Measurement-Based Estimation of Observables

Detecting Entanglement by State Preparation and Fixed Measurements

Jaemin Kim, Anindita Bera, Joonwoo Bae, Dariusz Chruściński QIT @ KAIST EE

2023-12-07

arXiv: 2303.16368

- 1. Introduction
- 2. Estimation of Observables
- 3. Entangelment Witnesses
 - Framework
 - Examples
- 4. Extenstion to multipartite systems
- 5. Conclusion

Introduction

• Estimating observables requires various measurement settings in general, e.g.,

$$W = \frac{1}{2}\mathbb{1} \otimes \mathbb{1} - |\psi^{-}\rangle\langle\psi^{-}| = \frac{1}{2}(\mathbb{1} \otimes \mathbb{1} + X \otimes X + Y \otimes Y + Z \otimes Z)$$

- A fixed measurement setting is advantageous for some systems, e.g., distributed sensing
- This work: Measurement-based estimation of observables
 - Duplex state preparation + fixed local measurements \rightarrow Observable estimation
 - Focus on entanglement witnesses (EWs)
 - Application of the quantum teleporation scheme
- cf. Measurement-based quantum computation
 - Graph state preparation + various local measurements
 - \rightarrow Quantum dynamics (unitary transformation)

Positive or negative semi-definite operators

 $\cdot \, \, \mathcal{O}\!:$ an observable that has only positive or negative eigenvalues

$$\mathcal{O}^{T} = k\sigma$$
, where $\sigma \ge 0, k = \text{tr}[\mathcal{O}], \text{tr}[\sigma] = 1$
 $|\phi_{d}^{+}\rangle = \frac{1}{\sqrt{d}} \sum_{k=0}^{d-1} |kk\rangle, \ d : \text{dimension}$

Then

$$\operatorname{tr}[\rho\mathcal{O}] = \operatorname{tr}[d \mid \phi_d^+ \rangle \langle \phi_d^+ \mid_{12} \rho_1 \otimes \mathcal{O}_2^{\mathsf{T}}] \\ = d k \operatorname{tr}[\mid \phi_d^+ \rangle \langle \phi_d^+ \mid_{12} \rho_1 \otimes \sigma_2]$$

Single-qubit observables

• *O*: an single-qubit observable that has positive and negative eigenvalues

$$\mathcal{O}^{\mathsf{T}} = \lambda_{+} |\lambda_{+}\rangle\langle\lambda_{+}| - \lambda_{-} |\lambda_{-}\rangle\langle\lambda_{-}|, \ \lambda_{\pm} \ge 0$$
$$c_{+} = \frac{\lambda_{+}}{\lambda_{+} + \lambda_{-}}, c_{-} = \frac{\lambda_{-}}{\lambda_{+} + \lambda_{-}}$$

• D₂₃: duplex state

$$\begin{split} D_{23} &= c_+ |\lambda_+\rangle \langle \lambda_+|_2 \otimes |1\rangle \langle 1|_3 + c_- |\lambda_-\rangle \langle \lambda_-|_2 \otimes |0\rangle \langle 0|_3 , \text{ or,} \\ D_{23} &= |D_{23}\rangle \langle D_{23}|, |D_{23}\rangle = \sqrt{c_+} |\lambda_+\rangle_2 |1\rangle_3 + \sqrt{c_-} |\lambda_-\rangle_2 |0\rangle_3 \end{split}$$

• Expected value of the observable can be calculated as

$$\operatorname{tr}[\rho_1 \otimes D_{23} |\phi^+\rangle\langle \phi^+|_{12} \otimes (|1\rangle\langle 1| - |0\rangle\langle 0|)_3] = \frac{\operatorname{tr}[\rho \mathcal{O}]}{2(\alpha + \beta)}$$

General observables

General observables

• \mathcal{O} : an observable on an *n*-partite *d*-dimensional system

$$\mathcal{O}^{T} = \sum_{k=0}^{d^{n}-1} \lambda_{k} |\lambda_{k}\rangle \langle \lambda_{k}|, \quad \langle \lambda_{i} |\lambda_{j}\rangle = \delta_{ij}$$
$$c_{k} = \frac{|\lambda_{k}|}{\sum_{k} |\lambda_{k}|}$$

