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Hyland (1982) introduced the effective topos Eff,
“the world of computable mathematics.”

Eff has the smallest subtopos (the degenerated topos),
“the world of inconsistent mathematics.”

Eff has the second smallest subtopos Set,
“the world of set-theoretic mathematics.”

For each α ∈ 2ω Hyland found a subtopos Eff[α] of Eff,
“the world of α-relatively computable mathematics.”

α ≤T β ⇐⇒ Eff[β] is a subtopos of Eff[α]

(Idea) smaller topos ≈ stronger theory

Let us examine the structure of all subtoposes of a topos!
▷ non-degenerated subtoposes of Eff ≈ all worlds between

“the computable world” and “the set-theoretic world”.

(Key Idea) “a subtopos of Eff” ≈ “Eff relative to an oracle”.
▷ An oracle changes a world / model / semantics.
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Kleene’s realizability interpretation (1945)

A proof of A ∧ B is a pair of proofs of A and B.

A proof of A ∨ B is a pair of a tag indicating which of A or B is
correct and a proof of the formula for the correct side.

A proof of A → B is (a code of) a computable function that,
given a proof of A, outputs a proof of B .

A proof of ∃x ∈ I. A(x) is a pair of a code of a witness c ∈ I of the
existence and a proof of the formula A(c).
A proof of ∀x ∈ I. A(x) is (a code of) a computable function that,
given a code of an element c ∈ I, outputs a proof of A(c).

This interpretation can obviously be made relative to an oracle.
▷ Given an oracle α, replace “computable” with “α-computable”.
▷ An oracle α is not necessarily single-valued;

e.g. Lifschitz realizability (realizability relative to Π0
1

classes)
▷ An oracle changes semantics.

Factors causing changes in semantics:
▷ Coverage: factor causing changes in Kripke semantics
▷ Oracle: factor causing changes in realizability interpretation
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Kripke Semantics for Intuitionistic Logic

Intuitionistic Kripke model is a preorder (P,≤) with an assignment of which
atomic propositions φ are valid at which positions p ∈ P.
▷ If φ is true at p ∈ P then we write p ⊩ φ.
▷ Moreover we assume that q ≤ p ⊩ φ implies q ⊩ φ.

In intuitionistic model, in order to claim that φ ∨ ψ is valid at a position p ∈ P,

one must determine whether φ or ψ is valid at the position p.

p ⊩ φ ∧ ψ ⇐⇒ p ⊩ φ and p ⊩ ψ.

p ⊩ φ ∨ ψ ⇐⇒ p ⊩ φ or p ⊩ ψ.

p ⊩ φ → ψ ⇐⇒ (∀q ≤ p) [q ⊩ φ implies q ⊩ ψ].
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Beth Semantics

To deepen our understanding of models of semi-constructive mathematics,
it is also useful to have a model that
▷ does not “immediately decide which is valid”
▷ but rather “postpones the decision of which is valid”.

In the Beth model, to assert that “φ ∨ ψ is valid at position p” is
to know that “no matter what path α we take beyond position p,
at some point along α either φ or ψ will be determined to be valid”.

p ⊩ φ ∧ ψ ⇐⇒ p ⊩ φ and p ⊩ ψ.

p ⊩ φ ∨ ψ ⇐⇒ (∀α ∋ p path)(p ≥ ∃q ∈ α) [q ⊩ φ or q ⊩ ψ].

p ⊩ φ → ψ ⇐⇒ (∀q ≤ p) [q ⊩ φ implies q ⊩ ψ].

Takayuki Kihara (Nagoya) Topos-theoretic aspect of the degrees of unsolvability



Beth Semantics

p ⊩ φ ∧ ψ ⇐⇒ p ⊩ φ and p ⊩ ψ.

p ⊩ φ ∨ ψ ⇐⇒ (∀α ∋ p path)(p ≥ ∃q ∈ α) [q ⊩ φ or q ⊩ ψ].

p ⊩ φ → ψ ⇐⇒ (∀q ≤ p) [q ⊩ φ implies q ⊩ ψ].

