Detecting Entanglement-Generating Circuits in Cloud-Based Quantum Computing

Talk @ Nagoya-KAIST GEnKO 2023 Workshop on Quantum Entanglement and Open Quantum Systems

<u>Jiheon Seong</u> and Joonwoo Bae, **QIT@KAIST**

Intelligent Computing NCE PARTNER JOURNAL

RESEARCH ARTICLE

Cloud-Based Quantum Computing

JIHEON SEONG AND JOONWOO BAE DATE Authors Info & Affiliations

[•]Jiheon Seong, Joonwoo Bae. Detecting Entanglement-Generating Circuits in Cloud-Based Quantum Computing. Intell Comput. 2023;2:0051.

Detecting Entanglement-Generating Circuits in

- Quantum Entanglement : a general and key resource that leads to quantum advantages

Horodecki R, Horodecki P, Horodecki M, Horodecki K. Quantum entanglement. Rev Mod Phys. 2009;81:865.

- Quantum Entanglement : a general and key resource that leads to quantum advantages

Horodecki R, Horodecki P, Horodecki M, Horodecki K. Quantum entanglement. Rev Mod Phys. 2009;81:865.

- Entanglement Witness 2.0 (EW 2.0)

Bae, J., Chruściński, D. & Hiesmayr, B.C. Mirrored entanglement witnesses. npj Quantum Inf 6, 15 (2020). Gühne O, Tóth G. Entanglement detection. Phys Rep. 2009;474(1-6):1-75.

- Quantum Entanglement : a general and key resource that leads to quantum advantages

Horodecki R, Horodecki P, Horodecki M, Horodecki K. Quantum entanglement. Rev Mod Phys. 2009;81:865.

- Entanglement Witness 2.0 (EW 2.0)

: EWs are a well-established tool for detecting entangled states without full knowledge gained via quantum tomography

Bae, J., Chruściński, D. & Hiesmayr, B.C. Mirrored entanglement witnesses. npj Quantum Inf 6, 15 (2020). Gühne O, Tóth G. Entanglement detection. Phys Rep. 2009;474(1-6):1-75.

- Cloud-based Quantum Computing Service

: Prototype quantum computers based on NISQ technologies are also available from industry vendors, such as IBMQ and IonQ, in the form of cloud-based quantum computing.

- Quantum Entanglement : a general and key resource that leads to quantum advantages

Horodecki R, Horodecki P, Horodecki M, Horodecki K. Quantum entanglement. Rev Mod Phys. 2009;81:865.

- Entanglement Witness 2.0 (EW 2.0)

Bae, J., Chruściński, D. & Hiesmayr, B.C. Mirrored entanglement witnesses. npj Quantum Inf 6, 15 (2020). Gühne O, Tóth G. Entanglement detection. Phys Rep. 2009;474(1-6):1-75.

- Cloud-based Quantum Computing Service

: Prototype quantum computers based on NISQ technologies are also available from industry vendors, such as IBMQ and IonQ, in the form of cloud-based quantum computing.

Scenario	Preparation & Measurement	Quantum Computing
Preparation		
Certification		
Certification Tool		

- Quantum Entanglement : a general and key resource that leads to quantum advantages

Horodecki R, Horodecki P, Horodecki M, Horodecki K. Quantum entanglement. Rev Mod Phys. 2009;81:865.

- Entanglement Witness 2.0 (EW 2.0)

Bae, J., Chruściński, D. & Hiesmayr, B.C. Mirrored entanglement witnesses. npj Quantum Inf 6, 15 (2020). Gühne O, Tóth G. Entanglement detection. Phys Rep. 2009;474(1-6):1-75.

- Cloud-based Quantum Computing Service

: Prototype quantum computers based on NISQ technologies are also available from industry vendors, such as IBMQ and IonQ, in the form of cloud-based quantum computing.

Scenario	Preparation & Measurement	Quantum Computing
Preparation	States	Circuits
Certification		
Certification Tool		

- Quantum Entanglement : a general and key resource that leads to quantum advantages

Horodecki R, Horodecki P, Horodecki M, Horodecki K. Quantum entanglement. Rev Mod Phys. 2009;81:865.

- Entanglement Witness 2.0 (EW 2.0)

Bae, J., Chruściński, D. & Hiesmayr, B.C. Mirrored entanglement witnesses. npj Quantum Inf 6, 15 (2020). Gühne O, Tóth G. Entanglement detection. Phys Rep. 2009;474(1-6):1-75.

