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(A VERY DETAILED EXPOSITION OF SEMMES’ PROOF)
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Abstract. In 2009, Semmes announced that a function f on Baire space is decomposable into
countably many Baire-one functions with Gδ domains if and only if the preimage of a Fσ set
under f is Gδσ. In this report, I will outline Semmes’ proof with the emphasis on the use
of a finite injury priority argument, but not a game-theoretic one, and try to clarify how his
argument works.

1. Introduction

1.1. Background. In 2009, Semmes [4] announced a result extending the Jayne-Rogers theo-
rem [2]. Since then, a number of experts tried to clarify and simplify Semmes’ proof, cf. [1].
Semmes’ original exposition of his proof have laid emphasis on game-theoretic arguments. In this
report, we will take a completely opposite approach: As is well known to experts, no determi-
nacy argument has been used in Semmes’ proof, and therefore, removing all the game-theoretic
machineries makes the proof much clearer. Instead, we will put an emphasis on the use of finite
injury priority argument.

In particular, we do not use Theorem 4.1.1 in Semmes [4] characterizing the Baire class 2
functions by the game G1,3 (which is called Mistigri in [1]). This causes a few minor changes
in the proof. For instance, our conditions (∗) and (∗∗) in pp. 9–10 are slightly different from
the ones in Semmes [4, p.45 in Theorem 4.3.7]. As a consequence, the way of our exposition is
slightly different from the original one; however, all of the essential ideas are already contained
in Semmes’ original insightful proof.

1.2. Notations. [σ] is the clopen set generated by σ ∈ ω<ω. An open set in ωω is said to be
finitary if it is of the form

∪
σ∈F [σ] for some finite set F ⊆ ω<ω. If a string σ is an initial segment

of τ then we write σ ⊑ τ . If strings σ and τ are incomparable then we write σ⊥τ . For a function
f : X → Y and A ⊆ X, we use f |A to denote the restriction of f up to A. Let Γ and Λ be
pointclasses. We write f−1Γ ⊆ Λ if the preimage of each Γ set under f is Λ, that is,

A ∈ Γ =⇒ f−1[A] ∈ Λ in dom(f).

For example, f is Σ0
n-measurable if and only if f−1Σ0

1 ⊆ Σ0
n holds.

If F is a class of functions, we also write f ∈ dec(F/Γ) if f is decomposable into countably
many F-functions on Γ domains, that is, there is a countable Γ cover (Xi)i∈ω of the domain of
f such that f |Xi ∈ F for each i ∈ ω.

We also useΣ0
n to denote the class ofΣ0

n-measurable functions. For instance, the Jayne-Rogers
theorem [2] can be stated as follows.

f−1Σ0
2 ⊆ Σ0

2 ⇐⇒ dec(Σ0
1/Π

0
1)

where f is a function from an analytic subset of a Polish space to a separable metrizable space.
It is easy to see the following (see Motto Ros [3] and Semmes [4, Lemma 4.3.1])
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Observation 1. The following equalities hold.

dec(Σ0
m/Π

0
n) = dec(Σ0

m/Σ
0
n+1) = dec(dec(Σ0

m/Π
0
n)/Σ

0
n+1).

2. Proof

In his PhD thesis [4], Semmes showed that the following equivalence holds.

f−1Σ0
2 ⊆ Σ0

3 ⇐⇒ dec(Σ0
2/Π

0
2).

The right-to-left implication is clear. Moreover, the condition f−1Σ0
2 ⊆ Σ0

3 always implies
that f is Σ0

3-measurable. Thus, to verify the above equivalence, it suffices to show the following:

Theorem 2 (Semmes [4]). Suppose that f : ωω → ωω is Σ0
3-measurable. Then,

f ̸∈ dec(Σ0
2/Π

0
2) =⇒ f−1Σ0

2 ̸⊆ Σ0
3.

2.1. Transfinite derivation process. To prove Theorem 2, hereafter we fix a Σ0
3-measurable

function f : ωω → ωω. Then, the preimage f−1[σ] of a clopen set is Σ0
3. Therefore, it can be

written as a countable union of Π0
2 sets, say f−1[σ] =

∪
s∈ω f

∗
s [σ]. This decomposition f∗s [σ]

is the replacement for the game G1,3 in [4] or the Mistigri in [1]. It looks too simple, but it
certainly works.

Let D be a subset of ωω, and put h = f |D. Then, define h∗s[σ] = f∗s [σ] ∩D. In Section 2.1,
we will present an essence of the argument of Semmes [4, Lemma 4.3.3].

Given X ⊆ ωω, we define [X;h]†σ as follows:

[X;h]†σ = X \
∪

{J : h|D∩X∩J\h−1[σ] ∈ dec(Σ0
2/Π

0
2)},

where J ranges over open sets in ωω. Moreover, given Y , we consider the following [Y ;h]⋆σ,s:

[Y ;h]⋆σ,s = clY (h
∗
s[σ]),

where clZA is the topological closure of a set A∩Z in a space Z. We call the above procedure a
†σ-derivation (or a †-derivation) and a ⋆σ,s-derivation (or a ⋆-derivation), respectively. Clearly,

[X;h]†σ and [Y ;h]⋆σ,s are closed subsets of X and Y , respectively. In Semmes’ thesis [4, Lemma
4.3.3], a †-derivation and a ⋆-derivation are called a Ξ-operation and an Ω-operation, respectively.

We fix h, and simply write X†
σ and Y ⋆

σ,s for [X;h]†σ and [Y ;h]⋆σ,s, respectively. We iterate these
derivation procedures:

H0
σ,s = ωω,

Hα+1
σ,s = ((Hα

σ,s)
†
σ)

⋆
σ,s,

Hα
σ,s =

∩
β<α

Hβ
σ,s if α is a limit ordinal.