(Observation) p ⊩ φ ∨ ψ ⇐⇒ (∃B bar for p)(∀b ∈ B) [b ⊩ φ or b ⊩ ψ]
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Covering Semantics

There is also a type of model that asserts that “φ ∨ ψ is globally valid”
if it is locally determined whether φ or ψ is valid.

E.g., for a topological space, use the complete lattice (O(X),⊆) of open sets
in X as a base of Kripke-like model.

A ⊩ φ ∧ ψ ⇐⇒ A ⊩ φ and A ⊩ ψ.

A ⊩ φ ∨ ψ ⇐⇒ (∃U open cover of A)(∀V ∈ U) V ⊩ φ or V ⊩ ψ.

A ⊩ φ → ψ ⇐⇒ (∀B ⊆ A) [B ⊩ φ implies B ⊩ ψ].

In general, for a complete lattice L, a cover of a ∈ L is a set U ⊆ L s.t. a ≤ ∨U.
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(Weak) Forcing Semantics

Another type of model, with slightly looser conditions than Beth semantics,
requires that the truth need not be determined along all paths,
but only that it should be determined along any generic path.

p ⊩ φ ∧ ψ ⇐⇒ p ⊩ φ and p ⊩ ψ.

p ⊩ φ ∨ ψ ⇐⇒ (∀q ≤ p)(∃r ≤ q) [r ⊩ φ or r ⊩ ψ].

p ⊩ φ → ψ ⇐⇒ (∀q ≥ p) [q ⊩ φ implies q ⊩ ψ].

(Observation) p ⊩ φ ∨ ψ ⇐⇒ (∃D dense below p)(∀q ∈ D) [q ⊩ φ or q ⊩ ψ]
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Unifying Various Kripke-like Semantics

There are many different definitions of a ⊩ φ ∨ ψ:

(Kripke) a ⊩ φ or a ⊩ ψ.

(Beth) (∃B bar for a)(∀b ∈ B) [b ⊩ φ or b ⊩ ψ].
(Covering) (∃U cover of a)(∀b ∈ U) [b ⊩ φ or b ⊩ ψ].
(Forcing) (∃D dense below a)(∀b ∈ D) [b ⊩ φ or b ⊩ ψ].

All these examples can be unified by giving some assignment a 7→ Ja:

(∃V ∈ Ja)(∀b ∈ V) [b ⊩ φ or b ⊩ ψ].
▷ Without loss of generality, one may assume that Ja is downward closed.

JKr
a = {↓ a}; JBe

a = {↓ B : B bar for a};
JCov

a = {↓ U : U cover of a}; JFo
a = {↓ D : D dense below a}.

If an assignment a 7→ Ja satisfies a certain condition,
then it is called a Grothendieck topology (on an underlying poset).

(Example) JKr, JBe, JCov, JFo are Grothendieck topologies.
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j(U) := {A : A ⊆ ∪U} “the collection of all sets covered byU”

1 (inflationary) If A ∈ U then A is covered byU:

U ⊆ j(U)
2 (downward closed) For A ⊆ B, if B is covered byU, then so is A:

A ⊆ B ∈ j(U) =⇒ A ∈ j(U)
3 (monotone) ForU ⊆ V, ifU covers A, then so doesV:

U ⊆ V =⇒ j(U) ⊆ j(V)
4 (idempotent) If A is covered byU, and every B ∈ U is covered by
V, then A is covered byV:

j ◦ j(U) ⊆ j(U)
5 (local) IfU covers A, then so doesU ↾ A := {U ∩ A : U ∈ U}.

Indeed, ifU covers A ∈ V, then so does {U ∩ V : U ∈ U,V ∈ V}:
j(U) ∩ V = j(U ∩V) ∩ V (for downward closedU,V)

(inflationary) + (monotone) + (idempotent) = a closure operator.
A coverage ≈ a local closure operator on downward closed sets.
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The downward closed sets form a complete Heyting algebra under ⊆.