- Cloud-based Quantum Computing Service

: Prototype quantum computers based on NISQ technologies are also available from industry vendors, such as IBMQ and IonQ, in the form of cloud-based quantum computing.

Scenario	Preparation & Measurement	Quantum Computing
Preparation	States	Circuits
Certification	Entanglement	Entanglement Generation
Certification Tool		

- Quantum Entanglement : a general and key resource that leads to quantum advantages

Horodecki R, Horodecki P, Horodecki M, Horodecki K. Quantum entanglement. Rev Mod Phys. 2009;81:865.

- Entanglement Witness 2.0 (EW 2.0)

Bae, J., Chruściński, D. & Hiesmayr, B.C. Mirrored entanglement witnesses. npj Quantum Inf 6, 15 (2020). Gühne O, Tóth G. Entanglement detection. Phys Rep. 2009;474(1-6):1-75.

- Cloud-based Quantum Computing Service

: Prototype quantum computers based on NISQ technologies are also available from industry vendors, such as IBMQ and IonQ, in the form of cloud-based quantum computing.

Scenario	Preparation & Measurement	Quantum Computing
Preparation	States	Circuits
Certification	Entanglement	Entanglement Generation
Certification Tool	Entanglement Witness	Entanglement Witnessing Circuit

- Quantum Entanglement : a general and key resource that leads to quantum advantages

Horodecki R, Horodecki P, Horodecki M, Horodecki K. Quantum entanglement. Rev Mod Phys. 2009;81:865.

- Entanglement Witness 2.0 (EW 2.0)

: EWs are a well-established tool for detecting entangled states without full knowledge gained via quantum tomography

Bae, J., Chruściński, D. & Hiesmayr, B.C. Mirrored entanglement witnesses. npj Quantum Inf 6, 15 (2020). Gühne O, Tóth G. Entanglement detection. Phys Rep. 2009;474(1-6):1-75.

- Cloud-based Quantum Computing Service

: Prototype quantum computers based on NISQ technologies are also available from industry vendors, such as IBMQ and IonQ, in the form of cloud-based quantum computing.

Scenario	Preparation & Measurement	Quantum Computing
Preparation	States	Circuits
Certification	Entanglement	Entanglement Generation
Certification Tool	Entanglement Witness	Entanglement Witnessing Circuit

Quantum State

ρ

Quantum State

An Entangled State?

A Separable State?

SPAed Entanglement Witness

Criterion for Separable States

$B_L \leq \operatorname{Tr}(\widetilde{W}\rho) \leq B_U$

If violated, then ρ is an entangled state!

Let's take a closer look at ...

Let's take a closer look at ...

Hermitian: $\widetilde{W} = \widetilde{W}^{\dagger}$ Positive: $\widetilde{W} \ge 0$ Unit-Trace: $\operatorname{Tr}(\widetilde{W}) = 1$

$$(1 - p)W^{(+)} + p\frac{I}{D}$$
$$(1 - q)W^{(-)} + q\frac{I}{D}$$

- Quantum Entanglement : a general and key resource that leads to quantum advantages

Horodecki R, Horodecki P, Horodecki M, Horodecki K. Quantum entanglement. Rev Mod Phys. 2009;81:865.

- Entanglement Witness 2.0 (EW 2.0)

Bae, J., Chruściński, D. & Hiesmayr, B.C. Mirrored entanglement witnesses. npj Quantum Inf 6, 15 (2020). Gühne O, Tóth G. Entanglement detection. Phys Rep. 2009;474(1-6):1–75.

- Cloud-based Quantum Computing Service

: Prototype quantum computers based on NISQ technologies are also available from industry vendors, such as IBMQ and IonQ, in the form of cloud-based quantum computing.

Scenario	Preparation & Measurement	Quantum Computing
Preparation	States	Circuits
Certification	Entanglement	Entanglement Generation
Certification Tool	Entanglement Witness	Entanglement Witnessing Circuit

Scenario Certify generation of entanglement in such a quantum computer as (below)

with EW $W_{\text{GHZ}_3} = 2I - (X_1 X_2 X_3 + Z_1 Z_2 + Z_2 Z_3)$

Scenario

Certify generation of entanglement in such a quantum computer as (below)

with EW $W_{\text{GHZ}_3} = 2I - (X_1 X_2 X_3 + Z_1 Z_2)$

with 2 measurement settings

IBM **Quantum**

ibm_nairobi

Scenario

Certify generation of entanglement in such a quantum computer as (below)

