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The Quantum Capacity of Channels With Arbitrarily
Correlated Noise

Francesco Buscemi and Nilanjana Datta

Abstract—We study optimal rates for quantum communication
over a single use of a channel, which itself can correspond to a finite
number of uses of a channel with arbitrarily correlated noise. The
corresponding capacity is often referred to as the one-shot quantum
capacity. In this paper, we prove bounds on the one-shot quantum
capacity of an arbitrary channel. This allows us to compute the
quantum capacity of a channel with arbitrarily correlated noise, in
the limit of asymptotically many uses of the channel. In the mem-
oryless case, we explicitly show that our results reduce to known
expressions for the quantum capacity.

Index Terms—Quantum capacity, entanglement transmission,
one-shot capacity, quasi-entropies, smooth Rényi entropies, infor-
mation spectrum.

I. INTRODUCTION

I N contrast to a classical channel which has a unique ca-
pacity, a quantum channel has various distinct capacities.

This is a consequence of the greater flexibility in the use of
a quantum channel. As regards transmission of information
through it, the different capacities arise from various factors:
the nature of the transmitted information (classical or quantum),
the nature of the input states (entangled or product states) the
nature of the measurements done on the outputs of the channel
(collective or individual), the absence or presence of any addi-
tional resource, e.g., prior shared entanglement between sender
and receiver, and whether they are allowed to communicate
classically with each other. The classical capacity of a quantum
channel under the constraint of product state inputs was shown
by Holevo [1], Schumacher and Westmoreland [2] to be given
by the Holevo capacity of the channel. The capacity of a
quantum channel to transmit quantum information, in the ab-
sence of classical communication and any additional resource,
and without any constraint on the inputs and the measurements,
is called the quantum capacity of the channel. It is known to
be given by the regularized coherent information [3]–[5]. A
quantum channel can also be used to generate entanglement
between two parties, which can then be used as a resource for
teleportation. The corresponding capacity is referred to as the
entanglement generation capacity of the quantum channel and
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is equivalent to the capacity of the channel for transmitting
quantum information [5].

All these capacities were originally evaluated in the limit of
asymptotically many uses of the channel, under the assumption
that the noise acting on successive inputs to the channel is un-
correlated, i.e., under the assumption that the channel is mem-
oryless. In reality, however, this assumption, and the consid-
eration of an asymptotic scenario, is not necessarily justified.
It is, hence, of importance to evaluate both bounds on the
one-shot capacities of a quantum channel, that is its capacities
for a finite number of uses or even a single use, as well as
the capacity of an arbitrary sequence of channels, possibly with
memory. Both these issues are addressed in this paper.

For an arbitrary quantum channel, it is not in general pos-
sible to achieve perfect information transmission or entangle-
ment generation over a single use or a finite number of uses.
Hence, one needs to allow for a nonzero probability of error.
This leads us to consider the capacities under the constraint that
the probability of error is at most , for a given .

In this paper we consider the following protocol, which we
call entanglement transmission [6]. Let be a quantum channel,
let be a subspace of its input Hilbert space, and let be
a fixed positive constant. Suppose Alice prepares a maximally
entangled state , where , and
sends the part through the channel to Bob. Bob is allowed
to do any decoding operation (completely positive trace-pre-
serving map) on the state that he receives. The final objective
is for Alice and Bob to end up with a shared state which is
nearly maximally entangled over , its overlap with

being at least . In this protocol, there is no classical
communication allowed between Alice and Bob. For a given

, let denote the one-shot capacity of entan-
glement transmission. In this paper, we prove that this capacity
is expressible in terms of a generalization of the relative Rényi
entropy of order 0. Our results also yield a characterization of
the one-shot quantum capacity of the channel. This is because it
can be shown that the one-shot capacity of transmission of any
quantum state by the channel, evaluated under the condition that
the minimum fidelity of the channel is at most , for a given

, is bounded above by , and bounded below
by (see Section V).