Note that there is a countable ordinal γ(σ, s) such that H
γ(σ,s)+1
σ,s = H

γ(σ,s)
σ,s since (Hα

σ,s)α is a
decreasing sequence of closed sets in ωω. Clearly, γ = supσ,s γ(σ, s) + 1 is a countable ordinal
since ℵ1 is regular.

We divide the set D into three pieces. We first define the (σ, s)-kernel to be

Kσ,sh = Hγ(σ,s)
σ,s .

We say that a point x ∈ X is generic if for every (σ, s), either x ∈ h−1[σ] or there exists α such

that x ∈ (Hα
σ,s)

†
σ \Hα+1

σ,s (that is, x is removed by a ⋆σ,s-derivation). Define K = D∩
∪

σ,sKσ,sh,

G to be the set of all generic points y ∈ D \K, and A to be the set of all other points in D.
Note that x ∈ A iff x ̸∈ h−1[σ] holds, and x must be removed by a †-derivation for some (σ, s).
Proposition 3.
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(1) A ∈ ∆0
3, G ∈ ∆0

3, and K ∈ Σ0
2, in D.

(2) h|G is Σ0
2-measurable.

(3) h|A ∈ dec(Σ0
2/Π

0
2).

To see this, we need the following characterization of the set A.

Claim. Suppose x ∈ D\K. Then, x ∈ A if and only if there are (σ0, s0), (σ1, s1) and α0, α1 < γ

such that [σ0] ∩ [σ1] = ∅ and x ∈ Hαi
σi,si \ (H

αi
σi,si)

†
σi for every i ∈ {0, 1}.

Proof. The condition x ̸∈ K means that for every (σ, s), there is α(σ, s) such that x ∈ H
α(σ,s)
σ,s \

H
α(σ,s)+1
σ,s . Now x ∈ D and thus h(x) is defined.
If x ∈ A then x ̸∈ h−1[σ0] holds, and x must be removed by a †-derivation, that is, x ∈

Hα0
σ0,s0 \ (H

α0
σ0,s0)

†
σ0 where α0 = α(σ0, s0). Since h(x) ̸∈ [σ0] and since σ0 is nonempty, there is σ1

such that [σ0] ∩ [σ1] = ∅ and h(x) ∈ [σ1]. Let s1 be such that x ∈ h∗s1 [σ1]. Note that for any
Z, x ∈ Z clearly implies x ∈ clZ(h

∗
s1 [σ1]). Therefore, x is not removed by a ⋆σ1,s1-derivation,

and thus x must be removed by a †-derivation. More precisely, for all α, x ∈ (Hα
σ1,s1)

†
σ1 implies

x ∈ Hα+1
σ1,s1 ; hence by putting α1 = α(σ1, s1), we get x ∈ Hα1

σ1,s1 \ (H
α1
σ1,s1)

†
σ1 as desired.

We next verify the converse direction. Let x be a point in D\K satisfying the latter condition.
Since [σ0] ∩ [σ1] = ∅, we must have x ̸∈ h−1[σi] for some i < 2. Then, the pair (σi, si) witnesses
that x is removed by a †σi-derivation. This implies that x is not generic. Hence, under our
assumption that x ̸∈ K, we have x ∈ A as desired. □

Proof of Proposition 3. (1) By definition, clearly K ∈ Σ0
2 in D. Hence, by the above claim, A

is Σ0
2 in D \K, and thus A is the difference of two Σ0

2 sets in D. Then, G is also contained in
a finite level of the difference hierarchy over Σ0

2 in D.
(2) Suppose that x ∈ G. Then, x is generic, and x ̸∈ K. Given (σ, s), Let α(σ, s) witness

x ̸∈ K as in the previous claim. If x ∈ h−1[σ], there is s such that x ∈ h∗s[σ] by definition.
Then, as mentioned in the previous claim, x is not removed by a ⋆-derivation, and thus removed

by a †-derivation: For all α, x ∈ (Hα
σ,s)

†
σ implies x ∈ Hα+1

σ,s ; hence x ∈ H
α(σ,s)
σ,s \ (H

α(σ,s)
σ,s )†σ.

If x ̸∈ h−1[σ], by our definition of genericity, x is always removed by a ⋆-derivation: For all

s, there exists α such that x ∈ (Hα
σ,s)

†
σ \ Hα+1

σ,s , which means that x ∈ (H
α(σ,s)
σ,s )†σ \ Hα(σ,s)+1

σ,s .
Consequently, whenever x ∈ G, for any σ,

x ∈ h−1[σ] ⇐⇒ (∃α < γ)(∃s ∈ ω) x ∈ Hα
σ,s \ (Hα

σ,s)
†
σ.

The latter condition is clearly Σ0
2.

(3) Let (σi, si, αi)i<2 be a witness of x ∈ A as in the previous claim. By our definition of the
†-derivation, for Z = Hα0

σ0,s0 ∩H
α1
σ1,s1 , there is a neighborhood J of x such that

h|D∩Z∩J\h−1[σi] ∈ dec(Σ0
2/Π

0
2).

Clearly, [σ0] ∩ [σ1] = ∅ implies (J \ h−1[σ0]) ∪ (J \ h−1[σ1]) = J . Since Σ0
3-measurability

of h and zero-dimensionality of ωω implies that h−1[σi] is ∆0
3 in D, both J \ h−1[σ0] and

J \ h−1[σ1] are ∆0
3 in D. Hence, h|D∩Z∩J ∈ dec(Σ0

2/∆
0
3). Since there are only countably

many candidates for such a witness (σi, si, αi)i<2 (because αi < γ), h|A is decomposable into
countably many dec(Σ0

2/∆
0
3)-functions on closed domains (Hα0

σ0,s0 ∩H
α1
σ1,s1 ∩ J)σ0,s0,α0,σ1,s1,α1,J .