• D₂₃: duplex state

$$D_{23} = \sum_{k} c_{k} |\lambda_{k}\rangle \langle \lambda_{k}|^{(2)} \otimes |k\rangle \langle k|^{(3)}, \text{ or}$$
$$D_{23} = |D_{23}\rangle \langle D_{23}|, |D_{23}\rangle = \sum_{k} \sqrt{c_{k}} |\lambda_{k}\rangle^{(2)} \otimes |k\rangle^{(3)}$$

 $\cdot\,$ Expected value of ${\cal O}$

$$\operatorname{tr}[|\phi_{d}^{+}\rangle\langle\phi_{d}^{+}|^{\otimes n}\rho_{1}\otimes D_{23}(\sum_{k\in\mathbb{P}}|k\rangle\langle k|-\sum_{k\in\mathbb{N}}|k\rangle\langle k|)_{3}] = \frac{\operatorname{tr}[\rho\mathcal{O}]}{d^{n}(\sum_{k}|\lambda_{k}|)}$$

where $\mathbb{P} = \{k\in[d^{n}]:\lambda_{k}>0\}, \ \mathbb{N} = \{k\in[d^{n}]:\lambda_{k}<0\}$ and
 $[x] = \{0,\ldots,x-1\}.$

The entanglement witness (EW)

- A bipartite quantum state ho is separable if it can be written as

$$ho = \sum_i p_i \psi_i^{(A)} \otimes \phi_i^{(B)}.$$

Otherwise, ρ is entangled.

• An entanglement witness (EW) W is an observable s.t.

$$\begin{aligned} \forall \sigma_{sep} \in \mathsf{SEP} :& \mathsf{tr}[\sigma_{sep}W] \geq 0, \\ \exists \rho_{ent} \in \mathsf{ENT} :& \mathsf{tr}[\rho_{ent}W] < 0, \end{aligned}$$

where SEP and ENT denote the set of separable and entangled states.

- The EW W detects the entangled state ρ_{ent} .
- A quantum state is entangled iff there exists an EW that detects the state.

Notations

• Projections onto a *d*-dimensional Bell states

$$P_{st} = |\phi_{st}\rangle\langle\phi_{st}|$$
, where $|\phi_{st}\rangle = \frac{1}{\sqrt{d}}\sum_{j=0}^{d-1} e^{2\pi i j t/d} |j, j+s\rangle$,

for s, $t \in \{0, \ldots, d-1\}$

• Separable Bell-diagoanl projectors

$$\Pi_{s} = \sum_{t=0}^{d-1} P_{st} = \sum_{j=0}^{d-1} |j, j+s\rangle \langle j, j+s| \text{ for } s \in \{0, \dots, d-1\}.$$

• The flip (permutation) operator

$$\mathbb{F} = d P_{00}^{T_A} = \sum_{i,j=0}^{d-1} |i,j\rangle\langle j,i|$$

· Projections onto symmetric and anti-symmetric subspaces

$$S = \frac{\mathbb{1} + \mathbb{F}}{2}, \ A = \frac{\mathbb{1} - \mathbb{F}}{2}.$$

The framework

1. $\rho_1 = \rho^{(A_1B_1)}$: the state of interest

- 2. $N_{23} = N^{(A_2B_2A_3B_3)}$: the duplex state realizing EW W
- 3. Bell measurements onto $P_{00}^{(A_1A_2)}\otimes P_{00}^{(B_1B_2)}$ leave the final state

$$\Lambda^{(1\to3)}(\rho) = R^{(A_3B_3)} = \frac{\mathrm{tr}_{12}[\rho_1 \otimes N_{23} P_{00}^{(A_1A_2)} \otimes P_{00}^{(B_1B_2)}]}{\mathrm{tr}[\rho_1 \otimes N_{23} P_{00}^{(A_1A_2)} \otimes P_{00}^{(B_1B_2)}]}$$

4. Check the final singlet fraction $f(\rho, N) \equiv \text{tr}[R^{(3)}P_{00}^{(3)}] = \langle \phi_{00} | R | \phi_{00} \rangle$

•
$$f(\rho, N) \stackrel{!}{>} \eta \implies \rho$$
 is entangled.
• $\eta = \sup_{\alpha \in \mathcal{A}} f(\rho_{sep}, N) \in [\frac{1}{d}, 1)$ for separable states $\rho_{sep}^{(1)}$.

