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Abstract

In addition to the quantity now eponymously known as von Neu-
mann entropy, in his 1932 book von Neumann also discusses another
entropic quantity, which he calls “macroscopic”, and argues that it
is the latter, and not the former, that is the relevant quantity to use
in the analysis of thermodynamic systems. For a long time, however,
von Neumann’s ”other” entropy was largely forgotten, appearing only
sporadically in the literature, overshadowed by its more famous sib-
ling. In this talk I will discuss a recent generalization of von Neu-
mann’s macroscopic entropy, called “observational entropy”, focusing
on its mathematical properties and logical interpretation, and present-
ing some recent results.
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von Neumann entropy

For % =
P

d

x=1 �x|'xih'x| d-dimensional density matrix (�x � 0,
P

x
�x = 1),

S(%) := �Tr[% log %] = �
dX

x=1

�x log �x

with the convention 0 log 0 := 0.
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Unfortunately though:

“The expressions for entropy given by the author [previously]
are not applicable here in the way they were intended, as they
were computed from the perspective of an observer who can
carry out all measurements that are possible in principle—i.e.,
regardless of whether they are macroscopic [or not].”

von Neumann, 1929; transl. available in arXiv:1003.2133
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And again:

“Although our entropy expression, as we saw, is completely
analogous to the classical entropy, it is still surprising that
it is invariant in the normal [Hamiltonian] evolution in time
of the system, and only increases with measurements—in the
classical theory (where the measurements in general played no
role) it increased as a rule even with the ordinary mechanical
evolution in time of the system. It is therefore necessary to
clear up this apparently paradoxical situation.”

von Neumann, book (Math. Found. QM), 1932 (transl. 1955)
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the paradox: free expansion of an ideal gas

�S(universe) = nR log 2 > 0

=) there is net entropy increase in an isolated system’s evolution, but von Neumann
entropy remains constant
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von Neumann’s insight (inspired by Szilard’s)

“For a classical observer, who knows all coordinates and mo-
menta, the entropy is constant. [...]
The time variations of the entropy are then based on the fact
that the observer does not know everything—that he cannot
find out (measure) everything which is measurable in princi-
ple.” von Neumann, 1932 (transl. 1955)

von Neumann recognizes that thermodynamic entropy should be a quantity relative to
the observer’s knowledge
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von Neumann’s proposal: macroscopic entropy

For

% density matrix,

⇧ = {⇧i}i orthogonal resolution of identity (PVM),

pi = Tr[% ⇧i],

⌦i := Tr[⇧i],

S⇧(%) := �
X

i

pi log
pi
⌦i
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modern version: observational entropy

For

% density matrix,

P = {Pi}i POVM (i.e., Pi � 0,
P

i
Pi = 1),

pi = Tr[% Pi],

Vi := Tr[Pi],

SP(%) := �
X

i

pi log
pi
Vi

References:

1 D. Šafránek, J.M. Deutsch, A. Aguirre. Phys. Rev. A 99, 012103 (2019)

2 D. Šafránek, A. Aguirre, J. Schindler, J. M. Deutsch. Found. Phys. 51, 101 (2021)
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“observational” = “of the observer”

von Neumann defines a macro-observer as a collection of simultaneously
measurable quantities {X1,X2, . . . ,Xn, . . . }, where Xn = {Xj|n}j are POVMs

=) there exists one most-refined “parent” POVM P = {Pi}i and a stochastic
processing (i.e., cond. p.d.) µ such that

Xj|n =
X

i

µ(j|n, i)Pi , 8j, n

hence, a macro-observer for von Neumann is “just” a POVM (i.e., the most-refined
parent POVM P) from which all macroscopic quantities can be simultaneously
inferred
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Properties of OE
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Umegaki’s relative entropy

Definition
For density matrices %, �,

D(%k�) :=
(
Tr[%(log %� log �)] , if supp % ✓ supp � ,

+1 , otherwise

Useful properties:

D(AkB) � 0

S(%) = log d�D(%ku) where u := d�11

monotonicity: D(%k�) � D(N (%)kN (�)) for all channels (i.e., CPTP linear
maps) N and all states %, �
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the fundamental bound

Theorem
Given a POVM P = {Pi}i, define the CPTP linear map P(•) :=

P
i
Tr[Pi •] |iihi|.

Then, for any state %,

⌃P(%) : = SP(%)� S(%)

= D(%ku)�D(P(%)kP(u))

� 0 ,

where u = d�11. If ⌃P(%) = 0, the state % is said to be macroscopic for observer P.
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a better bound (arXiv:2209.03803)

Theorem
For d-dimensional quantum system, density matrix %, and POVM P = {Pi}i, the
di↵erence ⌃P(%) = SP(%)� S(%) satisfies

T ln(d� 1) + h(T ) � ⌃P(%) � D(%k%̃P) ,

where

%̃P := (Ru

P � P)(%) =
P

i
Tr[% Pi]

Pi
Vi
 reconstructed state

Ru

P(·) := 1
d
P†[P(u)�1/2(·)P(u)�1/2]  Petz transpose map

T := 1
2k%� %̃Pk1

h(x) := �x ln x� (1� x) ln(1� x)

Remark. It could be [%, %̃P] 6= 0.

