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Theorem (Kechris-Martin 197x?)
Under the axiom of determinacy (AD), the Wadge rank of the ω-th level of
the decreasing difference hierarchy over Π˜ 1

1
is ω2.

— J. Steel, Closure properties of pointclasses, In Wadge Degrees and Projective Ordinals:

The Cabal Seminar, Volume II.
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Borel hierarchy / arithmetical hierarchy / hyperarithmetical hierarchy
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Projective hierarchy / analytical hierarchy
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Wadge hierarchy (1970s)

cofinality ! cofinality > !

Wadge degree: Ultimate measure for topological complexity
Let X and Y be topological spaces, A ⊆ X and B ⊆ Y,

A ≤W B ⇐⇒ ∃ continuous θ : X → Y
∀x ∈ X [x ∈ A ←→ θ(x) ∈ B]

A <W B ⇐⇒ B is topologically more complicated than A.

(AD) The subsets of ωω are semi-well-ordered by ≤W .

This assigns an ordinal rank to each subset of ωω.
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Tree/Forest-representation of various ∆0
2

sets:

0 1

comp./
clopen
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c.e./
open

1

0

co-c.e./
closed

0

1

0

d-c.e.

(computable/clopen) Given an input x, effectively decide x < A (indicated by
0) or x ∈ A (indicated by 1).

(c.e./open) Given an input x, begin with x < A (indicated by 0) and later x
can be enumerated into A (indicated by 1).

(co-c.e./closed) Given an input x, begin with x ∈ A (indicated by 1) and later
x can be removed from A (indicated by 0).

(d-c.e.) Begin with x < A (indicated by 0), later x can be enumerated into A
(indicated by 1), and x can be removed from A again (indicated by 0).
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Forest-representation of a complete ω-c.e. set:

0
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0

1

0
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1

0

1

!-c.e.

: : :

(ω-c.e.) The representation of “ω-c.e.” is a forest consists of linear orders
of finite length (a linear order of length n + 1 represents “n-c.e.”).

Given an input x, effectively choose a number n ∈ ω giving a bound of the
number of times of mind-changes until deciding x ∈ A.
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The term 0, 1 = ∅, ωω, resp. = rank 0
The term 0→1 = Open; 1→0 = Closed. (rank 1)

The term 0→1→0: Difference of two open sets (rank 2)

The term 0→1→0→1: Difference of three open sets (rank 3)

Boolean combination of finitely many open sets (rank finite)

The α-th level of the difference hierarchy (rank α)
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Tree/Forest-representation of ∆˜ 0
3

sets

The Wadge degrees of ∆˜ 0
3

sets are exactly those represented by

forests labeled by trees.
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Tree/Forest-representation of ∆˜ 0
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sets

The Wadge degrees of ∆˜ 0
4

sets are exactly those represented by

forests labeled by trees which are labeled by trees.
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Term operation vs Ordinal operation

→ ≈ +; ⊔ ≈ sup; ⟨ • ⟩ ≈ ω•
1

The term ⟨0→1⟩ = Σ0
2
; ⟨1→0⟩ = Π0

2
(rank ω1)

The term ⟨⟨0→1⟩⟩ = Σ0
3
; ⟨⟨1→0⟩⟩ = Π0

3
(rank ωω1

1
)

The term ⟨⟨⟨0→1⟩⟩⟩ = Σ0
4
; ⟨⟨⟨1→0⟩⟩⟩ = Π0

4
(rank ω

ω
ω1
1

1
)

Let ω1 ↑↑ n be the n-th level of the exponential tower over ω1.

The term ⟨0→1⟩n = Σ0
n+1

; ⟨1→0⟩n = Π0
n+1

(rank ω1 ↑↑ n)
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What’s the rank of Σ˜ 0
ω sets? Is it supn<ω(ω1 ↑↑ n)? No!!
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εω1+α = the α-th solution of “ωx
1
= x”.

εω1+1 = supn<ω(ω1 ↑↑ n)

Theorem (Wadge)

The Wadge rank of Σ˜ 0
ω sets is εω1+ω1 .

