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Background

Hyland (1982) introduced the effective topos Eff,
“the world of computable mathematics.”

A (Lawvere-Tiernery) topology j on a topos E yields a subtopos Ej.

Example

The largest LT-topology ff collapses everything, Effff ,
“the world of inconsistent mathematics.”

The maximal LT-topology ¬¬ changes the world Eff to Eff¬¬ ≃ Set,
“the world of set-theoretic mathematics.”

The smallest LT-topology id changes nothing: Effid ≃ Eff.

id < ¬¬ < ff Eff ←↩ Set ←↩ Effff
LT-Topologies between id and ¬¬ on the effective topos
≈ Toposes between “the computable world” and “the set-theoretic world”.
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LT-Topologies between id and ¬¬ on the effective topos
≈ Toposes between “the computable world” and “the set-theoretic world”.

An LT-topology on the effective topos is a kind of data that indicate how
much non-computability to add to the world. In other words,

an LT-topology plays the same role as an oracle.

Hyland (1982) found a topology jd on Eff, for each Turing degree d,
which induces a topos Effjd that corresponds to
“the world of d-computable mathematics”.

Such a topology jd is called a Turing degree topology.

Pitts (1981) found a topology jPitts on Eff which is not equivalent to
any Turing degree topology. Indeed,

id < jPitts < ¬¬ and (∀d) jPitts ≰ jd

Phoa (1989) showed that for any topology j on the effective topos,

[(∀d) jd ≤ j] =⇒ ¬¬ ≤ j.
“If a world dominates all d-computable worlds, then it must be the
set-theoretic world (or inconsistent)”
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Question (Lee 2011)
Does there exist the least LT-topology on Eff strictly above id; that is, “a
world of non-computable mathematics which is closest to computable
mathematics?”

To solve this problem, it is necessary to have a vague grasp of the overall
structure of what LT-topologies are.

A LT-topology is also called a local operator or a geometric modality.

“Whereas local operators/subtoposes of Grothendieck toposes can be neatly
described in terms of Grothendieck topologies, for realizability toposes the study
of local operators is not so easy [...] The lattice of local operators in Eff is vast
and notoriously difficult to study.”

— S. Lee and J. van Oosten, Basic subtoposes of the effective topos, APAL 164
(2013).

So, how can we study LT-topologies on Eff?
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How can we study LT-topologies on Eff?

An LT-topology plays the same role as an oracle.

Thanks to Hyland, we know that each Turing degree yields a
topology.

Indeed, one can use a partial function on N as an oracle.

Not only that, but even a partial multi-valued function on N can be
used as an oracle, and has a corresponding topology on the
effective topos!!!

What does it mean to use a partial multifunction as an oracle?

Our model is the same as that of an ordinary programming language,

except that a program P can contain a special instruction b := □(a).
P accepts a number n as input and a partial multifunction f on N as oracle.

The instruction b := □(a) assigns one of the values of f (a) to the variable b.

However, if f (a) is undefined, the computation will never terminate.

If f is multi-valued, this generally produces a nondeterministic computation.

Yes, this yields the N-version of the generalized Weihrauch degrees.
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Observation
There exists an embedding of

the N-version of the generalized Weihrauch degrees

into

the lattice of Lawvere-Tierney topologies on the effective topos.

Note that this holds for most of relative realizability toposes
(where N is replaced with the corresponding partial combinatory
algebra.)

Hence, the generalized Weihrauch degrees (in the usual sense)
embed into the lattice of LT-topologies on the Kleene-Vesley topos.

So, it is possible to position the study of the structure of

LT-topologies on relative realizability toposes

as an extension of the Weihrauch-style reverse mathematics.

Anyway, any other LT-topologies besides generalized Weih. degrees?
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LT-topologies besides generalized Weihrauch degrees:

Consider the following probabilistic computation:

A program P is given an oracle α at random, and for an input n, the
oracle computation Pα(n) halts with probability at least 1 − ε, i.e.,

µ(A) ≥ 1 − ε and (∀α ∈ A) Pα(n) ↓
for some set A ⊆ 2N.

This probabilistic computation yields a multifunction such that the
value Pα(n) for each α ∈ A is a possible output.

Let us write ProbErrorεP for this.