Constructing the duplex state from the given EW

- Suppose that an EW $W = \sum_i c_i W_i$ is given, where $W_i \ge 0, c_i \in \mathbb{R}$.
- For some pure/mixed Bell projections $P_i \ge 0$ and probability p_i , define

$$N_{23} = \sum_{j} p_{j} W_{j}^{(2)} \otimes P_{j}^{(3)},$$

th that $W^{T(2)} \propto \operatorname{tr}_{3}[N_{23}(\eta \mathbb{1} - P_{00})^{(3)}].$

SUC

$$\begin{aligned} \operatorname{tr}[\rho_{1}W^{(1)}] &= \operatorname{tr}[\rho_{1} \otimes W^{T(2)} \ d^{2}P_{00}^{(A_{1}A_{2})} \otimes P_{00}^{(B_{1}B_{2})}] \\ &\propto \operatorname{tr}[\rho_{1} \otimes N_{23} \ P_{00}^{(A_{1}A_{2})} \otimes P_{00}^{(B_{1}B_{2})} \otimes (\eta \mathbb{1} - P_{00})^{(3)}]. \\ R^{(3)} &= \frac{\operatorname{tr}_{12}[\rho_{1} \otimes N_{23} \ P_{00}^{(A_{1}A_{2})} \otimes P_{00}^{(B_{1}B_{2})}]}{\operatorname{tr}[\rho_{1} \otimes N_{23} \ P_{00}^{(A_{1}A_{2})} \otimes P_{00}^{(B_{1}B_{2})}]} \end{aligned}$$

- $f(\rho, N) = \operatorname{tr}[R^{(3)}P_{00}^{(3)}] > n \iff \operatorname{tr}[\rho W] < 0$ • Finally.
- The choice of the duplex state is not unique.

Duplex states can detect all bipartite entangled states

• Define

$$E_d(N) \equiv \sup_{A,B} \frac{\operatorname{tr}[(A \otimes B)N(A^{\dagger} \otimes B^{\dagger})P_{00}]}{\operatorname{tr}[(A \otimes B)N(A^{\dagger} \otimes B^{\dagger})]}$$

where A, B are matrices such that $A : \mathcal{H}_A \to \mathbb{C}^d$ and $B : \mathcal{H}_B \to \mathbb{C}^d$.

- A bipartite state ρ is entangled iff for all $d \ge 2$ and $\eta \in [\frac{1}{d}, 1)$, there exists a bipartite state N such that $E_d(N) \le \eta$ and $E_d(\rho \otimes N) > \eta$.
- If $E_d(N) \le \eta$, then $W = \operatorname{tr}_2[N^{(12)}(\eta \mathbb{1} P_{00})^{(2)}]$ can be proved to be an entanglement witness.
- The set of such EWs detects all bipartite entangled states.
- The problem of finding N given ρ is at least as hard as finding an entanglement witness that detects ρ .

$$E_d(N) \stackrel{?}{=} \sup_{\rho_{sep}} f(\rho_{sep}, N)$$

The flip witness that detects entangled Werner state

+ Werner state $\omega^{(1)}$

$$\omega = p \frac{\mathcal{A}}{\operatorname{tr}[\mathcal{A}]} + (1-p) \frac{\mathcal{S}}{\operatorname{tr}[\mathcal{S}]} \text{ for } p \in [0,1].$$

 ω is non-PPT and entangled iff $p > \frac{1}{2}$.

- · An EW $W_F = \mathbb{F} = S A$ detects entangled Werner state.
- A duplex state

$$N_{F}^{(23)} = \frac{1}{d+2} \left(\frac{\mathbb{1} - \mathbb{F}}{d^{2} - d}\right)^{(A_{2}B_{2})} \otimes P_{00}^{(A_{3}B_{3})} + \frac{d+1}{d+2} \left(\frac{\mathbb{1} + \mathbb{F}}{d^{2} + d}\right)^{(A_{2}B_{2})} \otimes \left(\frac{\mathbb{1} - P_{00}}{d^{2} - 1}\right)^{(A_{3}B_{3})}$$

is PPT in $A_2A_3|B_2B_3$ and undistillable.*

• The final state $R^{(3)}$ is 1-distillable* iff ω is entangled.

$$f(\omega, N_F) > \frac{1}{d} \iff \operatorname{tr}[\omega W_F] < 0$$

Vollbrecht, K. G., & Wolf, M. M. (2002). Activating distillation with an infinitesimal amount of bound entanglement. Physical Review Letters, 88(24)., 1-distillable state: a single copy of the state can be converted into a entangled qubit pair shared between Alice and Bob by LOCC.