Hence, by Observation 1, we conclude h|A ∈ dec(Σ0
2/∆

0
3). □

2.2. Chain of kernels. As a consequence of Proposition 3, we obtain the following key lemma.

Lemma 4. If h ̸∈ dec(Σ0
2/Π

0
2), then K is nonempty.
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Proof. If K is empty, then h = h|A ∪ h|G. By Proposition 3 (2) and (3), we have h|A, h|G ∈
dec(Σ0

2/Π
0
2). Since A and G are ∆0

3 by Proposition 3 (1), we also have h ∈ dec(Σ0
2/Π

0
2) by

Observation 1. □

In particular, there is (σ, s) such that the (σ, s)-kernel Kσ,sh has an intersection with D. Note
that Kσ,sh is closed in ωω even if D is not. It is easy to see that Kσ,sh ⊆ clωωD. This Kσ,s

corresponds to T in the statement of Semmes [4, Lemma 4.3.3]. Hereafter, if L is a closed set
and p is a finite string, we write p ∈ L if L ∩ [p] ̸= ∅, that is, we often identify a closed set with
a pruned tree.

2.2.1. The ⋆-derivation. The ⋆-derivation procedure for h = f |D ensures a density condition for
Kσ,sX. This observation corresponds to the second property of T in Semmes [4, Lemma 4.3.3].
We say that a triple (K,σ, s) of a nonempty closed set K, a finite string σ, and a natural number
s is a bi-density triple (w.r.t. f) if

(D1) f∗s [σ] is dense in K.
(D2) f∗t [τ ] is nowhere dense in K whenever σ⊥τ and t ∈ ω.

Let Q be the set of all bi-density triples. The following proof is an analog of [4, Lemma 4.3.2].

Observation 5. For any D ⊆ ωω, σ and s, we have (Kσ,s(f |D), σ, s) ∈ Q.

Proof. Put h = f |D. The ⋆-derivation procedure clearly ensures that h∗s[σ] is dense in Kσ,sh.
Hence f∗s [σ] is also dense in Kσ,sh, that is, (D1) holds. Suppose for the sake of contradiction
that the item (D2) fails. Then f∗t [τ ] is dense in Kσ,sh ∩ [η] for some η ∈ ω<ω, and f∗s [σ] is also
dense in Kσ,sh∩ [η] by (D1). By definition, f∗[σ] and f∗[τ ] are Π0

2 in the Polish space ωω. Thus,
both are intersections of sequences of dense open sets in the closed set Kσ,sh∩ [η]. By the Baire
category theorem, f∗s [σ] and f

∗
t [τ ] have an intersection. However, σ⊥τ implies [σ] ∩ [τ ] = ∅ and

thus we must have f∗s [σ] ∩ f∗t [τ ] ⊆ f−1[σ] ∩ f−1[τ ] = ∅. □

2.2.2. The †-derivation. The †-derivation procedure ensures an indecomposability condition for
Kσ,sh. This observation corresponds to the first property of T in Semmes [4, Lemma 4.3.3]. We
say that a triple (L, p;V ) of a nonempty closed set L, a finitary clopen set V , and a finite string
p ∈ L is an indecomposability domain (for f) if

(∀q ∈ L) [q ⊒ p =⇒ f |L∩[q]\f−1[V ] ̸∈ dec(Σ0
2/Π

0
2)].

Let L1 be the set of all indecomposability domains. The †-derivation procedure ensures the
following.

Observation 6. Assume that f |D ̸∈ dec(Σ0
2/Π

0
2), and that D and f−1[U ] have no intersection.

Then, there exists (σ, s) such that (Kσ,s(f |D), ε;U ∪ [σ]) ∈ L1, where ε denotes the empty string.

Proof. Put h = f |D. By Lemma 4, there is (σ, s) such that Kσ,sh is nonempty. By definition of

a kernel K = Kσ,sh, we have K†
σ = K. Note that D∩ f−1[U ] = ∅ implies that D \ f−1[U ∪ σ] =

D \ f−1[σ] = D \ h−1[σ], and f and h agrees on this set. Therefore, by definition of the
†-derivation procedure, we have the following.

f |K∩[q]\f−1[U∪σ] ⊇ f |D∩K∩[q]\f−1[U∪σ] = h|D∩K∩[q]\h−1[σ] ̸∈ dec(Σ0
2/Π

0
2)

for any q ∈ ω<ω. This means that (Kσ,sh, ε;U ∪ [σ]) is an indecomposability domain. □

The following states the basic properties of L1. The proof of the latter corresponds to [4,
Lemma 4.3.1].

Observation 7. (1) If (L, p;V ) ∈ L1, then for any V ′ ⊆ V and q ∈ L with q ⊒ p, we have
(L, q;V ′) ∈ L1.
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(2) For any pair (J0, J1) of disjoint finitary clopen sets, if (L, p;V ) ∈ L1 then there are q ∈ L
with q ⊒ p and i < 2 such that (L, q;V ∪ Ji) ∈ L1.

