

TrA[E ⋆ γ] = E(γ)B
when all operators are diagonal, we obtain the classical input-output joint
probability distribution
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the principle of minimum change: the quantum case

Given a channel E : A → B, a prior state γA some “new information” σB, consider the
program

min
R

D(E ⋆ γ, (R ⋆ σ)T ) ,

where the minimum is taken over channels R : B → A.

Theorem (arXiv:2410.00319)

For E ⋆ γ > 0 and σ > 0, when the divergence is chosen to be the quantum fidelity,

argmin
R

D(E ⋆ γ, (R ⋆ σ)T ) = {PE,γ,σ} ,

where

PE,γ,σ(•) :=
√
γ E†

(
√
σ

1√√
σE(γ)

√
σ

•
1√√

σE(γ)
√
σ

√
σ

)
√
γ .

Note: [E(γ), σ] = 0 =⇒ PE,γ,σ ≡ PE,γ coincides with Petz’s transpose map.
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concluding remarks

In general, when [E(γ), σ] ̸= 0 the dependence of the posterior PE,γ,σ(σ) on the new
data σ is not linear: bug or feature?

Useful application: when E is a qc-channel E(•) :=
∑

x Tr[• Ex] |x⟩⟨x|, Petz’s transpose
map is the uniquely optimal retrodiction that can be drawn from the measurement
outcomes.

In particular, the “mysterious” Gibbsian coarse-graining is nothing but retrodiction done
upon observation: CE,γ(•) := [RE,γ ◦ E ](•) =

∑
x Tr[• Ex]

√
γEx

√
γ

Tr[γEx]
.

What happens when other divergences are used instead of the fidelity?

What about multi-partite situations, locality restrictions, ...?

Happy birthday, Mario!
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grained states, and the Petz recovery map: information-theoretic prop-
erties and bounds. New Journal of Physics, vol. 25, 053002 (2023).
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