A PRIORITY ARGUMENT IN DESCRIPTIVE SET THEORY (A VERY DETAILED EXPOSITION OF SEMMES' PROOF)

TAKAYUKI KIHARA

Abstract

In 2009, Semmes announced that a function f on Baire space is decomposable into countably many Baire-one functions with G_{δ} domains if and only if the preimage of a F_{σ} set under f is $G_{\delta \sigma}$. In this report, I will outline Semmes' proof with the emphasis on the use of a finite injury priority argument, but not a game-theoretic one, and try to clarify how his argument works.

1. Introduction

1.1. Background. In 2009, Semmes [4] announced a result extending the Jayne-Rogers theorem [2]. Since then, a number of experts tried to clarify and simplify Semmes' proof, cf. [1]. Semmes' original exposition of his proof have laid emphasis on game-theoretic arguments. In this report, we will take a completely opposite approach: As is well known to experts, no determinacy argument has been used in Semmes' proof, and therefore, removing all the game-theoretic machineries makes the proof much clearer. Instead, we will put an emphasis on the use of finite injury priority argument.

In particular, we do not use Theorem 4.1.1 in Semmes [4] characterizing the Baire class 2 functions by the game $G_{1,3}$ (which is called Mistigri in [1]). This causes a few minor changes in the proof. For instance, our conditions ($*$) and ($* *$) in pp. 9-10 are slightly different from the ones in Semmes [4, p. 45 in Theorem 4.3.7]. As a consequence, the way of our exposition is slightly different from the original one; however, all of the essential ideas are already contained in Semmes' original insightful proof.
1.2. Notations. $[\sigma]$ is the clopen set generated by $\sigma \in \omega^{<\omega}$. An open set in ω^{ω} is said to be finitary if it is of the form $\bigcup_{\sigma \in F}[\sigma]$ for some finite set $F \subseteq \omega^{<\omega}$. If a string σ is an initial segment of τ then we write $\sigma \sqsubseteq \tau$. If strings σ and τ are incomparable then we write $\sigma \perp \tau$. For a function $f: X \rightarrow Y$ and $A \subseteq X$, we use $\left.f\right|_{A}$ to denote the restriction of f up to A. Let $\boldsymbol{\Gamma}$ and $\boldsymbol{\Lambda}$ be pointclasses. We write $f^{-1} \boldsymbol{\Gamma} \subseteq \boldsymbol{\Lambda}$ if the preimage of each $\boldsymbol{\Gamma}$ set under f is $\boldsymbol{\Lambda}$, that is,

$$
A \in \boldsymbol{\Gamma} \Longrightarrow f^{-1}[A] \in \boldsymbol{\Lambda} \text { in } \operatorname{dom}(f)
$$

For example, f is $\boldsymbol{\Sigma}_{n}^{0}$-measurable if and only if $f^{-1} \boldsymbol{\Sigma}_{1}^{0} \subseteq \boldsymbol{\Sigma}_{n}^{0}$ holds.
If \mathcal{F} is a class of functions, we also write $f \in \operatorname{dec}(\mathcal{F} / \boldsymbol{\Gamma})$ if f is decomposable into countably many \mathcal{F}-functions on $\boldsymbol{\Gamma}$ domains, that is, there is a countable $\boldsymbol{\Gamma}$ cover $\left(X_{i}\right)_{i \in \omega}$ of the domain of f such that $\left.f\right|_{X_{i}} \in \mathcal{F}$ for each $i \in \omega$.

We also use $\boldsymbol{\Sigma}_{n}^{0}$ to denote the class of $\boldsymbol{\Sigma}_{n}^{0}$-measurable functions. For instance, the Jayne-Rogers theorem [2] can be stated as follows.

$$
f^{-1} \boldsymbol{\Sigma}_{2}^{0} \subseteq \boldsymbol{\Sigma}_{2}^{0} \Longleftrightarrow \operatorname{dec}\left(\boldsymbol{\Sigma}_{1}^{0} / \boldsymbol{\Pi}_{1}^{0}\right)
$$

where f is a function from an analytic subset of a Polish space to a separable metrizable space. It is easy to see the following (see Motto Ros [3] and Semmes [4, Lemma 4.3.1])

Observation 1. The following equalities hold.

$$
\operatorname{dec}\left(\boldsymbol{\Sigma}_{m}^{0} / \boldsymbol{\Pi}_{n}^{0}\right)=\operatorname{dec}\left(\boldsymbol{\Sigma}_{m}^{0} / \boldsymbol{\Sigma}_{n+1}^{0}\right)=\operatorname{dec}\left(\operatorname{dec}\left(\boldsymbol{\Sigma}_{m}^{0} / \boldsymbol{\Pi}_{n}^{0}\right) / \boldsymbol{\Sigma}_{n+1}^{0}\right) .
$$

2. Proof

In his PhD thesis [4], Semmes showed that the following equivalence holds.

$$
f^{-1} \boldsymbol{\Sigma}_{2}^{0} \subseteq \boldsymbol{\Sigma}_{3}^{0} \Longleftrightarrow \operatorname{dec}\left(\boldsymbol{\Sigma}_{2}^{0} / \boldsymbol{\Pi}_{2}^{0}\right) .
$$

The right-to-left implication is clear. Moreover, the condition $f^{-1} \boldsymbol{\Sigma}_{2}^{0} \subseteq \boldsymbol{\Sigma}_{3}^{0}$ always implies that f is $\boldsymbol{\Sigma}_{3}^{0}$-measurable. Thus, to verify the above equivalence, it suffices to show the following:
Theorem 2 (Semmes [4]). Suppose that $f: \omega^{\omega} \rightarrow \omega^{\omega}$ is $\boldsymbol{\Sigma}_{3}^{0}$-measurable. Then,

$$
f \notin \operatorname{dec}\left(\boldsymbol{\Sigma}_{2}^{0} / \Pi_{2}^{0}\right) \Longrightarrow f^{-1} \boldsymbol{\Sigma}_{2}^{0} \nsubseteq \boldsymbol{\Sigma}_{3}^{0} .
$$

2.1. Transfinite derivation process. To prove Theorem 2, hereafter we fix a $\boldsymbol{\Sigma}_{3}^{0}$-measurable function $f: \omega^{\omega} \rightarrow \omega^{\omega}$. Then, the preimage $f^{-1}[\sigma]$ of a clopen set is $\boldsymbol{\Sigma}_{3}^{0}$. Therefore, it can be written as a countable union of Π_{2}^{0} sets, say $f^{-1}[\sigma]=\bigcup_{s \in \omega} f_{s}^{*}[\sigma]$. This decomposition $f_{s}^{*}[\sigma]$ is the replacement for the game $G_{1,3}$ in [4] or the Mistigri in [1]. It looks too simple, but it certainly works.

Let \mathbf{D} be a subset of ω^{ω}, and put $h=\left.f\right|_{\mathbf{D}}$. Then, define $h_{s}^{*}[\sigma]=f_{s}^{*}[\sigma] \cap \mathbf{D}$. In Section 2.1, we will present an essence of the argument of Semmes [4, Lemma 4.3.3].

Given $X \subseteq \omega^{\omega}$, we define $[X ; h]_{\sigma}^{\dagger}$ as follows:

$$
[X ; h]_{\sigma}^{\dagger}=X \backslash \bigcup\left\{J:\left.h\right|_{\mathbf{D} \cap X \cap J \backslash h^{-1}[\sigma]} \in \operatorname{dec}\left(\boldsymbol{\Sigma}_{2}^{0} / \boldsymbol{\Pi}_{2}^{0}\right)\right\},
$$

where J ranges over open sets in ω^{ω}. Moreover, given Y, we consider the following $[Y ; h]_{\sigma, s}^{\star}$:

$$
[Y ; h]_{\sigma, s}^{\star}=\operatorname{cl}_{Y}\left(h_{s}^{*}[\sigma]\right),
$$

where $\operatorname{cl}_{Z} A$ is the topological closure of a set $A \cap Z$ in a space Z. We call the above procedure a \dagger_{σ}-derivation (or a \dagger-derivation) and a $\star_{\sigma, s}$-derivation (or a \star-derivation), respectively. Clearly, $[X ; h]_{\sigma}^{\dagger}$ and $[Y ; h]_{\sigma, S}^{\star}$ are closed subsets of X and Y, respectively. In Semmes' thesis [4, Lemma 4.3.3], a \dagger-derivation and a \star-derivation are called a Ξ-operation and an Ω-operation, respectively.

We fix h, and simply write X_{σ}^{\dagger} and $Y_{\sigma, S}^{\star}$ for $[X ; h]_{\sigma}^{\dagger}$ and $[Y ; h]_{\sigma, s}^{\star}$, respectively. We iterate these derivation procedures:

$$
\begin{aligned}
H_{\sigma, s}^{0} & =\omega^{\omega} \\
H_{\sigma, s}^{\alpha+1} & =\left(\left(H_{\sigma, s}^{\alpha}\right)_{\sigma}^{\dagger}\right)_{\sigma, s}^{\star}, \\
H_{\sigma, s}^{\alpha} & =\bigcap_{\beta<\alpha} H_{\sigma, s}^{\beta} \text { if } \alpha \text { is a limit ordinal. }
\end{aligned}
$$

Note that there is a countable ordinal $\gamma(\sigma, s)$ such that $H_{\sigma, s}^{\gamma(\sigma, s)+1}=H_{\sigma, s}^{\gamma(\sigma, s)}$ since $\left(H_{\sigma, s}^{\alpha}\right)_{\alpha}$ is a decreasing sequence of closed sets in ω^{ω}. Clearly, $\gamma=\sup _{\sigma, s} \gamma(\sigma, s)+1$ is a countable ordinal since \aleph_{1} is regular.

