Training parameterized quantum circuits for optimal measurement

Sung Won Yun^{1*}, Joonwoo Bae Nagoya-KAIST-GEnKO 2023 Workshop, Nagoya, Dec. 07

School of Electrical Engineering, Korea Advanced Institute of Science and Technology¹

1

Background: circuit model

- In the standard circuit model, qubit preparations are initialized to $|0\rangle^{\otimes n}$ and measurements are made in the $\{|0\rangle, |1\rangle\}^{\otimes n}$ basis
- The main task in the circuit model of quantum computation is <u>manipulation of unitray</u> <u>transformations</u>.

Background: POVM

- In Popescu et al.'s 1995 Study
- 1. Projective measurement on Werner state (by Werner)
 - Result: Local (Explained by local hidden variable)
- 2. Successive measurement including **POVM**
 - Result: <u>Nonlocality</u> (Due to inequality Violated)

POVM in circuit model

 Naimark's theorem states that POVM can be realized with the aid of ancillary qubits.

Background: POVM

- In Popescu et al.'s 1995 Study
- 1. Projective measurement on Werner state (by Werner)
 - Result: Local (Explained by local hidden variable)
- 2. Successive measurement including **POVM**
 - Result: <u>Nonlocality</u> (Due to inequality Violated)

POVM through a circuit model

 Naimark's theorem states that POVM can be realized with the aid of ancillary qubits.

Can we efficiently prepare POVM with NISQ technologies?

- For general POVM approach to measurement operator universally, Yordan S. et al. (2019) provides insights
- However, the circuitry proposed by Yordan S. has a depth that <u>might not be suitable</u> for NISQ devices.

Yordan S. Yordanov and Crispin H. W. Barnes. Implementation of a general single-qubit positive operator-valued measure on a circuit-based quantum computer. Physical Review A, 100(6), dec 2019.

Noisy intermediate scale quantum (NISQ)

- Quantum circuit must have shallow depth on NISQ
- The <u>Variational Quantum Eigensolver (VQE)</u> is a preferred method for NISQ devices.

Universal quantum circuit for NISQ: variational quantum eigensolver(VQE)

- NISQ circuits are not universal comprehensive. However, the parameterized quantum circuit (PQC) closely mirrors a universal quantum framework.
- Comparison; VQE serves as NISQ's alternative to universal quantum circuits

	Universal quantum circuit	NISQ circuit
Error	Fully controlled by QECC	No QECC or Mitigation
Depth	Arbitrary depth	Shallow depth
Construction	CNOT + single qubit gates	VQE(PQC + Machine Learning)
Universality	0	Х

VQE(PQC + Machine Learning)

Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys., 94:015004, Feb 2022.

Undetected Measurement Outcome Problem

 Challenge: sometimes photons go undetected, which leads to unobserved measurement results.

Undetected Measurement Outcome Problem

 The technique of minimum error discrimination includes all results, even if some outcomes go undetected

Undetected Measurement Outcome Problem

Making realistic devices fitted with designed quantum information tasks

Maximum confident measurement (MCM)

Quantum measurement

when a ρ_i is prepared from ensemble $S = \{q_i, \rho_i\}_{i=1}^n$ and the POVM E_i is utilized,

$$P_{M|P}(i|j) = tr[\rho_j E_i]$$

- Utilizing the Bayes' rule, retrodiction of state preparation with measurement outcomes gives: $P_{P|M}(i|i) = \frac{p_P(i)P_{M|P}(i|i)}{P_M(i)}$
- Maximum Confidence, C_i
 MCM seeks a POVM element that maximizes the

$$C(i) = \max_{E_i} \frac{q_i tr[\rho_i E_i]}{tr[\rho E_i]}$$

 $q_i \text{ or } p_P(i)$: Priori Probability $E_i \ge 0$ and $\Sigma_i E_i = I$ $P_M(i)$: probability of an outcome iM: Measurement P: Preparation

Maximum confident measurement (MCM)

• Divide and multiply by $\sqrt{\rho}$

$$C(i) = \max_{E_i} \frac{q_i tr[\rho_i E_i]}{tr[\rho E_i]} = \max_{E_i} \frac{q_i tr[\sqrt{\rho}^{-1}\rho_i \sqrt{\rho}^{-1} \sqrt{\rho} E_i \sqrt{\rho}]}{tr[\rho E_i]}$$