By the Stinespring Dilation Theorem [7], the action of a
quantum channel creates correlations between the sender,
the receiver, and the environment interacting with the input.
Faithful transmission of quantum information requires a de-
coupling of the state of the environment from that of the sender
(see the special issue [8]). In [9], a lower bound to the accuracy
with which this decoupling can be achieved in a single use
of the channel, was obtained. Here we go a step further and
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evaluate bounds on the one-shot capacity. In evaluating the
lower bound, we employ an inequality, given by Lemma 4,
relating the decoupling accuracy to the decoding fidelity. To
obtain the upper bound we instead generalize the standard
arguments relying on the quantum data-processing inequality
[5], [12]. Moreover, in the limit of asymptotically many uses of
a memoryless channel, we prove, without explicitly resorting
to any typicality argument, that each of these bounds converge
independently to the familiar expression of the quantum ca-
pacity given by the regularized coherent information [3]–[5].
For the important case of an arbitrary sequence of channels,
possibly with memory, our one-shot result yields the asymptotic
quantum capacity in the Information Spectrum framework [13],
[31]–[33], [14].

We start the paper with some definitions and notations in
Section II, including that of quasi-entropies, which play a piv-
otal role in our analysis. In Section III we introduce the pro-
tocol of entanglement transmission, and define its fidelity and
the corresponding one-shot capacity. Our main result is given
by Theorem 1 of Section IV. In Section V we relate the one-shot
entanglement transmission capacity with the one-shot quantum
capacity. The tools used for the proof of Theorem 1 are given
in Section VI, with the proof itself presented in Section VII.
Further, in Section VIII, we consider a sequence of arbitrary
channels, with or without memory, and derive an expression
for its asymptotic quantum capacity. When the channels in the
sequence are memoryless, we recover known expressions for
quantum capacity given in terms of the regularized coherent
information. We conclude with a discussion of our results in
Section IX.

II. DEFINITIONS AND NOTATIONS

A. Mathematical Preliminaries

Let denote the algebra of linear operators acting on
a finite-dimensional Hilbert space and let denote the
set of positive operators of unit trace (states) acting on . A
quantum channel is given by a completely positive trace-pre-
serving (CPTP) map , where and
are the input and output Hilbert spaces of the channel. Moreover,
for any given subspace , we define the restriction of the
channel to the subspace as , for any

, with being the projector onto . Notice that
is itself a CPTP-map . Throughout

this paper we restrict our considerations to finite-dimensional
Hilbert spaces, and we take the logarithm to base 2.

For given orthonormal bases and in iso-
morphic Hilbert spaces of dimension , we
define a maximally entangled state (MES) of rank to be

(1)

When , for any given operator , the following
relation can be shown by direct inspection:

(2)

where denotes the identity operator, and denotes the trans-
position with respect to the basis fixed by (1). Moreover, for any
given pure state , we denote the projector simply as .

The trace distance between two operators and is given
by

where denotes the projector on the subspace where
the operator is nonnegative, and

. The fidelity of two states and is defined as

(3)

The trace distance between two states and is related to the
fidelity as follows (see, e.g., [12]):

(4)

where we use the notation . We also use
the following results.

Lemma 1 ([15]): For self-adjoint operators and , and any
positive operator

and

Lemma 2 (Gentle Measurement Lemma [17], [16]): For a
state and operator , if ,
then

The same holds if is a subnormalized density operator.

Lemma 3 ([18]): For any self-adjoint operator and any
positive operator , we have

(5)

Proof: The first inequality in (5) was proved in [18]. The
second one simply follows as an application of the Cauchy-
Schwarz inequality, that is
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Lemma 4: Given a tripartite pure state
, let , and be its reduced states. Then

(6)

where is some fixed purification of and
denotes a CPTP map.

Proof: Fix some purification of
. Then, for the fixed purification of , we have, by

Uhlmann’s theorem [10], the monotonicity of the fidelity under
partial trace, and Stinespring’s Dilation Theorem [7]

(7)

where denotes a CPTP map. In the
second equality of (7) we also used the well-known fact that
all possible purifications of a given mixed state ( , in our
case) are related by some local isometry acting on the purifying
system only (i.e., subsystem ).

B. Quasi-Entropies and Coherent Information

For any and any , the quantum relative
quasi-entropy of order [22], for , is defined
as

(8)

Notice that for , the quasi-entropy defined above reduces
to the well-known Rényi relative entropy of order .

