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Abstract—Two partial orderings among communication channels, namely “being degradable
into” and “being less noisy than,” are reconsidered in the light of recent results about statistical
comparisons of quantum channels. Though our analysis covers at once both classical and
quantum channels, we also provide a separate treatment of classical noisy channels and show
how in this case an alternative self-contained proof can be constructed, with its own particular
merits with respect to the general result.
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1. INTRODUCTION

Given two channels, it is natural to ask which one is “better.” As one soon realizes, ordering
channels according to their capacity would be too limited in scope, since there may be other
measures of “goodness” that are more relevant than capacity for the task at hand. This is even
more so for quantum channels, for which many inequivalent capacities exist [1]. Indeed, it does not
require too much imagination to come up with uncountably many such “comparisons,” and each
comparison will only induce a partial, rather than a total, ordering between channels. This fact
should not come as a worrying surprise: channels are highly dimensional objects, and any total
ordering can only be extremely coarse—often too coarse to be of any use in practice. Nonetheless,
it is true that some comparisons are more natural, more compelling, or just mathematically simpler
than others, so that they received more attention in the literature. This paper actually deals with
two much studied comparisons, namely the partial orderings “being degradable into” and “being
less noisy than,” introduced in Definitions 1 and 2 below (for a compendium of many comparisons
among discrete noisy channels, see [2]).

The goal of this work is to exhibit a connection between degradable channels and less noisy
channels, beyond the obvious one “degradable implies less noisy.” More explicitly, we show how
a formal (but not substantial) modification in the definition of less noisy channels is sufficient to
make the two orderings equivalent. Our result is proved in a general scenario, where channels
are modeled as CPTP maps between operator algebras, thus covering quantum channels, classical
channels (when input and output are commutative algebras), and also hybrid classical-to-quantum
and quantum-to-classical channels.

Central to our approach is the notion of quantum statistical morphisms, i.e., linear maps between
operator algebras that generalize in a statistical sense the idea of “post-processing” or “coarse-
graining” (see Definition 5). The use of statistical morphisms allows us to prove our results under
very mild assumptions, so that the quantum and classical cases are recovered as special cases of

1 Supported in part by the JSPS KAKENHI, grant no. 26247016.
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a single unifying framework. Such a top-down approach, besides being mathematically simpler,
has the merit to clearly separate statistics from physics: indeed, it can immediately be applied to
general probabilistic theories, since it does not rely on any particular feature of quantum theory
like, for example, complete positivity.

The paper is organized as follows. In Section 2 we introduce the notation and some basic defi-
nitions. In Section 3 we introduce the concept of statistical morphisms and prove the fundamental
equivalence relation. In Section 4 we specialize to the case of semiclassical channels. The case of
discrete noisy classical channels is treated separately in Section 4.1, in a way that does not rely on
any knowledge of the quantum case and allows the treatment of the approximate case, studied in
the Appendix. In Section 5 we consider the case of fully quantum channels. Section 6 concludes
the paper with some comments and possible future developments.

2. NOTATION AND DEFINITIONS

In what follows, all sets are finite and Hilbert spaces are finite-dimensional.

• Sets are denoted by X = {x : x ∈ X}, Y = {y : y ∈ Y}, etc.
• A probability distribution over X is a function p : X → [0, 1] such that

∑

x
p(x) = 1.

• The set of all probability distributions over X is denoted by P(X ).
• Random variables are labeled by upper case letters X, Y , etc. with ranges X = {x}, Y = {y},
etc.

• Discrete noisy channels are identified with the associated conditional probability distributions.
• Quantum systems are labeled by upper case letters Q, R, etc., and the associated Hilbert spaces

are denoted by HQ, HR, etc. Dimensions are denoted as dQ
def
= dimHQ etc.

• The set of linear operators acting on a Hilbert spaceH is denoted by L(H). The identity operator
is denoted by 1.

• States of Q are represented by density operators, i.e., operators ρ ∈ L(H) such that ρ ≥ 0 and
Tr[ρ] = 1.

• The set of density operators acting on a Hilbert space H is denoted by S(H).
• A positive operator-valued measure (POVM ) is a function P : X → L(H) such that P (x) ≥ 0
and

∑

x
P (x) = 1. For the sake of readability, we will often write the argument x as a superscript,

i.e., P x rather than P (x).
• The set of POVMs from X to L(H) is denoted by M(X ,H).
• Quantum channels are completely positive trace-preserving (CPTP) linear maps N : L(HQ) →
L(HR). The range of a channel N is defined as the image of L(HQ) under the action of N ,
namely, the set {N (X) : X ∈ L(HQ)}. The identity map is denoted by id.