Proof. (1) Obviously, if f |A ̸∈ dec(Σ0
2/Π

0
2) and A ⊆ B then f |B ̸∈ dec(Σ0

2/Π
0
2). Now, note

that L ∩ [q] \ f−1[V ] ⊆ L ∩ [p] \ f−1[V ′].
(2) Otherwise, (L, p;V ∪ J0) ̸∈ L1 means that f |L∩[q]\f−1[V ∪J0] ∈ dec(Σ0

2/Π
0
2) for some q ∈ L

with q ⊒ p, and similarly, (L, q;V ∪ J1) ̸∈ L1 means that f |L∩[r]\f−1[V ∪J1] ∈ dec(Σ0
2/Π

0
2) for

some r ∈ L with r ⊒ q. Since J0 and J1 are disjoint, we have

(L ∩ [r]) \ f−1[V ] = (L ∩ [r] \ f−1[V ∪ J0]) ∪ (L ∩ [r] \ f−1[V ∪ J1]).

By Σ0
3-measurability of f , f−1[V ∩ Ji] is ∆0

3, and therefore, again by Observation 1, we can see
that f |L∩[r]\f−1[V ] ∈ dec(Σ0

2/Π
0
2), and thus (L, p;V ) ̸∈ L1 since p ⊑ r ∈ L. □

Definition 8. We say that ((Lℓ)ℓ≤a, p
a;V ) is an indecomposability layer if

L0 ⊇ L1 ⊇ · · · ⊇ La−1 ⊇ La,
(La, p

a;V ) is an indecomposability domain, i.e., in L1,
(∀qa ⊒ pa)(∃ra−1 ⊒ qa) ((Lℓ)ℓ<a, r

a−1;V ) is an indecomposability layer,

where qa ranges over La and ra−1 ranges over La−1. Let L be the set of all indecomposability
layers.

According to Semmes’ terminology, ((Lℓ)ℓ≤a, p
a;V ) is an indecomposability layer iff pa is

(Lℓ)ℓ≤a-V
c-good. The following corresponds to Semmes [4, Proposition 4.3.4].

Observation 9. If ((Lℓ)ℓ≤a, p
a;V ) ∈ L, qa ∈ La, and q

a ⊒ pa, then ((Lℓ)ℓ≤a, q
a;V ) ∈ L

Proof. By Observation 7 (1). □

The following is a restatement of Semmes [4, Lemma 4.3.6] in our language, which generalizes
Observation 7 (2).

Lemma 10. Let (Jk)k<m be a collection of pairwise disjoint finitary clopen sets. If (L, pa;V ) ∈
L, then for all but |L| many indices i < m, we have (L, qa;V ∪ Ji) ∈ L for some qa ⊒ pa.

Proof. First assume that |L| = 1. In this case, (L, p;V ) ∈ L just means that (L, p;V ) ∈ L1.
Thus, Observation 7 (2) clearly implies the assertion for |L| = 1.

Consider the length |L| = a + 1. In this proof, superscripts of variables xa, ya−1, etc. will
indicate that xa ranges over La, y

a−1 ranges over La−1, etc. We put Si
a = {qa : (La, q

a;V ∪Ji) ∈
L1} and Si

<a = {qa−1 : ((Lℓ)ℓ<a, q
a−1;V ∪Ji) ∈ L}. By Observations 7 (1) and 9, Si

a and Si
<a are

open in La. By induction, we assume the assertion for the length a, and fix ((Lℓ)ℓ≤a, p
a;V ) ∈ L.

Since the third condition of L implies that, given qa ⊒ pa, ((Lℓ)ℓ<a, r
a−1;V ) ∈ L for some

ra−1 ⊒ qa, we get the following by the induction hypothesis:

(IH) Given qa ⊒ pa, there is ra−1 ⊒ qa such that for all but a many indices i, ua−1 ∈ Si
<a for

some ua−1 ⊒ ra−1, that is, Si
<a ∩ [ra−1] ̸= ∅.

Note that (IH) implies that given qa ⊒ pa, for all but a many indices i, Si
<a ∩ [qa] ̸= ∅.

Now we start to verify the assertion. By definition of L, it suffices to show the following for
all but a+ 1 many indices i < m:

(∃qa ⊒ pa) [qa ∈ Si
a and (∀ra0 ⊒ qa)(∃ra−1

1 ⊒ ra0) r
a−1
1 ∈ Si

<a].(1)

Case 1. For any i ≤ m, Si
a is dense in La ∩ [pa].
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In this case,
∩

i<m S
i
a is also dense in La ∩ [pa] since the intersection of finitely many dense

open sets is again dense. Let E be the set of all indices j such that the condition (1) fails. If

j ∈ E, then since Sj
a is dense in La ∩ [pa], the failure of (1) implies that

(∀qa0 ⊒ pa)(∃ra0 ⊒ qa0)(∀ra−1
1 ⊒ ra0) r

a−1
1 ̸∈ Sj

<a.

Consider exta−1S
j
<a = {qa−1 ∈ La−1 : (∀ra−1 ⊒ qa−1) ra−1 ̸∈ Sj

<a}, the exterior of Sj
<a in

La−1. Clearly, exta−1S
j
<a is open, and the above formula says that if j ∈ E, then exta−1S

j
<a is

dense in La ∩ [pa]. Therefore,
∩

j∈E exta−1S
j
<a is also dense in La ∩ [pa]. In particular, there is

qa∗ ⊒ pa such that

(∀j ∈ E) Sj
<a ∩ [qa∗ ] = ∅.

However, by (IH), for all but a many indices j, Sj
<a ∩ [qa∗ ] ̸= ∅. Therefore, we have |E| ≤ a.

Case 2. There is i < m such that Si
a is not dense in La ∩ [pa].

