トポス理論と圏論的論理学への誘い

荒武 永史

京都大学大学院理学研究科 数学·数理解析專攻 数理解析系 博士後期課程 3 回 (日本学術振興会特別研究員 DC.)

2019年12月6日 @数学基礎論若手の会2019 in 岡崎

Introduction

"A startling aspect of topos theory is that it unifies two seemingly wholly distinct mathematical subjects: on the one hand, topology and algebraic geometry, and on the other hand, logic and set theory."

> — Mac Lane & Moerdijk, Sheaves in Geometry and Logic 序文より

Contents

- 1 トポス理論入門:Grothendieck トポスと初等トポス
 - Grothendieck トポス
 - 初等トポス
- 2 Toposes as Mathematical Universes
 - トポスにおける一階論理の解釈
 - Kripke-Joyal 意味論と Sheaf Semantics
- 3 圏論的論理学と分類トポス
 - 函手的意味論
 - 一階理論の分類トポス

Contents of the Current Section

- 1 トポス理論入門:Grothendieck トポスと初等トポス
 - Grothendieck トポス
 - 初等トポス
- 2 Toposes as Mathematical Universes
 - トポスにおける一階論理の解釈
 - Kripke-Joyal 意味論と Sheaf Semantics
- 3 圏論的論理学と分類トポス
 - 函手的意味論
 - 一階理論の分類トポス

位相空間上の層

位相空間 X の開集合 U に対して、

$$\mathcal{F}(U) := \{ f \colon U \to \mathbb{R} ;$$
連続函数 $\}$

とおく。開集合 $V\subseteq U$ に対して、制限写像 $r_{UV}\colon \mathcal{F}(U)\to \mathcal{F}(V)$ $(f\mapsto f|_V)$ が定まる。よって、X の開集合系が成す半順序集合を $\mathcal{O}(X)$ で表すとき、 $\mathbf{反変函手}\,\mathcal{F}\colon \mathcal{O}(X)^{\mathrm{op}}\to\mathbf{Set}\,$ が得られる。

さらに *F* は**貼り合わせ条件**という次の性質を持つ:

 $\forall U \in \mathcal{O}(X), \, \forall \{U_i\}_i \colon U \,$ の開被覆, $\forall \{f_i\}_i \in \prod_i \mathcal{F}(U_i)$ に対し、 $\{f_i\}_i \, \, \text{が} \, i \neq j \implies f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$ を満たすならば、 $\exists ! f \in \mathcal{F}(U), \, \forall i, \, f|_{U_i} = f_i$

このような性質を持つ反変函手 \mathcal{F} : $\mathcal{O}(X)^{\mathrm{op}} \to \mathbf{Set}$ のことを、X 上の層という。層 \mathcal{F} , \mathcal{G} に対して、自然変換 α : $\mathcal{F} \Rightarrow \mathcal{G}$ を層の射という。X 上の層の圏を $\mathbf{Sh}(X)$ で表す。

サイトと Grothendieck トポス

Grothendieck は、数論幾何における新しいコホモロジー論を構築するために、 $\mathcal{O}(X)$ の代わりに圏 \mathcal{C} 上の層の概念を定義した。ここでは $\mathcal{O}(X)$ の "開被覆" というデータに対応する、「 \mathcal{C} の Grothendieck 被覆 J」というデータが与えられる。J は、各対象 $C \in \mathcal{C}$ に対し、C を codomain にもつような射の集合 S_{λ} の集まり J(C) から成り、適切な公理を満たすもの:

$$J = \{J(C)\}_{C \in \mathcal{C}}, \quad J(C) = \{S_{\lambda}\}_{\lambda}, \quad S_{\lambda} = \{f_i \colon C_i \to C\}_i$$

 $\mathcal{A}(C,J)$ を site という。

 \sim 前層 $F: \mathcal{C}^{\mathrm{op}} \to \mathbf{Set}$ に対する貼り合わせ条件が記述でき、 (\mathcal{C}, J) 上の層の圏 $\mathbf{Sh}(\mathcal{C}, J)$ が切り出せる。