• The set of quantum channels from L(HQ) to L(HR) is denoted by C(HQ,HR).
• Given a linear map L : L(HQ) → L(HR), its trace dual is the linear map L∗ : L(HR) → L(HQ)
defined by the relation

Tr[L∗(XR)YQ]
def
= Tr[XR L(YQ)],

for all YQ ∈ L(HQ) and all XR ∈ L(HR). Then N is trace-preserving if and only if N ∗ is
unit-preserving, i.e., N ∗(1R) = 1Q. Moreover, we say that a linear map L is Hermitian if and
only if, for any X = X†, L(X) = L(X)†.

• A classical-to-quantum (cq) channel is a function E : X → S(H). We will usually denote the
density operators E(x) by ρx, σx, etc. Equivalently, a cq-channel E will be denoted as a family
of density operators E = {ρx : x ∈ X}.

• A classical-quantum (cq) state is a bipartite density operator describing a quantum system Q
correlated with a random variable X. Since random variables can be seen as commuting density
operators, we will represent cq-states as, e.g., ρXQ =

∑

x∈X
p(x)|x〉〈x|X ⊗ ρxQ, where the unit

vectors {|x〉 : x ∈ X} are all orthogonal.
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• For a given bipartite density operator ρRQ ∈ S(HR ⊗ HQ), its conditional min-entropy is de-
fined as

Hmin(R |Q)ρ
def
= − inf

σQ∈S(HQ)
inf

{
λ ∈ R : ρRQ ≤ 2λ1R ⊗ σQ

}
.

We will use in particular the fact that [3]

2−Hmin(R|Q)ρ = dR max
N∈C(HQ,HR′)

F 2((idR ⊗N )ρRQ,Φ
+
RR′

)
,

where HR′ ∼= HR, F 2(ρ, σ)
def
= ‖√ρ

√
σ‖21, and Φ+

RR′
def
= d−1

R

dR∑

i,j=1
|iR〉|iR′〉〈jR|〈jR′ |, for some

orthonormal basis {|i〉} of HR. In the case of a cq-state ρXQ =
∑

x∈X
p(x)|x〉〈x|X ⊗ ρxQ, the above

formula becomes equivalent to

2−Hmin(X |Q)ρ = max
P∈M(X ,HQ)

∑

x∈X
p(x)Tr

[
ρxQ P x

Q

] def
= Pguess(X |Q)ρ,

namely, the expected guessing probability, i.e., the probability of correctly guessing the value
of X having access only to the quantum system Q.

2.1. “Degradable” and “Less Noisy” Channels

In the classical case, the following definitions can be found in [4–7].

Definition 1 (degradable channels). Given two discrete channels p(y |x) and p′(z |x), p is said
to be degradable into p′ whenever there exists a discrete channel q(z |y) such that

p′(z |x) =
∑

y∈Y
q(z |y)p(y |x).

Definition 2 (less noisy channels). Given two discrete channels p(y |x) and p′(z |x), p is said
to be less noisy than p′ whenever, for any discrete random variable U , any probability distribu-
tion q(u), and any channel q(x |u), the joint input-output probability distributions q(u)q(x |u)p(y |x)
and q(u)q(x |u)p′(z |x) satisfy

H(U |Y ) ≤ H(U |Z).

If p1 is degradable into p2, then p1 is less noisy than p2: the proof is a simple consequence of the
data-processing inequality. Counterexamples are known for the converse [5], namely, one channel
can be less noisy than another without being degradable. A consequence of the results presented
here is that it is sufficient to replace H with Hmin in Definition 2 in order to make the ordering
“less noisy” (now defined with respect to Hmin) equivalent to the ordering “degradable.” This fact
is formalized in Corollary 3 below. (The reader interested in the classical case only can directly
skip to Section 4.1: there, Corollary 3 is provided with an independent, self-contained proof, which
does not rely on any idea developed for the general noncommutative case. Moreover, such a proof
allows the treatment of the approximate case, which is studied in the Appendix.)

In fact, our analysis will not be limited to the case of classical noisy channels but will include
some results valid for quantum channels too. We hence generalize Definitions 1 and 2 to the
quantum case as follows (but compare with [8]).