with EW $W_{\text{GHZ}_3} = 2I - (X_1 X_2 X_3 + Z_1 Z_2 + Z_2 Z_3)$

with 2 measurement settings

IBM **Quantum**

ibm_nairobi

entanglement generation on qubits 1,3,5

 $\mathrm{Tr}_{1,3,5}[\rho Z^{\otimes 3}]$

 $\operatorname{Tr}_{1,3,5}[\rho X^{\otimes 3}]$

Scenario

Certify generation of entanglement in such a quantum computer as (below)

with EW $W_{\text{GHZ}_3} = 2I - (X_1 X_2 X_3 + Z_1 Z_2 + Z_2 Z_3)$

with 2 measurement settings

IBM **Quantum**

ibm nairobi

entanglement generation on qubits 1,3,5

 $\operatorname{Tr}_{1.3.5}[\rho Z^{\otimes 3}]$

 $\operatorname{Tr}_{1,3,5}[\rho X^{\otimes 3}]$

Without trust in qubit allocation, entanglement certification should be carried out at one shot

Main Idea: Entanglement Witnessing Circuit (EWC)

In cloud-based quantum computing services,

- Is it possible that the EW is measured in a single measurement?

Yes, with EWC Framework

- How to compose such a quantum circuit performing the one-shot measurement? Theoretical framework: **Structural Physical Approximation (SPA) State Purification**

- Does the size of such a circuit scale reasonably with # of qubits?

Scale issue: # of fundamental gates required to compose a general #-qubit unitary

$$W = \sum_{i} c_{i} M_{i}$$

Measurements realizable in laboratories COLLECTION OF MEASUREMENT OUTCOMES

CLASSICAL POST-PROCESSING

•
$$M_1$$
 Tr[ρM_1] Tr[ρW] = $\sum_i c_i \text{Tr}[\rho M_i]$

•
$$M_i$$
 Tr[ρM_i]

$$W = \sum_{i} c_{i} M_{i}$$

Measurements realizable in laboratories COLLE

CLASSICAL
POST-PROCESSING

 M1

$$Tr[\rho M_1]$$
 $Tr[\rho W] = \sum_i c_i Tr[\rho M_i]$

 M_i
 $Tr[\rho M_i]$
 # of measurement settings

 Qubit Allocation

Measurements realizable in laboratories

EWC Framework

1. Rendering of an EW into a positive operator via Structural Physical Approximation (SPA)

$$W \longrightarrow \widetilde{W}$$
 : quar

J. Bae, Rep. Prog. Phys. 80 104001 (2017)

(cf.) Entanglement Witness ntum state

Measurements realizable in laboratories

EWC Framework

1. Rendering of an EW into a positive operator via Structural Physical Approximation (SPA)

$$W \longrightarrow \widetilde{W}$$
 : quar

2. **Purification** of the SPAed positive operator

(cf.) Entanglement Witness ntum state

$$\widetilde{W} \in \mathscr{H}_{S} \xrightarrow{} \mathsf{Purification} | W \rangle \in \mathscr{H}_{S} \otimes \mathscr{H}_{A}$$

Measurements realizable in laboratories

EWC Framework

1. Rendering of an EW into a positive operator via Structural Physical Approximation (SPA)

$$W \longrightarrow \widetilde{W}$$
 : quar

Dynamics

Dynamics

- 2. **Purification** of the SPAed pos
- 3. Design of a quantum circuit

sitive operator
$$\widetilde{W} \in \mathscr{H}_{S}$$
 $\overrightarrow{\operatorname{Purification}} |W\rangle \in \mathscr{H}_{S} \otimes \mathscr{H}_{A}$
realizing the purified observable $|W\rangle$
 $|W\rangle = U_{|W\rangle} \left(|\mathbf{0}\rangle_{S} \otimes |\mathbf{0}\rangle_{A} \right)$

<u>J. Bae, Rep. Prog. Phys. 80 104001 (2017)</u>

COLLECTION OF
MEASUREMENT OUTCOMESCLASSICAL
POST-PROCESSINGDynamics
$$M_1$$
 $\mathrm{Tr}[\rho M_1]$ $\mathrm{Tr}[\rho W] = \sum_i c_i \mathrm{Tr}[\rho M_i]$... M_i $\mathrm{Tr}[\rho M_i]$ $\#$ of measurement settingsDynamics M_i $\mathrm{Tr}[\rho M_i]$ $\#$ of measurement settings