Definition

 $\mathbf{Sh}(\mathcal{C},J)$ の形の圏のことを Grothendieck トポスという。

Grothendieck トポスの性質

Proposition

 $\mathbf{Sh}(\mathcal{C},J)$ は "Set っぽい" 以下の性質を持つ

- ▶ 任意の小極限・小余極限を持つ
- ▶ 像分解を持ち、それらは pullback で保たれる
- ▶ エピ射は正則エピ射で、よってバランス圏になっている
- ▶ exponential を持つ
- ▶ subobject classifier を持つ

また、包含函手 i は層化函手 a を左随伴に持つ:

$$\mathbf{Sh}(\mathcal{C},J) \xrightarrow{\longleftarrow} \underbrace{\overset{\mathbf{a}}{\perp}}_{i} \mathbf{Set}^{\mathcal{C}^{\mathrm{op}}}$$

よって自然な函手 $\mathbf{ay} \colon \mathcal{C} \to \mathbf{Set}^{\mathcal{C}^{\mathrm{op}}} \to \mathbf{Sh}(\mathcal{C},J)$ がある。

初等トポスの定義

Lawvere と Tierney は、トポスが Set と共通の性質を多く持つことに着目して、次の概念を得た:

Definition

locally small な圏 $\mathcal E$ が

- ▶ 有限完備
- ▶ exponential を持つ(デカルト閉圏)
- ▶ subobject classifier を持つ

を満たすとき、初等トポスという。

FinSet は初等トポスだが Grothendieck トポスではない。

Grothendieckトポスについて知られていた構成の多くは、初等トポスでもできる。また、初等トポスは"集合の宇宙"と見なせて、ここに論理学とのつながりが開かれた。

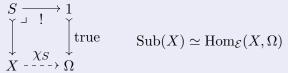
初等トポスの定義 (continued)

Definition

(1) $\mathcal E$ が exponential を持つとは、任意の対象 $X\in\mathcal E$ に対して、直積函手 $(-)\times X\colon \mathcal E\to\mathcal E$ の右随伴が存在することをいう。この右随伴を $(-)^X\colon \mathcal E\to\mathcal E$ と表す。

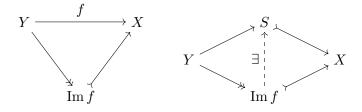
$$\operatorname{Hom}_{\mathcal{E}}(Y \times X, Z) \simeq \operatorname{Hom}_{\mathcal{E}}(Y, Z^X)$$

(2) $\mathcal E$ の subobject classifier とは、対象 Ω と射 true: $1 \to \Omega$ の組 (Ω, true) であって、次の普遍性を持つようなもの: 任意の対象 X と部分対象 $S \rightarrowtail X$ に対し、次の図を pullback に するような射 $\chi_S \colon X \to \Omega$ が一意に存在する。



初等トポスの性質

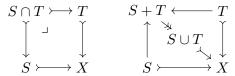
- ▶ 初等トポスは有限余完備
- ト 任意の射 $f\colon Y\to X$ は、像分解を持つ:(正則) エピ射とモノ射への分解 $Y\to \operatorname{Im} f\rightarrowtail X$ で "最小のもの"



▶ 任意の対象 $X \in \mathcal{E}$ について、スライス圏 \mathcal{E}/X は初等トポス

Logical Operations in a Topos I: Heyting Structures

▶ Sub(X) は Heyting 代数の構造を持つ。 meet と join は次の 構成で得られる:



 $S \Rightarrow T$ は \mathcal{E}/X の exponential を用いて作られる。

- ▶ 射 $f\colon Y\to X$ に対し pullback 写像 $f^*\colon\operatorname{Sub}(X)\to\operatorname{Sub}(Y)$ は Heyting 代数の準同型。
- Ωには "internal Heyting algebra" の構造が入る。

$$\wedge, \vee, \Rightarrow : \Omega \times \Omega \to \Omega, \quad \neg : \Omega \to \Omega$$