In this case, La \ Si
a contains a nonempty open subset of [pa] in La, that is, there is qa ⊒ pa

such that qa0 ∈ La \Si
a for all qa0 ⊒ qa. By Observation 7 (2), if j ̸= i, then for any qa0 ⊒ qa, there

is qa1 ⊒ qa0 such that qa1 ∈ Sj
a. In particular, Sj

a ⊆ La is dense in La ∩ [qa]. Hence,
∩

i̸=j<m S
j
a is

dense in La ∩ [qa].
Let E be the set of all indices j such that the condition (1) fails. If j ∈ E, j ̸= i, then since

Sj
a is dense in La ∩ [qa], the failure of (1) implies that

(∀qa0 ⊒ qa)(∃ra0 ⊒ qa0)(∀ra−1
1 ⊒ ra0) r

a−1
1 ̸∈ Sj

<a.

Thus, by the similar argument as before, we get qa∗ ⊒ pa such that

(∀j ∈ E \ {i}) Sj
<a ∩ [qa∗ ] = ∅.

As before, (IH) implies |E \ {i}| ≤ a. Hence, |E| ≤ a+ 1. This concludes the proof. □
2.2.3. Semmes conditions. We now introduce a key notion, which we call a Semmes condition.

Definition 11. A tuple ((Lℓ, σℓ, sℓ)ℓ≤a, p
a, V ) is called a Semmes condition if

((Lℓ)ℓ≤a, p
a, V ) is an indecomposability layer, i.e., in L,

(σℓ)ℓ≤a is pairwise incomparable, and σℓ ∈ V,
(Lℓ, σℓ, sℓ) is a bi-density witness, i.e., in Q, for all ℓ ≤ a.

Let S be the set of all Semmes conditions. We say that ((Tℓ, σℓ, sℓ)ℓ≤a, q
a, V ′) ∈ S extends

((Tℓ, σℓ, sℓ)ℓ<a; p
a−1, V ) ∈ S if

Ta ⊆ Ta−1, V
′ ⊋ V , σa ̸∈ V , and qa ⊒ pa−1

We will need to ensure that a Semmes condition always has an extension. We utilize the
indecomposability condition to construct an extension. The following lemma is buried in Semmes
[4, p.37 in Theorem 4.3.7]

Lemma 12. Let T and Li, i < c, be bi-density witnesses, and (T , pa−1, V ), (Li, pi, V ) are
Semmes conditions. Then, there are T ′ ⊇ T , qa ⊒ pa−1, p′i ⊒ pi, and V ′ ⊇ V such that
(T ′, qa, V ′) extends (T , pa−1, V ), and (Li, p

′
i, V

′) are still Semmes conditions.

Proof. Let T = (Tℓ)ℓ<a be given, where Tℓ is of the form (Tℓ, τℓ, tℓ). We will construct Ta. We
claim that for any z, there is a sequence (Tn+1

a , qan+1, σn)n≤z such that (qan+1)n≤z is increasing,

Ta−1 ⊇ T 0
a ⊇ T 1

a ⊇ · · · ⊇ T z
a ⊇ T z+1

a ,
(σn)n≤z is pairwise incomparable,

(Tn+1
a , qan+1;V ∪ [σn]) is an idecomposable domain, i.e., in L1, for any n ≤ z,



A PRIORITY ARGUMENT IN DESCRIPTIVE SET THEORY 7

We first define T 0
a = Ta−1, q

a
0 = pa−1, and U0 = ∅. Since (T , pa−1, V ) ∈ S, (T 0

a , q
a
0 ;V ∪ U0)

is an indecomposability domain. Assume that we have constructed (T s+1
a , qas+1, σs)s<n fulfilling

the above claim. Put Un =
∪

s<n[σs]. Inductively assume that (Tn
a , q

a
n;V ∪ Un) is an indecom-

posability domain, that is, f |D ̸∈ dec(Σ0
2/Π

0
2), where D = Tn

a ∩ [qan] \ f−1[V ∪Un]. By applying
Lemma 4 to h = f |D, one obtains σn, sn such that

∅ ̸= Tn+1
a := Kσn,snh ⊆ clωω(D) ⊆ Tn

a ∩ [qan].

Since D and f−1[V ∪ Un] have no intersection, by Observation 6, (Tn+1
a , ε;V ∪ Un+1) is an

indecomposability domain, and so is (Tn+1
a , qan;V ∪ [σn]) by Observation 7 (1). This verifies the

third requirement of the claim whenever qan ⊑ qan+1 ∈ Tn+1
a .

To ensure the second requirement of the claim, we may need to choose a subsequence of
(T s+1

a , qas+1, σs)s. As seen in the proof of Observation 5, h∗sn [σn] is dense in Tn+1
a . In particular,

h−1[σn] ⊇ h∗sn [σn] is nonempty. Since h−1[V ∪Un] is empty, we have [σn] ̸⊆ [V ∪Un]. Note that
V ∪ Un is generated by a finite set In of finite strings. Moreover, the condition [σn] ̸⊆ [V ∪ Un]
means that either σn is incomparable with any elements in In or σn is an initial segment of
an element in In. However, since In is finite, there are finitely many σn satisfying the latter
condition. Let j(n) be 1 plus the number of such strings. Hence, given s, if t is sufficiently large,
t ≥ s+j(s) say, then we must have σt is incomparable with any strings in Ls. In particular, σt is
incomparable with σu for any u < s. Define h(s) =

∑
u≤s j(u). We now replace (Tn+1

a , qan+1, σn)

with (T
j(n)+1
a , qaj(n)+1, σj(n))n≤z, which satisfies all conditions of the claim.

We now have two cases.