In this paper, in particular, the quasi-entropy of order 0,
namely

(9)

plays an important role. Note that

(10)

where denotes the projector onto the support of . Our main
result, Theorem 1, is expressible in terms of two “smoothed”
quantities, which are derived from the quasi-entropy of order 0,
for any , as

(11)

and

(12)

where

(13)

and

(14)

[Note that, in (13), the definition of fidelity (3) has been
naturally extended to subnormalized density operators.] Such
smoothed quantities are needed in order to allow for a finite
accuracy (i.e., nonzero error) in the protocol, which is a nat-
ural requirement in the one-shot regime. Their properties are
discussed in detail in Section VI-B.

III. THE PROTOCOL: ENTANGLEMENT TRANSMISSION

As mentioned in the Introduction, we consider the protocol
of entanglement transmission [6]: Given a quantum channel

, let be an -dimensional sub-
space of its input Hilbert space, and let be a fixed positive
constant. Alice prepares a maximally entangled state

, where , and sends the part through
the channel to Bob. Bob is allowed to do any decoding oper-
ation (CPTP map) on the state that he receives. The final objec-
tive is for Alice and Bob to end up with a shared state which is
nearly maximally entangled over , its overlap with

being at least . There is no classical commu-
nication possible between Alice and Bob. Within this scenario,
for any positive integer , the efficiency of the channel in
transmitting entanglement, is given in terms of the fidelity de-
fined here.

Definition 1 (Entanglement Transmission Fidelity): Let a
channel be given. For any given positive
integer , we define the entanglement transmission
fidelity of as

(15)

where is a decoding CPTP-map.

We can now define an achievable rate as follows.

Definition 2 ( -Achievable Rate): Given a channel
and a real number , any

, is an -achievable rate, if

This leads to the definition of the one-shot capacity of entan-
glement transmission.
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Definition 3 (One-Shot Capacity): Given a quantum channel
and a real number , the one-shot

capacity of entanglement transmission of is defined as

is achievable

IV. MAIN RESULT: ONE-SHOT ENTANGLEMENT TRANSMISSION

CAPACITY

Given a Hilbert space with , let be
isomorphic to , and fix a basis for . Then, for
any given subspace of dimension , we construct the
maximally entangled state of rank in as

(16)

where is an orthonormal basis of . Now, given a
channel , let be
a Stinespring isometry realizing the channel as

for any . For any subspace , from (16), we
define the tripartite pure state

(17)

We then define and
to be its reduced states. Our main result is stated in Theorem 1
below.

Theorem 1: For any , the one-shot capacity of entan-
glement transmission for a quantum channel

, satisfies the following bounds:

(18)

where and are the
smoothed 0-coherent informations defined, respectively, by (11)
and (12), and is included to ensure that the lower
bound is equal to the logarithm of a positive integer.

Remark: Given a positive real , for to be the logarithm
of a positive integer, we must have ,
where denotes the largest integer less than or equal to . It
can be shown that for all , and that
decreases rapidly as increases.

V. ONE-SHOT QUANTUM CAPACITY

It is interesting to compare the entanglement transmission fi-
delity of a quantum channel with the minimum output fidelity
defined below.

Definition 4 (Minimum Output Fidelity): Let a channel
be given. For any given positive integer ,

we define the minimum output fidelity of as

where is a decoding CPTP-map.

Remark: Note that Definitions 1 and 4 include an optimiza-
tion over all decoding operations. Hence, they provide a mea-
sure of how well the effect of the noise in the channel can be
corrected. This is in contrast to the definitions of fidelities used
in [23], [24] which provide a measure of the “distance” of a
given channel from the trivial (identity) channel.

The minimum output fidelity is related to the entanglement
transmission fidelity through the following lemma [23], [24].

Lemma 5 (Pruning Lemma): Let a channel
be given. Then, for any positive integer

Analogously to what we did for the entanglement transmis-
sion fidelity, one could also define the one-shot capacity with
respect to the fidelity as follows:

(19)

Remark: Note that quantum capacity is traditionally defined
with respect to the minimum output fidelity [5]. Hence,
we define to be the one-shot quantum capacity of a
channel , for any .

The following corollary, derived from Lemma 5, allows
us to relate the one-shot entanglement transmission capacity

to the one-shot quantum capacity.