Bell diagonal EWs

- Let $\vec{\lambda} = (\lambda_0, \dots, \lambda_{d-1})$ where $\lambda_s \ge 0, \sum_{s=0}^{d-1} \lambda_s = 1$.
- Bell diagonal EWs (e.g. Reductioin EW, Choi EW)

$$W_{BD}(\vec{\lambda}) = \sum_{s=0}^{d-1} \lambda_s \Pi_s - P_{00}$$
 for some $\vec{\lambda}$

• $W_{BD}(\vec{\lambda})$ corresponds to the mixed/pure duplex states

$$N_{BD}^{(23)}(\vec{\lambda}) = \sum_{s=0}^{d-1} \lambda_s \frac{1}{d} \sum_{t=0}^{d-1} P_{st}^{(2)} \otimes P_{st}^{(3)} \text{ or}$$
$$N_{BD}^{(23)}(\vec{\lambda}) = |N_{BD}'\rangle\langle N_{BD}'|, \ |N_{BD}'\rangle^{(23)} = \sum_{s,t=0}^{d-1} \sqrt{\frac{\lambda_s}{d}} |\phi_{st}\rangle^{(2)} |\phi_{st}\rangle^{(3)}$$

with the threshold value $\eta = \lambda_0$.

$$f(\rho, N_{BD}(\vec{\lambda})) > \lambda_0 \iff \operatorname{tr}[\rho W_{BD}(\vec{\lambda})] < 0$$

 $P_{St} = \left|\phi_{St}\right\rangle\!\left\langle\phi_{St}\right|\,, \quad \left|\phi_{St}\right\rangle = \frac{1}{\sqrt{d}}\,\sum_{j=0}^{d-1}e^{2\pi i j t/d}\,\left|j,j+s\right\rangle\,, \quad \Pi_{S} = \sum_{t=0}^{d-1}P_{St} = \sum_{j=0}^{d-1}\left|j,j+s\right\rangle\!\left\langle j,j+s\right|$

Reduction witness

- *W_{red}* is decomposable (cannot detect PPT entangled state).
- Take $\vec{\lambda} = (\frac{1}{d}, \dots, \frac{1}{d})$, then

$$W_{red} = \sum_{s=0}^{d-1} \frac{1}{d} \Pi_s - P_{00} = \frac{1}{d} \mathbb{1} - P_0$$
$$N_{red}^{(23)} = \frac{1}{d^2} \sum_{s=0}^{d-1} \sum_{t=0}^{d-1} P_{st}^{(2)} \otimes P_{st}^{(3)}, \text{ or}$$
$$N_{red}^{\prime}\rangle^{(23)} = \sum_{s,t=0}^{d-1} |\phi_{st}\rangle^{(2)} |\phi_{st}\rangle^{(3)}$$

with the threshold value $\eta = \frac{1}{d}$.

$$f(\rho, N_{red}) > \frac{1}{d} \iff \operatorname{tr}[\rho W_{red}] < 0$$

Duplex states of Reduction witness

- $N_{red}^{(23)}$ is a direct generalization of Smolin state into *d*-dimension.
 - For d = 2, Smolin state N_{Smolin} is PPT and undistillable.*

$$N_{Smolin} = \frac{1}{4} (\phi_{AB}^{+} \otimes \phi_{CD}^{+} + \phi_{AB}^{-} \otimes \phi_{CD}^{-} + \psi_{AB}^{+} \otimes \psi_{CD}^{+} + \psi_{AB}^{-} \otimes \psi_{CD}^{-})$$

• For $d \ge 3$, $N_{red}^{(23)}$ can be non-PPT, and the distillablity is unknown.

• $|N_{red}'\rangle^{(23)}$ is two copies of $|\phi^+\rangle$ when d=2

$$|N'_{red}\rangle^{(23)} = |\phi^+\rangle^{(A_2A_3)} \otimes |\phi^+\rangle^{(B_2B_3)}$$
 if $d = 2$

- For d = 2, the scheme is merely the quantum teleporation in two parties (Alice and Bob) followed by a singlet fraction measurement.
- For $d \ge 3$, $|N'_{red}\rangle^{(23)}$ cannot be simplified to copies of an identical state.