(∀ra ⊒ qan)(∃ua−1 ⊒ ra) ((Tℓ)ℓ<a, u
a−1, V ∪ [σn]) ∈ L,

where ra ranges over Tn+1
a , and ua−1 ranges over Ta−1. In this case, by combining with the

third condition of the previous claim, we get that ((Tℓ)ℓ<a
⌢Tn+1

a , qan, V ∪ [σn]) ∈ L. Then define
qan+1 = qan. Otherwise, we have

(∃ra ⊒ qan)(∀ua−1 ⊒ ra) ((Tℓ)ℓ<a, u
a−1, V ∪ [σn]) ̸∈ L.

In this case, we define qan+1 = ra. In any case, qan ⊑ qan+1 ∈ T a
n+1.

Let E be the set of all indices n ≤ z such that the second case applies. Recall that
((Tℓ)ℓ<a, q

a
z+1, V ) ∈ L and (σn)n≤z is pairwise incomparable. Therefore, by Lemma 10, for

all but a many indices i ≤ z, we have ((Tℓ)ℓ<a, u
a−1, V ∪ [σi]) ∈ L for some ua−1 ⊒ qaz+1. This

means that |E| ≤ a. Hence, for all but a many indices n ≤ z, the first case applies, and we get
that ((Tℓ)ℓ<a

⌢Tn+1
a , qan+1, V ∪ [σn]) ∈ L.

Put z = a + b + 1, where b =
∑

i<c |Li|. Then, |z \ E| > b. By Lemma 10, there is
n ∈ z \ E such that for all i < c, we have (Li, p

′
i, V ∪ [σn]) ∈ S for some p′i ⊒ pi. Finally, put

Ta = Tn+1
a , qa = qan+1 and V ′ = V ∪ [σn]. By our choice of (σn, sn) and by Observation 5, we

have Ta := (Ta, σn, sn) ∈ Q. Put T ′ = (Tℓ)ℓ≤a. Then, we get (T ′, qa, V ′) ∈ S, and it extends
(T , pa−1, V ) as desired. □

Later our construction will make an injury (in the sense of a priority argument), which may
decreases the length of the Semmes condition. We say that (T ′, qℓ, V ′) ∈ S is a shortening of
(T , pa, V ) ∈ S if T ′ is an initial segment of T , V ′ = V , and qℓ ⊒ pa. The following corresponds
to Semmes [4, Proposition 4.3.5].

Observation 13. Every Semmes condition (T , pa, V ) has a shortening of length ℓ for any ℓ ≤
|T |.

Proof. Let a be the length of T . Since ((Tj)j<a, p
a, V ) ∈ L, one can find a sequence pa−1 ⊑

pa−2 ⊑ . . . ⊑ pℓ such that ((Tj)j<a, p
ℓ, V ) ∈ L. □
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2.3. Priority argument. We are now ready to prove Theorem 2. Given a Σ0
3 set U ⊆ ωω we

will construct a continuous function ψ : ωω → ωω and a set V ⊆ ω<ω of strings such that

x ∈ U ⇐⇒ ψ(x) ∈ f−1[V ]

for every x ∈ ωω, where [V ] is the open set generated by V . Thus, this will ensure that f−1[V ]
is Σ0

3-complete for some set V of strings, which implies f−1Σ0
2 ̸⊆ Σ0

3. We first describe Σ0
3 sets

f−1[V ] and U as follows:

x ∈ U ⇐⇒ (∃a)(∀b)(∃c) S(x, a, b, c),
y ∈ f−1[V ] ⇐⇒ (∃σ ∈ V )(∃i)(∀j)(∃k) Q(y, σ, i, j, k).

Here, y ∈ f∗i [σ] iff for all j, there exists k such that Q(y, σ, i, j, k), where S and Q are ∆1

formulas (or equivalently, clopen sets). For this reason, one can assume monotonicity of Q, that
is, if Q(y, σ, i, j, k) and τ ⊑ σ then Q(y, τ, i, j, k) also holds, since replacing Q(y, σ, i, j, k) with
the condition ∃τ ⊑ σ Q(y, τ, i, j, k) does not affect the above property.

Requirements. The a-th requirements for our construction are given as follows:

N x
a : (∀a′ < a)(∃b)(∀c) ¬S(x, a, b, c) =⇒ (∀σ ∈ Vsa)(∀i < a)(∃j)(∀k) ¬Q(ψ(x), σ, i, j, k),

Px
a : (∀b)(∃c) S(x, a, b, c) =⇒ (∃σa)(∃ia)(∀j)(∃k) Q(ψ(x), σa, ia, j, k),

where sa is the first stage at which an a-th strategy acts along x (after the last initialization
which may be caused by a higher-priority strategy; the details will be explained later).

Roughly speaking, every a-th strategy believes that a is the least witness for x ∈ U . Then,
the P-action tries to keep ψ(x) ∈ f∗ia [σa] and the N -action forces ψ(x) ̸∈

∪
i<a f

∗
i [Vsa ]. These

requirements ensure that such ψ is a desired reduction as follows.

• If a is the smallest witness for x ∈ U , then the requirement Px
a ensures that ψ(x) ∈ f∗ia [σa].

The a-th strategy will put σa into the set V in the construction, so by the requirement
Px
a , we get that x ∈ U implies ψ(x) ∈ f−1[V ].

• If x ̸∈ U , then for every a, the premise of the requirement Na must be true, and then,
the combination of requirements N x

a ’s will eventually ensure that ψ(x) ̸∈ f−1[V ] =∪
a f

−1[Vsa ].

Thus, it suffices to describe the strategy to satisfy the requirements Px
a and N x

a . A rough
idea is to assign a Semmes condition (Tα, pα, Vα) to each string α ⊏ x, and the a-th tree Ta in
the layer follows the a-th strategy.