Definition 3 (degradable quantum channels). Given two CPTP maps N : L(HQ) → L(HR)
and N ′ : L(HQ) → L(HS), N is said to be degradable into N ′ whenever there exists a CPTP map
T : L(HR) → L(HS) such that

N ′ = T ◦ N .
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Definition 4 (less noisy quantum channels). Given two CPTP maps N : L(HQ) → L(HR) and
N ′ : L(HQ) → L(HS), N is said to be less noisy than N ′ whenever, for any discrete random vari-
able U , any probability distribution q(u), and any cq-channel E = {ρuQ : u ∈ U}, the corresponding
input-output cq-states

σUR
def
=

∑

u

q(u)|u〉〈u|U ⊗NQ(ρ
u
Q) and τUS

def
=

∑

u

q(u)|u〉〈u|U ⊗N ′
Q(ρ

u
Q)

satisfy

H(U |R)σ ≤ H(U |S)τ .

This paper studies the relations between the notions of degradable channels and less noisy
channels, both in classical and quantum information theory. In what follows we will show, in
particular, how Definitions 2 and 4 can formally be modified so that the two partial orderings
become equivalent. The results presented here are based on recent formulations of the Blackwell–
Sherman–Stein theorem [9–11] for quantum systems [12–17].

3. STATISTICAL MORPHISMS AND A FUNDAMENTAL EQUIVALENCE RELATION

We begin with a definition, generalizing that given in [15].

Definition 5 (quantum statistical morphisms). Given a CPTP map N : L(HQ) → L(HR),
a statistical morphism of N is a linear map L : L(HR) → L(HS) such that, for any finite out-
come set X and any POVM {P̄ x

S : x ∈ X}, there exists another POVM {P x
R : x ∈ X} such that

Tr[(L ◦ N )(ρQ) P̄
x
S ] = Tr[N (ρQ)P

x
R], ∀x ∈ X , ∀ρQ ∈ S(HQ). (1)

Remark 1. Clearly, a positive trace-preserving linear map is always a well-defined statistical
morphism, for any channel. However, a map can be a statistical morphism of some channel
without being positive and trace-preserving—in fact, statistical morphisms cannot even be extended,
in general, to positive trace-preserving maps, as is shown in [18] by an explicit counterexample2.
We can only say that, if L is a statistical morphism of N , then L is positive and trace-preserving
on the range of N , namely, Tr[(L ◦ N )(XQ)] = Tr[N (XQ)], for all XQ ∈ L(HQ), and, whenever
N (XQ) ≥ 0, Tr[(L ◦ N )(XQ) P̄S ] ≥ 0, for all P̄S ≥ 0. The question then arises: Is any linear
map L which is positive and trace-preserving on the range of a channel N a statistical morphism
of N ? Again, the answer is negative. This is because, in order to guarantee that L is positive
and trace-preserving on the range of N , it would be sufficient to have (1) hold for binary POVMs
(i.e., effects) {P̄ ,1− P̄} only, but this condition is known to be strictly weaker than that required
in Definition 5, which must hold for any finite X [20]. The situation can thus be summarized as
follows:

PTP everywhere =⇒
�⇐=

statistical morphism of N =⇒
�⇐=

PTP on range(N ).

Remark 2. In what follows, when we say “trace-preserving statistical morphism,” we mean a
trace-preserving (everywhere) linear map that is, in particular, a statistical morphism (for some
channel).

We are now ready to state a fundamental equivalence relation.

Proposition 1. Given two CPTP maps N : L(HQ) → L(HR) and N ′ : L(HQ) → L(HS), the
following are equivalent :

2 About this problem, see also [19].

PROBLEMS OF INFORMATION TRANSMISSION Vol. 52 No. 3 2016



DEGRADABLE CHANNELS 205

(i) For any discrete random variable U , any probability distribution q(u), and any cq-channel
E = {ρuQ : u ∈ U}, the corresponding input-output cq-states

σUR =
∑

u∈U
q(u)|u〉〈u|U ⊗N (ρuQ) and τUS =

∑

u∈U
q(u)|u〉〈u|U ⊗N ′(ρuQ)

satisfy

Hmin(U |R)σ ≤ Hmin(U |S)τ ,

i.e., Pguess(U |R)σ ≥ Pguess(U |S)τ ;
(ii) There exists a Hermitian trace-preserving statistical morphism L : L(HR) → L(HS) of N

such that

N ′ = L ◦ N .

Note that point (i) in Proposition 1 looks exactly as the definition of less noisy channels (Defi-
nition 4), the only difference being the use of Hmin in the place of H.