(cf.) Entanglement Witness ntum state

BREAKDOWN OF AN EW
INTO MEASUREMENTSCOLLECTION OF
MEASUREMENT OUTCOMESCLASSICAL
POST-PROCESSING
$$W = \sum_{i} c_{i}M_{i}$$
 ρ ρ W_{i} $Tr[\rho M_{i}]$ $Tr[\rho W] = \sum_{i} c_{i}Tr[\rho M_{i}]$ Measurements
realizable in laboratories ρ ρ M_{i} $Tr[\rho M_{i}]$ H of measurement settings
Qubit AllocationWC Framework
Tr[ρW] = $Tr_{A} \left[U_{W}^{\dagger}(\cdots)U_{W} \left[| \mathbf{0} \rangle \langle \mathbf{0} |_{S} \otimes I_{A} \right] \right]$ $W \rangle = U_{W} \left(| \mathbf{0} \rangle_{S} \otimes | \mathbf{0} \rangle_{A} \right)$ EW Estimation in **One Attempt!**
- Lesser Quantum Resources in Measure
in Quantum Computing Services

QUANTUM CIRCUIT OF PURIFIED EW

$$|\rho\rangle = U_{\rho} |0\rangle^{\otimes N} \qquad \left|\widetilde{W}\right\rangle =$$

Two Schemes for arranging parts of quantum circuits

of Qubits in State Preparation = 3

Scheme 1

of System Qubits = 3

of Ancillae for State Preparation = 0~3

of Ancillae for EWC = 3

Scheme 2

of System Qubits = $3 \times 2 = 6$

of Ancillae for State Preparation = 0~3

of Ancillae for EWC = 3

Two Schemes for arranging parts of quantum circuits

of Qubits in State Preparation = 3

Scheme 1

of System Qubits = 3

of Ancillae for State Preparation = 0~3

of Ancillae for EWC = 3

of Total Qubits is less needed

Scheme 2

of System Qubits = $3 \times 2 = 6$

of Ancillae for State Preparation = $0 \sim 3$

of Ancillae for EWC = 3

Two Schemes for arranging parts of quantum circuits

of Qubits in State Preparation = 3

Scheme 1

of System Qubits = 3

of Ancillae for State Preparation = 0~3

of Ancillae for EWC = 3

of Total Qubits is less needed

Scheme 2

of System Qubits = $3 \times 2 = 6$

of Ancillae for State Preparation = $0 \sim 3$

of Ancillae for EWC = 3

Exploits the Idea of Quantum Teleportation

The Circuit Depth can be Reduced

Cloud Quantum Computing Service

Cloud Quantum Computing Service

Superconducting loops

A resistance-free current oscillates back and forth around a circuit loop. An injected microwave signal excites the current into superposition states.

Longevity (seconds) 0.00005

Logic success rate 99.4% Number entangled

Company support

Google, IBM, Quantum Circuits

Pros

Fast working. Build on existing semiconductor industry.

Cons

Collapse easily and must be kept cold.

doi: 10.1126/science.aal0442

lonQ

Trapped ions

Electrically charged atoms, or ions, have quantum energies that depend on the location of electrons. Tuned lasers cool and trap the ions, and put them in superposition states.

>100	0	
99.99	6	
14		
ionQ		
Very s	stable. Highe idelities.	st achiev
Slow	operation. Ma	any laser

are needed.

.

/ed

Cloud Quantum Computing Service

IBM Q

Superconducting loops

A resistance-free current oscillates back and forth around a circuit loop. An injected microwave signal excites the current into superposition states.

Longevity (seconds) 0.00005

Logic success rate 99.4% Number entangled

Company support

Google, IBM, Quantum Circuits

Pros

Fast working. Build on existing semiconductor industry.

Cons

Collapse easily and must be kept cold.

Trapped ions

Electrically charged atoms, or ions, have quantum energies that depend on the location of electrons. Tuned lasers cool and trap the ions, and put them in superposition states.

 >1000
 99.9%
14
ionQ
Very stable. Highest achieved gate fidelities.

No Qubit Allocation Functionality !

doi: 10.1126/science.aal0442

IONQ

eved

Quantum Circuits with 2 qubits for demonstration

Quantum Circuits with 2 qubits for demonstration

$$\widetilde{W} = \frac{1}{4}I - \frac{1}{4}\left(|\phi^+\rangle\langle\phi^+| - |\psi^-\rangle\langle\psi^-| \right)$$