Why? Term presentation:
The term ⟨0→1⟩n represents Σ0

n+1
(rank ω1 ↑↑ n)

The term ⊔n<ω⟨0→1⟩n represents a disjoint union of Σ0
n sets

(rank εω1+1)

The term 1→ ⊔n<ω ⟨0→1⟩n represents a more complicated set which
is still in ∆0

ω (rank εω1+1 + 1)

The term ⟨1→ ⊔n<ω ⟨0→1⟩n⟩ corresponds to rank ω
εω1+1+1
1

The term ⊔m<ω⟨1→ ⊔n<ω ⟨0→1⟩n⟩m corresponds to rank εω1+2

The term ⟨0→1⟩ω represents Σ0
ω (rank εω1+ω1 )
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The term ⟨0→⟨1→0⟩ω⟩ = rank ω
εω1 ·2+1
1

The term ⟨0→1→0⟩ω represents d-Σ0
ω (rank εω1·3)

The term ⟨⟨0→1⟩⟩ω represents Σ0
ω+1

(rank εω2
1
)

The term ⟨⟨0→1⟩n⟩ω represents Σ0
ω+n (rank εω1↑↑n)

The term ⟨⟨0→1⟩ω⟩ω represents Σ0
ω·2 (rank εεω1+ω1

)

The term ⟨⟨0→1⟩n⟩ω·m represents Σ0
ω·m+n (rank ϕ(m)

1
(ϕ(n)

0
(0)))

Here ϕ0(x) = ω1+x
1

and ϕ1(x) = εω1+1+x.
Define ϕ2(x) as the x-th solution of “ϕ1(x) = x”.

The term ⊔n<ω⟨0→1⟩ω·n = rank ϕ2(0) = supn<ω ϕ
(n)
1

(0)
The term ⟨1→ ⊔n<ω ⟨0→1⟩ω·n⟩ = rank ϕ0(ϕ2(0) + 1)
The term ⊔m<ω⟨1→ ⊔n<ω ⟨0→1⟩ω·n⟩ω·m = ϕ2(1)
The term ⟨0→1⟩ω2

represents Σ0
ω2

(rank ϕ2(ω1))
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Fact (for sets, essentially due to Duparc? K.-Montalbán for more general cases)

The Wadge degrees of Borel sets
= The terms in the signature L = {0, 1,→,⊔, ⟨ · ⟩ωα : α < ω1}.

Term operation vs Ordinal operation

→ ≈ +; ⊔ ≈ sup; ⟨ • ⟩ ≈ ω•
1
= ϕ0(•); ⟨ • ⟩ωα ≈ ϕα(•)

Example

(Wadge) The Veblen hierarchy of base ω1:
ϕα(γ): the γth ordinal closed under +, supn∈ω, and (ϕβ)β<α.
ϕ0 enumerates ω1, ω

2
1
, ω3

1
, . . . , ωω+1

1
, ωω+2

1
, . . .

ϕ1 enumerates εω1+1, εω1+2, εω1+3, . . .

Σ˜ 0
ωα

, Π˜ 0
ωα

: Wadge-rank ϕα(ω1) (0 < α < ω1).

Σ˜ 1
1
, Π˜ 1

1
: Wadge-rank ϕω1(0) = supξ<ω1 ϕξ(ω1).
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Beyond Borel:

The difference hierarchy over Π˜ 1
1

The 2nd level: A1 \ A0.

The 3rd level: A2 \ (A1 \ A0).
The 4th level: A3 \ (A2 \ (A1 \ A0).
The n-th level: An−1 \ (An−2 \ (· · · \ (A1 \ A0)))
The finite level: Boolean combination of Π˜ 1

1
sets.

One may assume that (An) is an increasing seq. of Π1
1

sets:

A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ An−2 ⊆ An−1 ⊆ An ⊆ ωω

1 ← 0 ← 1 ← · · · ← 1 ← 0 ← 1 ← 0

Its transfinite extension is called the increasing difference hierarchy over
Π˜ 1

1
.
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Recall: The Wadge rank of Borel sets = ϕω1(0).

Theorem (Fournier 2016, AD)
The Wadge rank of the (1 + η)-th level of the increasing difference
hierarchy over Π˜ 1

1
is ϕω1 (η).

In particular, the Wadge rank of the increasing difference hierarchy
over Π˜ 1

1
is ϕω1 (ω1).
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Theorem (Kechris-Martin 197x?)
Under the axiom of determinacy (AD), the Wadge rank of the ω-th level of
the decreasing difference hierarchy over Π˜ 1

1
is ω2.

— J. Steel, Closure properties of pointclasses, In Wadge Degrees and Projective Ordinals:

The Cabal Seminar, Volume II.
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Dη(Π˜ 1
1
): The η-th level of the increasing DH.

Diffω1 (Π˜ 1
1
): The whole increasing DH.

D∗η(Π˜ 1
1
): The η-th level of the decreasing DH.