▷ Let Ω be a complete Heyting algebra:

A map j : Ω → Ω is nucleus if:
1 (monotone) x ≤ y =⇒ j(x) ≤ j(y).
2 (inflationary) x ≤ j(x).
3 (idempotent) j ◦ j(x) ≤ j(x).
4 (local) j(x) ∧ y = j(x ∧ y) ∧ y.

A nucleus is a local closure operator on Ω.

(local) ⇐⇒ (x ↔ y) ≤ (j(x) ↔ j(y))

(mon.) + (local) = (locally monotone) (x → y) ≤ (j(x) → j(y))
▷ (∴) nucleus ⇐⇒ (loc. mon.) + (infl.) + (idem.)

nucleus =⇒ (∧-preserving) j(x ∧ y) = j(x) ∧ j(y)
▷ (∴) A nucleus is a ∧-preserving closure operator on Ω.

Takayuki Kihara (Nagoya) Topos-theoretic aspect of the degrees of unsolvability



Kripke semantics:
the semantics of the topos SetPop

of presheaves over a poset P.

A nucleus j on the downward closed sets Ω in P
≈ a Grothendieck topology J on P.

The collection of J-sheaves over P again forms a topos ShJ(P),
which is a subtopos of SetPop

, and indeed:
▷ A subtopos of SetPop ≈ a nucleus on Ω ≈ a Gro. topology on P

Kripke semantics relative to coverage / nucleus / Gro. topology J
(a.k.a. Kripke-Joyal semantics):
the semantics of the topos ShJ(P) of J-sheaves over a poset P.

A Grothendieck topology (coverage) is a factor that causes changes
in a presheaf topos.

What is a factor that causes changes in a topos other than a
presheaf topos?
▷ It is a Lawvere-Tierney topology.
▷ A subtopos of a topos E ≈ a Lawvere-Tierney topology on E
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A map j : Ω → Ω on a complete Heyting algebra Ω is nucleus if:
1 (locally monotone) x → y ≤ j(x) → j(y).
2 (inflationary) x ≤ j(x).
3 (idempotent) j ◦ j(x) ≤ j(x).

A Grothendieck topology on a poset P ≈ A nucleus on downsets in P
≈ A Lawvere-Tierney topology on the presheaf topos SetPop

.

An Lawvere-Tierney topology on Eff can be explicitly described as:

A map j : P(N) → P(N) is a Lawvere-Tierney topology on Eff if
all of the following formulas are realizable (uniformly in x, y):

1 (locally monotone) (x → y) → (j(x) → j(y)).
2 (inflationary) x → j(x).
3 (idempotent) j ◦ j(x) → j(x).

This notion should give all the subtoposes of Eff.

How on earth does this notion relate to oracles?
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Factors causing changes in semantics:

▷ Coverage: factor causing changes in Kripke semantics

▷ Oracle: factor causing changes in realizability interpretation

The key point is to notice that the following two are similar:

A sieve U is a j-cover of an object p.

With the help of an oracle j, an algorithm p can solve a problem U.

With the help of an oracle j, an algorithm p can solve a problem U.
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Factors causing changes in semantics:

▷ Coverage: factor causing changes in Kripke semantics

▷ Oracle: factor causing changes in realizability interpretation

The key point is to notice that the following three are similar:

A sieve U is a j-cover of an object p.

Under a theory j, a formula provable from any assumption φ ∈ U
is also provable from the assumption of a formula p.

With the help of an oracle j, an algorithm p can solve a problem U.
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With the help of an oracle F, an algorithm p can solve a problem U.

p ∈ j1
F

(U): ⇐⇒ p is a program that solves a problem U
by making exactly one query to an oracle F.

p ∈ j≤1
F

(U): ⇐⇒ p is a program that solves a problem U
by making at most one query to an oracle F.

p ∈ jF(U): ⇐⇒ p is a program that solves a problem U
by making at most finitely many queries to an oracle F.