 \mathcal{E} が Grothendieck トポスのときは、 $\mathrm{Sub}(X)$ は完備 Heyting 代数

Logical Operations in a Topos II: Quantifiers as Adjoints

▶ 像分解から射 $f: Y \to X$ による順像 $\exists_f: \operatorname{Sub}(Y) \to \operatorname{Sub}(X)$

$$\begin{array}{ccc}
S & --- & \exists_f S \\
\downarrow & & \downarrow \\
Y & \xrightarrow{f} & X
\end{array}$$

を得ると、 \exists_f は f^* の左随伴になる。

▶ さらに f^* は右随伴 $\forall_f \colon \operatorname{Sub}(Y) \to \operatorname{Sub}(X)$ も持つ。

$$\operatorname{Sub}(Y) \xleftarrow{f^* \perp} \xrightarrow{\prod_{f} \operatorname{Sub}(X)} \operatorname{Sub}(X) \qquad \exists_f S \leq T \iff S \leq f^*T$$

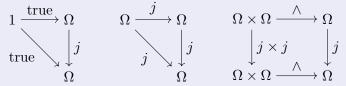
$$f^*T \leq S \iff T \leq \forall_f T$$

Local Operator

前層圏 $\mathbf{Set}^{\mathcal{C}^{\mathrm{op}}}$ から site (\mathcal{C}, J) 上の層トポス $\mathbf{Sh}(\mathcal{C}, J)$ をつくる操作は、初等トポス \mathcal{E} への一般化を持つ。

Definition

初等トポス \mathcal{E} 上の **local operator** (a.k.a. Lawvere-Tierney 位相) とは、射 $j \colon \Omega \to \Omega$ であって次の図式を可換にするもの:



local operator j が与えられると、「対象 $X \in \mathcal{E}$ が j-層」という性質が定義できる。j-層が成す部分トポスを \mathcal{E}_j で表す。

特に重要なのが、double-negation local operator $\neg \neg: \Omega \to \Omega$ である。 $\mathcal{E}_{\neg \neg}$ は Boolean トポス、i.e. Sub(X) が Boole 代数。

Local Operator vs. Grothendieck Coverage

Theorem

- (1) 圏 \mathcal{C} 上の Grothendieck 被覆 J と、前層圏 $\mathbf{Set}^{\mathcal{C}^{\mathrm{op}}}$ 上の local operator j は 1 対 1 に対応する。
- (2) 上の主張において対応する J と j について、 $F: \mathcal{C}^{op} \to \mathbf{Set}$ が J-層であることと j-層であることは同値。

Sketches of an Elephant

In his books Sketches of an Elephant (2002), Johnstone described as follows;

- (i) 'A topos is a category of sheaves on a site'
- (ii) 'A topos is a category with finite limits and power-objects'
- (iii) 'A topos is (the embodiment of) an intuitionistic higher-order theory'
- (iv) 'A topos is (the extensional essence of) a first-order (infinitary) geometric theory'
- (v) 'A topos is a totally cocomplete object in the meta-2-category CART of cartesian (i.e., finitely complete) categories'
- (vi) 'A topos is a generalized space'
- (vii) 'A topos is a semantics for intuitionistic formal systems'
- (viii) 'A topos is a Morita equivalence class of continuous groupoids'
 - (ix) 'A topos is the category of maps of a power allegory'
 - (x) 'A topos is a category whose canonical indexing over itself is complete and well-powered'
 - (xi) 'A topos is the spatial manifestation of a Giraud frame'
- (xii) 'A topos is a setting for synthetic differential geometry'
- (xiii) 'A topos is a setting for synthetic domain theory'

In his books Sketches of an Elephant (2002), Johnstone described as follows;

- (i) 'A topos is a category of sheaves on a site'
- (ii) 'A topos is a category with finite limits and power-objects'
- (iii) 'A topos is (the embodiment of) an intuitionistic higher-order theory'
- (iv) 'A topos is (the extensional essence of) a first-order (infinitary) geometric theory'
- (v) 'A topos is a totally cocomplete object in the meta-2-category C知究 of cartesian (i.e., finitely complete) categories'
- (vi) 'A topos is a generalized space'
- (vii) 'A topos is a semantics for intuitionistic formal systems'
- (viii) 'A topos is a Morita equivalence class of continuous groupoids'
 - (ix) 'A topos is the category of maps of a power allegory'
 - (x) 'A topos is a category whose canonical indexing over itself is complete and well-powered'
 - (xi) 'A topos is the spatial manifestation of a Giraud frame'
- (xii) 'A topos is a setting for synthetic differential geometry'
- (xiii) 'A topos is a setting for synthetic domain theory'