If one wants to make explicit a parameter A for an input n, we use
the notation ProbErrorεP(n | A), that is,

ProbErrorεP(n | A) ↓ ⇐⇒ µ(A) ≥ 1 − ε ∧ (∀α ∈ A) Pα(n) ↓
y ∈ ProbErrorεP(n | A) ⇐⇒ ∃α ∈ A [Pα(n) = y]

Although the roles of n and A are entirely different, it can be
regarded as a partial multifunction

ProbErrorεP :⊆ N × P(2N) ⇒ N.
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The procedure of giving an oracle randomly to the program P and having
it perform a computation with error probability at most ε:

ProbErrorεP :⊆ N × P(2N) ⇒ N.

ProbErrorεP(n | A), where n is an input given by us, while A is a
witness that the computation halts except for probability at most ε.

n is an input that is disclosed during the computation, while A is an
unknown input that cannot be accessed during the computation.

Hence, we call n a public input, and A a secret input.

Definition
A partial multifunction g :⊆ N × Λ ⇒ N is called an LT-problem. We write
an input for g as (n | c). We call n a public input and c a secret input.

What does it mean to use an LT-problem as an oracle?
⇒ A secret input for an oracle acts like an advice string.

Takayuki Kihara (Nagoya) Lawvere-Tierney topologies for computability theorists



Definition
A partial multifunction g :⊆ N × Λ ⇒ N is called an LT-problem. We write
an input for g as (n | c). We call n a public input and c a secret input.

Example

ProbErrorεP is an LT-problem.

Any partial multifunction g can be thought of as the LT-problem
defined by ĝ(n | ∗) = g(n).

AdviceN : {∗} × N → N defined by AdviceN(∗ | n) = n is an
LT-problem.

In the Kleene-Vesley topos, AdviceN : {∗} × N → N can be used to
deal with nonuniform computability.

However, AdviceN ≃ ¬¬ in the effective topos.

What does it mean to use an LT-problem as an oracle?
⇒ A secret input for an oracle acts like an advice string.
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Definition
A partial multifunction g :⊆ N × Λ ⇒ N is called an LT-problem. We write
an input for g as (n | c). We call n a public input and c a secret input.

What does it mean to use an LT-problem as an oracle?
⇒ A secret input for an oracle acts like an advice string.

In the NN-context, one-query relative computation with advices has
been studied by Ziegler, Brattka, Pauly, and others.

Coincidentally, one-query relative computation for LT-problems has
been studied by Bauer (2021) under the name “extended
Weihrauch reducibility”.

(Be careful that this new definition of extended Weihrauch reducibility by
Bauer (2021) is a much wider concept than the old definition by
Bauer-Yoshimura (2014).)

However, we need many-query relative computation with advices.
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Idea of our many-query relative computation model
During a computation with an LT-problem oracle f , when the program
makes a query n to f , the advisor chooses a parameter c.

However, the information of c chosen by the advisor is not given to the
machine,

but only the information of one of the possible values of f (n | c) is given.

If this process computes a partial multifunction g when the advisor secretly
makes the best choice, then we declare that g is LT-reducible to f .

Theorem
The structure of LT-degrees of LT-problems is isomorphic to the
lattice of Lawvere-Tierney topologies on the effective topos.

(This has almost been proven by Lee and van Oosten (2013), although their

language is completely different from ours, and in particular they do not give any

computational interpretation of their notions)
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The definition of LT-reducibility can be understood by describing it as an
imperfect information game between three players, Merlin, Arthur, and
Nimue.

Computable reduction game with imperfect information

Merlin : (x0 | c0) x1 x2 . . .
Arthur : y0 y1 y2 . . .
Nimue : z0 z1 z2 . . .

The player Merlin makes a public input x0 and a secret input c0 on
his first move.

Here, among the moves of Merlin, only the secret input c0 is
invisible to Arthur.

All of Nimue’s moves are visible to Merlin, but not to Arthur, a
mere human being.

The players Merlin and Nimue, who are not mere humans, can see
all the previous moves at each round.
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Computable reduction game with imperfect information

Merlin : (x0 | c0) x1 x2 . . .
Arthur : y0 y1 y2 . . .
Nimue : z0 z1 z2 . . .

For LT-problems f and g, the reduction game for f ≤LT g proceeds as:

First, Merlin chooses (x0 | c0) ∈ dom(f ).