We divide the set \mathbf{D} into three pieces. We first define the (σ, s)-kernel to be

$$
K_{\sigma, s} h=H_{\sigma, s}^{\gamma(\sigma, s)} .
$$

We say that a point $x \in X$ is generic if for every (σ, s), either $x \in h^{-1}[\sigma]$ or there exists α such that $x \in\left(H_{\sigma, s}^{\alpha}\right)_{\sigma}^{\dagger} \backslash H_{\sigma, s}^{\alpha+1}$ (that is, x is removed by a $\star_{\sigma, s}$-derivation). Define $\mathbf{K}=\mathbf{D} \cap \bigcup_{\sigma, s} K_{\sigma, s} h$, \mathbf{G} to be the set of all generic points $y \in \mathbf{D} \backslash \mathbf{K}$, and \mathbf{A} to be the set of all other points in \mathbf{D}. Note that $x \in \mathbf{A}$ iff $x \notin h^{-1}[\sigma]$ holds, and x must be removed by a \dagger-derivation for some (σ, s). Proposition 3.
(1) $\mathbf{A} \in \boldsymbol{\Delta}_{3}^{0}, \mathbf{G} \in \boldsymbol{\Delta}_{3}^{0}$, and $\mathbf{K} \in \boldsymbol{\Sigma}_{2}^{0}$, in \mathbf{D}.
(2) $\left.h\right|_{\mathbf{G}}$ is $\boldsymbol{\Sigma}_{2}^{0}$-measurable.
(3) $\left.h\right|_{\mathbf{A}} \in \operatorname{dec}\left(\boldsymbol{\Sigma}_{2}^{0} / \boldsymbol{\Pi}_{2}^{0}\right)$.

To see this, we need the following characterization of the set \mathbf{A}.
Claim. Suppose $x \in \mathbf{D} \backslash \mathbf{K}$. Then, $x \in \mathbf{A}$ if and only if there are $\left(\sigma_{0}, s_{0}\right),\left(\sigma_{1}, s_{1}\right)$ and $\alpha_{0}, \alpha_{1}<\gamma$ such that $\left[\sigma_{0}\right] \cap\left[\sigma_{1}\right]=\emptyset$ and $x \in H_{\sigma_{i}, s_{i}}^{\alpha_{i}} \backslash\left(H_{\sigma_{i}, s_{i}}^{\alpha_{i}}\right)_{\sigma_{i}}^{\dagger}$ for every $i \in\{0,1\}$.

Proof. The condition $x \notin \mathbf{K}$ means that for every (σ, s), there is $\alpha(\sigma, s)$ such that $x \in H_{\sigma, s}^{\alpha(\sigma, s)} \backslash$ $H_{\sigma, s}^{\alpha(\sigma, s)+1}$. Now $x \in \mathbf{D}$ and thus $h(x)$ is defined.

If $x \in \mathbf{A}$ then $x \notin h^{-1}\left[\sigma_{0}\right]$ holds, and x must be removed by a \dagger-derivation, that is, $x \in$ $H_{\sigma_{0}, s_{0}}^{\alpha_{0}} \backslash\left(H_{\sigma_{0}, s_{0}}^{\alpha_{0}}\right)_{\sigma_{0}}^{\dagger}$ where $\alpha_{0}=\alpha\left(\sigma_{0}, s_{0}\right)$. Since $h(x) \notin\left[\sigma_{0}\right]$ and since σ_{0} is nonempty, there is σ_{1} such that $\left[\sigma_{0}\right] \cap\left[\sigma_{1}\right]=\emptyset$ and $h(x) \in\left[\sigma_{1}\right]$. Let s_{1} be such that $x \in h_{s_{1}}^{*}\left[\sigma_{1}\right]$. Note that for any $Z, x \in Z$ clearly implies $x \in \operatorname{cl}_{Z}\left(h_{s_{1}}^{*}\left[\sigma_{1}\right]\right)$. Therefore, x is not removed by a $\star_{\sigma_{1}, s_{1}}$-derivation, and thus x must be removed by a \dagger-derivation. More precisely, for all $\alpha, x \in\left(H_{\sigma_{1}, s_{1}}^{\alpha}\right)_{\sigma_{1}}^{\dagger}$ implies $x \in H_{\sigma_{1}, s_{1}}^{\alpha+1}$; hence by putting $\alpha_{1}=\alpha\left(\sigma_{1}, s_{1}\right)$, we get $x \in H_{\sigma_{1}, s_{1}}^{\alpha_{1}} \backslash\left(H_{\sigma_{1}, s_{1}}^{\alpha_{1}}\right)_{\sigma_{1}}^{\dagger}$ as desired.

We next verify the converse direction. Let x be a point in $\mathbf{D} \backslash \mathbf{K}$ satisfying the latter condition. Since $\left[\sigma_{0}\right] \cap\left[\sigma_{1}\right]=\emptyset$, we must have $x \notin h^{-1}\left[\sigma_{i}\right]$ for some $i<2$. Then, the pair $\left(\sigma_{i}, s_{i}\right)$ witnesses that x is removed by a $\dagger_{\sigma_{i}}$-derivation. This implies that x is not generic. Hence, under our assumption that $x \notin \mathbf{K}$, we have $x \in \mathbf{A}$ as desired.

Proof of Proposition 3. (1) By definition, clearly $\mathbf{K} \in \boldsymbol{\Sigma}_{2}^{0}$ in \mathbf{D}. Hence, by the above claim, \mathbf{A} is $\boldsymbol{\Sigma}_{2}^{0}$ in $\mathbf{D} \backslash \mathbf{K}$, and thus \mathbf{A} is the difference of two $\boldsymbol{\Sigma}_{2}^{0}$ sets in \mathbf{D}. Then, \mathbf{G} is also contained in a finite level of the difference hierarchy over $\boldsymbol{\Sigma}_{2}^{0}$ in \mathbf{D}.
(2) Suppose that $x \in \mathbf{G}$. Then, x is generic, and $x \notin \mathbf{K}$. Given (σ, s), Let $\alpha(\sigma, s)$ witness $x \notin \mathbf{K}$ as in the previous claim. If $x \in h^{-1}[\sigma]$, there is s such that $x \in h_{s}^{*}[\sigma]$ by definition. Then, as mentioned in the previous claim, x is not removed by a \star-derivation, and thus removed by a \dagger-derivation: For all $\alpha, x \in\left(H_{\sigma, s}^{\alpha}\right)_{\sigma}^{\dagger}$ implies $x \in H_{\sigma, s}^{\alpha+1}$; hence $x \in H_{\sigma, s}^{\alpha(\sigma, s)} \backslash\left(H_{\sigma, s}^{\alpha(\sigma, s)}\right)_{\sigma}^{\dagger}$. If $x \notin h^{-1}[\sigma]$, by our definition of genericity, x is always removed by a \star-derivation: For all s, there exists α such that $x \in\left(H_{\sigma, s}^{\alpha}\right)_{\sigma}^{\dagger} \backslash H_{\sigma, s}^{\alpha+1}$, which means that $x \in\left(H_{\sigma, s}^{\alpha(\sigma, s)}\right)_{\sigma}^{\dagger} \backslash H_{\sigma, s}^{\alpha(\sigma, s)+1}$. Consequently, whenever $x \in \mathbf{G}$, for any σ,

$$
x \in h^{-1}[\sigma] \Longleftrightarrow(\exists \alpha<\gamma)(\exists s \in \omega) x \in H_{\sigma, s}^{\alpha} \backslash\left(H_{\sigma, s}^{\alpha}\right)_{\sigma}^{\dagger}
$$

The latter condition is clearly $\boldsymbol{\Sigma}_{2}^{0}$.
(3) Let $\left(\sigma_{i}, s_{i}, \alpha_{i}\right)_{i<2}$ be a witness of $x \in \mathbf{A}$ as in the previous claim. By our definition of the \dagger-derivation, for $Z=H_{\sigma_{0}, s_{0}}^{\alpha_{0}} \cap H_{\sigma_{1}, s_{1}}^{\alpha_{1}}$, there is a neighborhood J of x such that

$$
\left.h\right|_{\mathbf{D} \cap Z \cap J \backslash h^{-1}\left[\sigma_{i}\right]} \in \operatorname{dec}\left(\boldsymbol{\Sigma}_{2}^{0} / \boldsymbol{\Pi}_{\mathbf{2}}^{\mathbf{0}}\right)
$$