Corollary 1: Given a quantum channel
and a real number

Proof: The lower bound follows directly from the Pruning
Lemma. To prove the upper bound we resort to another fre-
quently used fidelity, namely, the average fidelity

where is the normalized unitarily invariant measure over
pure states in , and is a decoding
CPTP-map.

In [25] and [34], the relation of the above fidelity to the en-
tanglement transmission fidelity was shown to be given by
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while clearly, by definition . Hence,
if , then

Note that, due to Corollary 1, Theorem 1 provides bounds on
the one-shot quantum capacity of a channel as well.

VI. TOOLS USED IN THE PROOF

The proof of Theorem 1 relies on the properties of various
entropic quantities derived from the relative quasi-entropies de-
fined in Section II-B.

A. Quantum Entropies

Let us first consider the relative Rényi entropy of order ,
which as mentioned before, is obtained from the quasi-entropy
(8) by setting . (In the following, when , we will
drop the exponent in writing relative Rényi entropies, for sake
of notational simplicity.) It is known that

where is the usual quantum relative entropy defined as

if
otherwise

(20)

From this, one derives the von Neumann entropy of a state
as . We make use of the following lemma

in the sequel.

Lemma 6: Given a state , let
and . Then, for any operator

with

This implies, in particular, that, for any state

and

(21)

Proof: Here we only prove (21). The rest of the lemma can
be proved exactly along the same lines. By definition, we have
that

Since , we can
rewrite

Now, since for all and

we have that

which implies that

Recently, a generalized relative entropy, namely the max-rel-
ative entropy , was introduced in [19]. For a state and an
operator

denoting the maximum eigenvalue of the operator
. Even though for commuting and

, this identity does not hold in general [20].
We can however easily prove the following property.

Lemma 7: For any with , we have

Proof: By definition, . By
noticing that, for any Hermitian operator and any sub-
normalized state , we obtain that

, where, in the last passage,
we used the fact that .

Given an -relative Rényi entropy , for a bipartite
, we define the corresponding -conditional entropy

as

(22)

and

(23)
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For a bipartite state , the conditional
min-entropy of given , denoted by and
introduced by Renner [18], is relevant for the proof of our main
result. It is obtainable from the max-relative entropy as follows:

Further, from the quantum relative entropy (20), we define the
quantum conditional entropy as

which, by Lemma 6, satisfies
. Finally, given a bipartite state , its co-

herent information is defined as

(24)

and, by analogy

for any . Clearly, .

B. Smoothed Entropies

As first noticed by Renner [18], in order to allow for a fi-
nite accuracy in one-shot protocols, it is necessary to intro-
duce smoothed entropies. We consider two different classes of
smoothed entropies, namely the state-smoothed and the oper-
ator-smoothed entropies. The former was introduced by Renner
[18], while the latter arises naturally from the consideration of
quasi-entropies.

1) State-Smoothed Quantum Entropies: For any bipartite
state , smoothed conditional entropies

and are defined for any as

where is the set defined in (13). For a bipartite ,
the smoothed -conditional entropies are then de-
fined, using (22) and (23), as follows:

(25)

and the corresponding smoothed -coherent information is de-
fined as

(26)

For , this is identical to (11).

2) Operator-Smoothed Quasi-Entropies: Given
and an operator , let us consider the quantity

Note that is well-defined as long as and
do not have orthogonal supports. In the following,

we shall assume this to be true.

Lemma 8: For any , and any , the function

is convex for .
Proof: Let and .

Then

where . By direct inspection then

where is the probability distribution defined as

and

Due to the positivity of its second derivative hence, the function
is convex.

Note that the quantum relative quasi-entropy of order
, can be equivalently written as

(27)

It satisfies the following property.

Lemma 9: For any , and any
is monotonically increasing in .

Proof: Due to convexity of , the function

is monotonically increasing in . Let us write, for our
convenience, , and,
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since , let us put

. Then, from monotonicity of ,

we know that

Since the second line is nothing but the derivative of (27), we
proved the monotonicity of .

Let us now compute : by
l’Hôpital’s rule

(28)

This leads to the definition of the corresponding smoothed co-
herent information

(29)

where

Analogously, for any bipartite state and any , the
quantity , given by (12), is referred to as the operator-
smoothed 0-coherent information. It is equivalently expressed
as

(30)

The relation between defined in (12) and
defined in (29) is provided by the following lemma.