Under a suitably generalized notion of “oracle” (to be explained later),
one can prove the following:

Theorem (K.)

j ≡ j1
F

for some “oracle” F ⇐⇒ (locally monotone) for j is realizable.

j ≡ j≤1
F

for some “oracle” F ⇐⇒ (locally monotone)
and (inflationary) for j are realizable.

j ≡ jF for some “oracle” F ⇐⇒ (locally monotone), (inflationary)
and (idempotent) for j are realizable; that is, j is an LT-topology.
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Relative computability locally monotone
with exactly one query (x → y) → (j(x) → j(y))

Relative computability loc. mon. + inflationary
with at most one query x → j(x)

Relative computability loc. mon. + infl. + idempotent
with finitely many queries （Lawvere-Tierney topology）

j ◦ j(x) → j(x)
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(Key Idea) “a subtopos of Eff” ≈ “Eff relative to an oracle”.
▷ Here, oracle need not be a decision problem (a total function).

Turing degrees: degrees for decision problems (total functions)

partial degrees: degrees for partial functions

Medvedev degrees: degrees for mass problems

Weihrauch degrees: degrees for partial multifunctions

Hyland (1982): The Turing degrees embed into the subtoposes of
Eff, by α 7→ Eff[α].
Faber-van Oosten (2014): The partial degrees (in a certain sense)
correspond to the realizability subtoposes of Eff.
▷ Note: there are a lot of non-realizability subtoposes of Eff.
▷ (A realizability topos is the ex/reg-completion of the category of

assemblies over a partial combinatory algebra.)
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Using a partial function as an oracle

[Hereafter, a function f from some D ⊆ X to Y is written as f :⊆ X → Y]

Turing-like reducibility for partial functions f :⊆ N → N:

The major ones are Kleene-style (1952) and Sasso-style (1971).
▷ [Point] Since an oracle is only partially defined,

when making a query to the oracle,
the response may not be returned forever!

Kleene-style: One can access multiple parts of the oracle in parallel.

Sasso-style: Once we have made a query to the oracle,
we have to wait for a response from the oracle.

Kleene’s partial degrees ≃ the enumeration degrees of the graphs.

(∴) It has been widely believed that the study of partial degrees can
be absorbed into the theory of enumeration degrees.
▷ This is not true for Sasso-style partial degree!
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Definition (Sasso 1971, van Oosten 1997, Madore 2012)

A partial function f is subTuring reducible to a partial function g if
there exists a Turing functional Φ which computes Φg(n) ↓= f (n)
without making a query outside of dom(g) for any input n ∈ dom(f ).

Unfortunately, none of the recursion theorists studied this.

Translating Faber-van Oosten’s work (2014) into
computability-theoretic terms, it reads as follows:
▷ The subTuring degrees ≃ the realizability subtoposes of Eff.

f ≤subT g ⇐⇒ Eff[g] is a subtopos of Eff[f ]

Theorem (K.-Ng, last week)

The subTuring degrees form a dense lattice.
Hence, the realizability subtoposes of Eff form a dense lattice.
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A partial function f is quasiminimal ⇐⇒
f is noncomputable, and every total g ≤subT f is computable.

A partial function f is effectively quasiminimal ⇐⇒ f ≰subT ∅ and
∃u ≤subT f ∀total g (g ≤subT f via e =⇒ g = φu(e)).

Theorem (K.-Ng, this week)

There exists an effectively quasiminimal subTuring degree.

CT0: every total relation on N is computable:

∀x∃y A(x, y) → ∃e∀x A(x, φe(x))
ECT0!: every partial function on N is computable:

∀x(N(x) → ∃!y A(x, y)) → ∃e∀x(N(x) → A(x, φe(x)))
where N is an almost negative formula.

Corollary (K.-Ng, this week)

There exists a realizability subtopos E of Eff s.t. E |= CT0 + ¬ECT0!.

Fujiwara (an expert in constructive reverse math) told me that he has never seen

a model of CT0 + ¬ECT0, so this result may be new in constructive math.
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(Key Idea) “a subtopos of Eff” ≈ “Eff relative to an oracle”.
▷ Here, oracle need not be a decision problem (a total function).

Turing degrees: degrees for decision problems (total functions)

subTuring degrees: degrees for partial functions

Medvedev degrees: degrees for mass problems

Weihrauch degrees: degrees for partial multifunctions

The subTuring degrees ≃ the realizability subtoposes of Eff.
▷ Note: there are a lot of non-realizability subtoposes of Eff.