Clearly, $\left[\sigma_{0}\right] \cap\left[\sigma_{1}\right]=\emptyset$ implies $\left(J \backslash h^{-1}\left[\sigma_{0}\right]\right) \cup\left(J \backslash h^{-1}\left[\sigma_{1}\right]\right)=J$. Since Σ_{3}^{0}-measurability of h and zero-dimensionality of ω^{ω} implies that $h^{-1}\left[\sigma_{i}\right]$ is $\boldsymbol{\Delta}_{3}^{0}$ in \mathbf{D}, both $J \backslash h^{-1}\left[\sigma_{0}\right]$ and $J \backslash h^{-1}\left[\sigma_{1}\right]$ are $\boldsymbol{\Delta}_{3}^{0}$ in \mathbf{D}. Hence, $\left.h\right|_{\mathbf{D} \cap Z \cap J} \in \operatorname{dec}\left(\boldsymbol{\Sigma}_{2}^{0} / \boldsymbol{\Delta}_{\mathbf{3}}^{\mathbf{0}}\right)$. Since there are only countably many candidates for such a witness $\left(\sigma_{i}, s_{i}, \alpha_{i}\right)_{i<2}$ (because $\alpha_{i}<\gamma$), $\left.h\right|_{\mathbf{A}}$ is decomposable into countably many $\operatorname{dec}\left(\boldsymbol{\Sigma}_{2}^{0} / \boldsymbol{\Delta}_{\mathbf{3}}^{\mathbf{0}}\right)$-functions on closed domains $\left(H_{\sigma_{0}, s_{0}}^{\alpha_{0}} \cap H_{\sigma_{1}, s_{1}}^{\alpha_{1}} \cap J\right)_{\sigma_{0}, s_{0}, \alpha_{0}, \sigma_{1}, s_{1}, \alpha_{1}, J}$. Hence, by Observation 1 , we conclude $\left.h\right|_{\mathbf{A}} \in \operatorname{dec}\left(\boldsymbol{\Sigma}_{2}^{0} / \boldsymbol{\Delta}_{\mathbf{3}}^{\mathbf{0}}\right)$.
2.2. Chain of kernels. As a consequence of Proposition 3, we obtain the following key lemma.

Lemma 4. If $h \notin \operatorname{dec}\left(\boldsymbol{\Sigma}_{2}^{0} / \boldsymbol{\Pi}_{2}^{0}\right)$, then \mathbf{K} is nonempty.

Proof. If K is empty, then $h=\left.\left.h\right|_{\mathbf{A}} \cup h\right|_{\mathbf{G}}$. By Proposition 3 (2) and (3), we have $\left.h\right|_{\mathbf{A}},\left.h\right|_{\mathbf{G}} \in$ $\operatorname{dec}\left(\boldsymbol{\Sigma}_{2}^{0} / \boldsymbol{\Pi}_{2}^{0}\right)$. Since \mathbf{A} and \mathbf{G} are $\boldsymbol{\Delta}_{3}^{0}$ by Proposition 3 (1), we also have $h \in \operatorname{dec}\left(\boldsymbol{\Sigma}_{2}^{0} / \boldsymbol{\Pi}_{2}^{0}\right)$ by Observation 1.

In particular, there is (σ, s) such that the (σ, s)-kernel $K_{\sigma, s} h$ has an intersection with \mathbf{D}. Note that $K_{\sigma, s} h$ is closed in ω^{ω} even if \mathbf{D} is not. It is easy to see that $K_{\sigma, s} h \subseteq \mathrm{cl}_{\omega \omega} \mathbf{D}$. This $K_{\sigma, s}$ corresponds to T in the statement of Semmes [4, Lemma 4.3.3]. Hereafter, if L is a closed set and p is a finite string, we write $p \in L$ if $L \cap[p] \neq \emptyset$, that is, we often identify a closed set with a pruned tree.
2.2.1. The \star-derivation. The \star-derivation procedure for $h=\left.f\right|_{\mathbf{D}}$ ensures a density condition for $K_{\sigma, s} X$. This observation corresponds to the second property of T in Semmes [4, Lemma 4.3.3]. We say that a triple (K, σ, s) of a nonempty closed set K, a finite string σ, and a natural number s is a bi-density triple (w.r.t. f) if
(D1) $f_{s}^{*}[\sigma]$ is dense in K.
(D2) $f_{t}^{*}[\tau]$ is nowhere dense in K whenever $\sigma \perp \tau$ and $t \in \omega$.
Let \mathbb{Q} be the set of all bi-density triples. The following proof is an analog of [4, Lemma 4.3.2].
Observation 5. For any $\mathbf{D} \subseteq \omega^{\omega}, \sigma$ and s, we have $\left(K_{\sigma, s}\left(\left.f\right|_{\mathbf{D}}\right), \sigma, s\right) \in \mathbb{Q}$.
Proof. Put $h=\left.f\right|_{\mathbf{D}}$. The \star-derivation procedure clearly ensures that $h_{s}^{*}[\sigma]$ is dense in $K_{\sigma, s} h$. Hence $f_{s}^{*}[\sigma]$ is also dense in $K_{\sigma, s} h$, that is, (D1) holds. Suppose for the sake of contradiction that the item (D2) fails. Then $f_{t}^{*}[\tau]$ is dense in $K_{\sigma, s} h \cap[\eta]$ for some $\eta \in \omega^{<\omega}$, and $f_{s}^{*}[\sigma]$ is also dense in $K_{\sigma, s} h \cap[\eta]$ by (D1). By definition, $f^{*}[\sigma]$ and $f^{*}[\tau]$ are $\boldsymbol{\Pi}_{2}^{0}$ in the Polish space ω^{ω}. Thus, both are intersections of sequences of dense open sets in the closed set $K_{\sigma, s} h \cap[\eta]$. By the Baire category theorem, $f_{s}^{*}[\sigma]$ and $f_{t}^{*}[\tau]$ have an intersection. However, $\sigma \perp \tau$ implies $[\sigma] \cap[\tau]=\emptyset$ and thus we must have $f_{s}^{*}[\sigma] \cap f_{t}^{*}[\tau] \subseteq f^{-1}[\sigma] \cap f^{-1}[\tau]=\emptyset$.
2.2.2. The \dagger-derivation. The \dagger-derivation procedure ensures an indecomposability condition for $K_{\sigma, s} h$. This observation corresponds to the first property of T in Semmes [4, Lemma 4.3.3]. We say that a triple $(L, p ; V)$ of a nonempty closed set L, a finitary clopen set V, and a finite string $p \in L$ is an indecomposability domain (for f) if

$$
(\forall q \in L)\left[\left.q \sqsupseteq p \Longrightarrow f\right|_{L \cap[q] \backslash f^{-1}[V]} \notin \mathbf{d e c}\left(\boldsymbol{\Sigma}_{2}^{0} / \boldsymbol{\Pi}_{2}^{0}\right)\right]
$$

Let \mathbb{L}_{1} be the set of all indecomposability domains. The \dagger-derivation procedure ensures the following.

Observation 6. Assume that $\left.f\right|_{\mathbf{D}} \notin \operatorname{dec}\left(\Sigma_{2}^{0} / \boldsymbol{\Pi}_{2}^{0}\right)$, and that \mathbf{D} and $f^{-1}[U]$ have no intersection. Then, there exists (σ, s) such that $\left(K_{\sigma, s}\left(\left.f\right|_{\mathbf{D}}\right), \varepsilon ; U \cup[\sigma]\right) \in \mathbb{L}_{1}$, where ε denotes the empty string.
Proof. Put $h=\left.f\right|_{\mathbf{D}}$. By Lemma 4, there is (σ, s) such that $K_{\sigma, s} h$ is nonempty. By definition of a kernel $K=K_{\sigma, s} h$, we have $K_{\sigma}^{\dagger}=K$. Note that $\mathbf{D} \cap f^{-1}[U]=\emptyset$ implies that $\mathbf{D} \backslash f^{-1}[U \cup \sigma]=$ $\mathbf{D} \backslash f^{-1}[\sigma]=\mathbf{D} \backslash h^{-1}[\sigma]$, and f and h agrees on this set. Therefore, by definition of the \dagger-derivation procedure, we have the following.

$$
\left.\left.f\right|_{K \cap[q] \backslash f^{-1}[U \cup \sigma]} \supseteq f\right|_{\mathbf{D} \cap K \cap[q] \backslash f^{-1}[U \cup \sigma]}=\left.h\right|_{\mathbf{D} \cap K \cap[q] \backslash h^{-1}[\sigma]} \notin \mathbf{d e c}\left(\boldsymbol{\Sigma}_{2}^{0} / \boldsymbol{\Pi}_{2}^{0}\right)
$$

for any $q \in \omega^{<\omega}$. This means that $\left(K_{\sigma, s} h, \varepsilon ; U \cup[\sigma]\right)$ is an indecomposability domain.
The following states the basic properties of \mathbb{L}_{1}. The proof of the latter corresponds to [4, Lemma 4.3.1].

Observation 7. (1) If $(L, p ; V) \in \mathbb{L}_{1}$, then for any $V^{\prime} \subseteq V$ and $q \in L$ with $q \sqsupseteq p$, we have $\left(L, q ; V^{\prime}\right) \in \mathbb{L}_{1}$.
(2) For any pair $\left(J_{0}, J_{1}\right)$ of disjoint finitary clopen sets, if $(L, p ; V) \in \mathbb{L}_{1}$ then there are $q \in L$ with $q \sqsupseteq p$ and $i<2$ such that $\left(L, q ; V \cup J_{i}\right) \in \mathbb{L}_{1}$.

