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Background: circuit model

▪ In the standard circuit model, qubit preparations are initialized to 0 ⨂𝑛 and measurements 
are made in the 0 , 1 ⨂𝑛 basis

▪ The main task in the circuit model of quantum computation is manipulation of unitray 
transformations.
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Background: POVM

Sandu Popescu, Bell’s inequalities and density matrices: Revealing hidden nonlocality, Phys. Rev. Lett. 74 (1995) 2619–2622.

▪ Naimark’s theorem states that POVM can be realized 
with the aid of ancillary qubits.

▪ In Popescu et al.’s 1995 Study

1. Projective measurement on Werner state 
(by Werner)

• Result: Local
(Explained by local hidden variable)

2. Successive measurement including POVM

• Result: Nonlocality
(Due to inequality Violated)

▪ POVM in circuit model
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Background: POVM

Sandu Popescu, Bell’s inequalities and density matrices: Revealing hidden nonlocality, Phys. Rev. Lett. 74 (1995) 2619–2622.

▪ In Popescu et al.’s 1995 Study

1. Projective measurement on Werner state 
(by Werner)

• Result: Local
(Explained by local hidden variable)

2. Successive measurement including POVM

• Result: Nonlocality
(Due to inequality Violated)

▪ Naimark’s theorem states that POVM can be realized 
with the aid of ancillary qubits.

▪ POVM through a circuit model
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Can we efficiently prepare POVM with NISQ technologies?

Yordan S. Yordanov and Crispin H. W. Barnes. Implementation of a general single-qubit positive operator-valued measure on a 
circuit-based quantum computer. Physical Review A, 100(6), dec 2019.

▪ For general POVM approach to measurement operator universally, Yordan S. et al. 
(2019) provides insights

▪ However, the circuitry proposed by Yordan S. has a depth that might not be suitable 
for NISQ devices.
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Noisy intermediate scale quantum (NISQ)

▪ Quantum circuit must have shallow depth on NISQ
▪ The Variational Quantum Eigensolver (VQE) is a preferred method for NISQ devices.

Chen, S., Cotler, J., Huang, H. Y., & Li, J. (2023, September 26). The complexity of NISQ. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-41217-6



Universal quantum circuit for NISQ: variational quantum eigensolver(VQE)
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Universal quantum 
circuit

NISQ circuit 

Error
Fully controlled by 

QECC
No QECC or 
Mitigation

Depth Arbitrary depth Shallow depth

Construction
CNOT + single qubit 

gates
VQE(PQC + Machine 

Learning)

Universality O X

▪ NISQ circuits are not universal comprehensive. However, the parameterized quantum 
circuit (PQC) closely mirrors a universal quantum framework. 

Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim
Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek,and Alán Aspuru-Guzik. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys., 94:015004, Feb 2022.

• VQE(PQC + Machine Learning)• Comparison; VQE serves as NISQ’s alternative to 
universal quantum circuits
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▪ Challenge: sometimes photons go undetected, which leads to unobserved 
measurement results.

Undetected Measurement Outcome Problem
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▪ The technique of minimum error discrimination includes all results, 
even if some outcomes go undetected

Undetected Measurement Outcome Problem
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▪ Making realistic devices fitted with designed quantum information tasks

Undetected Measurement Outcome Problem
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▪ Quantum measurement
when a 𝜌𝑗 is prepared from ensemble 𝑆 = 𝑞𝑖 , 𝜌𝑖 𝑖=1

𝑛 and the POVM 𝐸𝑖 is utilized, 

𝑃𝑀|𝑃 𝑖 𝑗 = 𝑡𝑟[𝜌𝑗𝐸𝑖]

▪ Utilizing the Bayes' rule, retrodiction of state preparation with measurement outcomes gives:

𝑃𝑃|𝑀 𝑖 𝑖 =
𝑝𝑃 𝑖 𝑃𝑀|𝑃(𝑖|𝑖)

𝑃𝑀(𝑖)

▪ Maximum Confidence, 𝐶𝑖
MCM seeks a POVM element that maximizes the 

𝐶 𝑖 = max
𝐸𝑖

𝑞𝑖 𝑡𝑟[𝜌𝑖𝐸𝑖]

𝑡𝑟[𝜌𝐸𝑖]

Sarah Croke, Erika Andersson, Stephen M. Barnett, Claire R. Gilson, and John Jeffers. Maximum confidence quantum measurements. Physical Review Letters, 96(7), feb 2006.

