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Abstract

In addition to the quantity now eponymously known as von Neu-

mann entropy, in his 1932 book von Neumann also discusses another

entropic quantity, which he calls “macroscopic”, and argues that it is

the latter, and not the former, that is the relevant quantity to use in

the analysis of thermodynamic systems. For a long time, however, von

Neumann’s “other” entropy was largely forgotten, appearing only spo-

radically in the literature, overshadowed by its more famous sibling.

In this talk I will discuss a recent generalization of von Neumann’s

macroscopic entropy, called “observational entropy”, focusing on its

mathematical properties (leading to a strong version of the Petz re-

covery theorem), its statistical interpretation (as statistical deficiency

on the one hand, and as “irretrodictability” on the other), and its

application in explaining the emergence of the Second Law and an

“H-like Theorem” for closed systems evolving unitarily.
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von Neumann entropy

For % =
P

d

x=1 �x|'xih'x| d-dimensional density matrix (�x � 0,P
x
�x = 1),

S(%) := �Tr[% log %] = �
dX

x=1

�x log �x

with the convention 0 log 0 := 0.
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Unfortunately though:

“The expressions for entropy given by the au-
thor [previously] are not applicable here in the way
they were intended, as they were computed from
the perspective of an observer who can carry out
all measurements that are possible in principle—
i.e., regardless of whether they are macroscopic
[or not].”

von Neumann, 1929; transl. available in arXiv:1003.2133
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And again:

“Although our entropy expression, as we saw, is
completely analogous to the classical entropy, it
is still surprising that it is invariant in the nor-
mal [Hamiltonian] evolution in time of the sys-
tem, and only increases with measurements—in
the classical theory (where the measurements in
general played no role) it increased as a rule even
with the ordinary mechanical evolution in time of
the system. It is therefore necessary to clear up
this apparently paradoxical situation.”

von Neumann, book (Math. Found. QM), 1932 (transl. 1955)
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the paradox: free expansion of an ideal gas

�S(universe) = nR log 2 > 0

=) there is net entropy increase in an isolated system’s evolution, but
von Neumann entropy remains constant
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von Neumann’s insight (inspired by Szilard’s)

“For a classical observer, who knows all coordi-
nates and momenta, the entropy is constant. [...]
The time variations of the entropy are then based
on the fact that the observer does not know ev-
erything—that he cannot find out (measure) ev-
erything which is measurable in principle.”

von Neumann, 1932 (transl. 1955)

von Neumann recognizes that thermodynamic entropy should be a
quantity relative to the observer’s knowledge
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von Neumann’s proposal: macroscopic entropy

For

% density matrix,

⇧ = {⇧i}i orthogonal resolution of identity (PVM),

pi = Tr[% ⇧i],

⌦i := Tr[⇧i],

S⇧(%) := �
X

i

pi log
pi
⌦i
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modern version: observational entropy
For

% density matrix,

P = {Pi}i POVM (i.e., Pi � 0,
P

i
Pi = 1),

pi = Tr[% Pi],

Vi := Tr[Pi],

SP(%) := �
X

i

pi log
pi
Vi

References:

1 D. Šafránek, J.M. Deutsch, A. Aguirre. Phys. Rev. A 99, 012103 (2019)

2 D. Šafránek, A. Aguirre, J. Schindler, J. M. Deutsch. Found. Phys. 51, 101 (2021)
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“observational” = “of the observer”

von Neumann defines a macro-observer as a collection of
simultaneously measurable quantities {X1,X2, . . . ,Xn, . . . }, where
Xn = {Xjn}jn are POVMs

=) there exists one most-refined “parent” POVM P = {Pj}j
that outputs all values at once

Xjn =
X

ji 6=jn

Pj1,j2,...,jn,... , 8j, n

hence, a macro-observer for von Neumann is “just” a POVM (i.e.,
the most-refined parent POVM P) from which all macroscopic
quantities can be simultaneously inferred
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Properties of OE
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Umegaki’s relative entropy

Definition
For density matrices %, �,

D(%k�) :=
(
Tr[%(log %� log �)] , if supp % ✓ supp � ,

+1 , otherwise

Useful properties:

D(AkB) � 0

S(%) = log d�D(%ku) where u := d�11

monotonicity: D(%k�) � D(N (%)kN (�)) for all channels (i.e.,
CPTP linear maps) N and all states %, �
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the fundamental bound of OE
Theorem (arXiv:2209.03803)
For d-dimensional quantum system, density matrix %, and POVM
P = {Pi}i:

T ln(d� 1) + h(T ) � SP(%)� S(%) � D(%k%̃P) ,

where

%̃P := (Ru

P � P)(%) =
P

i
Tr[% Pi]

Pi

Vi
 reconstructed state

Ru

P(·) := 1
d
P†[P(u)�1/2(·)P(u)�1/2]  Petz transpose map

T := 1
2k%� %̃Pk1

h(x) := �x ln x� (1� x) ln(1� x)

Remark. If SP(%) = S(%), the state % is said to be macroscopic for observer P.

Remark. In general, it could be [%, %̃P] 6= 0.
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What is %̃P?

The state %̃P =
P

i
Tr[% Pi]

Pi

Vi
:

only depends on the observer’s knowledge

it is the coarse-grained state that appears in Gibbsian “proofs” of
the second law

it is the retrodiction or quantum Bayes’ inverse done by the observer
about the “true” (but unknown) microscopic state of the system
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parenthesis: Watanabe’s contention

“ The phenomenological oneway-
ness of temporal developments in
physics is due to irretrodictability,
and not due to irreversibility.”

Satosi Watanabe (1965)

The di↵erence SP(%)� S(%) is
precisely a measure of such an

irretrodictability.
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A law of OE increase in
isolated systems
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an “H theorem” for OE

Theorem (arXiv:2404.11985)
In a d-dimensional system, choose a state % and a POVM P = {Pi}i
with a finite number of outcomes. Choose also a (small) value � > 0.
For a unitary operator U sampled at random according to the Haar
distribution, it holds:

PH

⇢
SP(U%U †)

log d
 (1� �)

�
 4

(P)
e�C�(P)2d log d ,

where (P) = miniTr[Pi u] and C ⇡ 0.0018.

Remark. A similar statement holds for unitaries sampled from an approximate

2-design.
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=) in the eyes of the observer, the state of a randomly evolving
system quickly becomes indistinguishable from the maximally

uniform one, regardless of the system’s initial state.

18/37



Conclusions
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take-home messages

When the use of von Neumann entropy in thermodynamics is
problematic, try consider observational entropy (OE) instead, because:

1 OE has a fully operational/inferential definition

2 OE fits nicely within recent developments in quantum mathematical
statistics (e.g., approximate Petz recovery, strengthened
monotonicity bounds, etc.)

3 OE simplifies a number of conceptual issues within the foundations
of statistical mechanics

The End: Thank You!
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