Lemma 10: For any and any

Proof: Let be the operator
achieving , and let be the state achieving

. Then

(31)

where in the second line we used Lemma 9.

VII. PROOF OF THEOREM 1

A. Proof of the Lower Bound in Theorem 1

The lower bound on the one-shot entanglement transmission
capacity , for any fixed value of accuracy, is
obtained by exploiting a lower bound on the entanglement trans-
mission fidelity, which is derived below by the random coding
method.

1) Lower Bound on Entanglement Transmission Fidelity:
The lower bound on the entanglement transmission fidelity is
given by the following lemma.

Lemma 11: Given a channel and
an -dimensional subspace , consider the channel

obtained by restricting onto , i.e.,
for any , where denotes

the projector onto . Then, for any and any positive
integer

(32)

where is given by (26) for .

Remark: From the theory of quantum error correction
[12], it is known that, for a channel noiseless on ,
defined by (17) is a factorized state. Moreover, in our
case, . As shown
in [11] by direct inspection, these two conditions imply that

. On the other hand, from (23), it follows
that . These two calculations, together with
the fact that ,
see [19], lead us to conclude that also ,
i.e., . Therefore, for any channel acting
noiselessly in for all , as expected.

Proof of Lemma 11: Fix the value of the positive integer
. Then, starting from the pure state given by

(17), let us define

where is a unitary representation of the element of the
group , and let

the vectors , being the same as in (16). The
reduced state will be denoted as (and analo-
gously the others). Notice that, by construction

The lower bound (32) would follow if there exists a subspace
of dimension which is transmitted with fidelity

greater or equal to the right-hand side (RHS) of (32). One way
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to prove the existence of such a subspace is to show that the
group-averaged fidelity, (defined below), is larger than
that value

(33)

where , which is a MES
of rank due to (2). It is hence sufficient to compute a lower
bound to .

Using Lemma 4, we have

Further, using , we have that

Now, for any fixed , let . Let us, more-
over, define .
By the triangle inequality, we have that

which, in turns, implies that

for any choice of in . Now, thanks to [9, Lemma
3.2] and (4), we know that

which leads us to the estimate

We are, hence, left with estimating the last group average.
In order to do so, we exploit a technique used by Renner [18]

and Berta [26]: by applying Lemma 3, for any given state
invertible on , we obtain the estimate

where

denotes the Hilbert-Schmidt
norm, and

and, correspondingly,
. It is easy to check that

Further, using the concavity of the function , we
have

(34)

Standard calculations, similar to those reported in [9] and
[26], lead to

and

where

and . By simple manipulations, we arrive at

Since

so that (34) can be rewritten as

for any choice of the states and invertible
on .

Now, notice that
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This inequality easily follows from (5), i.e.

Moreover, from Lemma 3, . Thus

for any choice of states and , the latter
strictly positive on . In order to tighten the bound, we
first optimize (i.e., minimize) over for
any , obtaining . We further optimize (i.e., mini-
mize) over , eventually obtaining

.
2) Proof of the Lower Bound in (18): By Lemma 11, we have

what follows.
Corollary 2: Given a channel , an

-dimensional subspace , and any , a non-
negative real number , is an -achievable
rate for entanglement transmission through if

In particular, since , a positive real number
is an -achievable rate for if, for any

or, equivalently, if

This, together with (26), implies the following lower bound
to the one-shot capacity of entanglement transmission through

, for any :

where is a positive quantity included to make the RHS
of the above inequality equal to the logarithm of a positive in-
teger (see the Remark after Theorem 1). This in turn implies the
following lower bound to the one-shot capacity of entanglement
transmission through :

As a consequence of Lemma 7, we have

where

for

In [26], it is proved that ,
if and are both reduced states of the same tripar-
tite pure state. This fact, together with arguments analogous to
those used in [21] to prove Lemma 3 there, leads to the iden-
tity , implying, via (26),
the desired lower bound to the one-shot capacity of entangle-
ment transmission

(35)

for any , and, in particular, for .