Choi Witness

- *W_{Choi}* is nondecomposable (can detect PPT entangled state).
- Take $\vec{\lambda} = (\frac{2}{3}, \frac{1}{3}, 0)$ where d = 3, then

$$W_{Choi} = \frac{2}{3}\Pi_0 + \frac{1}{3}\Pi_1 - P_{00}$$

$$N_{Choi}^{(23)} = \frac{2}{9}\sum_{t=0}^2 P_{0t}^{(2)} \otimes P_{0t}^{(3)} + \frac{1}{9}\sum_{t=0}^2 P_{1t}^{(2)} \otimes P_{1t}^{(3)}$$

$$|N_{PBD}'\rangle^{(23)} = \frac{\sqrt{2}}{3}\sum_{t=0}^2 |\phi_{0t}\rangle^{(2)} |\phi_{0t}\rangle^{(3)} + \frac{1}{3}\sum_{t=0}^2 |\phi_{1t}\rangle^{(2)} |\phi_{1t}\rangle^{(3)}$$

$$f(\rho, N_{Choi}) > \frac{2}{3} \iff \operatorname{tr}[\rho W_{Choi}] < 0$$

• The 3-dimensional Bell diagonal state*

$$\rho_{BD} = \frac{2}{7}P_{00} + \frac{1}{7}\frac{\Pi_1}{3} + \frac{4}{7}\frac{\Pi_2}{3}$$

is PPT entangled, and detected by W_{Choi} and $N_{Choi}^{(23)}$.

Extension to multipartite systems

• Consider Greenberger–Horne–Zeilinger (GHZ) states $\psi_{abc} = |\psi_{abc}\rangle\langle\psi_{abc}|$ for $a, b, c \in \{0, 1\}$,

$$|\psi_{abc}\rangle = Z^a \otimes X^b \otimes X^c \frac{1}{\sqrt{2}} (|000\rangle + |111\rangle).$$

+ GHZ state $\psi_{000}^{(A_1B_1C_1)}$ is detected by the EW

$$W_{GHZ} = \frac{1}{2} \mathbb{1}^{(A_1 B_1 C_1)} - \psi_{000}^{(A_1 B_1 C_1)}$$

Extension to the multipartite systems

• The corresponding duplex states are

$$N_{GHZ}^{(23)} = \frac{1}{8} \sum_{a,b,c=0}^{1} \psi_{abc}^{(A_2B_2C_2)} \otimes \psi_{abc}^{(A_3B_3C_3)}$$
$$|N_{GHZ}'\rangle^{(23)} = \frac{1}{\sqrt{8}} \sum_{a,b,c=0}^{1} |\psi_{abc}\rangle^{(A_2B_2C_2)} |\psi_{abc}\rangle^{(A_3B_3C_3)}$$

with the threshold value $\eta = \frac{1}{2}$.

• If the final state has a higher overlap with GHZ state than $\frac{1}{2}$, then the state of interest is entangled.

$$f(\rho, N_{GHZ}) = \langle \psi_{000} | \frac{\mathrm{tr}_{12}[\rho_1 \otimes N_{GHZ}^{(23)} \phi_{A_1A_2}^+ \otimes \phi_{B_1B_2}^+ \otimes \phi_{C_1C_2}^+]}{\mathrm{tr}[\rho_1 \otimes N_{GHZ}^{(23)} \phi_{A_1A_2}^+ \otimes \phi_{B_1B_2}^+ \otimes \phi_{C_1C_2}^+]} | \psi_{000} \rangle$$

$$f(\rho, N_{GHZ}) > \frac{1}{2} \iff \mathrm{tr}[\rho W_{GHZ}] < 0.$$

• The framework can be extended to the general graph states.

- General observables can be estimated by state preparation + fixed measurements.
- The duplex states and Bell measurements can detect all bipartite entangled states.
- The final singlet fraction above a threshold value confirms that the state of interest is entangled.
- The framework can detect multipartite graph state as well.

THANK YOU

- + Let $N^{(23)}_{\rm PPT}$ be PPT and $\rho^{(1)}_{\rm PPT}$ be PPT entangled state.
 - $ho_{\scriptscriptstyle PPT}^{(1)}\otimes N_{\scriptscriptstyle PPT}^{(23)}$ is PPT and undistillable.
 - $f(\rho_{PPT}, N_{PPT})$ is upper bounded by $\frac{1}{d}$.
- A PPT duplex state $N_{PPT}^{(23)}$ cannot detect a PPT entangled state, i.e., $N_{PPT}^{(23)}$ can only produce decomposable EW.
- If W is nondecomposable, then $N^{(23)}$ must be non-PPT.
- \cdot The converse does not hold
 - An EW constructed from a non-PPT duplex state is not always nondecomposable.
 - The 3-dimensional Smolin state $N_{red}^{(23)}$ is non-PPT, but the reduction witness W_{red} is decomposable.