At the nth round, Arthur reacts with yn = ⟨j, un⟩.
The choice j = 0 indicates that Arthur makes a new query un
to g.
The choice j = 1 indicates that Arthur declares termination of
the game with un.

At the nth round, Nimue makes an advice parameter zn, i.e.,
(un | zn) ∈ dom(g).

At the (n + 1)th round, Merlin responds to the query made by
Arthur and Nimue at the previous stage. This means that
xn+1 ∈ g(un | zn).
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Computable reduction game with imperfect information

Merlin : (x0 | c0) x1 x2 . . .
Arthur : y0 y1 y2 . . .
Nimue : z0 z1 z2 . . .

Arthur and Nimue win this game if either Merlin violates the rule
before Arthur or Nimue violates the rule, or both Arthur and Nimue
obey the rule and Arthur declares termination with un ∈ f (x0 | c0).

Arthur can only read the public moves x0, x1, x2, . . . , and the other
players can see all the moves.

So, Arthur’s strategy is a partial function τ ⊆ : N<N → N, which
reads Merlin’s public moves x0, . . . , xn and then returns yn.

f ≤LT g ⇐⇒ there exists a pair of Arthur’s computable strategy and
Nimue’s strategy which is winning for the reduction game for f ≤LT g.

Yes, this is exactly a generalized Weihrauch reduction game, except for
the existence of secret moves!

Lee-van Oosten’s dedicated sight is essentially the same, but not game-theoretic.
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It is known that a Weihrauch problem has the so-called diamond
operator.

An LT-problem also has the diamond operator.

Definition
Given an LT-problem h, define the new LT-problem h♢ as follows:

An input for h♢ is an Arthur-Nimue strategy (τ | η), where
Arthur’s computable strategy τ is a public input, and
Nimue’s strategy η is a secret input.

h♢(τ | η) is defined only if, along any play following the strategy
(τ | η), either Merlin violates the rule before Arthur or Nimue
violates the rule, or both Arthur and Nimue obey the rule and
Arthur declares termination.

u ∈ h♢(τ | η) if and only if there is a play that follows the strategy
(τ | η) such that Arthur declares termination with u at some round.

f ≤LT g ⇐⇒ “f is reducible to g♢ with one query.”
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Let E be a topos, with subobject classifier ⊤ : 1 → Ω. A Lawvere-Tierney
topology on E is a morphism j : Ω → Ω such that

j ◦ ⊤ = ⊤, j ◦ ∧ = ∧ ◦ (j × j), j ◦ j = j.

In the effective topos, Ω = (P(N),⇔).

For p ∈ Ω, define g♢→(p) as the set of Arthur’s computable winning
strategies for ṗ ≤LT g, where ṗ(∗ | ∗) = p.

Observation
If g is an LT-problem, g♢→ : Ω → Ω is a Lawvere-Tierney topology.

If one can solve a problem p without any help, it is clear that one can also
solve the problem p with the help of g.

If one can solve problems p and q with the help of g, then by running these
strategies in parallel, one can also solve p ∧ q with the help of g.

The last condition follows from transitivity of ≤LT .
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f : Ω → Ω is computably monotone ⇐⇒ the following is realizable:

∀p, q [(p → q) → (f (p) → f (q))].

f ≤ g ⇐⇒ “∀p [f (p) → g(p)]” is realizable.

Proposition
The structure of one-query LT-degrees of LT-problems is isomorphic to
the ordering of computably monotone functions.

[Note] One-query LT-reducibility = Bauer (’21)’s extended Weihrauch reducibility
= the N-version of Weihrauch reducibility, with two inner reductions called a
public inner reduction and a secret inner reduction.

For an LT-problem g, define g→ : Ω → Ω as follows:

⟨n, e⟩ ∈ g→(p) ⇐⇒ e realizes g(n | c) → p for some c.

Roughly speaking, g→(p) is a problem that asks us to solve a problem p
with one-query help of g.

Of the solutions n and e to g→(p), we sometimes call n an inner reduction
and e an outer reduction. (And, c is a secret inner reduction.)

Note: g→ : Ω → Ω is computably monotone.
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Proposition
The structure of one-query LT-degrees of LT-problems is isomorphic to
the ordering of computably monotone functions.

Claim: g is one-query reducible to h ⇐⇒ g→ ≤ h→.

(⇒) If one can solve g by using h, and ṗ by using g, then by transitivity one
can also solve ṗ by using h. Here this transitivity is computably witnessed.