Two Logical Aspects of Toposes

ロジック的な視点からは、トポスには主に2つの側面がある

- Toposes as Mathematical Universes
 - ▶ "トポスの中で"数学的構造を考えられる
 - ▶ 集合論や型理論の圏論的解釈を与えられる
- ► Toposes as Theories
 - ▶ 理論とトポスが"対応する"(理論の分類トポス)
 - ▶ 理論のモデルは分類トポスからの函手と見なせる

同じトポスを様々な視点から調べられるのが最大の特徴!

Contents of the Current Section

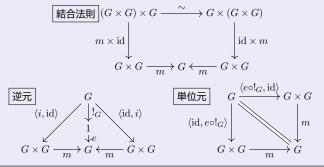
- トポス理論入門: Grothendieck トポスと初等トポス
 - Grothendieck トポス
 - 初等トポス
- 2 Toposes as Mathematical Universes
 - トポスにおける一階論理の解釈
 - Kripke-Joyal 意味論と Sheaf Semantics
- 3 圏論的論理学と分類トポス
 - 函手的意味論
 - 一階理論の分類トポス

Structures in a Category

一般の数学において、圏における代数的対象を考える場面は多い:

Definition (群対象)

C を有限直積を持つ圏とする。C における**群対象**とは、対象 G, 射 $m:G\times G\to G$, $e\colon 1\to G$, $i\colon G\to G$ の組 $\langle G,m,e,i\rangle$ であって、次の図式を可換にするようなもの:

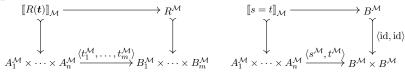


原子論理式の解釈

 \mathcal{E} をトポス (or 以下を解釈するのに十分な構造を持つ圏) とする。 **多ソート言語** \mathcal{L} に対して、 \mathcal{L} -構造 \mathcal{M} は以下の割り当て:

- ▶ ソート A に対し、対象 $A^{\mathcal{M}} \in \mathcal{E}$
- ▶ 型 $\bar{A} \equiv A_1 \cdots A_n$ に対し、 $\bar{A}^{\mathcal{M}} := A_1^{\mathcal{M}} \times \cdots \times A_n^{\mathcal{M}}$
- ▶ 定数記号 c: A に対し、射 $c^{\mathcal{M}}: 1 \to A^{\mathcal{M}} \in \mathcal{E}$
- ▶ 函数記号 $f: A_1 \cdots A_n \to B$ に対し、射 $f^{\mathcal{M}}: \bar{A}^{\mathcal{M}} \to B^{\mathcal{M}} \in \mathcal{E}$
- ▶ 関係記号 $R:A_1\cdots A_n$ に対し、部分対象 $R^{\mathcal{M}} \rightarrowtail \bar{A}^{\mathcal{M}} \in \mathcal{E}$

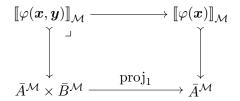
射の合成により帰納的に、項 $t: \bar{A} \to B$ の解釈 $t^{\mathcal{M}}: \bar{A}^{\mathcal{M}} \to B^{\mathcal{M}}$ が定まる。原子論理式 $R(t_1,\ldots,t_m)$, s=t の解釈は、次の pullback を用いて得られる:



論理結合子の解釈

論理結合子は部分対象が成す Heyting 代数 $\mathrm{Sub}(ar{A}^{\mathcal{M}})$ の構造を使って自然に解釈する。

$$\label{eq:continuity} \begin{split} & [\![\varphi(\boldsymbol{x})]\!]_{\mathcal{M}}, [\![\psi(\boldsymbol{x})]\!]_{\mathcal{M}} \in \operatorname{Sub}(\bar{A}^{\mathcal{M}}) \\ & \hspace{1cm} \rightsquigarrow [\![\varphi \wedge \psi]\!]_{\mathcal{M}}, [\![\varphi \vee \psi]\!]_{\mathcal{M}}, [\![\neg \varphi]\!]_{\mathcal{M}}, [\![\varphi \Rightarrow \psi]\!]_{\mathcal{M}} \in \operatorname{Sub}(\bar{A}^{\mathcal{M}}) \\ & \text{ここで} \ \varphi(\boldsymbol{x}) : \bar{A} \ \mathsf{C仮想的な自由変数} \ \boldsymbol{y} : \bar{B} \ \mathsf{を追加するには}, \end{split}$$



