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Abstract

Extending classical multitime processes to quantum dynamics presents
significant challenges, particularly due to the ”no information with-
out perturbation” principle. Instead of hindering progress, these chal-
lenges have driven the development of innovative and sometimes un-
conventional methods that question traditional interpretations of quan-
tum mechanics. In this talk I will review some of the results we have
obtained in the last decade that shed light on the role of time-like cor-
relations in quantum theory. This is work done in collaboration with:
Giulio Chiribella, Michele Dall’Arno, James Fullwood, and Arthur
Parzygnat.
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The problem with correlations in time
Consider a single system stochastically evolving from state x at time t1 to state y at
time t2 > t1, and two observables, O1 = O1(x) and O2 = O2(y), one for each time.

classical case: ⟨O1O2⟩t1→t2
=

∑
x,y O1(x)O2(y) Pr{x, t1; y, t2}

quantum case: observation is intervention and time-correlations depend on how the first
observation is performed
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Is there a canonical form for quantum
time-correlations?
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How you do it classically
fix orthonormal bases {|x⟩}x and {|y⟩}y
choose an initial state p =

∑
x p(x)|x⟩⟨x|

apply the ideal classical correlator C(p) =
∑

x p(x)|x⟩⟨x|1 ⊗ |x⟩⟨x|2
let system 2 evolve: ∑

x,y

p(x)N(y|x)︸ ︷︷ ︸
Pr{x,t1;y,t2}

|x⟩⟨x|1 ⊗ |y⟩⟨y|2

measure (compute) O1 on system 1 and O2 on system 2:

⟨O1O2⟩t1→t2
=

∑
x,y

p(x)N(y|x)O1(x)O2(y)

=
∑
x

p(x)O1(x)
∑
y

N(y|x)O2(y)︸ ︷︷ ︸
Õ2(x)
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The crucial ingredient is the ideal correlator.

What is its quantum analog?
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Operational picture

If we had an “ideal quantum correlator” Q, we could do the same:

𝒬ϱ
O1

ℰt1→t2 O2
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Properties of Q
Requirements for the ideal quantum correlator:

linearity: Q(c1X1 + c2X2) = c1Q(X1) + c2Q(X2)

consistency with the classical correlator: (∆⊗∆) Q(∆(·)) = C(∆(·)), where
∆(·) =

∑
x |x⟩⟨x| · |x⟩⟨x|

symmetry: SWAP Q(·) SWAP = Q(·)

universal covariance: for any unitary U , Q(U · U †) = (U ⊗ U)Q(·)(U † ⊗ U †)

Remark. Universal covariance guarantees that classical consistency is
basis-independent.
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Uniqueness result

The ideal quantum correlator (PRL, 2024)

The four requirements of linearity, classical consistency, symmetry, and universal
covariance single out a unique map given by

Q(ϱ) :=
SWAP(ϱ⊗ 1) + (ϱ⊗ 1)SWAP

2
,

where SWAP(|ψ⟩ ⊗ |ϕ⟩) = |ϕ⟩ ⊗ |ψ⟩ for all vectors |ψ⟩ and |ϕ⟩.

For example, if ϱ = |ψ⟩⟨ψ|, then

Q(ϱ) =
1

2

∑
x

(
|x⟩⟨ψ| ⊗ |ψ⟩⟨x|+ cc

)
.
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Consequences

As a result, Q satisfies:

hermite-preservation (HP): X = X† =⇒ Q(X) = [Q(X)]†

trace-preservation (TP): Tr[Q(X)] = Tr[X]

ideal broadcasting: Tr1[Q(ϱ)] = Tr2[Q(ϱ)] = ϱ, for all ϱ
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Use of Q to generate quantum time-correlations

𝒬ϱ
O1

ℰt1→t2 O2

⟨O1O2⟩Qt1→t2
:= Tr[(id⊗ Et1→t2)Q(ϱ) (O1 ⊗O2)] = Tr

[
ϱ
O1

Õ2︷ ︸︸ ︷
E†(O2)+E†(O2)O1

2

]

The above corresponds to the symmetric part of the Dirac–Kirkwood quasi-probability
distribution, which thus gets a new operational interpretation as the unique “canonical”
analog of classical broadcasting.
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However, Q is not a valid quantum channel
(it is not positive)
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Optimal physical approximation

CPTP

𝒬ℰ
𝒬

𝒬
𝒬 𝒬
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Optimal physical approximation

arXiv:1312.4240; PRL (2024)

The ideal quantum correlator satisfies

arg min
E:CPTP

∥Q − E∥⋄ = {S}

where S is the Bužek–Hillery–Werner symmetric optimal one-to-two universal quantum
cloning map given by

S(·) := 2

d+ 1
Πsymm(ϱ⊗ 1)Πsymm ,

where Πsymm := 1
2
(1+ SWAP) is the projector on the symmetric subspace of Cd ⊗ Cd.

Remark. A connection between Dirac–Kirkwood distribution and cloning is also noted
in [Hofmann, PRL (2012)], but without any discussion about optimality or uniqueness.
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Optimal simulation protocol

arXiv:1312.4240
The unique optimal∗ statistical decomposition for the ideal quantum correlator is given
by

Q(·) = d+ 1

2
S(·)− d− 1

2
A(·) ,

where

S(·) := 2

d+ 1
Πsymm(ϱ⊗ 1)Πsymm A(·) := 2

d− 1
Πanti(ϱ⊗ 1)Πanti ,

where Πsymm := 1
2
(1+ SWAP) and Πanti :=

1
2
(1− SWAP) are, respectively, the projector

on the symmetric and on the antisymmetric subspaces of Cd ⊗ Cd.

∗ optimal because ∥Q∥⋄ =
∥∥d+1

2 S − d−1
2 A

∥∥
⋄ = d+1

2 ∥S∥⋄ +
d−1
2 ∥A∥⋄ = d.
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Interferometric scheme (arXiv:1312.4240)
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Conclusion
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Take-home messages

there is a unique, canonical, ideal quantum correlator

no ad hockeries or arguments from authority, but only four natural requirements
(linearity, classical consistency, symmetry, unitary covariance)

the ideal quantum correlator generates a canonical representation of time
correlations (a canonical state-over-time)

the ideal quantum correlator is not positive: another manifestation of the negative
signature of time?

the optimal universal quantum cloning is the unique optimal physical approximation

Time to venture into new territories
of quantum theory!

18/18



References

1. F. Buscemi, M. Dall’Arno, M. Ozawa, and V. Vedral: Direct observa-
tion of any two-point quantum correlation function. Preprint arXiv:1312.4240

2. F. Buscemi, M. Dall’Arno, M. Ozawa, and V. Vedral: Universal optimal
quantum correlator. International Journal of Quantum Information,
vol. 12, 1560002 (2014)

3. A.J. Parzygnat, J. Fullwood, F. Buscemi, and G. Chiribella: Vir-
tual quantum broadcasting. Physical Review Letters, vol. 132, 110203
(2024)

2