Remark. The reconstructed state %̃P only depends on the observer’s knowledge.
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coarse-grainings and macroscopic states (arXiv:2404.11985)

Definition (coarse-grainings)
A POVM Q = {Qj}j is a coarse-graining of another POVM P = {Pi}i, denoted by
Q � P, whenever there exists a p.d. p(j|i) such that Qj =

P
i
p(j|i)Pi, for all j.

Definition (macrostates)
Given a POVM P = {Pi}i, the set of states macroscopic w.r.t. P is
M(P) = {% : % = %̃P}. These are the states that can be perfectly reconstructed from
the observer’s knowledge.

Theorem (?)
A state % is in M(P) if and only if there exists a PVM ⇧ = {⇧j}j, with ⇧ � P,
together with coe�cients cj � 0, such that % =

P
j
cj⇧j.

Remark. % 2 M(P) =) [%, Pi] = 0 for all i.
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how OE resolves the paradox
suppose that M(P) ) {u} and let the initial state of the system at time t = t0 be a

macrostate %t0 6= u

the system evolves unitarily, i.e., %t0 7! %t1 = U%t0U †
; thus,

SP(%
t1) = �

X

i

Tr
h
Pi (U%t0U †)

i
log

Tr
⇥
Pi (U%t0U †)

⇤

Tr[Pi]

= �
X

i

Tr
h
(U †PiU) %t0

i
log

Tr
⇥
(U †PiU) %t0

⇤

Tr[U †PiU ]

= SU†PU (%
t0)

� S(%t0) = SP(%
t0) = S(%t1)

summarizing: in general, SP(%t1) � SP(%t0), with equality if and only if U%t0U † 2 M(P)

Corollary of Theorem (?): %t1 2 M(P) =) [%t1 , Pi] = [U%t0U †, Pi] = 0 for all i

hence, when the initial state is a macrostate %t0 6= u, SP(%t1) > SP(%t0) generically
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an “H theorem” for OE (arXiv:2404.11985)

Theorem
In a d-dimensional system, choose a state % and a POVM P = {Pi}i with a finite
number of outcomes. Choose also a (small) value � > 0. For a unitary operator U
sampled at random according to the Haar distribution, it holds:

PH

⇢
SP(U%U †)

log d
 (1� �)

�
 4

(P)
e�C�(P)2d log d ,

where (P) = mini Tr[Pi u] and C ⇡ 0.0018.

Remark. A similar statement holds for unitaries sampled from an approximate 2-design.

=) in the eyes of the observer, the state of a randomly evolving system quickly becomes

indistinguishable from the maximally uniform one, regardless of the system’s initial state.
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Interpretation of OE
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retrodiction

consider a discrete noisy channel P : X ! I and a prior �(x) on the input

when the receiver reads a definite value i0, Bayes’ update rule says that their
posterior should be updated to R�

P
(x|i0) / �(x)P (i0|x)

but what if the observation is noisy and returns some p.d. �(i) instead?

Theorem (Je↵rey, 1965)
Starting from a given prior �(x) and a likelihood P (i|x), the result of a noisy
observation �(i) is retrodicted to

e�(x) :=
X

i

R�

P
(x|i)�(i) .

The conventional Bayes’ rule is recovered for �(i) = �i,i0 .
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irretrodictability
a channel P (i|x) is given (objective)

the predictor has their prior ⇡(x)

the retrodictor has their prior �(x)

the predictor’s expected data distribution is PF (x, i) := ⇡(x)P (i|x)
the retrodicted channel is R�(x|i) = 1

[P�](i)�(x)P (i|x)

Definition
The triple (⇡, P, �) is retrodictable whenever

PF (x, i) = PF (i)R
�(x|i) =: P �

R
(x, i) .

More generally, the degree of irretrodictability is given by

D(PFkP �

R
) = D(⇡k�)�D(P⇡kP�) .

Remark. The above implies D(⇡k�)�D([P⇡]k[P�]) � D(⇡k[R� � P ]⇡).
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OE as irretrodictability
Theorem
Given a d-dimensional system, a density matrix % with diagonalization {�x, |'xi}dx=1, a unitary

operator U , and a POVM P = {Pi}i,

SP(U%U †)� S(%) = D(PF kPu
R) ,

where

PF (x, i) := �x Tr
⇥
U |'xih'x|U† Pi

⇤
| {z }

PF (i|x)

, Pu
R(x, i) := PF (i) Tr


|'xih'x|

U†PiU

Vi

�

| {z }
Pu

R(x|i)

.
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parenthesis: Watanabe’s contention

“The phenomenological onewayness of
temporal developments in physics is due
to irretrodictability, and not due to irre-
versibility.” Satosi Watanabe (1965)

The reconstructed (i.e., retrodicted)
state %̃P is exactly the coarse-grained
state that appears in the Gibbsian

“proof” of the second law.
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Extension to general priors
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two aspects of OE

The di↵erence ⌃P(%) = SP(%)� S(%) admits two forms:

as deficiency, i.e., ⌃P(%) = D(%ku)�D(P(%)kP(u))

as irretrodictability, i.e., ⌃P(%) = D(PFkP u

R
)

In both, the uniform prior is assumed.