0.1875

0.5000

$$\widetilde{WC}_{U_{\widetilde{W}}} = \widetilde{W} = \frac{1}{4}I - \frac{1}{4}(|\phi^{+}\rangle\langle\phi^{+}| - |\psi^{-}\rangle\langle\psi^{-}|\phi^{-}|\phi^{-}\rangle\langle\psi^{-}|\phi^{-}|\phi^{-}\rangle\langle\psi^{-}|\phi^{-}|\phi^{-}\rangle\langle\psi^{-}|\phi^{-}|\phi^{-}\rangle\langle\psi^{-}|\phi^{-}|\phi^{-}\rangle\langle\psi^{-}|\phi^{-}|\phi^{-}\rangle\langle\psi^{-}|\phi^{-}|\phi^{-}\rangle\langle\psi^{-}|\phi^{-}|\phi^{-}\rangle\langle\psi^{-}|\phi^{-}|\phi^{-}\rangle\langle\psi^{-}|\phi^{-}|\phi^{-}\rangle\langle\psi^{-}|\phi^{-}|\phi^{-}\rangle\langle\psi^{-}|\phi^{-}|\phi^{-}|\phi^{-}\rangle\langle\psi^{-}|\phi^{-}|\phi^{-}|\phi^{-}\rangle\langle\psi^{-}|\phi^$$

$$\widetilde{WC}_{U_{\widetilde{W}}} = \widetilde{W} = \frac{1}{4}I - \frac{1}{4}(|\phi^{+}\rangle\langle\phi^{+}| - |\psi^{-}\rangle\langle\psi^{-}|\phi^{-}|\phi^{-}\rangle\langle\psi^{-}|\phi^{-}|\phi^{-}\rangle\langle\psi^{-}|\phi^{-}|\phi^{-}\rangle\langle\psi^{-}|\phi^{-}|\phi^{-}\rangle\langle\psi^{-}|\phi^$$

$$\widetilde{WC}_{U_{\widetilde{W}}} = \widetilde{W} = \frac{1}{4}I - \frac{1}{4}(|\phi^{+}\rangle\langle\phi^{+}| - |\psi^{-}\rangle\langle\psi^{-}|\phi^{-}|\phi^{-}\rangle\langle\psi^{-}|\phi^{-}|\phi^{-}\rangle\langle\psi^{-}|\phi^{-}|\phi^{-}\rangle\langle\psi^{-}|\phi^{-}|\phi^{-}\rangle\langle\psi^{-}|\phi^$$

Ι,

Quantum Circuits with 3 qubits for demonstration

Quantum Circuits with 3 qubits for demonstration

$$\widetilde{W} = \frac{1}{8} \left(I - (X_1 X_2 X_3 + Z_1 Z_2 + Z_2 Z_3) \right)$$

State Prep.
 U_{ρ}

State 1 $\frac{1}{\sqrt{2}} \left(|000\rangle + |111\rangle \right)$ 0.00000

State 2 $|000\rangle\langle 000|$ 0.0417

State 3 $\frac{1}{2} |000\rangle\langle 000| + \frac{1}{2} |001\rangle\langle 001|$ 0.08333

State 4 $|001\rangle\langle 001|$ 0.12500

State 5 $\frac{1}{2} |001\rangle\langle 001| + \frac{1}{2} |010\rangle\langle 010|$ 0.1667

State 6 $|010\rangle\langle 010|$ 0.20833

State 7 $\frac{1}{\sqrt{2}} \left(|010\rangle - |101\rangle \right)$ 0.25000

3-qubit demonstration in Ion Q

$$\widetilde{W} = \frac{1}{8} \left(I - (X_1 X_2 X_3 + Z_1 Z_2 + Z_2 Z_3) \right)$$

State Prep.
 U_{ρ}

State 1 $\frac{1}{\sqrt{2}} \left(|000\rangle + |111\rangle \right)$ 0.00000

State 2 $|000\rangle\langle 000|$ 0.0417

State 3 $\frac{1}{2} |000\rangle\langle 000| + \frac{1}{2} |001\rangle\langle 001|$ 0.08333

State 4 $|001\rangle\langle 001|$ 0.12500

State 5 $\frac{1}{2} |001\rangle\langle 001| + \frac{1}{2} |010\rangle\langle 010|$ 0.1667

State 6 $|010\rangle\langle 010|$ 0.20833

State 7 $\frac{1}{\sqrt{2}} \left(|010\rangle - |101\rangle \right)$ 0.25000

3-qubit demonstration in Ion Q

- based quantum computing service without the assumption of trusting qubit allocations.
- The entanglement certification circuits are constructed by transferring the framework of EW 2.0 to a quantum circuit model via SPA to EWs.
- We have used the circuit architecture to certify entanglement generation in IBM Q and lonQ services.
- Our results can be generally used to certify entanglement generation in a cloud quantum computing service.

• We have established the framework of certifying entanglement generation in a cloud-