(一階の)量化記号の解釈

論理式 $\psi(x,y): \bar{A}\bar{B}$ に対し、 $\llbracket\exists y\psi
rbracket_{\mathcal{M}}$, $\llbracket\forall y\psi
rbracket_{\mathcal{M}}$ を次で定める:射影 $\pi:=\mathrm{proj}_1: \bar{A}^{\mathcal{M}} imes \bar{B}^{\mathcal{M}} o \bar{A}^{\mathcal{M}}$ から誘導される随伴

$$\operatorname{Sub}(\bar{A}^{\mathcal{M}} \times \bar{B}^{\mathcal{M}}) \xrightarrow{\begin{array}{c} \exists_{\pi} \\ \pi^* \bot \\ & \bot \\ & \forall_{\pi} \end{array}} \operatorname{Sub}(\bar{A}^{\mathcal{M}})$$

により、 $[\exists y\psi]_{\mathcal{M}} := \exists_{\pi} [\![\psi]\!]_{\mathcal{M}}, [\![\forall y\psi]\!]_{\mathcal{M}} := \forall_{\pi} [\![\psi]\!]_{\mathcal{M}}$ とおく。

以上で、構造 $\mathcal M$ における一階論理式の解釈 $[\![\varphi]\!]_{\mathcal M} \mapsto \bar A^{\mathcal M}$ が定義された。特に閉論理式からは $[\![\varphi]\!]_{\mathcal M} \mapsto 1$ が得られる。理論やモデルも適当な意味で定義される。

 \mathcal{E} が Grothendieck トポスのときは、 $\mathrm{Sub}(X)$ が完備 Heyting 代数なので、ある種の無限論理和 \bigvee を含むような<mark>幾何的論理</mark>まで解釈することができる。

トポスの内部言語: Mitchell-Benabou language

今回は一般の高階論理の解釈ではなく、トポス \mathcal{E} から得られる Mitchell-Benabou language $\mathcal{L}_{\mathcal{E}}$ の解釈に限定して議論する。

$\mathcal{L}_{\mathcal{E}}$ は以下のデータから成る

- ▶ 基本ソートの集合 $\{ \lceil X \rceil ; X \in \mathcal{E} \}$
- ▶ 函数記号の集合 $\{\lceil f \rceil: \lceil X \rceil \rightarrow \lceil Y \rceil; f: X \rightarrow Y \in \mathcal{E} \}$

項の生成規則: $s: \lceil U \rceil \to \lceil X \rceil, t: \lceil V \rceil \to \lceil Y \rceil$ を項とする。

- ▶ 変数 $x: \lceil X \rceil$ に対し、項 $x: \lceil X \rceil \rightarrow \lceil X \rceil$
- ▶ 函数記号 $\lceil f \rceil$: $\lceil X \rceil \to \lceil Y \rceil$ に対し、項 $\lceil f \rceil \circ s$: $\lceil U \rceil \to \lceil Y \rceil$
- ▶ $\mathbf{\bar{q}} \langle s, t \rangle : \lceil U \times V \rceil \rightarrow \lceil X \times Y \rceil$
- ightharpoonup Y = X のとき、項 $(s = t): \lceil U \times V \rceil \to \lceil \Omega \rceil$
- $ightharpoonup Y = Z^X$ のとき、項 t(s): 「 $U \times V$ 」 \to 「Z」 (函数の適用)

トポスの内部言語: Mitchell-Benabou language (continued)