Conditions. Fix a bijection h : ω<ω → ω such that α ⊑ β implies h(α) ≤ h(β). We simply
write α ≤ β if h(α) ≤ h(β). At stage s, we will deal with the s-th binary string w.r.t. this
order ≤. Given α, we use symbols α−1 and α− to denote the immediate ≤-predecessor and the
immediate ⊑-predecessor, respectively. At the α-th stage, we will construct Tα, (pαβ)β≤α, and
Vα satisfying the following condition.

• (Tβ, pαβ , Vα) is a Semmes condition for every α ∈ ω<ω and β ≤ α.

• If β ≤ α, then pα−1
β ⊑ pαβ and Vα−1 ⊆ Vα.

• (Tα, pαα, Vα) is either an extension or a shortening of (Tα− , pα−1
α− , Vα−1).

Then, we will define V =
∪

α∈ω<ω Vα, and ψ(x) =
∪

s∈ω p
x↾s
x↾s.

By the definition of a Semmes condition, Tα is a sequence of bi-dense triples (Ta, σa, ia)a<ℓ.
Here, recall that (σa, ia) witnesses the bi-dense property of Ta for every a < ℓ:

(D1) (∀qa)(∃ya ⊐ qa)[∀j∃kQ(ya, σa, ia, j, k)],

(D2) (∀τ⊥σa)(∀i)(∀pa)(∃qa ⊒ pa)(∀ya ⊐ qa)[∃j∀k¬Q(ya, τ, i, j, k)],
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where pa, qa ∈ ω<ω and ya ∈ ωω range over Ta.
We now start to describe the proof of Theorem 2. For the reader who is familiar with

priority arguments in computability theory, we first note that our proof is a finite injury priority
argument.

Proof of Theorem 2. As mentioned before, we will construct Semmes conditions (Tα, pαβ , Vα)β≤α

at the α-th stage. If ℓ is the length of Tα− , then every strategy a ≤ ℓ is eligible to act at the α-th
stage, that is, we deal with Pa- and Na-strategies for any a ≤ ℓ. The state of the a-th strategy
at the α-th stage s is written as state(a, α). If a < ℓ then state(a, α) takes a value in ω, and
if a = ℓ, then state(a, α) = init ̸∈ ω.

At the first stage ε, where ε is the empty string, we first use Lemma 4 to get σ, s such that
Kσ,sf is nonempty. Put Tε = (Kσ,sf, σ, s), p

ε
ε = ε, and Vε = {σ}, and then (Tε, pεε, Vε) forms a

Semmes condition by Observations 5 and 6. We then set state(0, ε) = 0 and state(a, ε) = init

for every a > 0.
At the beginning of stage α we inductively assume that state(a, β) has already been defined

for any β < α. By our assumption, a Semmes condition p = (Tα− , pα−1
α− , Vα−1) has also been

constructed by the previous stage. Let ℓ be the length of Tα− , that is, Tα− is of the form (Ta)a<ℓ

such that Ta = (Ta, σa, ia) ∈ Q. At this stage α, we will consider (ℓ+ 1) strategies.

A brief description of our strategies at stage α: Before giving the formal definition, we will
explain an informal idea of our finite injury priority construction.

For a < ℓ, the a-th strategy believes that a is the least witness for x ∈ U under the current
approximation α ⊑ x. Of course, the belief of the a-th strategy can be both correct for some
x ⊐ α and incorrect for some other x′ ⊐ α, but she has the same belief at the current α. The
a-th strategy looks for witnesses supporting her belief, and if she finds a new witness at the
current stage α, she wants to act to fulfill the requirement Px

a using the density (D1) of the a-th
triple (Ta, σa, ia).

The outmost strategy, i.e., the ℓ-th strategy, also believes that ℓ is the least witness for x ∈ U ,
but currently we do not have the ℓ-th level (Tℓ, σℓ, iℓ). The hope of the ℓ-th strategy at this
stage is to construct a triple (Tℓ, σℓ, iℓ), and to make action under the belief that ℓ is the least
witness, that is, no a < ℓ is a witness for x ∈ U . Then, the ℓ-th strategy needs to make sure the
requirement N x

ℓ by using the nowhere density (D2) of a newly constructed (Tℓ, σℓ, iℓ).
Now, many strategies may want to act; however, their beliefs conflict with each other. Hence,

we cannot allow more than one strategies to make action at one stage. To avoid such a conflict
we put a priority order on strategies; a smaller a ≤ ℓ has higher priority than a greater a′ ≤ ℓ.
Only the highest priority strategy among those who want to act can actually act. Thus, exactly
one of the strategies acts at each stage. Along x ∈ ωω, if x ∈ U , then exactly one strategy has
a correct belief, and we will see that such a strategy acts infinitely often. If x ̸∈ U , then no one
has a correct belief, and no strategy acts infinitely often.

We now give a formal description of the above argument. The stage α consists of ℓ + 1
substages. At the a-th substage of stage α, we check whether the a-th strategy makes an action.
We begin with substage a = 0, and consider the following actions.

Initial Action: If state(a, α−) = init, then a = ℓ, so the ℓ-th strategy makes the following
action.