• Define
$$\tilde{\rho}_i = \sqrt{\rho}^{-1} q_i \rho_i \sqrt{\rho}^{-1}$$
 and $Q_i = \frac{\sqrt{\rho} E_i \sqrt{\rho}}{tr[\rho E_i]}$ ($Tr[Q_i] = 1$), subsequently, it can be expressed as a linear optimization problem:

$$C(i) = \max_{Q_i \ge 0, tr[Q_i]=1} tr[\widetilde{\rho}_i Q_i]$$

```
q_i \text{ or } p_P(i): Priori Probability

E_i \ge 0 and \Sigma_i E_i = I

P_M(i): probability of an outcome i

M: Measurement

P: Preparation
```

Maximum confident measurement (MCM)

• Given that $tr[Q_i] = 1$, we can define $Q_i = |v_i\rangle\langle v_i|$, where

 $|v_i\rangle = U(\theta)|i-1\rangle \ (0 \le i \le \lceil \log_2 n \rceil)$

- *n* is number of states in ensemble.
- $U(\theta)$ denotes parameterized unitary transformation by the vector θ
- Substituting this into the MCM formulation, we obtain:

$$C(i) = \max Tr[U^{\dagger}\sqrt{\rho}^{-1}q_i\rho_i\sqrt{\rho}^{-1}U|i-1\rangle\langle i-1|]$$

The <u>key challenge</u> here is to <u>identify the unitary transformation</u> defined in $\lceil \log_2 n \rceil$ qubits that optimizes C_i .

PQC: NISQ friendly circuit model

- <u>To address NISQ limitations, We utilized PQC as an ansatz in VQE for optimal MCM</u>
 - PQC, Hardware efficient ansatz 1st Layer lst Layer $|0\rangle_1$ $\theta^1_{z,1}$ $\theta_{z,1}^L$ $\theta^1_{x,1}$ $\theta^1_{x,2}$ $|0\rangle_2$ $\theta^1_{z,2}$ $\theta_{z,2}^{L}$ $\theta_{x,2}^{L}$ $|0\rangle_3$ $\theta^1_{x,3}$ $\theta^1_{z,3}$ $\theta_{x,3}^L$ $\theta_{z,3}^L$ $\theta_{z,4}^L$ $|0\rangle_4$ $\theta^1_{x,3}$ $\theta_{z,4}^1$ $\theta_{x,3}^{L}$ $|0\rangle_{i}$ $\theta^1_{z,j}$ $\theta_{x,i}^1$ $\theta_{x,j}^{L}$ $\theta_{z,i}^{L}$ $\theta^1_{x,m}$ $\theta^1_{z,m}$ $\theta_{x,m}^{L}$ $|0\rangle_{\rm m}$ $\theta_{z,m}^{L}$ イ Rx Gate Rz Gate

Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys., 94:015004, Feb 2022.

Comparison: PQC vs Exact measurement circuit

- Left up $|0\rangle, \sqrt{\frac{2}{3}}|0\rangle + \sqrt{\frac{2}{3}}|1\rangle,$ $\sqrt{\frac{2}{3}}|0\rangle - \sqrt{\frac{2}{3}}|1\rangle$
- Right up $\cos \theta |0\rangle + \sin \theta |1\rangle,$ $\cos \theta |0\rangle + e^{2\pi i/3} \sin \theta |1\rangle,$ $\cos \theta |0\rangle + e^{-2\pi i/3} \sin \theta |1\rangle$
- Left down $\cos \frac{\theta}{2} |0\rangle + \sin \frac{\theta}{2} |1\rangle,$ $\frac{1}{2} |0\rangle + \frac{\sqrt{3}}{2} |1\rangle, \frac{1}{2} |0\rangle - \frac{\sqrt{3}}{2} |1\rangle,$
- Right down $\frac{\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle),$ $\frac{1}{\sqrt{2}}(|01\rangle - |10\rangle), |00\rangle, |++\rangle$
- Num. of parameters PQC: 12 (3 layers, depth 12) Exact: 11 (depth 5)