- $ightharpoonup Y = \Omega^X$ のとき、項 $(s \in t)$: 「 $U \times V$ 」 \to 「 Ω 」
- ▶ $U = Y \times V$ のとき、変数 $y : \lceil Y \rceil$ に対し、項 $(\lambda y.s) : \lceil V \rceil \rightarrow \lceil X^{Y} \rceil$ (Curry 化)

項 $t: \lceil X \rceil \to \lceil Y \rceil$ は自然な解釈 $[\![t]\!]_{\mathcal{E}}: X \to Y$ を持つ。

Definition

 $arphi\colon \lceil X \rceil o \lceil \Omega \rceil$ の形の項を<mark>論理式</mark>という。 論理式の解釈 $[\![arphi]\!]_{\mathcal{E}}: X o \Omega$ は X の部分対象と同一視できる。

 Ω 上の internal Heyting 構造を用いて、論理式 φ , ψ に対し、項 $\varphi \wedge \psi$, $\varphi \vee \psi$, $\neg \varphi$, $\varphi \Rightarrow \psi$, $\exists y \varphi$, $\forall y \varphi$ の解釈が定まる。 (部分対象との同一視により、一階論理式の場合の構成法と等価)

"論理的な圏"から得られる言語を一般に内部言語という。

Kripke-Joyal 意味論

 $\mathcal{L}_{\mathcal{E}}$ を用いてトポス \mathcal{E} を調べる際には、次の意味論が用いられる。

Definition (Kripke-Joyal 意味論)

Proposition

論理式 $\theta \equiv \varphi \wedge \psi, \, \varphi \vee \psi, \, \neg \varphi, \, \varphi \Rightarrow \psi, \, \exists y \varphi, \, \forall y \varphi$ に対する関係 $U \Vdash \theta(\alpha)$ は、 $\varphi, \, \psi$ に対する \Vdash 関係を用いて表現できる。例えば、

- ▶ $U \Vdash \varphi(\alpha) \lor \psi(\alpha)$ iff 射 $p \colon V \to U, q \colon W \to U$ が存在して、 $p+q \colon V+W \twoheadrightarrow U$ がエピ射かつ $V \Vdash \varphi(\alpha p)$ かつ $W \Vdash \psi(\alpha q)$
- ▶ $U \Vdash \exists y \varphi(\alpha, y)$ iff エピ射 $p \colon V \twoheadrightarrow U \trianglerighteq \beta \colon V \to Y$ が存在して、 $V \Vdash \varphi(\alpha p, \beta)$

Sheaf Semantics I: 前層圏の場合

 \mathcal{E} が Grothendieck トポス $\mathbf{Sh}(\mathcal{C},J)$ の場合を考える。対象 $C\in\mathcal{C}$ に対し、 $\mathbf{ay}C\Vdash\varphi(\alpha)$ を簡単に $C\Vdash\varphi(\alpha)$ と書く。ここで $\alpha\colon \mathbf{ay}C\to X$ は $\alpha\in X(C)$ と対応することに注意。

特に $\mathcal{E} = \mathbf{Set}^{\mathcal{C}^{\mathrm{op}}}$ のときは、K-J 意味論について次が成り立つ:

- $ightharpoonup C \Vdash \varphi(\alpha) \lor \psi(\alpha) \text{ iff } C \Vdash \varphi(\alpha) \text{ \sharp} \text{\sharp} \text{\sharp} \text{ι} \text{ι} C \Vdash \psi(\alpha)$
- ▶ $C \Vdash \exists y \varphi(\alpha, y)$ iff ある $\beta \in Y(C)$ が存在して $C \Vdash \varphi(\alpha, \beta)$

この場合は、直観主義論理に対する Kripke 意味論や、モデル理論における有限強制と関わりがある。

Sheaf Semantics II: Cohen トポスの場合

順序集合 \mathbb{P} に対して、 $\mathbf{Sh}(\mathbb{P},\neg\neg)\simeq(\mathbf{Set}^{\mathbb{P}^{\mathrm{op}}})_{\neg\neg}$ を考える。 このとき K-I 意味論について次が成り立つ:

- ▶ $p \Vdash \varphi(\alpha) \lor \psi(\alpha)$ iff 任意の $q \le p$ に対して、ある $r \le q$ が存在して、 $r \Vdash \varphi(\alpha \cdot r)$ または $r \Vdash \psi(\alpha \cdot r)$
- ▶ $p \Vdash \exists y \varphi(\alpha, y)$ iff 任意の $q \leq p$ に対して、ある $r \leq q$ と $\beta \in Y(r)$ が存在して、 $r \Vdash \varphi(\alpha \cdot r, \beta)$
- この場合は、Cohen の強制法に関わりがある。
- → 連続体仮説を満たさないトポスの構成など

この他にも、 \mathcal{E} が realizability topos(これは Grothendieck トポスではない)の場合などに K-J 意味論の応用がある。

また、圏論の命題を、内部言語に関する論理推論によって示すことができる。

Contents of the Current Section

- 1 トポス理論入門:Grothendieckトポスと初等トポス
 - Grothendieck トポス
 - 初等トポス
- 2 Toposes as Mathematical Universes
 - トポスにおける一階論理の解釈
 - Kripke-Joyal 意味論と Sheaf Semantics
- 3 圏論的論理学と分類トポス
 - 函手的意味論
 - 一階理論の分類トポス

Lawvere の函手的意味論

等式理論 T に対し、次のような syntactic category \mathcal{C}_T を考える: 対象 $\mathrm{Ob}(\mathcal{C}_T) := \{ [n] : n \in \omega \}$ ([n] は形式的表現)

射
$$\operatorname{Hom}_{\mathcal{C}_T}([m],[n])$$

 $:=\{(t_1,\ldots,t_n):m$ 引数の項の n-tuples $\}/\sim$

ただしここで、 $t \sim s \iff T \vdash \forall x \bigwedge_i t_i(x) = s_i(x)$ このとき、 \mathcal{C}_T は有限直積を持つ圏($[n] = [1] \times \cdots \times [1]$)。

さらに、*T-*代数 *M* から

$$t:[m]\to[n] \qquad \mapsto \qquad t^{\mathcal{M}}:\mathcal{M}^m\to\mathcal{M}^n$$

によって、直積を保つ函手 $F_{\mathcal{M}} \colon \mathcal{C}_T \to \mathbf{Set}$ が得られる。この対応 $\mathcal{M} \mapsto F_{\mathcal{M}}$ は次の圏同値を誘導:

$$T$$
-Alg \simeq FinProdFunc(\mathcal{C}_T , Set)

一般に「**理論に圏を」「モデルに函手を**」対応させるような枠組みを<mark>函手的意味論</mark>という。どんな圏論的論理学においても、函手的意味論を構築するのが最初のステップになる。

一階述語論理の函手的意味論

以下ではT は一階理論、 \mathcal{E} は Grothendieck トポスとする。先述したトポス \mathcal{E} におけるT-モデルに対しても、等式理論と同様のことができる。例えば、T が cartesian logic と呼ばれる断片で記述されているとき、syntactic category \mathcal{C}_T を

対象
$$\mathrm{Ob}(\mathcal{C}_T) := \{ \, \varphi(\boldsymbol{x}) \, ;$$
 論理式 $\}$ 射 $\mathrm{Hom}_{\mathcal{C}_T}(\varphi(\boldsymbol{x}), \psi(\boldsymbol{y})) := \{ \, \chi(\boldsymbol{x}, \boldsymbol{y}) \, ;$ 函数論理式 $\}/\sim$ ここで、論理式 $\chi(\boldsymbol{x}, \boldsymbol{y})$ が函数論理式であるとは、 $\forall \boldsymbol{x} \forall \boldsymbol{y} [\chi \to \varphi \land \psi], \quad \forall \boldsymbol{x} [\varphi \to \exists \boldsymbol{y} \chi]$

がTから証明可能であることをいう。 で定めると、「定義可能集合を取る函手」を得る対応により、

$$T ext{-}\mathbf{Mod}(\mathcal{E}) \simeq \mathbf{Lex}(\mathcal{C}_T, \mathcal{E})$$

