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Background: circuit model

State Preparation Unitary Transformation Measurement

= |n the standard circuit model, qubit preparations are initialized to |0)®" and measurements
are made in the {|0), |1)}®" basis

= The main task in the circuit model of quantum computation is manipulation of unitray
transformations.




Background: POVM

= |n Popescu et al’s 1995 Study

1. Projective measurement on Werner state
(by Werner)

e Result: Local
(Explained by local hidden variable)

2. Successive measurement including POVM

e Result: Nonlocality
(Due to inequality Violated)

Sandu Popescu, Bell’s inequalities and density matrices: Revealing hidden nonlocality, Phys. Rev. Lett. 74 (1995) 2619-2622.



Background: POVM

=  POVM through a circuit model

°ee

: n
X1}
U A
A Ancilla qubits
. measurements
see -~

= Naimark’s theorem states that POVM can be realized
with the aid of ancillary qubits.

Sandu Popescu, Bell’s inequalities and density matrices: Revealing hidden nonlocality, Phys. Rev. Lett. 74 (1995) 2619-2622.



Can we efficiently prepare POVM with NISQ technologies?

= For general POVM approach to measurement operator universally, Yordan S. et al.

(2019) provides insights

= However, the circuitry proposed by Yordan S. has a depth that might not be suitable
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for NISQ devices.
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Yordan S. Yordanov and Crispin H. W. Barnes. Implementation of a general single-qubit positive operator-valued measure on a

circuit-based quantum computer. Physical Review A, 100(6), dec 2019.

M [ [




Noisy intermediate scale quantum (NISQ)

(a) Complexity class (b) An algorithm in NISQ
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= Quantum circuit must have shallow depth on NISQ
= The Variational Quantum Eigensolver (VQE) is a preferred method for NISQ devices.
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Chen, S., Cotler, J., Huang, H. Y., & Li, J. (2023, September 26). The complexity of NISQ. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-41217-6



Universal quantum circuit for NISQ: variational quantum eigensolver(VQE)

= NISQ circuits are not universal comprehensive. However, the parameterized quantum
circuit (PQC) closely mirrors a universal qguantum framework.

 Comparison; VQE serves as NISQ’s alternative to

universal quantum circuits
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Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim
Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek,and Alan Aspuru-Guzik. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys., 94:015004, Feb 2022.




Undetected Measurement Outcome Problem

Transmit trials Recieve results
st ) > ()
2nd ) > ()
kth ) > i P
k+1th } > i i

1023rd )
1024th )
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» : Detected
' Undetected

= Challenge: sometimes photons go undetected, which leads to unobserved
measurement results.



Undetected Measurement Outcome Problem

Transmit trials Recieve results

0 : Detected

Minimum Error Discrimination s e

=  The technigue of minimum error discrimination includes all results,
even if some outcomes go undetected



Undetected Measurement Outcome Problem

Transmit trials Recieve results

o . Detected

Maximum Confident Measurement .. j detected

= Making realistic devices fitted with designed quantum information tasks
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Maximum confident measurement (MCM)

" Quantum measurement
when a p; is prepared from ensemble S = {q;, p;};=; and the POVM E; is utilized,

Py p(ilj) = trlp;Ei]

= Utilizing the Bayes' rule, retrodiction of state preparation with measurement outcomes gives:
Pp(i)PM|P(i|i)

Ppp (i]i) = ;

| Py (D)
= Maximum Confidence, C;
MCM seeks a POVM element that maximizes the q; or pp(i): Priori Probability

Ei > 0 and ZiEi =]
. q; tT[PiEi] PI\,{(l): probability of an outcome i
C (i) = max M: Measurement
Ei  tr[pE;] P: Preparation

11

Sarah Croke, Erika Andersson, Stephen M. Barnett, Claire R. Gilson, and John Jeffers. Maximum confidence quantum measurements. Physical Review Letters, 96(7), feb 2006.



Maximum confident measurement (MCM)

= Divide and multiply by +/p
qi tr(piEi] qi trlyp PP PEP]

C(i) = —
O = oEy tr[pE;]

= Define p; = \/ﬁ_lqipi\/ﬁ_ and Q; = ‘/—E”/— (Tr[Q | = 1), subsequently, it can be
expressed as a linear optimization problem.

C (i) L tr(p; Q]
q; or pp(i): Priori Probability
Ei = 0 and ZiEi =1
Py (i): probability of an outcome i
M: Measurement
P: Preparation

12

Sarah Croke, Erika Andersson, Stephen M. Barnett, Claire R. Gilson, and John Jeffers. Maximum confidence quantum measurements. Physical Review Letters, 96(7), feb 2006.