Maximum confident measurement (MCM)

𝑞𝑖 𝑜𝑟 𝑝𝑃 𝑖 : Priori Probability
𝐸𝑖 ≥ 0 and Σ𝑖𝐸𝑖 = 𝐼
𝑃𝑀 𝑖 : probability of an outcome 𝑖
M: Measurement
P: Preparation
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▪ Divide and multiply by 𝜌

𝐶 𝑖 = max
𝐸𝑖

𝑞𝑖 𝑡𝑟[𝜌𝑖𝐸𝑖]

𝑡𝑟[𝜌𝐸𝑖]
= max

𝐸𝑖

𝑞𝑖 𝑡𝑟[ 𝜌
−1
𝜌𝑖 𝜌

−1
𝜌𝐸𝑖 𝜌]

𝑡𝑟[𝜌𝐸𝑖]

▪ Define ෤𝜌𝑖 = 𝜌
−1
𝑞𝑖𝜌𝑖 𝜌

−1
and 𝑄𝑖 =

𝜌𝐸𝑖 𝜌

𝑡𝑟[𝜌𝐸𝑖]
(𝑇𝑟 𝑄𝑖 = 1), subsequently, it can be 

expressed as a linear optimization problem:

𝐶 𝑖 = max
𝑄𝑖≥0,𝑡𝑟 𝑄𝑖 =1

𝑡𝑟[෥𝜌𝑖𝑄𝑖]

Sarah Croke, Erika Andersson, Stephen M. Barnett, Claire R. Gilson, and John Jeffers. Maximum confidence quantum measurements. Physical Review Letters, 96(7), feb 2006.

Maximum confident measurement (MCM)

𝑞𝑖 𝑜𝑟 𝑝𝑃 𝑖 : Priori Probability
𝐸𝑖 ≥ 0 and Σ𝑖𝐸𝑖 = 𝐼
𝑃𝑀 𝑖 : probability of an outcome 𝑖
M: Measurement
P: Preparation
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▪ Given that t𝑟 𝑄𝑖 = 1, we can define 𝑄𝑖 = 𝑣𝑖 ⟨𝑣𝑖|, where

𝑣𝑖 = 𝑈 𝜃 𝑖 − 1 (0 ≤ 𝑖 ≤ ⌈log2 𝑛⌉)

• 𝑛 is number of states in ensemble.
• 𝑈 𝜃 denotes parameterized unitary transformation by the vector 𝜃

▪ Substituting this into the MCM formulation, we obtain:

𝐶 𝑖 = max 𝑇𝑟[𝑈† 𝜌
−1
𝑞𝑖𝜌𝑖 𝜌

−1
𝑈 𝑖 − 1 ⟨𝑖 − 1|]

The key challenge here is to identify the unitary transformation defined in ⌈log2 𝑛⌉ qubits that 
optimizes 𝐶𝑖 .

Maximum confident measurement (MCM)
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PQC: NISQ friendly circuit model

Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim
Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek,and Alán Aspuru-Guzik. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys., 94:015004, Feb 2022.

▪ PQC, Hardware - efficient ansatz

▪ To address NISQ limitations, We utilized PQC as an ansatz in VQE for optimal MCM 
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▪ Results ▪ States

• Left up

• Right up

• Left down

• Right down

PQC: 12 (3 layers, depth 12)
Exact: 11 (depth 5)

Comparison: PQC vs Exact measurement circuit
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Approach 2. ensemble measurement
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▪ Measurement can be effectively addressed by maximum confidence measurement (MCM) as 
it does not consider undetected results. 