B. Proof of the Upper Bound in Theorem 1

In this section, we prove the upper bound

where is defined in (30).
We start by proving the following monotonicity relation.

Lemma 12 (Quantum Data-Processing Inequality): For any
bipartite state , any channel , and any ,
we have

Proof: Let and be the pair
achieving , that is
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Consider now the operator

where denotes the identity-preserving adjoint
map associated with the trace-preserving map . It
clearly satisfies . Let us now put, for sake of clarity,

. Then

where in the last line we used Lemma 1. Due to Gentle Mea-
surement Lemma 2, we have that

which, together with the formula
, implies

This leads to the estimate

In other words, . Now, let be the state
achieving . We
then have the following chain of inequalities:

The statement of the Lemma is finally obtained by (30).
With Lemma 12 in hand, it is now easy, by the following stan-
dard arguments, to prove the upper bound in Theorem 1.

In fact, suppose now that is the maximum of all -achiev-
able rates, i.e., . By Definition 2, the integer

is such that

This is equivalent to saying that there exists an -dimensional
subspace such that

or, equivalently, that there exists a decoding operation
such that
. Then, by exploiting Lemma 12, we

have that

The claim is finally proved by noticing that the last
line in the equation above equals , so that

.

VIII. QUANTUM CAPACITY OF A SEQUENCE OF CHANNELS

Let and be two sequences of Hilbert
spaces, and let be a sequence of quantum chan-
nels such that, for each

For any given and any fixed finite , the one-shot
quantum capacity of , with respect to the fidelity , where

, is given by . However, since
itself could be the CPTP-map describing uses of an arbitrary
channel, possibly with memory, it is meaningful to introduce
the quantity

which can be interpreted as the capacity per use of the channel.
This quantity is of relevance in all practical situations because,
instead of considering an asymptotically large number of uses
of the channel, it is more realistic to consider using a channel
a large but finite number of times, in order to achieve reliable
transmission of quantum information. Theorem 1 provides the
following bounds on this quantity:

where , the pure state
being defined through (17). Note that the second and third terms
in the lower bound decrease rapidly as increases, resulting
in sharp bounds on the capacity for entanglement transmission
per use, even for finite . Moreover, due to Corollary 1, the
difference between and also de-
creases as increases.

If the sequence is infinite, we define the corresponding
asymptotic capacity of the channel as
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Due to the equivalence relations stated in Corollary 1, we see
that the different fidelities yield the same asymptotic quantum
capacity, so that

(36)

A. Multiple Uses of a Memoryless Channel

Here, we prove that the asymptotic quantum capacity of a
memoryless channel, sometimes referred to as the “LSD The-
orem” [3]–[5], can be obtained from Theorem 1. For a memory-
less channel, the sequence is given by , and hence
its capacity can simply be labelled by . The LSD Theorem,
strictly speaking, gives an expression for , whereas
our method gives an expression for . However, by (36),
these expressions are equivalent.

Here, we prove the following theorem, which can be seen as
an alternative formulation of the LSD theorem.

Theorem 2 (Memoryless Channels): For a memoryless
channel

(37)

where denotes the coherent information of the channel
with respect to an input subspace , and is defined through

(24) as follows:

where is the reduced state of the pure state defined
in (17).
Notice that in (37) liminf has been replaced by lim, since the
limit exists [28].

1) Direct Part of Theorem 2: Here we prove that

From Theorem 1

The first two terms clearly vanish. We are hence left with the
evaluation of the third term. First of all, we recall that [see ar-
guments before (35)]

This implies that

As shown in [18], we have

where in the last line we used the fact that
, since is pure. Therefore

As in [28], we can then achieve the RHS of (37) by the usual
blocking argument.

2) Weak Converse of Theorem 2: In order to obtain the upper
bound, it suffices to evaluate the asymptotic behavior of the
upper bound on which, by Theorem 1, is given by

(38)

The following two lemmas are essential for the evaluation
of this bound, and are also of independent interest. The first
one relates to the quantum relative entropy ,
while the second one relates the operator-smoothed 0-coherent
information to the usual coherent information.