Proof. If point (ii) holds, then

Pguess(U |S)τ = max
P̄∈M(U ,HS)

∑

u∈U
q(u)Tr[N ′(ρuQ) P̄

u
S ]

= max
P̄∈M(U ,HS)

∑

u∈U
p(u)Tr[(L ◦ N )(ρuQ) P̄

u
S ]

≤ max
P∈M(U ,HR)

∑

u∈U
p(u)Tr[N (ρuQ)P

u
R] = Pguess(U |R)σ,

where the inequality is a consequence of Definition 5 above.

Conversely, assume that point (i) holds. As is already shown in [15–17], this implies that, for
any POVM {P̄ x

S : x ∈ X} on HS, there exists a POVM {P x
R : x ∈ X} on HR such that

Tr[N ′(ρQ) P̄
x
S ] = Tr[N (ρQ)P

x
R], (2)

for all x ∈ X and all ρQ ∈ S(HQ). Let us choose {P̄ x
S : x ∈ X} ∈ M(X ,HS) to be an informationally

complete POVM, i.e., such that span{P̄ x
S : x ∈ X} = L(HS). Let {P x

R : x ∈ X} ∈ M(X ,HR) be
the corresponding POVM, satisfying (2), and define a linear map L∗ : L(HS) → L(HR) by

L∗(P̄ x
S )

def
= P x

R, x ∈ X .

Such a map is uniquely defined, since {P̄ x
S : x ∈ X} is a basis for L(HS), and it is unit-preserving

by the construction, implying that its trace dual L : L(HR) → L(HS) is trace-preserving. In order
to prove that L is also Hermitian, let {Θx

S : x ∈ X} be the set of Hermitian operators in L(HS)
such that

XS =
∑

x∈X
Tr[XS P̄ x

S ]Θ
x
S ,

for all XS ∈ L(HS). This implies that, for any YR = Y †
R in L(HR),

L(YR) =
∑

x∈X
Tr[L(YR) P̄

x
S ]Θ

x
S =

∑

x∈X
Tr[YR L∗(P̄ x

S )]Θ
x
S =

∑

x∈X
Tr[YR P x

R]Θ
x
S =

∑

x∈X
λxΘ

x
S

with λx ∈ R; i.e., L(YR) is Hermitian too. Hence, L, as defined above, is a Hermitian trace-pre-
serving linear map. We only need to show that N ′ = L ◦N and that L is a well-defined statistical
morphism of N .
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In order to show that N ′ = L ◦ N , we notice that the condition expressed in (2) can be
reformulated as follows: for any ρQ ∈ S(HQ) and any x ∈ X ,

Tr[N ′(ρQ) P̄
x
S ] = Tr[N (ρQ)P

x
R] = Tr[N (ρQ)L∗(P̄ x

S )] = Tr[(L ◦ N )(ρQ) P̄
x
S ].

Since {P̄ x
S : x ∈ X} in the above equation is informationally complete, we have that N ′(ρQ) =

(L ◦ N )(ρQ), for all ρQ, i.e., N ′ = L ◦ N . Thus we also know that the condition expressed in (2)
above automatically implies that L is a well-defined statistical morphism. �

In other words, Proposition 1 states that replacing H with Hmin in Definition 4 is sufficient to
conclude a weaker form of degradability, in the sense that the degrading map is not a quantum
channel but a Hermitian trace-preserving statistical morphism. In what follows, we will see when
one can conclude that the degrading map is in fact CPTP.

Before proceeding, however, we specialize Proposition 1 to the case of cq-channels, which can
always be seen as CPTP maps on commuting input subalgebras. We start by simplifying the
definition of a statistical morphism as follows (this was the original definition given in [15]).

Definition 6. Given a cq-channel E : X → S(HR) with E = {σx
R : x ∈ X}, a statistical mor-

phism of E is a linear map L : L(HR) → L(HS) such that, for any Y and any POVM {P̄ y
S : y ∈ Y},

there exists a corresponding POVM {P y
R : y ∈ Y} such that Tr[L(σx

R) P̄
y
S ] = Tr[σx

R P y
R].

Remark 3. Note that, in order for L to be a well-defined statistical morphism of E , it is not
sufficient that L(σx

R) ∈ S(HS) for all x ∈ X . In particular, such a map is not, in general, positive
on the whole span{σx

R : x ∈ X}. See also Remark 1 for more details.

