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Motivations

@ Ordinals as time for computation.
@ Peculiar ordinal properties.

@ Proof of mathematical properties from an algorithmic point of
view.
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Ordinals
Definition (Ordinal)
Transitive well-ordered set for the membership relation. J
0:=0 . .
1:= {0} = {0} e If o is an ordinal, then o U {a},

denoted o + 1 is called

o (0 1..;2’3’ . successor of « and is an ordinal;

w+1:={0,1,2,3,-- ,w} o let A be a set of ordinal
numbers, then o = UﬁeAﬁ is a
w2:={0,1,2, -+ ,w,w+ limit ordinal.
LLw+2...}
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Encoding countable ordinals

Countable ordinal = well order on N.

Encoding (Encoding countable ordinals by reals)

Let < be an order on the natural numbers.
The real r is a code for the order-type of < if, for i = (z, y), the
i-th bit of ris 1 if and only if x < 1.

Example: w.2 = w + w ~~ even integers lower than odd integers.

0= <0, 0> 1= <O, 1> e = 00110203041506171819110 s
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Structure of infinite time Turing machines (ITTM)

@ additional special limit state

@ 3 right-infinite tapes )
lim

@ a single head

@ computation steps are
@ binary alphabet {0, 1} P °

indexed by ordinals

Configuration

IR 0 N (1 ) N C

work [ofofofofofofof ]--
output [oJoJoJoJoJoJo] 7 -

Conclusion
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Operating an ITTM

q1
Configuration at o + 1. t:420|0|T|0|0|T|0 o[]--

o d

Configuration at a. ﬂ

43
t=o007|0]o]1]1]1]o]oT--
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Operating an ITTM

<Hl@m||::>
t=wlo]1]1]o]1]o]o[] -

Configuration limit: + 1111 1 1 limsup
@ head: initial
position; Q1

@ state: lim; t:420|0m0|0m0 o[ ] -
@ each cell: /im sup

of cell values
before.

43
t=o007[ofof1]1]1fofo -
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Computational power

arithmetic

decidable

Figure: Projective hierarchy

Conclusion
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Halting

@ Machines halt when they reach the halting state.

@ We consider the strong stabilisation of cells at 0.

Theorem (Hamkins, Lewis [HLOO])

Either an ITTM halts in a countable numer of steps, or it begins
looping in a countable number of steps.

o We focus on the halting problem on 0.
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Clockable and writable ordinals

Two natural notions:

Definition (Clockable ordinal)

« clockable: there exists an ITTM that halts on input 000 ... in
exactly o steps of computation.

Definition (Writable ordinal)

« writable: there exists an ITTM that writes a code for o on
input 000. .. and halts.
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Supremum

Theorem (Welch [Wel09])

The supremum of the clockable ordinals is equal to the supremum
of the writable ordinals. It is called \.

A is a rather large countable ordinal..
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Let's count!

Count with a clockable ordinal ~ Clock.

Like an hourglass, execute operations while clocking the desired
ordinal.

Speed-up lemma (Hamkins, Lewis [HLOO])

If p halts on 0 in « + n steps, then there exists p' which halts on 0
in « steps (and computes the same). ~ limit ordinals

Count with a writable ordinal ~» Empty an order.

It is about counting through the encoding of an ordinal.
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What about the particularities of these ordinals?
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Gap

There exist writable ordinals that are not clockable such that:
o they form intervals;

@ these intervals have limit sizes.

Definition (Gap) J

Intervals of not clockable ordinals.
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Proof of gap existence

gap checking
O

0 a B B+w

—

Simulation of all programs on input 0.
In blue: halting programs. In red: limit step, begins a gap?
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Proof of gap existence

But ..does the algorithm halt?

Halting of the algorithm, proof by contradiction:
@ Above A, by definition, there are no clockable ordinals.
@ If no gaps before A, thus beginning of gap detected at \.
o Contradiction.
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What does the literature say about gaps?
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Sizes of gaps

Theorem (Hamkins, Lewis [HLOO])

Above any clockable ordinal, the first gap has size w.

Conclusion
000

Theorem (Hamkins, Seabold [HS01])

For all writable limit ordinals «, there exists a gap having size
exactly «.
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Gaps cofinal in A

Theorem (Hamkins, Lewis [HLOO])

If « is a writable ordinal, the order-type of gaps having size at least
ais .

21/40



o]

} A gaps of size «

Gaps
00000000e00000000

22/40



Introduction Presentation of Infinite time Turing machines Gaps Conclusion
0000 C o [elelelelelolelo]e] lolelelelelelelololole} 000

} A gaps of size a

<+ J What about the ordinals in gaps ?

%\J
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Admissible ordinals

Property

A limit ordinal o is admissible if and only if there doesn’t exist a
function f from v < « to « such that:

e fis unbounded (no greatest element in o) and
o fis Xy-definable in L.
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Constructible hierarchy

Definition (Constructible hierarchy L)
o Ly=10;
o Lot1 = def(La);
o if a is a limit ordinal, Lo = Ug_,, Lg;

Application: reals of L) are the writable reals.
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Definability

Let M be a set and F be the set of the formulas of the language
{e}.

Definition (Definability)

X is definable on a model (M, €) if:

o there exists a formula ¢ € F,

@ there exists ai,...,a, € M

such that X = {zx € M: p(x,a1,...,ay) is true in (M, €)}.

def(M) = {X C M: X is definable on (M, €)}.
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Admissible ordinals

Property

A limit ordinal o is admissible if and only if there doesn’t exist a
function f from v < « to « such that:

e fis unbounded (no greatest element in o) and
o fis Xy-definable in L.
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Beginning of gaps and logic

Theorem (Welch [Wel09])

Gaps begin at admissible ordinals.

Conclusion
000
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What do we say about gaps?
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} A gaps of size «, beginning at admissibles

{ J

o
4 / How is the size distributed?
AE I w

30/40



Introduction Presentation of Infinite time Turing machines Gaps Conclusion
0000 00000000000 00000000000000000e000 000

Existence of a very big gap

Theorem (PhD)

There exists a gap g such that beginning(g) = size(g).
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Structure of gaps before (3

Let By be the beginning and the size of the first gap g such that
beginning(g) = size(g).

Theorem (PhD)

Before f3y, the function that maps « to the beginning of the first
gap of size « is increasing.
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Beginning of gaps and logic

Theorem (PhD)

The ordinal By begins the (y-th gap.
This is also the (5y-th admissible ordinal.
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infinite time Turing machines

model for algorithms proving logical properties
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Conclusion

Questions:
o Characterization of admissible ordinals by gaps?
@ Gaps in other transfinite models of computation?
@ ITTMs and other fields of Mathematics/CS?
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Another result

Theorem (ITTM are equivalent to )

Any Infinite Time Turing Machine can be simulated by some

computable (hence continuous) ordinary differential equation and
vice-versa.

37/40



Consequences

Conclusion

000

infinite time Turing machines

model for algorithms proving logical properties

Continuous ordinary differential equations = Infinite time
Turing machines.
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Consequences and questions

@ Applying transfinite techniques to Analysis.

@ Transposing Analysis questions to transfinite computations.

@ 2 dual views for the same computability questions.

@ discrete transfinite time = continuous time.

Conclusion

000
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Other transdisciplinary aspects, an example

Other applications of ITTM using cheap non-standard analysis:
@ asymptotic limit of a sequence for results about computability
@ extension to an index set different from N

@ expression of ITTM computations

Thank you for your attention.
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