Proof. (1) Obviously, if $\left.f\right|_{A} \notin \operatorname{dec}\left(\boldsymbol{\Sigma}_{2}^{0} / \boldsymbol{\Pi}_{2}^{0}\right)$ and $A \subseteq B$ then $\left.f\right|_{B} \notin \operatorname{dec}\left(\boldsymbol{\Sigma}_{2}^{0} / \boldsymbol{\Pi}_{2}^{0}\right)$. Now, note that $L \cap[q] \backslash f^{-1}[V] \subseteq L \cap[p] \backslash f^{-1}\left[V^{\prime}\right]$.
(2) Otherwise, $\left(L, p ; V \cup J_{0}\right) \notin \mathbb{L}_{1}$ means that $\left.f\right|_{L \cap[q] \backslash f^{-1}\left[V \cup J_{0}\right]} \in \operatorname{dec}\left(\boldsymbol{\Sigma}_{2}^{0} / \boldsymbol{\Pi}_{2}^{0}\right)$ for some $q \in L$ with $q \sqsupseteq p$, and similarly, $\left(L, q ; V \cup J_{1}\right) \notin \mathbb{L}_{1}$ means that $\left.f\right|_{L \cap[r] \backslash f^{-1}\left[V \cup J_{1}\right]} \in \operatorname{dec}\left(\boldsymbol{\Sigma}_{2}^{0} / \Pi_{2}^{0}\right)$ for some $r \in L$ with $r \sqsupseteq q$. Since J_{0} and J_{1} are disjoint, we have

$$
(L \cap[r]) \backslash f^{-1}[V]=\left(L \cap[r] \backslash f^{-1}\left[V \cup J_{0}\right]\right) \cup\left(L \cap[r] \backslash f^{-1}\left[V \cup J_{1}\right]\right)
$$

By $\boldsymbol{\Sigma}_{3}^{0}$-measurability of $f, f^{-1}\left[V \cap J_{i}\right]$ is $\boldsymbol{\Delta}_{3}^{0}$, and therefore, again by Observation 1 , we can see that $\left.f\right|_{L \cap[r] \backslash f^{-1}[V]} \in \operatorname{dec}\left(\boldsymbol{\Sigma}_{2}^{0} / \boldsymbol{\Pi}_{2}^{0}\right)$, and thus $(L, p ; V) \notin \mathbb{L}_{1}$ since $p \sqsubseteq r \in L$.

Definition 8. We say that $\left(\left(L_{\ell}\right)_{\ell \leq a}, p^{a} ; V\right)$ is an indecomposability layer if

$$
\begin{gathered}
L_{0} \supseteq L_{1} \supseteq \cdots \supseteq L_{a-1} \supseteq L_{a}, \\
\left(L_{a}, p^{a} ; V\right) \text { is an indecomposability domain, i.e., in } \mathbb{L}_{1}, \\
\left(\forall q^{a} \sqsupseteq p^{a}\right)\left(\exists r^{a-1} \sqsupseteq q^{a}\right)\left(\left(L_{\ell}\right)_{\ell<a}, r^{a-1} ; V\right) \text { is an indecomposability layer, }
\end{gathered}
$$

where q^{a} ranges over L_{a} and r^{a-1} ranges over L_{a-1}. Let \mathbb{L} be the set of all indecomposability layers.

According to Semmes' terminology, $\left(\left(L_{\ell}\right)_{\ell \leq a}, p^{a} ; V\right)$ is an indecomposability layer iff p^{a} is $\left(L_{\ell}\right)_{\ell \leq a}-V^{\mathrm{c}}$-good. The following corresponds to Semmes [4, Proposition 4.3.4].

Observation 9. If $\left(\left(L_{\ell}\right)_{\ell \leq a}, p^{a} ; V\right) \in \mathbb{L}, q^{a} \in L_{a}$, and $q^{a} \sqsupseteq p^{a}$, then $\left(\left(L_{\ell}\right)_{\ell \leq a}, q^{a} ; V\right) \in \mathbb{L}$
Proof. By Observation 7 (1).
The following is a restatement of Semmes [4, Lemma 4.3.6] in our language, which generalizes Observation 7 (2).

Lemma 10. Let $\left(J_{k}\right)_{k<m}$ be a collection of pairwise disjoint finitary clopen sets. If $\left(\mathcal{L}, p^{a} ; V\right) \in$ \mathbb{L}, then for all but $|\mathcal{L}|$ many indices $i<m$, we have $\left(\mathcal{L}, q^{a} ; V \cup J_{i}\right) \in \mathbb{L}$ for some $q^{a} \sqsupseteq p^{a}$.
Proof. First assume that $|\mathcal{L}|=1$. In this case, $(\mathcal{L}, p ; V) \in \mathbb{L}$ just means that $(\mathcal{L}, p ; V) \in \mathbb{L}_{1}$. Thus, Observation 7 (2) clearly implies the assertion for $|\mathcal{L}|=1$.

Consider the length $|\mathcal{L}|=a+1$. In this proof, superscripts of variables x^{a}, y^{a-1}, etc. will indicate that x^{a} ranges over L_{a}, y^{a-1} ranges over L_{a-1}, etc. We put $S_{a}^{i}=\left\{q^{a}:\left(L_{a}, q^{a} ; V \cup J_{i}\right) \in\right.$ $\left.\mathbb{L}_{1}\right\}$ and $S_{<a}^{i}=\left\{q^{a-1}:\left(\left(L_{\ell}\right)_{\ell<a}, q^{a-1} ; V \cup J_{i}\right) \in \mathbb{L}\right\}$. By Observations $7(1)$ and $9, S_{a}^{i}$ and $S_{<a}^{i}$ are open in L_{a}. By induction, we assume the assertion for the length a, and fix $\left(\left(L_{\ell}\right)_{\ell \leq a}, p^{a} ; V\right) \in \mathbb{L}$. Since the third condition of \mathbb{L} implies that, given $q^{a} \sqsupseteq p^{a},\left(\left(L_{\ell}\right)_{\ell<a}, r^{a-1} ; V\right) \in \mathbb{L}$ for some $r^{a-1} \sqsupseteq q^{a}$, we get the following by the induction hypothesis:
(IH) Given $q^{a} \sqsupseteq p^{a}$, there is $r^{a-1} \sqsupseteq q^{a}$ such that for all but a many indices $i, u^{a-1} \in S_{<a}^{i}$ for some $u^{a-1} \sqsupseteq r^{a-1}$, that is, $S_{<a}^{i} \cap\left[r^{a-1}\right] \neq \emptyset$.
Note that (IH) implies that given $q^{a} \sqsupseteq p^{a}$, for all but a many indices $i, S_{<a}^{i} \cap\left[q^{a}\right] \neq \emptyset$.
Now we start to verify the assertion. By definition of \mathbb{L}, it suffices to show the following for all but $a+1$ many indices $i<m$:

$$
\begin{equation*}
\left(\exists q^{a} \sqsupseteq p^{a}\right)\left[q^{a} \in S_{a}^{i} \text { and }\left(\forall r_{0}^{a} \sqsupseteq q^{a}\right)\left(\exists r_{1}^{a-1} \sqsupseteq r_{0}^{a}\right) r_{1}^{a-1} \in S_{<a}^{i}\right] \tag{1}
\end{equation*}
$$

Case 1. For any $i \leq m, S_{a}^{i}$ is dense in $L_{a} \cap\left[p^{a}\right]$.

In this case, $\bigcap_{i<m} S_{a}^{i}$ is also dense in $L_{a} \cap\left[p^{a}\right]$ since the intersection of finitely many dense open sets is again dense. Let E be the set of all indices j such that the condition (1) fails. If $j \in E$, then since S_{a}^{j} is dense in $L_{a} \cap\left[p^{a}\right]$, the failure of (1) implies that

$$
\left(\forall q_{0}^{a} \sqsupseteq p^{a}\right)\left(\exists r_{0}^{a} \sqsupseteq q_{0}^{a}\right)\left(\forall r_{1}^{a-1} \sqsupseteq r_{0}^{a}\right) r_{1}^{a-1} \notin S_{<a}^{j} .
$$