Proposition 2. Given two cq-channels E : X → S(HR) and E ′ : X → S(HS), with E = {σx
R :

x ∈ X} and E ′ = {τxS : x ∈ X}, the following are equivalent :

(i) For any discrete random variable U , any probability distribution q(u), and any classical chan-
nel q(x |u), the corresponding input-output cq-states

σUR =
∑

x∈X

∑

u∈U
q(u)q(x |u)|u〉〈u|U ⊗ σx

R and τUS =
∑

x∈X

∑

u∈U
q(u)q(x |u)|u〉〈u|U ⊗ τxS

satisfy

Hmin(U |R)σ ≤ Hmin(U |S)τ ,

i.e., Pguess(U |R)σ ≥ Pguess(U |S)τ ;
(ii) There exists a Hermitian trace-preserving statistical morphism of E , denoted by L : L(HR) →

L(HS), such that

τxS = L(σx
R), x ∈ X .

4. FIRST EXTENSION RESULT: THE SEMICLASSICAL AND CLASSICAL CASES

One sufficient condition for a statistical morphisms to be extendable to a CPTP map is that the
composite map L ◦ N has commuting output.

Lemma 1. Let L : L(HR) → L(HS) be a statistical morphism of a channel N ∈ C(HQ,HR). If

[
(L ◦ N )(ρ) (L ◦ N )(σ)

]
= 0

for all ρ, σ ∈ S(HQ), then there exists a CPTP map T : L(HR) → L(HS) such that

T ◦ N = L ◦ N .
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Proof. For L being a statistical morphism of N , we know from Definition 5 that, for any POVM
{P̄ x

S : x ∈ X} on HS , there exists a POVM {P x
R : x ∈ X} on HR such that

Tr[(L ◦ N )(ρQ) P̄
x
S ] = Tr[N (ρQ)L∗(P̄ x

S )] = Tr[N (ρQ)P
x
R],

for all ρQ ∈ S(HQ). For X = [1, dS ], denote by {|x〉 : x ∈ X} the orthonormal basis ofHS that simul-
taneously diagonalize any output of L◦N . (Such a basis exists, since [(L◦N )(ρ), (L◦N )(σ)] = 0.)
Then choose, in the above equation, P̄ x

S = |x〉〈x|S , and define T : L(HR) → L(HS) to be the linear
map given by

T (ZR)
def
=

∑

x∈X
|x〉〈x|S Tr[ZR P x

R],

for any ZR ∈ L(HR). By the construction, T is CPTP (indeed, it is a measure-and-prepare quantum
channel). Moreover, for all ρQ ∈ S(HQ),

(T ◦ N )(ρQ) =
∑

x∈X
|x〉〈x|S Tr[N (ρQ)P

x
R]

=
∑

x∈X
|x〉〈x|S Tr[N (ρQ)L∗(|x〉〈x|S)]

=
∑

x∈X
|x〉〈x|S Tr[(L ◦ N )(ρQ) |x〉〈x|S ] = (L ◦ N )(ρQ),

where the last identity comes from the fact that all N ′(ρQ) are diagonal on the basis {|x〉}. �
As an immediate consequence of Lemma 1 and Proposition 1, we obtain the following.

Corollary 1. Let N ∈ C(HQ,HR) and N ′ ∈ C(HQ,HS) be two CPTP maps. Let, moreover,
N ′ be such that [N ′(ρ),N ′(σ)] = 0, for all ρ, σ ∈ S(HQ). Then the following are equivalent :

(i) For any discrete random variable U , any probability distribution q(u), and any cq-channel
E = {ρuQ : u ∈ U}, the corresponding input-output cq-states

σUR =
∑

u∈U
q(u)|u〉〈u|U ⊗NQ(ρ

u
Q) and τUS =

∑

u∈U
q(u)|u〉〈u|U ⊗N ′

Q(ρ
u
Q)

satisfy
Hmin(U |R)σ ≤ Hmin(U |S)τ ,

i.e., Pguess(U |R)σ ≥ Pguess(U |S)τ ;
(ii) N is degradable into N ′, i.e., there exists a CPTP map T : L(HR) → L(HS) such that

N ′ = T ◦ N .

The above corollary can be specialized to cq-channels as follows.