Maximum confident measurement (MCM)

= Given that tr[Q;] = 1, we can define Q; = |v;}(v;|, where
lvp) =U@)]i —1) (0 <i<T[log,n])

* nis number of states in ensemble.
 U(0) denotes parameterized unitary transformation by the vector 8

= Substituting this into the MCM formulation, we obtain:
C(0) = maxTr[UTVp qipi/p Uli — 1)(i — 1]

The key challenge here is to identify the unitary transformation defined in [log, n] qubits that
optimizes C;.
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PQC: NISQ friendly circuit model

= To address NISQ limitations, We utilized PQC as an ansatz in VQE for optimal MCM

= PQC, Hardware - efficient ansatz
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Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim
Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek,and Alan Aspuru-Guzik. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys., 94:015004, Feb 2022.
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Comparison: PQC vs Exact measurement circuit

= Results
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15



Approach 2. ensemble measurement

Measurement can be effectively addressed by maximum confidence measurement (MCM) as
it does not consider undetected results.

Furthermore, We can consider increasing the effectiveness of detected outcomes. This can
be done by Measurements for the ensemble p itself

The main challenge to overcome is identifying the measurement operator M that minimizes
the error rate.

il =1—Tr[pM,]
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Results: ensemble measurement
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Average Max Probability

Results: ensemble measurement

Averaged max probabilities, 10 times
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Approach 3. noise tolerance (depolarization noise)

Suppose the ensemble include depolarizing noise. Let V'[-] is a depolarizing noise channel
and p is the parameter that is related to depolarizing noise. I is identity matrix.

I
o; = N[p;] = (1 —p)p; +tr5

For evaluating noise resilience, we may examine two scenarios:

* Access to the precise depolarizing noise is unavailable; We identify p; from a noise-
affected ensemble 0 = N'[p]

* With access to the depolarizing noise, we determine o; from a noise-affected ensemble
o= N|p]

19



Results: noise tolerance

= Measurement p, from o
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Summary and Conclusion

=  We presented an implementation of MCMs in a quantum circuit model with realistic qguantum
devices.

= MCMs are useful in the NISQ era: they take undetected events into account to conclude about
which state has been prepared.

= We demonstrated a construction of MCM with PQCs, which are NISQ friendly, in a hybrid
guantum-classical manner with VQE.

=  We demonstrated a circuit that boosts detected results efficiency.

= The usefulness of PQCs
* PQCs vs Exact Circuit demonstrated for an MCM: PQCs are both cost-effective and precise
in the NISQ regime.
 We displayed PQC’s resilience to depolarizing noise.
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Qubit quality vs Quantity relationship
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As the number of qubits increases, the acceptable or tolerable error rate decreases

Near-term Applications (NISQ Era): These quantum systems are beyond classical simulation capabilities

but are still prone to errors.

Error correction threshold: Past this threshold, error correction becomes ineffective.
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What is the quantum communication?
= BB84 protocol, Charles Bennet et al. (1984)

Random sending basis X X X

Photon polarization

Alice

random measuring basis

Photon polarization
measures

Public discussion of basis

Shared secret key 0 1 0 1

} ¢ —~>—__ % A P

Photon v 'S >

C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computer, Systems, and Signal Processing _|IEEE, New York, 1984 _, p. 175.
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Maximum Confident Measurement (MCM)

Transmit trials Recieve results

1st )
2nd )

k th

P -
k+1th |
:
1023rd )
1024th )

) : Detected
-,':.:‘-: Undetected

= Challenge: sometimes photons go undetected, which leads to unobserved
measurement results.
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Maximum Confident Measurement (MCM)

Transmit trials Recieve results
1st > ()
2nd > ()
k th > .":":_ _:"
> i -

k+1 th

1023rd
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\
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) : Detected
-,':.:‘-: Undetected

= Challenge: sometimes photons go undetected, which leads to unobserved
measurement results.
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Minimum Error Discrimination (MED) and Unambiguous State
Discrimination (USD)

= Suppose state discrimination between |,), |11). State |y,.) is prepared with
probability g, x € {0,1} and measurement devices output y € {0,1,2}. When y = 2, we denote
it inconclusive outcome

Nerr = qo Pr(y = 1|x =0) + ¢, Pr(y = 0]x = 1)
Nine = Qo Pr(y = 2|x =0) + q; Pr(y = 2|x = 1)

"= MED minimize the n,,,- under n;,,. = 0

= USD minimize the n;,. under n,,, = 0
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Approach 1. Realization of MCM through VQA and PQC
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Comparison: PQC vs Exact measurement circuit

= Results
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Approach 2. ensemble measurement

1 qubit ensemble state

do
a1

C
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2 qubit ensemble state
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Results: ensemble measurement

Averaged max probabilities, 10 times
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Results: ensemble measurement

Averaged max probabilities, 10 times
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Resu

Its: ensemble measurement

Averaged max probabilities, 20 times
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Results: ensemble measurement

= Averaged max probabilities, 30 times
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Results: ensemble measurement

= Averaged max probabilities, 100 times
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Approach 3. noise tolerance (depolarization noise)

Measurement p; from o
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Approach 3. noise tolerance (depolarization noise)
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