Consider $\operatorname{ext}_{a-1} S_{<a}^{j}=\left\{q^{a-1} \in L_{a-1}:\left(\forall r^{a-1} \sqsupseteq q^{a-1}\right) r^{a-1} \notin S_{<a}^{j}\right\}$, the exterior of $S_{<a}^{j}$ in L_{a-1}. Clearly, $\operatorname{ext}_{a-1} S_{<a}^{j}$ is open, and the above formula says that if $j \in E$, then $\operatorname{ext}_{a-1} S_{<a}^{j}$ is dense in $L_{a} \cap\left[p^{a}\right]$. Therefore, $\bigcap_{j \in E} \operatorname{ext}_{a-1} S_{<a}^{j}$ is also dense in $L_{a} \cap\left[p^{a}\right]$. In particular, there is $q_{*}^{a} \sqsupseteq p^{a}$ such that

$$
(\forall j \in E) S_{<a}^{j} \cap\left[q_{*}^{a}\right]=\emptyset .
$$

However, by (IH), for all but a many indices $j, S_{<a}^{j} \cap\left[q_{*}^{a}\right] \neq \emptyset$. Therefore, we have $|E| \leq a$.
Case 2. There is $i<m$ such that S_{a}^{i} is not dense in $L_{a} \cap\left[p^{a}\right]$.
In this case, $L_{a} \backslash S_{a}^{i}$ contains a nonempty open subset of $\left[p^{a}\right]$ in L_{a}, that is, there is $q^{a} \sqsupseteq p^{a}$ such that $q_{0}^{a} \in L_{a} \backslash S_{a}^{i}$ for all $q_{0}^{a} \sqsupseteq q^{a}$. By Observation 7 (2), if $j \neq i$, then for any $q_{0}^{a} \sqsupseteq q^{a}$, there is $q_{1}^{a} \sqsupseteq q_{0}^{a}$ such that $q_{1}^{a} \in S_{a}^{j}$. In particular, $S_{a}^{j} \subseteq L_{a}$ is dense in $L_{a} \cap\left[q^{a}\right]$. Hence, $\bigcap_{i \neq j<m} S_{a}^{j}$ is dense in $L_{a} \cap\left[q^{a}\right]$.

Let E be the set of all indices j such that the condition (1) fails. If $j \in E, j \neq i$, then since S_{a}^{j} is dense in $L_{a} \cap\left[q^{a}\right]$, the failure of (1) implies that

$$
\left(\forall q_{0}^{a} \sqsupseteq q^{a}\right)\left(\exists r_{0}^{a} \sqsupseteq q_{0}^{a}\right)\left(\forall r_{1}^{a-1} \sqsupseteq r_{0}^{a}\right) r_{1}^{a-1} \notin S_{<a}^{j} .
$$

Thus, by the similar argument as before, we get $q_{*}^{a} \sqsupseteq p^{a}$ such that

$$
(\forall j \in E \backslash\{i\}) S_{<a}^{j} \cap\left[q_{*}^{a}\right]=\emptyset .
$$

As before, (IH) implies $|E \backslash\{i\}| \leq a$. Hence, $|E| \leq a+1$. This concludes the proof.
2.2.3. Semmes conditions. We now introduce a key notion, which we call a Semmes condition.

Definition 11. A tuple $\left(\left(L_{\ell}, \sigma_{\ell}, s_{\ell}\right)_{\ell \leq a}, p^{a}, V\right)$ is called a Semmes condition if

$$
\begin{aligned}
& \left(\left(L_{\ell}\right)_{\ell \leq a}, p^{a}, V\right) \text { is an indecomposability layer, i.e., in } \mathbb{L}, \\
& \left(\sigma_{\ell}\right)_{\ell \leq a} \text { is pairwise incomparable, and } \sigma_{\ell} \in V \text {, } \\
& \left(L_{\ell}, \sigma_{\ell}, s_{\ell}\right) \text { is a bi-density witness, i.e., in } \mathbb{Q} \text {, for all } \ell \leq a .
\end{aligned}
$$

Let \mathbb{S} be the set of all Semmes conditions. We say that $\left(\left(T_{\ell}, \sigma_{\ell}, s_{\ell}\right)_{\ell \leq a}, q^{a}, V^{\prime}\right) \in \mathbb{S}$ extends $\left(\left(T_{\ell}, \sigma_{\ell}, s_{\ell}\right)_{\ell<a} ; p^{a-1}, V\right) \in \mathbb{S}$ if

$$
T_{a} \subseteq T_{a-1}, V^{\prime} \supsetneq V, \sigma_{a} \notin V, \text { and } q^{a} \sqsupseteq p^{a-1}
$$

We will need to ensure that a Semmes condition always has an extension. We utilize the indecomposability condition to construct an extension. The following lemma is buried in Semmes [4, p. 37 in Theorem 4.3.7]

Lemma 12. Let \mathcal{T} and $\mathcal{L}_{i}, i<c$, be bi-density witnesses, and $\left(\mathcal{T}, p^{a-1}, V\right),\left(\mathcal{L}_{i}, p_{i}, V\right)$ are Semmes conditions. Then, there are $\mathcal{T}^{\prime} \supseteq \mathcal{T}, q^{a} \sqsupseteq p^{a-1}, p_{i}^{\prime} \sqsupseteq p_{i}$, and $V^{\prime} \supseteq V$ such that $\left(\mathcal{T}^{\prime}, q^{a}, V^{\prime}\right)$ extends $\left(\mathcal{T}, p^{a-1}, V\right)$, and $\left(\mathcal{L}_{i}, p_{i}^{\prime}, V^{\prime}\right)$ are still Semmes conditions.

Proof. Let $\mathcal{T}=\left(\mathcal{T}_{\ell}\right)_{\ell<a}$ be given, where \mathcal{T}_{ℓ} is of the form $\left(T_{\ell}, \tau_{\ell}, t_{\ell}\right)$. We will construct T_{a}. We claim that for any z, there is a sequence $\left(T_{a}^{n+1}, q_{n+1}^{a}, \sigma_{n}\right)_{n \leq z}$ such that $\left(q_{n+1}^{a}\right)_{n \leq z}$ is increasing,

$$
\begin{gathered}
T_{a-1} \supseteq T_{a}^{0} \supseteq T_{a}^{1} \supseteq \cdots \supseteq T_{a}^{z} \supseteq T_{a}^{z+1}, \\
\left(\sigma_{n}\right)_{n \leq z} \text { is pairwise incomparable },
\end{gathered}
$$

$\left(T_{a}^{n+1}, q_{n+1}^{a} ; V \cup\left[\sigma_{n}\right]\right)$ is an idecomposable domain, i.e., in \mathbb{L}_{1}, for any $n \leq z$,

We first define $T_{a}^{0}=T_{a-1}, q_{0}^{a}=p^{a-1}$, and $U_{0}=\emptyset$. Since $\left(\mathcal{T}, p^{a-1}, V\right) \in \mathbb{S},\left(T_{a}^{0}, q_{0}^{a} ; V \cup U_{0}\right)$ is an indecomposability domain. Assume that we have constructed $\left(T_{a}^{s+1}, q_{s+1}^{a}, \sigma_{s}\right)_{s<n}$ fulfilling the above claim. Put $U_{n}=\bigcup_{s<n}\left[\sigma_{s}\right]$. Inductively assume that $\left(T_{a}^{n}, q_{n}^{a} ; V \cup U_{n}\right)$ is an indecomposability domain, that is, $\left.f\right|_{\mathbf{D}} \notin \operatorname{dec}\left(\boldsymbol{\Sigma}_{2}^{0} / \mathbf{\Pi}_{2}^{0}\right)$, where $\mathbf{D}=T_{a}^{n} \cap\left[q_{n}^{a}\right] \backslash f^{-1}\left[V \cup U_{n}\right]$. By applying Lemma 4 to $h=\left.f\right|_{\mathbf{D}}$, one obtains σ_{n}, s_{n} such that

$$
\emptyset \neq T_{a}^{n+1}:=K_{\sigma_{n}, s_{n}} h \subseteq \operatorname{cl}_{\omega^{\omega}}(\mathbf{D}) \subseteq T_{a}^{n} \cap\left[q_{n}^{a}\right]
$$

Since \mathbf{D} and $f^{-1}\left[V \cup U_{n}\right]$ have no intersection, by Observation $6,\left(T_{a}^{n+1}, \varepsilon ; V \cup U_{n+1}\right)$ is an indecomposability domain, and so is $\left(T_{a}^{n+1}, q_{n}^{a} ; V \cup\left[\sigma_{n}\right]\right)$ by Observation 7 (1). This verifies the third requirement of the claim whenever $q_{n}^{a} \sqsubseteq q_{n+1}^{a} \in T_{a}^{n+1}$.

To ensure the second requirement of the claim, we may need to choose a subsequence of $\left(T_{a}^{s+1}, q_{s+1}^{a}, \sigma_{s}\right)_{s}$. As seen in the proof of Observation $5, h_{s_{n}}^{*}\left[\sigma_{n}\right]$ is dense in T_{a}^{n+1}. In particular, $h^{-1}\left[\sigma_{n}\right] \supseteq h_{s_{n}}^{*}\left[\sigma_{n}\right]$ is nonempty. Since $h^{-1}\left[V \cup U_{n}\right]$ is empty, we have $\left[\sigma_{n}\right] \nsubseteq\left[V \cup U_{n}\right]$. Note that $V \cup U_{n}$ is generated by a finite set I_{n} of finite strings. Moreover, the condition $\left[\sigma_{n}\right] \nsubseteq\left[V \cup U_{n}\right]$ means that either σ_{n} is incomparable with any elements in I_{n} or σ_{n} is an initial segment of an element in I_{n}. However, since I_{n} is finite, there are finitely many σ_{n} satisfying the latter condition. Let $j(n)$ be 1 plus the number of such strings. Hence, given s, if t is sufficiently large, $t \geq s+j(s)$ say, then we must have σ_{t} is incomparable with any strings in L_{s}. In particular, σ_{t} is incomparable with σ_{u} for any $u<s$. Define $h(s)=\sum_{u \leq s} j(u)$. We now replace $\left(T_{a}^{n+1}, q_{n+1}^{a}, \sigma_{n}\right)$ with $\left(T_{a}^{j(n)+1}, q_{j(n)+1}^{a}, \sigma_{j(n)}\right)_{n \leq z}$, which satisfies all conditions of the claim.