Corollary 2. Consider two cq-channels E : X → S(HR) and E ′ : X → S(HS), with E = {σx
R :

x ∈ X} and E ′ = {τxS : x ∈ X}. Assume moreover that [τxS , τ
x′
S ] = 0, for all x, x′ ∈ X . Then the

following are equivalent :

(i) For any discrete random variable U , any probability distribution q(u), and any classical chan-
nel q(x |u), the corresponding input-output cq-states

σUR =
∑

x∈X

∑

u∈U
q(u)q(x |u)|u〉〈u|U ⊗ σx

R and τUS =
∑

x∈X

∑

u∈U
q(u)q(x |u)|u〉〈u|U ⊗ τxS

satisfy
Hmin(U |R)σ ≤ Hmin(U |S)τ ,

i.e., Pguess(U |R)σ ≥ Pguess(U |S)τ ;
(ii) E is degradable into E ′, i.e., there exists a CPTP map T : L(HR) → L(HS) such that

τxS = T (σx
R), x ∈ X .
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4.1. Classical Case

When both cq-channels have commuting output, we can state the result in purely classical terms
as follows.

Corollary 3. Given two classical noisy channels p(y |x) and p′(z |x), the following are equiva-
lent :

(i) p is degradable into p′;
(ii) For any discrete random variable U , any probability distribution q(u), and any channel q(x |u),

the joint probability distributions q(u)q(x |u)p(y |x) and q(u)q(x |u)p′(z |x) satisfy

Hmin(U |Y ) ≤ Hmin(U |Z).

In other words, by replacing H with Hmin in Definition 2, we obtain that the corresponding
notion of “less noisy” is equivalent to the notion of “degradable.” On the other hand, we recall the
fact that there exist less noisy channels that are not degradable [5]. For the reader’s convenience,
we report below a self-contained proof of Corollary 3, which does not rely on any previous result
about statistical morphisms or quantum channels.

Proof of Corollary 3. Obviously, point (i) implies point (ii). Conversely, let us assume (ii).
This means that, for any joint probability distribution q(x, u),

max
d

∑

x,y,u

q(x, u)p(y |x)d(u |y) ≥ max
d′

∑

x,z,u

q(x, u)p′(z |x)d′(u |z),

where d(u |y) and d′(u |z) denote the guessing strategies, i.e., discrete noisy channels d : Y → Û
and d′ : Z → Û , which the receiver can optimize in order to maximize the probability of correct
guessing Pr{U = Û}.

Choose now U with U = Z, and label its states by z′. Also, fix the strategy d′(z′ |z) = δz′,z.
Then, for any q(x, z′), there exists d(z′ |y) such that

∑

x,z′
q(x, z′)

(∑

z

p′(z |x)d′(z |z′)−
∑

y

p(y |x)d(z′ |y)
)

=
∑

x,z′
q(x, z′)

(

p′(z′ |x)−
∑

y

p(y |x)d(z′ |y)
)

≤ 0.

Equivalently,

max
q

min
d

{
∑

x,z′
q(x, z′)

(

p′(z′ |x)−
∑

y

p(y |x)d(z′ |y)
)}

≤ 0.

By the minimax theorem (for our case, see [11, Lemma 4.13]) we can exchange the order of the two
optimizations, so that

min
d

max
q

{
∑

x,z′
q(x, z′)

(

p′(z′ |x)−
∑

y

p(y |x)d(z′ |y)
)}

≤ 0.

Denoting by Δ(x, z′) the difference p′(z′ |x)−∑

y
p(y |x)d(z′ |y), we notice that, since ∑

x,z′
Δ(x, z′) = 0,

we necessarily have max
x,z′

Δ(x, z′) ≥ 0; otherwise,
∑

x,z′
Δ(x, z′) < 0. Consequently,

min
d

max
q

{
∑

x,z′
q(x, z′)

(

p′(z′ |x)−
∑

y

p(y |x)d(z′ |y)
)}

= min
d

max
x,z′

Δ(x, z′);
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i.e., the maximum is achieved by concentrating the probability distribution q(x, z′) on one largest
entry. Then, for what we said, we know that

min
d

max
x,z′

Δ(x, z′) = 0,

implying the existence of a channel d(z′ |y) such that
∑

y

p(y |x)d(z′ |y) = p′(z′ |x), ∀x, z′;

i.e., p is degradable into p′, as claimed. �
The main advantage of the above proof, with respect to the one used in the general case, is that

it can easily be generalized to the approximate case, namely, when there exists ε ≥ 0 such that, for
any random variable U and any joint probability distribution q(x, u),

Pguess(U |Y ) ≥ Pguess(U |Z)− ε.

This case is studied in the Appendix.

5. SECOND EXTENSION RESULT: THE FULLY QUANTUM CASE

Lemma 2. For a given CPTP map N : L(HQ) → L(HR) and a given linear map L : L(HR) →
L(HS), let HS′ ∼= HS, and assume that (idS′ ⊗L) is a statistical morphism of (idS′ ⊗N ). Then
there exists a CPTP map T : L(HR) → L(HS) such that

T ◦ N = L ◦ N .