Optimal decomposable EWs

- Decomposable EWs cannot detect PPT entangled state.
- An optimal decomposable EW $W_{dec} = Q^{T_A}$ where $Q \ge 0$.
- Let trQ = 1 and $\lambda = \max_i |\lambda_i|$ where $\{\lambda_i\}$ are eigenvalues of Q^{T_A} .
- The corresponding duplex state is

$$N_{dec}^{(23)} = \frac{\lambda d^2 - 1}{\lambda d^3 + d - 2} \left(\frac{\lambda \mathbb{1} - Q^{T_A}}{\lambda d^2 - 1} \right)^{(A_2 B_2)} \otimes P_{00}^{(A_3 B_3)} + \frac{\lambda d^3 - \lambda d^2 + d - 1}{\lambda d^3 + d - 2} \left(\frac{\lambda \mathbb{1} + Q^{T_A}}{\lambda d^2 + 1} \right)^{(A_2 B_2)} \otimes \left(\frac{\mathbb{1} - P_{00}}{d^2 - 1} \right)^{(A_3 B_3)}$$

with the threshold value $\eta = \frac{1}{d}$.

$$f(\rho, N_{dec}) > \frac{1}{d} \iff \operatorname{tr}[\rho W_{dec}] < 0$$

• The flip witness $W_F = \frac{1}{d} \mathbb{F}$ is a special case of W_{dec} with $Q = P_{00}$.

Bell diagonal EWs

- Bell diagonal EWs detect entangled Bell diagonal states.
 - $\rho_{BD} = \lambda_0 P_{00} + \sum_{s=1}^{d-1} \lambda_s \frac{\Pi_s}{d}$ is entangled iff $\exists s : \lambda_0 > \lambda_s$.*
- If $\rho_{sep}^{(1)}$ is separable, then $f(\rho_{sep}, N_{BD}(\vec{\lambda}))$ is upper bounded by λ_0 .
 - A separable state $\sigma = \frac{1}{d}P_{00} + \sum_{s=1}^{d-1} \frac{1}{d} \frac{\Pi_s}{d} \longrightarrow f(\sigma, N_{BD}(\vec{\lambda})) = \lambda_0.$
- $f(\rho, N_{BD}(\vec{\lambda})) > \lambda_0$ implies that ρ_1 is entangled.
- Bell diagonal EWs contain
 - Reduction witness *W*_{red} (decomposable)
 - Choi witness W_{Choi} (3-dimension, nondecomposable)
 - generalized Choi witnesses (d-diemension, nondecomposable)

Breuer-Hall witness

- Let U be a skew-symmetric unirary operator: $UU^{\dagger} = \mathbb{1}, U^{T} = -U.$
- Let $\mathbb{F}' = (\mathbb{1} \otimes U)\mathbb{F}(\mathbb{1} \otimes U^{\dagger}).$
- The Breuer-Hall witness and the duplex state

$$W_{BH} = \frac{1}{d} (\mathbb{1} - \mathbb{F}') - P_{00}$$

$$N_{BH}^{(23)} = c_0 \frac{1}{d^2} \sum_{s=0}^{d-1} \sum_{t=0}^{d-1} P_{st}^{(2)} \otimes P_{st}^{(3)}$$

$$+ c_1 \left(\frac{\mathbb{1} + \mathbb{F}'}{d^2 + d}\right)^{(2)} \otimes P_{00}^{(3)}$$

$$+ c_2 \left(\frac{\mathbb{1} - \mathbb{F}'}{d^2 - d}\right)^{(2)} \otimes \left(\frac{\mathbb{1} - P_{00}}{d^2 - 1}\right)^{(3)}$$

where
$$c_0 = \frac{2d^2 - 2d}{3d^2 - 3d + 2}$$
, $c_1 = \frac{d+1}{3d^2 - 3d + 2}$, $c_2 = \frac{d^2 - d+1}{3d^2 - 3d + 2}$.

• The threshold value $\eta = \frac{1}{d}$.

$$f(
ho, N_{BH}) > rac{1}{d} \iff \mathrm{tr}[
ho W_{BH}] < 0$$