We now have two cases.

$$
\left(\forall r^{a} \sqsupseteq q_{n}^{a}\right)\left(\exists u^{a-1} \sqsupseteq r^{a}\right)\left(\left(T_{\ell}\right)_{\ell<a}, u^{a-1}, V \cup\left[\sigma_{n}\right]\right) \in \mathbb{L},
$$

where r^{a} ranges over T_{a}^{n+1}, and u^{a-1} ranges over T_{a-1}. In this case, by combining with the third condition of the previous claim, we get that $\left(\left(T_{\ell}\right)_{\ell<a}{ }^{\wedge} T_{a}^{n+1}, q_{n}^{a}, V \cup\left[\sigma_{n}\right]\right) \in \mathbb{L}$. Then define $q_{n+1}^{a}=q_{n}^{a}$. Otherwise, we have

$$
\left(\exists r^{a} \sqsupseteq q_{n}^{a}\right)\left(\forall u^{a-1} \sqsupseteq r^{a}\right)\left(\left(T_{\ell}\right)_{\ell<a}, u^{a-1}, V \cup\left[\sigma_{n}\right]\right) \notin \mathbb{L}
$$

In this case, we define $q_{n+1}^{a}=r^{a}$. In any case, $q_{n}^{a} \sqsubseteq q_{n+1}^{a} \in T_{n+1}^{a}$.
Let E be the set of all indices $n \leq z$ such that the second case applies. Recall that $\left(\left(T_{\ell}\right)_{\ell<a}, q_{z+1}^{a}, V\right) \in \mathbb{L}$ and $\left(\sigma_{n}\right)_{n \leq z}$ is pairwise incomparable. Therefore, by Lemma 10, for all but a many indices $i \leq z$, we have $\left(\left(T_{\ell}\right)_{\ell<a}, u^{a-1}, V \cup\left[\sigma_{i}\right]\right) \in \mathbb{L}$ for some $u^{a-1} \sqsupseteq q_{z+1}^{a}$. This means that $|E| \leq a$. Hence, for all but a many indices $n \leq z$, the first case applies, and we get that $\left(\left(T_{\ell}\right)_{\ell<a}{ }^{\wedge} T_{a}^{n+1}, q_{n+1}^{a}, V \cup\left[\sigma_{n}\right]\right) \in \mathbb{L}$.

Put $z=a+b+1$, where $b=\sum_{i<c}\left|\mathcal{L}_{i}\right|$. Then, $|z \backslash E|>b$. By Lemma 10, there is $n \in z \backslash E$ such that for all $i<c$, we have $\left(\mathcal{L}_{i}, p_{i}^{\prime}, V \cup\left[\sigma_{n}\right]\right) \in \mathbb{S}$ for some $p_{i}^{\prime} \sqsupseteq p_{i}$. Finally, put $T_{a}=T_{a}^{n+1}, q_{a}=q_{n+1}^{a}$ and $V^{\prime}=V \cup\left[\sigma_{n}\right]$. By our choice of $\left(\sigma_{n}, s_{n}\right)$ and by Observation 5, we have $\mathcal{T}_{a}:=\left(T_{a}, \sigma_{n}, s_{n}\right) \in \mathbb{Q}$. Put $\mathcal{T}^{\prime}=\left(\mathcal{T}_{\ell}\right)_{\ell \leq a}$. Then, we get $\left(\mathcal{T}^{\prime}, q^{a}, V^{\prime}\right) \in \mathbb{S}$, and it extends $\left(\mathcal{T}, p^{a-1}, V\right)$ as desired.

Later our construction will make an injury (in the sense of a priority argument), which may decreases the length of the Semmes condition. We say that $\left(\mathcal{T}^{\prime}, q^{\ell}, V^{\prime}\right) \in \mathbb{S}$ is a shortening of $\left(\mathcal{T}, p^{a}, V\right) \in \mathbb{S}$ if \mathcal{T}^{\prime} is an initial segment of $\mathcal{T}, V^{\prime}=V$, and $q^{\ell} \sqsupseteq p^{a}$. The following corresponds to Semmes [4, Proposition 4.3.5].

Observation 13. Every Semmes condition $\left(\mathcal{T}, p^{a}, V\right)$ has a shortening of length ℓ for any $\ell \leq$ $|\mathcal{T}|$.

Proof. Let a be the length of \mathcal{T}. Since $\left(\left(T_{j}\right)_{j<a}, p^{a}, V\right) \in \mathbb{L}$, one can find a sequence $p^{a-1} \sqsubseteq$ $p^{a-2} \sqsubseteq \ldots \sqsubseteq p^{\ell}$ such that $\left(\left(T_{j}\right)_{j<a}, p^{\ell}, V\right) \in \mathbb{L}$.
2.3. Priority argument. We are now ready to prove Theorem 2. Given a $\boldsymbol{\Sigma}_{3}^{0}$ set $U \subseteq \omega^{\omega}$ we will construct a continuous function $\psi: \omega^{\omega} \rightarrow \omega^{\omega}$ and a set $V \subseteq \omega^{<\omega}$ of strings such that

$$
x \in U \Longleftrightarrow \psi(x) \in f^{-1}[V]
$$

for every $x \in \omega^{\omega}$, where $[V]$ is the open set generated by V. Thus, this will ensure that $f^{-1}[V]$ is $\boldsymbol{\Sigma}_{3}^{0}$-complete for some set V of strings, which implies $f^{-1} \boldsymbol{\Sigma}_{2}^{0} \nsubseteq \boldsymbol{\Sigma}_{3}^{0}$. We first describe $\boldsymbol{\Sigma}_{3}^{0}$ sets $f^{-1}[V]$ and U as follows:

$$
\begin{aligned}
x \in U & \Longleftrightarrow(\exists a)(\forall b)(\exists c) S(x, a, b, c), \\
y \in f^{-1}[V] & \Longleftrightarrow(\exists \sigma \in V)(\exists i)(\forall j)(\exists k) Q(y, \sigma, i, j, k) .
\end{aligned}
$$

Here, $y \in f_{i}^{*}[\sigma]$ iff for all j, there exists k such that $Q(y, \sigma, i, j, k)$, where S and Q are Δ_{1} formulas (or equivalently, clopen sets). For this reason, one can assume monotonicity of Q, that is, if $Q(y, \sigma, i, j, k)$ and $\tau \sqsubseteq \sigma$ then $Q(y, \tau, i, j, k)$ also holds, since replacing $Q(y, \sigma, i, j, k)$ with the condition $\exists \tau \sqsubseteq \sigma Q(y, \tau, i, j, k)$ does not affect the above property.

Requirements. The a-th requirements for our construction are given as follows:

$$
\begin{aligned}
\mathcal{N}_{a}^{x}: & \left(\forall a^{\prime}<a\right)(\exists b)(\forall c) \neg S(x, a, b, c) & \Longrightarrow\left(\forall \sigma \in V_{s_{a}}\right)(\forall i<a)(\exists j)(\forall k) \neg Q(\psi(x), \sigma, i, j, k), \\
\mathcal{P}_{a}^{x}: & (\forall b)(\exists c) S(x, a, b, c) & \Longrightarrow\left(\exists \sigma_{a}\right)\left(\exists i_{a}\right)(\forall j)(\exists k) Q\left(\psi(x), \sigma_{a}, i_{a}, j, k\right),
\end{aligned}
$$

where s_{a} is the first stage at which an a-th strategy acts along x (after the last initialization which may be caused by a higher-priority strategy; the details will be explained later).

Roughly speaking, every a-th strategy believes that a is the least witness for $x \in U$. Then, the \mathcal{P}-action tries to keep $\psi(x) \in f_{i_{a}}^{*}\left[\sigma_{a}\right]$ and the \mathcal{N}-action forces $\psi(x) \notin \bigcup_{i<a} f_{i}^{*}\left[V_{s_{a}}\right]$. These requirements ensure that such ψ is a desired reduction as follows.

- If a is the smallest witness for $x \in U$, then the requirement \mathcal{P}_{a}^{x} ensures that $\psi(x) \in f_{i_{a}}^{*}\left[\sigma_{a}\right]$. The a-th strategy will put σ_{a} into the set V in the construction, so by the requirement \mathcal{P}_{a}^{x}, we get that $x \in U$ implies $\psi(x) \in f^{-1}[V]$.
- If $x \notin U$, then for every a, the premise of the requirement \mathcal{N}_{a} must be true, and then, the combination of requirements \mathcal{N}_{a}^{x} 's will eventually ensure that $\psi(x) \notin f^{-1}[V]=$ $\bigcup_{a} f^{-1}\left[V_{s_{a}}\right]$.
Thus, it suffices to describe the strategy to satisfy the requirements \mathcal{P}_{a}^{x} and \mathcal{N}_{a}^{x}. A rough idea is to assign a Semmes condition $\left(\mathcal{T}_{\alpha}, p_{\alpha}, V_{\alpha}\right)$ to each string $\alpha \sqsubset x$, and the a-th tree T_{a} in the layer follows the a-th strategy.