Diff ∗ω1
(Π˜ 1

1
): The whole decreasing DH.

Define Diffη(Π˜ 1
1
) as the class of all A s.t. A,¬A ∈ Dη(Π˜ 1

1
).

Dn(Π˜ 1
1) = D∗n(Π˜ 1

1) ⊂ · · · ⊂ Dη(Π˜ 1
1) ⊂ · · · ⊂ Diffω1 (Π˜ 1

1) ⊂ Diff ∗ω(Π˜ 1
1) ⊂ . . .

(Fournier 2016, AD) The Wadge rank of D1+η(Π˜ 1
1
) is ϕω1 (η).

(Kechris-Martin, AD) The Wadge rank of Diff ∗ω(Π˜ 1
1
) is ω2.

Question (Fournier 2016)

If weakening AD, is Diffω1 (Π˜ 1
1
) = Diff ∗ω(Π˜ 1

1
) consistent?
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Two difference hierarchies (DHs)
Increasing difference hierarchy:

A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ An−2 ⊆ An−1 ⊆ An ⊆ ωω

1 ← 0 ← 1 ← · · · ← 1 ← 0 ← 1 ← 0

Decreasing difference hierarchy:

ωω ⊇ B0 ⊇ B1 ⊇ B2 ⊇ · · · ⊇ Bn−2 ⊇ Bn−1 ⊇ Bn

0 → 1 → 0 → 1 → · · · → 1 → 0 → 1

The increasing DH over Σ˜ 0
α = The decreasing DH over Σ˜ 0

α.

Finite levels of increasing DH = finite levels of decreasing DH.

The increasing DH over Π˜ 1
1
, The decreasing DH over Π˜ 1

1
!!!
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Observation by Gandy, Spector, Kreisel, Sacks, ... (1959∼1960s)

∆1
1

: Π1
1

: Σ1
1
≈ finite : c.e. : co-c.e.

We call Π1
1

hyp c.e. and Σ1
1

hyp co-c.e.

Rough Idea

Diffω1
(Π˜ 1

1
): hyp-computability with finite mind-changes,

but with a mind-change countdown starting from < ω1, i.e.,

change the current guess =⇒ decrease the value of the counter

Diff ∗ω(Π˜ 1
1
): hyp-computability with finite mind-changes
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Example of hyp-computability with finite mind-changes:
Let’s consider the following principle in a β-model.

Σ1
1
-least number principle

Given a Σ1
1

formula φ(x), if ∀n¬φ(n) is false, then there is a least
number n ∈ N satisfying φ(n).

In other words, “if a Σ1
1

set S ⊆ N is nonempty, then min S exists”.

How is it difficult to calculate min S?
The Σ1

1
-least number principle can be restated as:

“If a hyp co-c.e. set S ⊆ N is nonempty, then min S exists”.

How is it difficult to calculate min S?

One can calculate min S by a “hyp-computation process with finite
mind-changes”.
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“If a hyp co-c.e. set S ⊆ N is nonempty, then min S exists”.

Calculate min S by a “hyp-computation process with finite mind-changes”.

Fix a hyp-computation process Φ enumerating N \ S.

Our “hyp-algorithm” Ψ first guess that 0 is the right answer.

After some hyp-computation steps, Φ may enumerate 0 (so 0 < S).

In this case, our hyp-algorithm Ψ changes the guess to the least
number n which has not been enumerated by Φ by this stage.

After some hyp-computation steps, Φ may enumerate n (so n < S).

In this case, our hyp-algorithm Ψ changes the guess to the least number n′ which

has not been enumerated by Φ by this stage.

Continue this procedure...

Since S is nonempty, Ψ’s guess stabilizes after some finite
mind-changes.

In a certain sense, the strength of the Σ1
1
-least number principle is

equivalent to “hyp-computability with finite mind-changes”.
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Σ1
1
-least number principle

“If a hyp co-c.e. set S ⊆ N is nonempty, then min S exists”.

⇒ This is hyp-computable with finite mind-changes ≈ Diff ∗ω(Π˜ 1
1
)

Π1
1
-least number principle

“If a hyp c.e. set S ⊆ N is nonempty, then min S exists”.

⇒ This is hyp-computable with finite mind-changes along an
ω-countdown ≈ Diffω(Π˜ 1

1
)

Π1
1
-least number principle on WO

“If a hyp c.e. set S ⊆ N is nonempty, and if ≺ is a well-order on N
then min≺ S exists”.