(⇐) Given input (n | c), consider p = g(n | c).
A trivial algorithm Φn depending on n solves ṗ by using g.
By g→ ≤ h→, one can effectively transform Φn into a new algorithm Ψn
which solves ṗ(∗ | ∗) = g(n | c) by using h.
Clearly n 7→ Ψn witnesses that g is one-query reducible to h.

For a computably monotone f : Ω → Ω, define an LT-problem f← as follows:

dom(f←) =
{
(n | c) ∈ N × P(N) : n ∈ j(c)

}
, f←(n | c) = c.

f←→ ≡ g is due to Lee-van Oosten (2013).
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Theorem
The structure of LT-degrees of LT-problems is isomorphic to the lattice of
Lawvere-Tierney topologies on the effective topos.

We claim that g 7→ g⋄→ yields a desired isomorphism.

j← ≤LT j←♢ with one-query, so j ≡ j←→ ≤ j←♢→.

Lee-van Oosten considered

L(f )(p) := ∀q [[(p → q) ∧ (f (q) → q)] → q],

and showed that L(f ) is the ≤-least topology above f .

It suffices to show that f←♢→ ≤ L(f ).
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L(f )(p) := ∀q [[(p → q) ∧ (f (q) → q)] → q],

Want to show: f←♢→ ≤ L(f ).

A realizer for f←♢→(p) is a pair ⟨d, e⟩ of an inner reduction d and an outer
reduction e for ṗ ≤1T f←♢, i.e., e realizes f←♢(d | c) → p for some c.
Note that (d | c) is an Arthur-Nimue strategy for the game G(f←).

Given a ⊢ p → q and b ⊢ f (q) → q, independent of q.

If (n | z) is Arthur and Nimue’s queries made at some round, then
(n | z) ∈ dom(f←), which means that n ∈ f (z) and f←(n | z) = z.

Since b realizes f (z) → z, we have b · n ∈ f←(n | z).
Hence, b yields Merlin’s strategy.

Therefore, one can simulate one of the plays of the game G(f←) from the
information in d, c, and b.

In particular, can compute Arthur’s final move in this play, which yields
some m ∈ f←♢(d | c).

Then e · m ∈ p, and thus a · e · m ∈ q.
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The lattice structure of Lawvere-Tierney topologies

(or equivalently the LT-degree structure of LT-problems)
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Concrete examples of LT-problems:

A problem such that m of the k choices are wrong:

dom(Errorm/k) =
{
(∗ | A) : A ⊆ {0, . . . , k − 1} ∧ |A| = m

}
,

Errorm/k(∗ | A) = {0, . . . , k − 1} \ A

Lessor limited principle of omniscience relative to α:

dom(LLPOα
m/k

) =
{
e ∈ N : |{j < k : φαe (j) ↓}| ≤ m

}
,

LLPOα
m/k

(e) = {0, . . . , k − 1} \ {j < k : φαe (j) ↓}.

(Essentially the same notion as Errorm/k is called Ok
m in Lee-van Oosten (2013))

Observation

LLPOα
m/k
≤LT Errorm/k for any oracle α.

LLPOm/k ≤LT Errorm/k+1, but LLPOm/k ≰LT Errorm/k+2.

LLPO∅
′

m/k
≰LT Errorm/k+1.
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The following solves Lee-van Oosten’s question on Ok
m.

Theorem (K.)

Errorm/k ≡LT Error1/ℓ, where ℓ = ⌈ k
m⌉.

The proof is an analogue of Cenzer-Hinman’s related result on Medvedev
degrees.

D. Cenzer and P. G. Hinman, Degrees of difficulty of generalized r.e.
separating classes. Arch. Math. Logic, 46 (2008), pp. 629–647.
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Other concrete examples of LT-problems:

Probabilistic computation with error probability ε:

ProbErrorε(⟨e, n⟩ | A) ↓ ⇐⇒ A ⊆ 2N is compact

∧ µ(A) ≥ 1 − ε ∧ (∀α ∈ A) φαe (n) ↓ .
ProbErrorε(⟨e, n⟩ | A) = {φαe (n) : α ∈ A}.