ただし、左辺は \mathcal{E} における T-モデルと準同型の圏、右辺は有限極限を保つ函手と自然変換の圏。

Gödel の完全性

syntactic category \mathcal{C}_T は、T からの証明可能性の情報を持つ:

$$T \vdash \varphi \iff$$
射 $\varphi \rightarrowtail (\forall x.x = x)$ が同型射

そこで、Gödel の完全性定理は函手的意味論を介して次のような 圏論的命題と対応する:

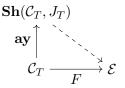
(適当な圏論的構造を保つ)函手の族 $\{F_i\colon \mathcal{C}_T \to \mathbf{Set}\}_i$ が存在して、任意の射 $f\in \mathcal{C}_T$ に対し、

 $\forall i, F_i(f)$ が同型射 $\Longrightarrow f$ 自身が同型射

このように、ロジック的現象を圏論的に表現することで論理と圏 論の関係性を調べることが、圏論的論理学に通底する目標である。

一階理論の分類トポス

分類トポスの概念により、理論を Mathematical Universe としてのトポスと同じ土俵に持っていける:syntactic category \mathcal{C}_T 上に適当な Grothendieck 被覆 J_T を与えると、 J_T -連続な函手 $F\colon \mathcal{C}_T \to \mathcal{E}$ からトポスの幾何的射 $\mathbf{Sh}(\mathcal{C}_T,J_T) \to \mathcal{E}$ が得られる。



 J_T -連続性が極限の保存などに対応するように J_T を構成しておけば、次の圏同値が得られる:

$$T\text{-}\mathbf{Mod}(\mathcal{E}) \simeq \mathbf{Cont}_{J_T}(\mathcal{C}_T, \mathcal{E}) \simeq \mathbf{Geom}^*(\mathbf{Sh}(\mathcal{C}_T, J_T), \mathcal{E})$$

ここで $Geom^*(\mathcal{F}, \mathcal{E})$ は幾何的射と幾何的変換の圏。このような普遍性を持つトポスを T の分類トポスといい、Set[T] で表す。

分類トポスと内部言語

Grothendieck トポス \mathcal{E} に対しては、M-B language とは異なる 一階の内部言語およびその上の幾何的理論 $T_{\mathcal{E}}$ を構成でき、

$$\mathcal{E} \simeq \mathbf{Set}[T_{\mathcal{E}}], \quad \mathbf{Geom}^*(\mathcal{E}, \mathcal{F}) \simeq T_{\mathcal{E}} \cdot \mathbf{Mod}(\mathcal{F})$$

分類トポス・内部言語を介して幾何的理論とトポスを行き来して、 ロジック ↔ 圏論と双方向の応用が可能になる

- ▶ ロジック → 圏論の例:連結で原子的な点無しトポスの構成
- ▶ 圏論 → ロジックの例:Deligne の定理と完全性定理

cf. 高階理論の場合、理論 T から初等トポス \mathcal{E}_T が与えられ、トポス \mathcal{F} における T のモデルはトポスの論理的射 $\mathcal{E}_T \to \mathcal{F}$ に対応する

$$T ext{-}\mathbf{Mod}(\mathcal{F}) \simeq \mathbf{Log}(\mathcal{E}_T, \mathcal{F})$$

また、M-B language $\mathcal{L}_{\mathcal{E}}$ は、 $\mathcal{E} \simeq \mathcal{E}_T$ なる高階理論 T を記述するのに用いられる。

分類トポスとモデル理論

- ▶ Makkai: 完全性定理、圏の埋め込み定理とタイプ排除
- ▶ Blass & Scedrov: Boolean coherent classifying topos と理論の可算範疇性、existentially closed model/finite-generic model の分類トポスの構成
- ▶ Caramello: 理論の性質と分類トポスの性質の関連、Fraisse 構成の圏論的一般化、可算均質モデルの自己同型群について のガロア理論 etc.

参考文献

- [1] O. Caramello. **Theories, Sites, Toposes: Relating and studying mathematical theories through topos-theoretic 'bridges'**. Oxford University Press, 2018.
- [2] P. T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium. 2 vols. Oxford Logic Guides 43,44. Clarendon Press, 2002.
- [3] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Universitext. Springer-Verlag, 1992.