Conditions. Fix a bijection $h: \omega^{<\omega} \rightarrow \omega$ such that $\alpha \sqsubseteq \beta$ implies $h(\alpha) \leq h(\beta)$. We simply write $\alpha \leq \beta$ if $h(\alpha) \leq h(\beta)$. At stage s, we will deal with the s-th binary string w.r.t. this order \leq. Given α, we use symbols $\alpha-1$ and α^{-}to denote the immediate \leq-predecessor and the immediate \sqsubseteq-predecessor, respectively. At the α-th stage, we will construct $\mathcal{T}_{\alpha},\left(p_{\beta}^{\alpha}\right)_{\beta \leq \alpha}$, and V_{α} satisfying the following condition.

- $\left(\mathcal{T}_{\beta}, p_{\beta}^{\alpha}, V_{\alpha}\right)$ is a Semmes condition for every $\alpha \in \omega^{<\omega}$ and $\beta \leq \alpha$.
- If $\beta \leq \alpha$, then $p_{\beta}^{\alpha-1} \sqsubseteq p_{\beta}^{\alpha}$ and $V_{\alpha-1} \subseteq V_{\alpha}$.
- $\left(\mathcal{T}_{\alpha}, p_{\alpha}^{\alpha}, V_{\alpha}\right)$ is either an extension or a shortening of $\left(\mathcal{T}_{\alpha^{-}}, p_{\alpha^{-}}^{\alpha-1}, V_{\alpha-1}\right)$.

Then, we will define $V=\bigcup_{\alpha \in \omega<\omega} V_{\alpha}$, and $\psi(x)=\bigcup_{s \in \omega} p_{x\lceil s}^{x\lceil s}$.
By the definition of a Semmes condition, \mathcal{T}_{α} is a sequence of bi-dense triples $\left(T_{a}, \sigma_{a}, i_{a}\right)_{a<\ell}$. Here, recall that $\left(\sigma_{a}, i_{a}\right)$ witnesses the bi-dense property of T_{a} for every $a<\ell$:

$$
\begin{align*}
& \left(\forall q^{a}\right)\left(\exists y^{a} \sqsupset q^{a}\right)\left[\forall j \exists k Q\left(y^{a}, \sigma_{a}, i_{a}, j, k\right)\right], \tag{D1}\\
& \left(\forall \tau \perp \sigma_{a}\right)(\forall i)\left(\forall p^{a}\right)\left(\exists q^{a} \sqsupseteq p^{a}\right)\left(\forall y^{a} \sqsupset q^{a}\right)\left[\exists j \forall k \neg Q\left(y^{a}, \tau, i, j, k\right)\right],
\end{align*}
$$

where $p^{a}, q^{a} \in \omega^{<\omega}$ and $y^{a} \in \omega^{\omega}$ range over T_{a}.
We now start to describe the proof of Theorem 2. For the reader who is familiar with priority arguments in computability theory, we first note that our proof is a finite injury priority argument.

Proof of Theorem 2. As mentioned before, we will construct Semmes conditions $\left(\mathcal{T}_{\alpha}, p_{\beta}^{\alpha}, V_{\alpha}\right)_{\beta \leq \alpha}$ at the α-th stage. If ℓ is the length of $\mathcal{T}_{\alpha^{-}}$, then every strategy $a \leq \ell$ is eligible to act at the α-th stage, that is, we deal with $\mathcal{P}_{a^{-}}$and \mathcal{N}_{a}-strategies for any $a \leq \ell$. The state of the a-th strategy at the α-th stage s is written as state (a, α). If $a<\ell$ then state (a, α) takes a value in ω, and if $a=\ell$, then state $(a, \alpha)=$ init $\notin \omega$.

At the first stage ε, where ε is the empty string, we first use Lemma 4 to get σ, s such that $K_{\sigma, s} f$ is nonempty. Put $\mathcal{T}_{\varepsilon}=\left(K_{\sigma, s} f, \sigma, s\right), p_{\varepsilon}^{\varepsilon}=\varepsilon$, and $V_{\varepsilon}=\{\sigma\}$, and then $\left(\mathcal{T}_{\varepsilon}, p_{\varepsilon}^{\varepsilon}, V_{\varepsilon}\right)$ forms a Semmes condition by Observations 5 and 6 . We then set $\operatorname{state}(0, \varepsilon)=0$ and $\operatorname{state}(a, \varepsilon)=$ init for every $a>0$.

At the beginning of stage α we inductively assume that state (a, β) has already been defined for any $\beta<\alpha$. By our assumption, a Semmes condition $\mathbf{p}=\left(\mathcal{T}_{\alpha^{-}}, p_{\alpha^{-}}^{\alpha-1}, V_{\alpha-1}\right)$ has also been constructed by the previous stage. Let ℓ be the length of $\mathcal{T}_{\alpha^{-}}$, that is, $\mathcal{T}_{\alpha^{-}}$is of the form $\left(\mathcal{T}_{a}\right)_{a<\ell}$ such that $\mathcal{T}_{a}=\left(T_{a}, \sigma_{a}, i_{a}\right) \in \mathbb{Q}$. At this stage α, we will consider $(\ell+1)$ strategies.

A brief description of our strategies at stage α : Before giving the formal definition, we will explain an informal idea of our finite injury priority construction.

For $a<\ell$, the a-th strategy believes that a is the least witness for $x \in U$ under the current approximation $\alpha \sqsubseteq x$. Of course, the belief of the a-th strategy can be both correct for some $x \sqsupset \alpha$ and incorrect for some other $x^{\prime} \sqsupset \alpha$, but she has the same belief at the current α. The a-th strategy looks for witnesses supporting her belief, and if she finds a new witness at the current stage α, she wants to act to fulfill the requirement \mathcal{P}_{a}^{x} using the density (D1) of the a-th triple $\left(T_{a}, \sigma_{a}, i_{a}\right)$.

The outmost strategy, i.e., the ℓ-th strategy, also believes that ℓ is the least witness for $x \in U$, but currently we do not have the ℓ-th level $\left(T_{\ell}, \sigma_{\ell}, i_{\ell}\right)$. The hope of the ℓ-th strategy at this stage is to construct a triple $\left(T_{\ell}, \sigma_{\ell}, i_{\ell}\right)$, and to make action under the belief that ℓ is the least witness, that is, no $a<\ell$ is a witness for $x \in U$. Then, the ℓ-th strategy needs to make sure the requirement \mathcal{N}_{ℓ}^{x} by using the nowhere density (D2) of a newly constructed ($T_{\ell}, \sigma_{\ell}, i_{\ell}$).

Now, many strategies may want to act; however, their beliefs conflict with each other. Hence, we cannot allow more than one strategies to make action at one stage. To avoid such a conflict we put a priority order on strategies; a smaller $a \leq \ell$ has higher priority than a greater $a^{\prime} \leq \ell$. Only the highest priority strategy among those who want to act can actually act. Thus, exactly one of the strategies acts at each stage. Along $x \in \omega^{\omega}$, if $x \in U$, then exactly one strategy has a correct belief, and we will see that such a strategy acts infinitely often. If $x \notin U$, then no one has a correct belief, and no strategy acts infinitely often.

We now give a formal description of the above argument. The stage α consists of $\ell+1$ substages. At the a-th substage of stage α, we check whether the a-th strategy makes an action. We begin with substage $a=0$, and consider the following actions.

Initial Action: If state $\left(a, \alpha^{-}\right)=$init, then $a=\ell$, so the ℓ-th strategy makes the following action.
(1) By Lemma 12 , there are $\mathcal{T}_{\ell}=\left(T_{\ell}, \sigma_{\ell}, i_{\ell}\right), p^{\ell} \sqsupseteq p_{\alpha}^{\alpha-1}, p_{\beta}^{\alpha} \sqsupseteq p_{\beta}^{\alpha-1}$, and $V_{\alpha} \supsetneq V_{\alpha-1}$ such that

$$
\left(\left(\mathcal{T}_{a}\right)_{a \leq \ell}, p^{\ell}, V_{\alpha}\right) \text { extends } \mathbf{p}=\left(\mathcal{T}_{\alpha^{-}}, p_{\alpha^{-}}^{\alpha-1}, V_{\alpha-1}\right)
$$

$\left(\mathcal{T}_{\beta}, p_{\beta}^{\alpha}, \bar{V}_{\alpha}\right)$ is a Semmes condition whenever $\beta<\alpha$.
(2) To ensure \mathcal{N}_{ℓ}, by the nowhere density condition (D2) for T_{ℓ}, since σ_{ℓ} is incomparable with any element in $V_{\alpha-1}$, there is a proper extension $q^{\ell} \sqsupset p^{\ell}$ in T_{ℓ} such that

$$
\left(\forall y^{\ell} \sqsupset q^{\ell}\right)\left(\forall \tau \in V_{\alpha-1}\right)\left[\forall i<a \exists j \forall k \neg Q\left(y^{\ell}, \tau, i, j, k\right)\right],
$$

where $y^{\ell} \in \omega^{\omega}$ ranges over T_{ℓ}. Note that $(* *)$ means that $\left[q_{\ell}\right] \cap \bigcup_{i<a} f_{i}^{*}\left[V_{\alpha-1}\right]=\emptyset$, where one can think of $\tau \in V_{\alpha-1}$ as $[\tau] \subseteq\left[V_{\alpha-1}\right]$. Define $p_{\alpha}^{\alpha}=q^{\ell}$. By Observation 7 (1), $\left(\left(\mathcal{T}_{a}\right)_{a \leq \ell}, p_{\alpha}^{\alpha}, V_{\alpha}\right)$ is still a Semmes condition, which extends the previous condition \mathbf{p}.
(3) Define $\operatorname{state}(\ell, \alpha)=0$, and $\operatorname{state}(a, \alpha)=\operatorname{state}\left(a, \alpha^{-}\right)$for $a \neq \ell$. Go to the next stage $\alpha+1$.