Can we generalize the discussion to an arbitrary prior?
(especially relevant in thermodynamic situations, or for 1-dim systems)
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first aspect: statistical deficiency

⌃P(%) = SP(%)� S(%) = D(%ku)�D(P(%)kP(u))  replace u with �

Definition
Given a POVM P = {Pi}i and a prior state � > 0, the set of macroscopic states is
M(P, �) := {% : D(%k�)�D(P(%)kP(�)) = 0}.

Theorem
A state % is in M(P, �) if and only if there exists a coarse-graining ⇧ � P such that

1 ⇧ = {⇧j}j is a PVM;
2 [⇧j, �] = 0 for all j;
3 % =

P
j
cj�⇧j for some cj � 0.

Remark. Now, for a general prior, % 2 M(P, �) 6=) [Pi, %] = 0: indeed, � 2 M(P, �),
regardless of the POVM P.
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simple case: semi-classical case
Suppose that the retrodictor’s uniform prior u is replaced with another state �, but such
that [%, �] = 0, i.e., predictor’s and retrodictor’s priors commute.

define

Sclax
P,� (%) := �Tr[% log �] +

X

i

Tr[% Pi] log
Tr[% Pi]

Tr[� Pi]

then

Sclax
P,� (%)� S(%) = D(%k�)�D(P(%)kP(�)) = D(PFkP �

R
) ,

with
I P (i|x) = h'x|Pi|'xi
I PF (x, i) = �xP (i|x)
I P �

R
(x, i) = PF (i)R�(x|i).

But what if [%, �] 6= 0?
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a first candidate

A generalized deficiency-like definition is easy.

Even if [%, �] 6= 0, maintain ⌃(1)
P,� = D(%k�)�D(P(%)kP(�)), that is, define

S(1)
P,�(%) := �Tr[% log �]�D(P(%)kP(�)).

Instead, if [%, �] 6= 0, a generalized retrodiction-like definition is di�cult, since these is
no straightforward generalization of the joint input-output distribution for a quantum
channel.
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Choi-like joint input-output representations

Arbitrarily fix o.n.b. {|ii}d
i=1 for input and {|k̃i}d0

k=1 for output.

Forward process %in 7�! P(%)out:

Choi operator: CP :=
P

d

i,j=1 P(|iihj|)⌦ |iihj| =
P

k
|k̃ihk̃|⌦ P T

k

define QF := (1out ⌦
p
%T ) CP (1out ⌦

p
%T )

then Trout[QF ] = %T and Trin[QF ] = P(%)

Reverse process �out 7�! R�

P(�)in:

Choi operator: CR�
P
:=

P
d
0

k,`=1 |k̃ih˜̀|⌦R�

P(|k̃ih˜̀|)

it holds that CT

R�
P
= (P(�)�1/2 ⌦

p
�T ) CP (P(�)�1/2 ⌦

p
�T )

define Q�

R
:= (

p
� ⌦ 1in) CT

R�
P
(
p
� ⌦ 1in)

then Trout[Q
�

R
] = (R�

P(�))
T and Trin[Q

�

R
] = �

28/33



a second candidate

Having the Choi-like representations QF and Q�

R
, we define

⌃(2)
P,�(%) := D(QFkQ�

R
) ,

where we put � ⌘ P(%).

But we face a dilemma, because ⌃(1)
P,�(%) 6= ⌃(2)

P,�(%), i.e.,

D(%k�)�D(P(%)kP(�)) 6= D(QFkQ�

R
) .

(Proof by explicit numerical counterexamples).

Can we save goat and cabbages?
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how to save goat and cabbages
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how to save goat and cabbages

instead of Umegaki’s, use Belavkin–Staszewski’s: DBS(%k�) := Tr[% log %��1]
(assume � > 0)

instead of QF use tQF :=
p
CP (1out ⌦ %T )

p
CP

instead of Q�

R
use tQ�

R
:=

p
CP (P(�)�1/2P(%)P(�)�1/2 ⌦ �T )

p
CP

then:
DBS(%k�)�D(P(%)kP(�)) = DBS(

tQFktQ�

R
)

31/33

Conclusions
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take-home messages

When the use of von Neumann entropy in thermodynamics is problematic, try consider
observational entropy (OE) instead, because:

1 OE has a fully operational/inferential definition

2 OE fits nicely within recent developments in quantum mathematical statistics (e.g.,
approximate Petz recovery, strengthened monotonicity bounds, etc.)

3 OE simplifies a number of conceptual issues within the foundations of statistical
mechanics

The End: Thank You!
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