▪ Furthermore, We can consider increasing the effectiveness of detected outcomes.  This can 
be done by Measurements for the ensemble ρ itself

▪ The main challenge to overcome is identifying the measurement operator 𝑀 that minimizes 
the error rate.

𝑃𝑒𝑟𝑟𝑜𝑟 = 1 −෍

𝑖=1

𝑛

𝑇𝑟 𝜌𝑖𝑀𝑖 = 1 − 𝑇𝑟 𝜌𝑀1

𝜌 =෍

𝑖=1

𝑛

𝜌𝑖 , ෍

𝑖=1

2

𝑀𝑖 = 𝕀



Results: ensemble measurement
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Depth:5

Depth:5

Depth:10

Depth:25

Depth:25

Depth:20

Depth:30

▪ Averaged max probabilities, 10 times
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• States • States

Results: ensemble measurement



Approach 3. noise tolerance (depolarization noise) 
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▪ Suppose the ensemble include depolarizing noise. Let 𝒩[∙] is a depolarizing noise channel 
and 𝑝 is the parameter that is related to depolarizing noise. 𝕀 is identity matrix. 

𝜎𝑖 ≔𝒩 𝜌𝑖 = 1 − 𝑝 𝜌𝑖 + 𝑝
𝕀

2

▪ For evaluating noise resilience, we may examine two scenarios:

• Access to the precise depolarizing noise is unavailable; We identify 𝜌𝑖 from a noise-
affected ensemble 𝜎 = 𝒩 𝜌

• With access to the depolarizing noise, we determine 𝜎𝑖 from a noise-affected ensemble 
𝜎 = 𝒩 𝜌



Results: noise tolerance 
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▪ Measurement 𝜌2 from 𝜎 ▪ Measurement 𝜎2 from 𝜎
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Summary and Conclusion

▪ We presented an implementation of MCMs in a quantum circuit model with realistic quantum 
devices. 

▪ MCMs are useful in the NISQ era: they take undetected events into account to conclude about 
which state has been prepared.

▪ We demonstrated a construction of MCM with PQCs, which are NISQ friendly, in a hybrid 
quantum-classical manner with VQE.

▪ We demonstrated a circuit that boosts detected results efficiency.

▪ The usefulness of PQCs
• PQCs vs Exact Circuit demonstrated for an MCM: PQCs are both cost-effective and precise 

in the NISQ regime.
• We displayed PQC’s resilience to depolarizing noise. 
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Qubit quality vs Quantity relationship

▪ As the number of qubits increases, the acceptable or tolerable error rate decreases

▪ Near-term Applications (NISQ Era): These quantum systems are beyond classical simulation capabilities 
but are still prone to errors.

▪ Error correction threshold: Past this threshold, error correction becomes ineffective.



What is the quantum communication?
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▪ BB84 protocol, Charles Bennet et al. (1984) 

Random bit 0 1 1 0 1 0 1

Random sending basis + + X + X X +

Photon polarization ↑ → ↘ ↑ ↘ ↗ →

random measuring basis + X X X + X +

Photon polarization 
measures

↑ ↗ ↘ ↗ → ↗ →

Public discussion of basis

Shared secret key 0 1 0 1

Bob
Alice

Photon

C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computer, Systems, and Signal Processing _IEEE, New York, 1984_, p. 175. 
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▪ Challenge: sometimes photons go undetected, which leads to unobserved 
measurement results.

Maximum Confident Measurement (MCM)
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▪ Challenge: sometimes photons go undetected, which leads to unobserved 
measurement results.