(1) By Lemma 12, there are Tℓ = (Tℓ, σℓ, iℓ), p
ℓ ⊒ pα−1

α , pαβ ⊒ pα−1
β , and Vα ⊋ Vα−1 such

that

((Ta)a≤ℓ, p
ℓ, Vα) extends p = (Tα− , pα−1

α− , Vα−1),
(Tβ, pαβ , Vα) is a Semmes condition whenever β < α.
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(2) To ensure Nℓ, by the nowhere density condition (D2) for Tℓ, since σℓ is incomparable
with any element in Vα−1, there is a proper extension qℓ ⊐ pℓ in Tℓ such that

(∀yℓ ⊐ qℓ)(∀τ ∈ Vα−1)[∀i < a∃j∀k¬Q(yℓ, τ, i, j, k)],(∗∗)

where yℓ ∈ ωω ranges over Tℓ. Note that (∗∗) means that [qℓ] ∩
∪

i<a f
∗
i [Vα−1] = ∅,

where one can think of τ ∈ Vα−1 as [τ ] ⊆ [Vα−1]. Define pαα = qℓ. By Observation 7 (1),
((Ta)a≤ℓ, p

α
α, Vα) is still a Semmes condition, which extends the previous condition p.

(3) Define state(ℓ, α) = 0, and state(a, α) = state(a, α−) for a ̸= ℓ. Go to the next stage
α+ 1.

The b-th Action: If state(a, α−) = b ∈ ω, then the a-strategy see if

(∀b′ ≤ b)(∃c ≤ |α|) S(α, a, b′, c).
If this does not hold, go to the next substage a+1. If this condition is true, the a-th strategy

acts as follows. By Observation 13, we get a length a + 1 shortening ((Tb)b≤a, p
a, Vα−1) ∈ S of

the previous condition p. Now Ta is of the form (Ta, σa, sa) ∈ Q. By the density condition (D1)
for Ta, there exists a proper extension qa ⊐ pa in Ta such that

(∀j ≤ b)(∃k) Q(qa, σa, ia, j, k).(∗)
Define pαα = qa. By Observation 7, ((Tb)b≤a, p

α
α, Vα−1) is a Semmes condition, which is a

shortening of the previous condition p. Then, define Tα = (Tb)b≤a, Vα = Vα−1, state(a, α) =
b+ 1, state(i, α) = state(i, α−) for any i < a and state(i, α) = init for any i > a. Go to the
next stage α+ 1.

Outcomes: Put V =
∪

α∈ω<ω Vα, and ψ(x) =
∪

s∈ω p
x↾s
x↾s. Clearly, V is open since (Vα)α∈ω<ω is

a union of open sets. Moreover, ψ is continuous since (px↾sx↾s)s∈ω is increasing.

Lemma 14. For any x, we have the following.

x ̸∈ U ⇐⇒ lim
s→∞

state(a, x ↾ s) converges for every a.

Proof. (⇒) If x ̸∈ U then for any a there is b such that (∃c)S(x, a, b, c) fails. Then the b-th
action never occur at any initial segment of x. Thus, we must have state(a, x ↾ s) ≤ b for any s.
If the state of a strategy does not change, then it does not injure any other strategy. Therefore,
by induction, we can see lims state(a, x ↾ s) converges for every a.

(⇐) If x ∈ U then there is a such that for every b, we have (∃c)S(x, a, b, c). Let a0 be the
smallest such a. Then it is easy to see that for any b, a0 proceeds the b-th action at some stage
sb such that state(a0, x ↾ sb) = b. In other words, lims state(a0, x ↾ s) diverges. □

One can also see that lims→∞ state(a, x ↾ s) converges for every a iff the a-th strategy acts
at most finitely often for any a. We finally show the following.

Lemma 15. For any x, we have the following.

x ∈ U ⇐⇒ ψ(x) ∈ f−1[V ].

Proof. (⇐) If x ̸∈ U , then by Lemma 14, lims state(a, x ↾ s) converges for every a. Then, for
any a, there is a stage αa ⊑ x such that the a-th strategy proceeds the initial action at stage αa

and this action is never injured. Clearly, (αa)a∈ω is strictly increasing. Then, by the initial action
(∗∗) of a at stage αa, for all τ ∈ Vαa−1 and i < a we have ∃j∀k¬Q(ψ(x), τ, i, j, k) since ψ(x) ∈ Tαa

by the non-injury assumption, and ψ(x) extends pαa
αa
. This means that ψ(x) ̸∈ f∗i [Vαa−1] for any

i < a. However, if ψ(x) ∈ f−1[V ] then there are i and β such that ψ(x) ∈ f∗i [Vβ]. Let a
be such that i < a and β < αa. Then, ψ(x) ∈ f∗i [Vαa−1], a contradiction. Therefore, we get
ψ(x) ̸∈ f−1[V ].
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(⇒) If x ∈ U , then by Lemma 14, there is a such that the a-th strategy acts infinitely often.
Let a be the least such strategy. Then there is s such that a is never injured after x ↾ s.
Assume that Tx↾s is of the form (T s

u , σ
s
u, i

s
u)u<ℓ(s), where we must have a < ℓ(s). Since a and

hence any u ≤ a are never injured after x ↾ s, we have that σsu = σtu and isu = itu whenever
s ≤ t and u ≤ a. By the b-th action (∗) of a, we have ∀j ≤ b∃kQ(ψ(x), σsa, i

s
a, j, k) since

ψ(x) ∈ Tαa by the non-injury assumption, and ψ(x) extends px↾sx↾s. Since this holds for any b, we

get ∀j∃kQ(ψ(x), σsa, i
s
a, j, k). This means that ψ(x) ∈ f∗isa [σ

s
a], and thus ψ(x) ∈ f∗isa [Vx↾s] ⊆ f−1[V ]

since σsa ∈ Vx↾s. □
Lemma 15 shows that f−1[V ] is Σ0

3-complete for some open set V . Hence, f−1[ωω \ V ] is not
Σ0

3 while ωω \ V is Σ0
2. That is, f

−1Σ0
2 ̸⊆ Σ0

3. This concludes the proof. □
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