Proof. Since (idS′ ⊗L) is a statistical morphism of (idS′ ⊗N ), we know from Definition 5 that,
for any POVM {P̄ x

S′S : x ∈ X} on HS′ ⊗ HS
∼= H⊗2

S , there exists a POVM {P x
S′R : x ∈ X} on

HS′ ⊗HR such that

Tr
[
{ωS′ ⊗ (L ◦ N )(ρQ)} P̄ x

S′S

]
= Tr

[
{ωS′ ⊗ (N )(ρQ)}P x

S′R

]
,

for all x ∈ X , all ωS′ ∈ S(HS′), and all ρQ ∈ S(HQ). By linearity, this implies that

TrS′S
[
{Φ+

S′′S′ ⊗ (L ◦ N )(ρQ)} {1S′′ ⊗ P̄ x
S′S}

]
= TrS′R

[
{Φ+

S′′S′ ⊗ (N )(ρQ)} {1S′′ ⊗ P x
S′R}

]
, (3)

for all x ∈ X and all ρQ ∈ S(HQ), where Φ+
S′′S′ = dS

dS∑

i,j=1
|iS′′〉|iS′〉〈jS′′ |〈jS′ | is the maximally

entangled state in S(HS′′ ⊗HS′) ∼= S(H⊗2
S ).

The protocol of generalized teleportation [21] implies the existence of a POVM {Bx
S′′S′ : x ∈ X}

and unitary operators {Ux
S′′→S : x ∈ X} such that

(L ◦ N )(ρQ) =
∑

x∈X
Ux
S′′→S TrS′S

[
{Φ+

S′′S′ ⊗ (L ◦ N )(ρQ)} {1S′′ ⊗Bx
S′S}

]
(Ux

S′′→S)
†,

for all ρQ ∈ S(HQ). Then (3) implies the existence of a POVM {P x
S′R : x ∈ X} on HS′ ⊗HR such

that
(L ◦ N )(ρQ) =

∑

x∈X
Ux
S′′→S TrS′R

[
{Φ+

S′′S′ ⊗ (N )(ρQ)} {1S′′ ⊗ P x
S′R}

]
(Ux

S′′→S)
†,

for all ρQ ∈ S(HQ). The statement is proved by defining the map T : L(HR) → L(HS) as

T (ZR)
def
=

∑

x∈X
Ux
S′′→S TrS′R

[
{Φ+

S′′S′ ⊗ ZR} {1S′′ ⊗ P x
S′R}

]
(Ux

S′′→S)
†,

and noticing that, being a sort of “noisy teleportation,” T is indeed a CPTP map, as claimed. �
In fact, following an argument in [15], it is not difficult to show that the assumption in Lemma 2

can be somewhat weakened as follows: instead of assuming that (idS′ ⊗L) is a statistical mor-
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phism of (idS′ ⊗N ), one can assume that (idS′ ⊗L) is a statistical morphism of (DS′ ⊗N ), where
D : L(HS′) → L(HS′) is some invertible CPTP map, in the sense that D(L(HS′)) = L(HS′). (For
example, a channel D(ρ) = pρ+ (1− p)1/d is invertible as long as p > 0.)

As an immediate consequence of Lemma 2 and Proposition 1, we obtain the following.

Corollary 4. Let N : L(HQ) → L(HR) and N ′ : L(HQ) → L(HS) be two CPTP maps. Let HS′

be an auxiliary Hilbert space such that HS′ ∼= HS. The following are equivalent :

(i) For any discrete random variable U , any probability distribution q(u), and any cq-channel
E = {ρuS′Q : u ∈ U}, the corresponding input-output cq-states

σUS′R =
∑

u∈U
q(u)|u〉〈u|U ⊗ (idS′ ⊗NQ)(ρ

u
S′Q)

and

τUS′S =
∑

u∈U
q(u)|u〉〈u|U ⊗ (idS′ ⊗N ′

Q)(ρ
u
S′Q)

satisfy

Hmin(U |S′R)σ ≤ Hmin(U |S′S)τ ,

i.e., Pguess(U |S′R)σ ≥ Pguess(U |S′S)τ ;
(ii) N is degradable into N ′, i.e., there exists a CPTP map T : L(HR) → L(HS) such that

N ′ = T ◦ N .

In the case of cq-channels, we have the following.