Maximum Confident Measurement (MCM)
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Minimum Error Discrimination (MED) and Unambiguous State 
Discrimination (USD)

▪ Suppose state discrimination between 𝜓0 , 𝜓1 . State 𝜓𝑥 is prepared with
probability 𝑞𝑥 𝑥 ∈ {0,1} and measurement devices output 𝑦 ∈ {0,1,2}. When 𝑦 = 2, we denote 
it inconclusive outcome

• 𝜂𝑒𝑟𝑟 = 𝑞0 Pr 𝑦 = 1 𝑥 = 0 + 𝑞1 Pr(𝑦 = 0|𝑥 = 1)
• 𝜂𝑖𝑛𝑐 = 𝑞0 Pr 𝑦 = 2 𝑥 = 0 + 𝑞1 Pr(𝑦 = 2|𝑥 = 1)

▪ MED minimize the 𝜂𝑒𝑟𝑟 under 𝜂𝑖𝑛𝑐 = 0

▪ USD minimize the 𝜂𝑖𝑛𝑐 under 𝜂𝑒𝑟𝑟 = 0
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▪ Sets 3
𝜓1 = cos 𝜃 0 + sin 𝜃 1
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Approach 1. Realization of MCM through VQA and PQC



28

▪ Results ▪ States

• Left up

• Right up

• Left down

• Right down

PQC: 12 (3 layers, depth 12)
Exact: 11 (depth 5)

Comparison: PQC vs Exact measurement circuit

0 ,
2

3
0 +

2

3
1 , 

2

3
0 −

2

3
1

cos𝜃 0 + sin 𝜃 1 ,
cos𝜃 0 + 𝑒2𝜋𝑖/3 sin 𝜃 1 ,
cos𝜃 0 + 𝑒−2𝜋𝑖/3 sin 𝜃 1

cos
𝜃

2
0 + sin

𝜃

2
1 ,

1

2
0 +

3

2
1 ,

1

2
0 −

3

2
1 ,

1

2
00 + 11 ,

1

2
01 − 10 , 00 , + +

• Num. of parameters



29

Approach 2. ensemble measurement

▪ 1 qubit ensemble state

▪ 2 qubit ensemble state
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Depth:5

Depth:5

Depth:10

Depth:25

Depth:25

Depth:20

Depth:30

▪ Averaged max probabilities, 10 times
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• States • States

Results: ensemble measurement



0 ,
2

3
0 +

2

3
1 , 

2

3
0 −

2

3
1

1

2
00 + 11 ,

1

2
01 − 10 ,

00 , + +

▪ Averaged max probabilities, 10 times

Results: ensemble measurement
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▪ Measurement 𝜌𝑖 from 𝜎

𝐶 𝑖 = max
𝐸𝑖

𝑞𝑖 𝑡𝑟[𝜌𝑖𝐸𝑖]

𝑡𝑟[𝜎𝐸𝑖]
= max

𝐸𝑖

𝑞𝑖 𝑡𝑟[ 𝜎
−1
𝜌𝑖 𝜎

−1
𝜎𝐸𝑖 𝜎]

𝑡𝑟[𝜎𝐸𝑖]
= max

𝑄𝑖≥0,𝑡𝑟 𝑄𝑖 =1
𝑡𝑟[෥𝜌𝑖𝑄𝑖]

෤𝜌𝑖 = 𝜎
−1
𝑞𝑖𝜌𝑖 𝜎

−1
and 𝑄𝑖 =

𝜎𝐸𝑖 𝜎

𝑡𝑟[𝜎𝐸𝑖]

▪ Measurement 𝜎𝑖 from 𝜎

𝐶 𝑖 = max
𝐸𝑖

𝑞𝑖 𝑡𝑟[𝜎𝑖𝐸𝑖]

𝑡𝑟[𝜎𝐸𝑖]
= max

𝐸𝑖

𝑞𝑖 𝑡𝑟[ 𝜎
−1
𝜎𝑖 𝜎

−1
𝜎𝐸𝑖 𝜎]

𝑡𝑟[𝜎𝐸𝑖]
= max

𝑄𝑖≥0,𝑡𝑟 𝑄𝑖 =1
𝑡𝑟[෥𝜎𝑖𝑄𝑖]

෤𝜎𝑖 = 𝜎
−1
𝑞𝑖𝜎𝑖 𝜎

−1
and𝑄𝑖 =

𝜎𝐸𝑖 𝜎

𝑡𝑟[𝜎𝐸𝑖]

Approach 3. noise tolerance (depolarization noise) 
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Approach 3. noise tolerance (depolarization noise) 
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