Approach 2. ensemble measurement

- Measurement can be effectively addressed by maximum confidence measurement (MCM) as it does not consider undetected results.
- Furthermore, We can consider <u>increasing the effectiveness of detected outcomes</u>. This can be done by Measurements for the ensemble ρ itself
- The main challenge to overcome is identifying the measurement operator M that minimizes the error rate.

$$P_{error} = 1 - \sum_{i=1}^{n} Tr[\rho_i M_i] = 1 - Tr[\rho M_1]$$
$$\rho = \sum_{i=1}^{n} \rho_i, \qquad \sum_{i=1}^{2} M_i = \mathbb{I}$$

16

Averaged max probabilities, <u>10 times</u>

• States

$$|0\rangle, \sqrt{\frac{2}{3}}|0\rangle + \sqrt{\frac{2}{3}}|1\rangle, \sqrt{\frac{2}{3}}|0\rangle - \sqrt{\frac{2}{3}}|1\rangle$$

- States
- $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle), \frac{1}{\sqrt{2}}(|01\rangle |10\rangle), \\ |00\rangle, |++\rangle$

Approach 3. noise tolerance (depolarization noise)

Suppose the ensemble include depolarizing noise. Let $\mathcal{N}[\cdot]$ is a depolarizing noise channel and p is the parameter that is related to depolarizing noise. I is identity matrix.

$$\sigma_i \coloneqq \mathcal{N}[\rho_i] = (1-p)\rho_i + p\frac{\mathbb{I}}{2}$$

- For evaluating noise resilience, we may examine two scenarios:
 - Access to the precise depolarizing noise <u>is unavailable</u>; We identify ρ_i from a noise-affected ensemble $\sigma = \mathcal{N}[\rho]$
 - With access to the depolarizing noise, we determine σ_i from a noise-affected ensemble $\sigma = \mathcal{N}[\rho]$

Results: noise tolerance

• Measurement ρ_2 from σ

• Measurement σ_2 from σ

Summary and Conclusion

- We presented an implementation of MCMs in a quantum circuit model with realistic quantum devices.
- MCMs are useful in the NISQ era: they take undetected events into account to conclude about which state has been prepared.
- We demonstrated a construction of MCM with PQCs, which are NISQ friendly, in a hybrid quantum-classical manner with VQE.
- We demonstrated a circuit that boosts detected results efficiency.
- The usefulness of PQCs
 - PQCs vs Exact Circuit demonstrated for an MCM: PQCs are both cost-effective and precise in the NISQ regime.
 - We displayed PQC's resilience to depolarizing noise.

Qubit quality vs Quantity relationship

- As the number of qubits increases, the acceptable or tolerable error rate decreases
- Near-term Applications (NISQ Era): These quantum systems are beyond classical simulation capabilities but are still prone to errors.
- Error correction threshold: Past this threshold, error correction becomes ineffective.

What is the quantum communication?

BB84 protocol, Charles Bennet et al. (1984)

C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computer, Systems, and Signal Processing _IEEE, New York, 1984_, p. 175.

Maximum Confident Measurement (MCM)

 Challenge: sometimes photons go undetected, which leads to unobserved measurement results.

Maximum Confident Measurement (MCM)

 Challenge: sometimes photons go undetected, which leads to unobserved measurement results.

Minimum Error Discrimination (MED) and Unambiguous State Discrimination (USD)

• Suppose state discrimination between $|\psi_0\rangle$, $|\psi_1\rangle$. State $|\psi_x\rangle$ is prepared with probability $q_x \ x \in \{0,1\}$ and measurement devices output $y \in \{0,1,2\}$. When y = 2, we denote it inconclusive outcome

•
$$\eta_{err} = q_0 \Pr(y = 1 | x = 0) + q_1 \Pr(y = 0 | x = 1)$$

- $\eta_{inc} = q_0 \Pr(y = 2|x = 0) + q_1 \Pr(y = 2|x = 1)$
- MED minimize the η_{err} under $\eta_{inc} = 0$
- USD minimize the η_{inc} under $\eta_{err} = 0$