Lemma 13: Consider two states , with
, and a positive operator such that

for some given . Then we have

(39)

where , and .
Proof: The main ingredients of the proof of this lemma

are the monotonicity property of the operator-smoothed condi-
tional entropy (Lemma 10), the matrix convexity of the function

, and the Fannes’ inequality. From (28), we have

(40)

where, for our convenience, we have put .
Since , due to Lemma 2

(41)
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where . Obviously . Using (41), the fact
that , and the cyclicity of the trace, we have

(42)

Hence, .
Since is a matrix convex function, it is known that

for any contraction , [29]. Let . Then

where is the subnormalized density matrix defined as
. It is clear that, since

. Moreover, by simple algebra, . This
implies that

(43)

By (41) and Fannes’ continuity property of the von Neumann
entropy [30], we have that

which in turn yields (39).

Lemma 14: For any bipartite state , and
any given , we have

(44)

where , and .
Proof: By Lemma 10 we have

(45)

where , namely, the completely mixed state. In
the above, we have made use of the following identity, which
is easily obtained from (28): for two states and , and any
constant . Using Lemma

13, and the analogous identity, , we
have: for

(46)

Then by (45), (46), and Lemma 6, we obtain

(47)

Finally, applying Fannes’ inequality to each of the terms on
the RHS of the identity , where

, and , we obtain (44).

From (38) and Lemma 14 we obtain

as claimed.

B. Multiple Uses of an Arbitrary Channel

To evaluate the quantum capacity of an arbitrary sequence
of channels, we employ the well-known Quantum Information
Spectrum Method [13], [31]–[33], [14]. Two fundamental quan-
tities used in this approach are the quantum spectral sup- and
inf-divergence rates, defined as follows.

Definition 5 (Spectral Divergence Rates): Given a sequence
of states and a sequence of positive operators

, the quantum spectral sup- (inf-)divergence rates
are defined in terms of the difference operators

as

(48)

(49)

respectively.

It is known that (see, e.g., [15])

(50)
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In analogy with the usual definition of the coherent informa-
tion (24), we moreover define the spectral sup- and inf-coherent
information rates, respectively, as follows:

(51)

(52)

where
, and . Inequality (50)

ensures that

(53)

Note that in (51) and (52) we could write minimum instead of
infimum due to Lemma 1 in [14]. The same remark applies also
to the following.

Theorem 3 (Arbitrary Channels): The quantum capacity of
is given by

where , and
, with , the pure

state being defined through (19).
The above theorem follows directly from Theorem 1 and

Lemma 15 and Lemma 16 given below.

Lemma 15 (Direct Part): Given a sequence of bipartite states

Proof: This follows directly from [19, Theorem 3].

Lemma 16 (Weak Converse): Given a sequence of bipartite
states

Proof: The proof is by reductio ad absurdum: we will as-
sume that

(54)

and show that such an assumption leads to a contradiction, hence
proving the statement of the lemma.

Let be the sequence achieving
. Moreover, for any fixed but

arbitrary, let be the sequence of operators, satisfying
both and , achieving
the maximum over of ,
for all . Then, (54) implies that

(55)

By arguments analogous to those used in the proof of Lemma
12, we can see that

(56)

For our convenience, let us put

It is clear that . Now, (54) implies (55), which is in turn
equivalent to

Let then be such that

Moreover, by the definition of , there exists an such
that, for all

The above equation can be rewritten as

for all . Now, for all

where, in the last step, we used Lemma 1. The second term in
the sum goes to 0 as , since we chose . The first
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term, on the other hand, has to be bounded away from 1 due to
(49), since . Hence, (54) leads to

where is a constant independent of . This is clearly in
contradiction with (56), which holds for all and any arbitrary

.

IX. DISCUSSION

In this paper, we obtained bounds on the one-shot entangle-
ment transmission capacity of an arbitrary quantum channel,
which itself could correspond to a finite number of uses of
a channel with arbitrarily correlated noise. Our result, in
turn, yielded bounds on the one-shot quantum capacity of the
channel. Further, for multiple uses of a memoryless channel,
our results led to an expression for the asymptotic quantum
capacity of the channel, in terms of the regularized coherent
information. This provided an alternative form of the LSD
theorem, which was however known to be equivalent to it [24].
Finally, by employing the Quantum Information Spectrum
Method, we obtained an expression for the quantum capacity
of an arbitrary infinite sequence of channels.
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