Weak weak König’s lemma:

WWKLε(⟨e, n, i⟩) ↓ ⇐⇒ µ(Pi) ≥ 1 − ε ∧ (∀α ∈ Pi) φαe (n) ↓ .
WWKLε(⟨e, n, i⟩) = {φαe (n) : α ∈ Pi}.

Theorem (K.)

For any p, q ∈ N with p ≤ q, ProbErrorp/q ≡LT Errorp/q.

The proof is nontrivial. This is a phenomenon specific to the effective topos. If we

consider another (relative) realizability topos, such as the Kleene-Vesley topos,

the situation would be completely different.
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An LT-problem is basic if it has no public input.

Theorem (Lee-van Oosten 2013)
Error1/ω is the least basic LT-problem which is strictly ≤LT-above the
identity.

However, if non-basic LT-problems are included, then Error1/ω is not the
smallest.

All-or-counique choice relative to α:

dom(ACCα) = N, ACCα(e) =
N \ {φαe (e)} if φαe (e) ↓
N if φαe (e) ↑

Obviously, ACCα <LT Error1/ω for any oracle α.

Question (Lee 2011)
Does there exist the least LT-topology on Eff strictly above id?
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We solve Lee’s question:

Theorem (K.)
There exists no ≤LT-minimal LT-problem which is strictly ≤LT-above the
identity:

(∀f >LT Id)(∃g) Id <LT g <LT f .
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Pitts (1985) considered the following basic LT-problem:

dom(Cofinite) = {∗} × N, Cofinite(∗ | n) = {m ∈ N : m ≥ n}.

Theorem (van Oosten 2014)
A total function f : N → N is hyperarithmetic ⇐⇒ f ≤LT Cofinite.

For a set A ⊆ N, the lower asymptotic density of A is defined by

d(A) = lim inf
n→∞

|A ∩ n|
n
.

Define the basic LT-problem DenErrorε as follows:

dom(DenErrorε) = {(∗ | A) : A ⊆ N and d(A) ≥ 1 − ε}
DenErrorε(∗ | A) = A.

Observation
Cofinite ≤LT DenErrorε and Error1/ℓ ≤LT DenError1/ℓ.
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Theorem (K.)
Let P be a partial multifunction whose codomain is ℓ ∈ N with ℓ > 0.
For any ε < 1/(ℓ + 1), if P ≤hLT DenErrorε, then P is hyperarithmetic.

Here, ≤hLT is hyperarithmetic LT-reducibility.

Corollary (K.)

f : N → N is hyperarithmetic ⇐⇒ f ≤LT DenErrorε for ε < 1/2.

Π1
1
-LLPO1/ℓ ≤hLT DenError1/(ℓ+1).

Π1
1
-LLPO1/ℓ ≰hLT DenError1/(ℓ+2).

Theorem (K.)
Cofinite <LT DenError0.

Cofinite <LT DenError0 <LT · · · <LT DenError1/(ℓ+1) <LT DenError1/ℓ <LT · · ·

Takayuki Kihara (Nagoya) Lawvere-Tierney topologies for computability theorists



2021/06/11 23:30LT-topology2

1 / 2 ページhttps://www.mathcha.io/editor#

 

DenError1/ℓ

Error1/ℓ " - LLPO11 1/ℓ

Turing degree
   topologies

modest topologies
(partial

multifunctions)

#11

Cofinite

Kleene's O

DenError0

non-modest
topologies

Figure: Higher parts on Lawvere-Tierney topologies on the effective topos

Takayuki Kihara (Nagoya) Lawvere-Tierney topologies for computability theorists



Summary

It is possible to position the study of the structure of

Lawvere-Tierney topologies on relative realizability toposes

as an extension of the Weihrauch-style reverse mathematics.

In this way, we solved all problems mentioned in

Sori Lee, Subtoposes of the Effective Topos, preprint, 2011,
arXiv:1112.5325

Sori Lee and Jaap van Oosten, Basic subtoposes of the effective
topos, Annals of Pure and Applied Logic 164 (2013), pp. 866-883

There are many other toposes that are related to computability
theory and (effective) descriptive set theory.

Any Σ∗-pointclass yields a (relative) realizability topos.
For instance, if the pointclass Π˜ 1

1
is used as a seed, a topos

corresponding to “the world of Borel mathematics” will be created.

Takayuki Kihara, Lawvere-Tierney topologies for computability
theorists, preprint, 35 pages, available at arXiv:2106.03061
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