Approach 1. Realization of MCM through VQA and PQC

• Sets 2

$$\psi_1 = |0\rangle$$

$$\psi_2 = \sqrt{\frac{2}{3}}|0\rangle + \sqrt{\frac{1}{3}}|1\rangle$$

$$\psi_3 = \sqrt{\frac{2}{3}}|0\rangle - \sqrt{\frac{1}{3}}|1\rangle$$

$$\rho = \begin{pmatrix} \frac{7}{9} & 0\\ 0 & \frac{2}{9} \end{pmatrix}$$

Sets 3

$$\psi_{1} = \cos \theta |0\rangle + \sin \theta |1\rangle$$

$$\psi_{2} = \cos \theta |0\rangle + e^{2\pi i/3} \sin \theta |1\rangle$$

$$\psi_{3} = \cos \theta |0\rangle + e^{-2\pi i/3} \sin \theta |1\rangle$$

$$\rho = \begin{pmatrix} \cos^{2} \theta & 0 \\ 0 & \sin^{2} \theta \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

• Sets 4

$$\psi_1 = \cos \frac{\theta}{2} |0\rangle + \sin \frac{\theta}{2} |1\rangle$$

 $\psi_2 = \frac{1}{2} |0\rangle + \frac{\sqrt{3}}{2} |1\rangle$
 $\psi_3 = \frac{1}{2} |0\rangle - \frac{\sqrt{3}}{2} |1\rangle$
 $\rho = \begin{pmatrix} 0.45118 & 0.1178 \\ 0.117851 & 0.548816 \end{pmatrix}$

• Sets 5

$$\psi_{1} = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

$$\psi_{2} = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle)$$

$$\psi_{3} = |00\rangle$$

$$\psi_{4} = |++\rangle$$

$$\rho = \begin{pmatrix} \frac{7}{16} & \frac{1}{16} & \frac{1}{16} & \frac{3}{16} \\ \frac{1}{16} & \frac{3}{16} & -\frac{1}{16} & \frac{1}{16} \\ \frac{1}{16} & \frac{1}{16} & \frac{3}{16} & \frac{1}{16} \\ \frac{1}{16} & \frac{1}{16} & \frac{1}{16} & \frac{3}{16} \\ \frac{3}{16} & \frac{1}{16} & \frac{1}{16} & \frac{3}{16} \end{pmatrix}$$

Comparison: PQC vs Exact measurement circuit

States

- Left up $|0\rangle, \sqrt{\frac{2}{3}}|0\rangle + \sqrt{\frac{2}{3}}|1\rangle,$ $\sqrt{\frac{2}{3}}|0\rangle - \sqrt{\frac{2}{3}}|1\rangle$
- Right up $\cos \theta |0\rangle + \sin \theta |1\rangle,$ $\cos \theta |0\rangle + e^{2\pi i/3} \sin \theta |1\rangle,$ $\cos \theta |0\rangle + e^{-2\pi i/3} \sin \theta |1\rangle$
- Left down $\cos \frac{\theta}{2} |0\rangle + \sin \frac{\theta}{2} |1\rangle,$ $\frac{1}{2} |0\rangle + \frac{\sqrt{3}}{2} |1\rangle, \frac{1}{2} |0\rangle - \frac{\sqrt{3}}{2} |1\rangle,$
- Right down $\frac{\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle),$ $\frac{1}{\sqrt{2}}(|01\rangle - |10\rangle), |00\rangle, |++\rangle$
- Num. of parameters PQC: 12 (3 layers, depth 12) Exact: 11 (depth 5)

Approach 2. ensemble measurement

1 qubit ensemble state

2 qubit ensemble state

Averaged max probabilities, <u>10 times</u>

• States

$$|0\rangle, \sqrt{\frac{2}{3}}|0\rangle + \sqrt{\frac{2}{3}}|1\rangle, \sqrt{\frac{2}{3}}|0\rangle - \sqrt{\frac{2}{3}}|1\rangle$$

- States
- $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle), \frac{1}{\sqrt{2}}(|01\rangle |10\rangle), \\ |00\rangle, |++\rangle$