The b-th Action: If state $\left(a, \alpha^{-}\right)=b \in \omega$, then the a-strategy see if

$$
\left(\forall b^{\prime} \leq b\right)(\exists c \leq|\alpha|) S\left(\alpha, a, b^{\prime}, c\right) .
$$

If this does not hold, go to the next substage $a+1$. If this condition is true, the a-th strategy acts as follows. By Observation 13, we get a length $a+1$ shortening $\left(\left(\mathcal{T}_{b}\right)_{b \leq a}, p^{a}, V_{\alpha-1}\right) \in \mathbb{S}$ of the previous condition \mathbf{p}. Now \mathcal{T}_{a} is of the form $\left(T_{a}, \sigma_{a}, s_{a}\right) \in \mathbb{Q}$. By the density condition (D1) for T_{a}, there exists a proper extension $q^{a} \sqsupset p^{a}$ in T_{a} such that

$$
\begin{equation*}
(\forall j \leq b)(\exists k) Q\left(q^{a}, \sigma_{a}, i_{a}, j, k\right) . \tag{*}
\end{equation*}
$$

Define $p_{\alpha}^{\alpha}=q^{a}$. By Observation 7, $\left(\left(\mathcal{T}_{b}\right)_{b \leq a}, p_{\alpha}^{\alpha}, V_{\alpha-1}\right)$ is a Semmes condition, which is a shortening of the previous condition \mathbf{p}. Then, define $\mathcal{T}_{\alpha}=\left(\mathcal{T}_{b}\right)_{b \leq a}, V_{\alpha}=V_{\alpha-1}$, state $(a, \alpha)=$ $b+1$, $\operatorname{state}(i, \alpha)=\operatorname{state}\left(i, \alpha^{-}\right)$for any $i<a$ and $\operatorname{state}(i, \alpha)=$ init for any $i>a$. Go to the next stage $\alpha+1$.
Outcomes: Put $V=\bigcup_{\alpha \in \omega^{<\omega}} V_{\alpha}$, and $\psi(x)=\bigcup_{s \in \omega} p_{x \mid s}^{x \mid s}$. Clearly, V is open since $\left(V_{\alpha}\right)_{\alpha \in \omega<\omega}$ is a union of open sets. Moreover, ψ is continuous since $\left(p_{x \mid s}^{x \mid s}\right)_{s \in \omega}$ is increasing.
Lemma 14. For any x, we have the following.

$$
x \notin U \Longleftrightarrow \lim _{s \rightarrow \infty} \text { state }(a, x \upharpoonright s) \text { converges for every } a
$$

Proof. (\Rightarrow) If $x \notin U$ then for any a there is b such that $(\exists c) S(x, a, b, c)$ fails. Then the b-th action never occur at any initial segment of x. Thus, we must have state $(a, x \upharpoonright s) \leq b$ for any s. If the state of a strategy does not change, then it does not injure any other strategy. Therefore, by induction, we can see $\lim _{s}$ state $(a, x \upharpoonright s)$ converges for every a.
(\Leftarrow) If $x \in U$ then there is a such that for every b, we have $(\exists c) S(x, a, b, c)$. Let a_{0} be the smallest such a. Then it is easy to see that for any b, a_{0} proceeds the b-th action at some stage s_{b} such that state $\left(a_{0}, x \upharpoonright s_{b}\right)=b$. In other words, $\lim _{s} \operatorname{state}\left(a_{0}, x \upharpoonright s\right)$ diverges.

One can also see that $\lim _{s \rightarrow \infty} \operatorname{state}(a, x \upharpoonright s)$ converges for every a iff the a-th strategy acts at most finitely often for any a. We finally show the following.

Lemma 15. For any x, we have the following.

$$
x \in U \Longleftrightarrow \psi(x) \in f^{-1}[V] .
$$

Proof. (\Leftarrow) If $x \notin U$, then by Lemma $14, \lim _{s} \operatorname{state}(a, x \upharpoonright s)$ converges for every a. Then, for any a, there is a stage $\alpha_{a} \sqsubseteq x$ such that the a-th strategy proceeds the initial action at stage α_{a} and this action is never injured. Clearly, $\left(\alpha_{a}\right)_{a \in \omega}$ is strictly increasing. Then, by the initial action $(* *)$ of a at stage α_{a}, for all $\tau \in V_{\alpha_{a}-1}$ and $i<a$ we have $\exists j \forall k \neg Q(\psi(x), \tau, i, j, k)$ since $\psi(x) \in T_{\alpha_{a}}$ by the non-injury assumption, and $\psi(x)$ extends $p_{\alpha_{a}}^{\alpha_{a}}$. This means that $\psi(x) \notin f_{i}^{*}\left[V_{\alpha_{a}-1}\right]$ for any $i<a$. However, if $\psi(x) \in f^{-1}[V]$ then there are i and β such that $\psi(x) \in f_{i}^{*}\left[V_{\beta}\right]$. Let a be such that $i<a$ and $\beta<\alpha_{a}$. Then, $\psi(x) \in f_{i}^{*}\left[V_{\alpha_{a}-1}\right]$, a contradiction. Therefore, we get $\psi(x) \notin f^{-1}[V]$.
(\Rightarrow) If $x \in U$, then by Lemma 14 , there is a such that the a-th strategy acts infinitely often. Let a be the least such strategy. Then there is s such that a is never injured after $x \upharpoonright s$. Assume that $\mathcal{T}_{x \upharpoonright s}$ is of the form $\left(T_{u}^{s}, \sigma_{u}^{s}, i_{u}^{s}\right)_{u<\ell(s)}$, where we must have $a<\ell(s)$. Since a and hence any $u \leq a$ are never injured after $x \upharpoonright s$, we have that $\sigma_{u}^{s}=\sigma_{u}^{t}$ and $i_{u}^{s}=i_{u}^{t}$ whenever $s \leq t$ and $u \leq a$. By the b-th action (*) of a, we have $\forall j \leq b \exists k Q\left(\psi(x), \sigma_{a}^{s}, i_{a}^{s}, j, k\right)$ since $\psi(x) \in T_{\alpha_{a}}$ by the non-injury assumption, and $\psi(x)$ extends $p_{x\lceil s}^{x \upharpoonright s}$. Since this holds for any b, we get $\forall j \exists k Q\left(\psi(x), \sigma_{a}^{s}, i_{a}^{s}, j, k\right)$. This means that $\psi(x) \in f_{i_{a}^{s}}^{*}\left[\sigma_{a}^{s}\right]$, and thus $\psi(x) \in f_{i_{a}^{s}}^{*}\left[V_{x \upharpoonright s}\right] \subseteq f^{-1}[V]$ since $\sigma_{a}^{s} \in V_{x \uparrow s}$.

Lemma 15 shows that $f^{-1}[V]$ is $\boldsymbol{\Sigma}_{3}^{0}$-complete for some open set V. Hence, $f^{-1}\left[\omega^{\omega} \backslash V\right]$ is not $\boldsymbol{\Sigma}_{3}^{0}$ while $\omega^{\omega} \backslash V$ is $\boldsymbol{\Sigma}_{2}^{0}$. That is, $f^{-1} \boldsymbol{\Sigma}_{2}^{0} \nsubseteq \boldsymbol{\Sigma}_{3}^{0}$. This concludes the proof.

Acknowledgement. The author would like to thank Vassilios Gregoriades, Tadatoshi Miyamoto, and Yasuo Yoshinobu for valuable discussions.

References

[1] Raphaël Carroy, The Louveau sessions: On Semmes's Baire class 2 results, a circulated manuscript.
[2] J. E. Jayne and C. A. Rogers, First level Borel functions and isomorphisms. J. Math. Pures Appl. (9), 61(2):177-205, 1982.
[3] Luca Motto Ros, On the structure of finite level and ω-decomposable Borel functions. J. Symbolic Logic 78 (4):1257-1287, 2013.
[4] Brian Semmes, A game for the Borel functions. Ph.D. thesis, Universiteit van Amsterdam. 2009.