⇒ If the order-type of ≺ is η, then this is hyp-computable with finite
mind-changes along an η-countdown ≈ Diffη(Π˜ 1

1
)
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For y ∈ ωω let Py be the Π˜ 1
1

subset of N coded by y.

If x ∈ WO let ≺x be the well-order on N coded by x.

Definition (Π1
1
-least number principle on WO)

For x, y ∈ ωω

Π1
1-LNPWO(x ⊕ y) =

≺x-smallest element of Py if x ∈ WO
0 if x < WO

This way of thinking solves Fournier’s question.

As usual, there exists a hierarchy of hyp-computability with finite
mind-changes, but with ordinal mind-change countdowns.

Surprisingly, a value of a mind-change counter can exceed ω1!!!
(without any set-theoretic assumption)

Π1
1
-LNPWO is hyp-computable with finite mind-changes with

(ω1 + 1)-countdown.
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Π1
1-LNPWO(x ⊕ y) =

≺x-smallest element of Py if x ∈ WO
0 if x < WO

Theorem: Π1
1
-least number principle on WO

Begin with any guess and ordinal counter ω1 < ω1 + 1.

If a given x is found to be WO, then change the ordinal counter to
the order type of x, which is smaller than ω1.

When something is first enumerated into Py, we guess the ≺x-least
element α ∈ Py and change the ordinal counter to α.

If something smaller than the previous guess is enumerated into Py,
then change the guess as above. Continue this procedure.

This procedure is hyp-computable with finite mind changes along
ordinal counter ω1 + 1.

This is clearly intermediate between Diffω1
(Π˜ 1

1
) and Diff ∗ω(Π˜ 1

1
).
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Diffα(Π˜ 1
1
): hyp-computability with finite mind-changes with

countdown from α.

Diffω1 (Π˜ 1
1
) ⊊ Diff ∗ω(Π˜ 1

1
): α is not necessarily a countable ordinal.

Diff ∗
β

(Π˜ 1
1
): hyp-computability with at most β mind-changes.

Again, is β not necessarily a countable ordinal?

Higher limit lemma (Monin)
The following are equivalent for a set A ⊆ ω:

1 A is hyp-computable with ordinal mind-changes.

2 A is Turing reducible to Kleene’s O.

We interpret the second condition as the condition “∆˜ 0
1

relative to a
Π˜ 1

1
-complete set.”

Question

Diff ∗ω1
(Π˜ 1

1
) = “∆˜ 0

1
relative to Π˜ 1

1
”?
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Σ˜ 0
1
(Π˜ 1

1
): The smallest family containing all Π˜ 1

1
and Σ˜ 1

1
sets and

closed under countable union, finite intersection, and continuous
preimage.

∆˜ 0
1
(Π˜ 1

1
): The family of all sets A such that both A and its

complement belong to Σ˜ 0
1
(Π˜ 1

1
).

Theorem

Diff ∗ω1
(Π˜ 1

1
) ⊊ ∆˜ 0

1
(Π˜ 1

1
).

Dn(Π˜ 1
1) = D∗n(Π˜ 1

1) ⊊ · · · ⊊ Dα(Π˜ 1
1) ⊊ · · · ⊊ Diffω1(Π˜ 1

1)⊊Diff ∗ω(Π˜ 1
1) ⊊

⊊ D∗ω(Π˜ 1
1) ⊊ · · · ⊊ D∗α(Π˜ 1

1) ⊊ · · · ⊊ Diff ∗ω1
(Π˜ 1

1) ⊊ ∆˜ 0
1
(Π˜ 1

1).
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Summary

Diffω1
(Π˜ 1

1
): hyp-computability with finite mind-changes,

but with a mind-change countdown starting from < ω1.

Diff ∗ω(Π˜ 1
1
): hyp-computability with finite mind-changes.

The Wadge rank of Diffω1
(Π˜ 1

1
) is ϕω1 (ω1).

The Wadge rank of Diff ∗ω(Π˜ 1
1
) is ω2.

Π1
1
-LNPWO is in between Diffω1

(Π˜ 1
1
) and Diff ∗ω(Π˜ 1

1
).

The Wadge rank of Diff ∗
ω+1(Π˜ 1

1
) is much larger than ω2 · ω1.

(It seems at least ω2
2
).

Σ1
1
-LNPWO is in between Diff ∗ω1

(Π˜ 1
1
) and ∆˜ 0

1
(Π˜ 1

1
).

Question

What is the Wadge rank of Diff ∗
ω+1

(Π˜ 1
1
)?

What is the Wadge rank of Diff ∗ω1
(Π˜ 1

1
)?
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