Averaged max probabilities, <u>10 times</u>

Averaged max probabilities, <u>20 times</u>

Averaged max probabilities, <u>30 times</u>

Averaged max probabilities, <u>100 times</u>

Approach 3. noise tolerance (depolarization noise)

• Measurement ρ_i from σ

$$C(i) = \max_{E_i} \frac{q_i tr[\rho_i E_i]}{tr[\sigma E_i]} = \max_{E_i} \frac{q_i tr[\sqrt{\sigma}^{-1}\rho_i\sqrt{\sigma}^{-1}\sqrt{\sigma}E_i\sqrt{\sigma}]}{tr[\sigma E_i]} = \max_{Q_i \ge 0, tr[Q_i]=1} tr[\widetilde{\rho}_i Q_i]$$
$$\widetilde{\rho}_i = \sqrt{\sigma}^{-1}q_i\rho_i\sqrt{\sigma}^{-1} \text{ and } Q_i = \frac{\sqrt{\sigma}E_i\sqrt{\sigma}}{tr[\sigma E_i]}$$

• Measurement σ_i from σ

$$C(i) = \max_{E_i} \frac{q_i tr[\sigma_i E_i]}{tr[\sigma E_i]} = \max_{E_i} \frac{q_i tr[\sqrt{\sigma}^{-1}\sigma_i\sqrt{\sigma}^{-1}\sqrt{\sigma}E_i\sqrt{\sigma}]}{tr[\sigma E_i]} = \max_{Q_i \ge 0, tr[Q_i]=1} tr[\widetilde{\sigma}_i Q_i]$$
$$\widetilde{\sigma}_i = \sqrt{\sigma}^{-1}q_i\sigma_i\sqrt{\sigma}^{-1} \text{ and } Q_i = \frac{\sqrt{\sigma}E_i\sqrt{\sigma}}{tr[\sigma E_i]}$$

Approach 3. noise tolerance (depolarization noise)

 $\psi_{1} = |0\rangle$ $\psi_{2} = \sqrt{\frac{2}{3}}|0\rangle + \sqrt{\frac{1}{3}}|1\rangle$ $\psi_{3} = \sqrt{\frac{2}{3}}|0\rangle - \sqrt{\frac{1}{3}}|1\rangle$ $\rho = \begin{pmatrix} \frac{7}{9} & 0\\ 0 & \frac{2}{9} \end{pmatrix}$

$$\begin{split} \sigma_{i} &\coloneqq \mathcal{N}[\rho_{i}] = (1-p)\rho_{i} + p\frac{1}{2} \\ \sigma &\coloneqq \mathcal{N}[\rho] = (1-p)\rho + p\frac{1}{2} \\ \tilde{\rho}_{2} &= \sqrt{\sigma}^{-1}q_{2}\rho_{2}\sqrt{\sigma}^{-1} \\ &= \begin{pmatrix} \frac{4}{(14+9p)\left(\frac{2}{4+9p} + \frac{4}{14+9p}\right)} & \frac{2\sqrt{2}}{\sqrt{4+9p}\sqrt{14+9p}\left(\frac{2}{4+9p} + \frac{4}{14+9p}\right)} \\ \frac{2\sqrt{2}}{\sqrt{4+9p}\sqrt{14+9p}\left(\frac{2}{4+9p} + \frac{4}{14+9p}\right)} & \frac{2}{(4+9p)\left(\frac{2}{4+9p} + \frac{4}{14+9p}\right)} \end{pmatrix} \\ \sigma_{i} &\coloneqq \mathcal{N}[\rho_{i}] = (1-p)\rho_{i} + p\frac{1}{2} \\ \tilde{\sigma}_{2} &= \sqrt{\sigma}^{-1}q_{2}\sigma_{2}\sqrt{\sigma}^{-1} \\ &= \begin{pmatrix} \frac{(4+3p)(4+9p)}{44+108p+54p^{2}} & \frac{\sqrt{2}\sqrt{(4+9p)(14+9p)}}{22+54p+27p^{2}} \\ \frac{\sqrt{2}\sqrt{(4+9p)(14+9p)}}{22+54p+27p^{2}} & \frac{(2+3p)(14+9p)}{44+108p+54p^{2}} \end{pmatrix} \end{split}$$