Corollary 5. Consider two cq-channels E : X → S(HR) and E ′ : X → S(HS), with E = {σx
R :

x ∈ X} and E ′ = {τxS : x ∈ X}. Introduce an auxiliary Hilbert space HS′ ∼= HS and let E ′′ : Y →
S(HS′) be a cq-channel, with E ′′ = {ωy

S′ : y ∈ Y}, such that span{ωy
S′ : y ∈ Y} = L(HS′). Then

the following are equivalent :

(i) For any discrete random variable U , any probability distribution q(u), and any classical chan-
nel q(y, x |u), the corresponding input-output cq-states

σUS′R =
∑

y∈Y

∑

x∈X

∑

u∈U
q(u)q(y, x |u)|u〉〈u|U ⊗ ωy

S′ ⊗ σx
R

and

τUS′S =
∑

y∈Y

∑

x∈X

∑

u∈U
q(u)q(x |u)|u〉〈u|U ⊗ ωy

S′ ⊗ τxS

satisfy

Hmin(U |S′R)σ ≤ Hmin(U |S′S)τ ,

i.e., Pguess(U |S′R)σ ≥ Pguess(U |S′S)τ ;
(ii) E is degradable into E ′, i.e., there exists a CPTP map T : L(HR) → L(HS) such that

τxS = T (σx
R), x ∈ X .

6. CONCLUSIONS

In this work we have described a connection between the theory of statistical comparison and
the comparison of noisy channels, independent of that of [22]. In particular, we have shown how
Definitions 1 and 2 become completely equivalent if H is replaced by Hmin in Definition 2.
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The result proved here can be seen as a converse to the data-processing inequality: the mono-
tonic decrease of information (as measured here by Hmin or, equivalently, by Pguess) is not only
necessary but also sufficient for the existence of a post-processing map (a trace-preserving statis-
tical morphism, in general, but we saw how additional assumptions can lead to the existence of a
CPTP post-processing).

As we have already mentioned in other publications [17, 23–25], we believe that this approach,
based on the theory of statistical comparison, can play an important role in understanding the
peculiarity of memoryless processes as the information-theoretic counterpart of adiabatic processes
in thermodynamics.

APPENDIX

CLASSICAL CASE: APPROXIMATE VERSION

Assuming

Pguess(U |Y ) ≥ Pguess(U |Z)− ε, ε ≥ 0,

the proof of Corollary 3 carries through unaltered, until one shows that

min
d

max
x,z′

Δ(x, z′) ≤ ε. (4)

To proceed from here, consider now the following quantity:

max
x

∑

z′
|Δ(x, z′)|. (5)

The above quantity is the induced 	1-norm distance3 between the channel p′(z′ |x) and the degraded
channel

∑

y
p(y |x)d(z′ |y). Since, for all x, ∑

z′
Δ(x, z′) = 0, we have

∑

z′
|Δ(x, z′)| = 2

∑

z′: Δ(x,z′)≥0

Δ(x, z′), ∀x ∈ X ,

which implies that, for the strategy d achieving the left-hand side of (4),

∑

z′
|Δ(x, z′)| ≤ 2|X |max

x,z′
Δ(x, z′) ≤ 2|X |ε, ∀x ∈ X .

In particular,

max
x

∑

z′

∣
∣
∣
∣p

′(z′ |x)−
∑

y

p(y |x)d(z′ |y)
∣
∣
∣
∣ ≤ 2|X |ε.

We summarize this finding in a separate corollary.

3 It holds that (see, e.g., [26, Example 5.6.4])

max
x

∑

z′

|Δ(x, z′)| = max
x

∑

z′

∣
∣
∣p′(z′ |x)−

∑

y

p(y |x)d(z′ |y)
∣
∣
∣
def
= |||p′ − dp|||1,

where |||A|||1 def
= max

v: ‖v‖1=1
‖Av‖1 is the variational norm. The quantity in (5) measures how well one can

statistically distinguish p′(z |x) from
∑

y
p(y |x)d(y | z).
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Corollary 6. Given two classical noisy channels, p(y |x) and p′(z |x), and ε ≥ 0, assume that,
for any discrete random variable U , any probability distribution q(u), and any channel q(x |u), the
joint probability distributions q(u)q(x |u)p(y |x) and q(u)q(x |u)p′(z |x) satisfy

2−Hmin(U |Y ) ≥ 2−Hmin(U |Z) − ε.

Then there exists a degrading channel d(z |y) such that

max
x

∑

z

∣
∣
∣
∣p

′(z |x)−
∑

y

p(y |x)d(z |y)
∣
∣
∣
∣ ≤ 2|X |ε.
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