To describe non-realizability subtoposes, a multifunction is needed.
▷ Given a partial multifunction g on N,

one can construct a subtopos Eff[g] of Eff.

In fact, more than multifunction is needed.
▷ (Bauer 2022) An extended Weihrauch predicate.
▷ (K. 2023) A multifunction with “(secret) parameter”
▷ (K. 202x) A multifunction on “N-multi-represented spaces”.
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(Def.) j ≤ k ⇐⇒ j(x) → k(x) is realizable (uniformly in x)

Theorem (K.)

The subTuring lattice is isomorphic to
the lattice of

∪
,
∩

-preserving LT-topologies.

exactly one query locally monotone

at most one query loc. mon. + inflationary

finitely many queries loc. mon. + infl. + idempotent

Theorem (K.)

The Weihrauch lattice is isomorphic to
the lattice of

∩
-preserving locally monotone maps.

The pointed Weihrauch lattice is isomorphic to the lattice of∩
-preserving locally monotone inflationary maps.

The generalized Weihrauch lattice is isomorphic to
the lattice of

∩
-preserving LT-topologies.
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We need more than partial multifunctions:

▷ (Bauer 2022) An extended Weihrauch predicate.

▷ (K. 2023) A multifunction with “(secret) parameter”

▷ (K. 202x) A multifunction on “N-multi-represented spaces”.

Theorem (K.)

The extended Weihrauch lattice is isomorphic to
the lattice of locally monotone maps.

The pointed extended Weihrauch lattice is isomorphic to
the lattice of locally monotone inflationary maps.

The generalized extended Weihrauch lattice is isomorphic to
the lattice of LT-topologies.
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Sasso-style subTuring reducibility can be represented in game form.

(a.k.a. van Oosten’s “dialogue” 1997):

Opp Pro

x0 ∈ dom(f )
Query: z0 ∈ dom(g)

x1 = g(z0)
Query: z1 ∈ dom(g)

x2 = g(z1)
...

...
Query: zn ∈ dom(g)

xn+1 = g(zn)
Halt: zn+1 = f (x0)

Opp’s moves are natural numbers x0, x1, x2, . . .

Pro’s moves are of the forms (Query, zi) or (Halt, zi).
▷ Query is a signal to ask a query to oracle.
▷ Halt is a signal to terminate the computation.

f is subT-reducible to g ⇐⇒ Pro has a computable winning strategy.
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A subTuring-reduction game can be considered for multifunctions.

Hirschfeldt-Jockusch’s reduction game (a.k.a. Lee-van Oosten’s “sight”):

Opp Pro

x0 ∈ dom(F)
Query: z0 ∈ dom(G)

x1 ∈ G(z0)
Query: z1 ∈ dom(G)

x2 ∈ G(z1)
...

...
Query: zn ∈ dom(G)

xn+1 ∈ G(zn)
Halt: zn+1 ∈ F(x0)

Opp’s moves are natural numbers x0, x1, x2, . . .

Pro’s moves are of the forms (Query, zi) or (Halt, zi).
▷ Query is a signal to ask a query to oracle.
▷ Halt is a signal to terminate the computation.

F is GW-reducible to G ⇐⇒ Pro has a computable winning strategy.
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What we need is the following reduction game on multi-represented spaces:

Merlin Arthur Nimue

p0 is a name of x0 ∈ dom(F)
Query: q0 is a name of z0 ∈ dom(G)

p1 is a name of x1 ∈ G(z0)
Query: q1 is a name of z1 ∈ dom(G)

p2 is a name of x1 ∈ G(z1)
...

...
...

Query: qn is a name of zn ∈ dom(G)
pn+1 is a name of xn ∈ G(zn)

Halt: qn+1 is a name of zn+1 ∈ F(x0)

Merlin’s move is a pair (p, x); Nimue’s move is z;
and Arthur’s move is either (Query, q) or (Halt, q).
▷ Arthur cannot see “points” and can only see “names”,

and Arthur can only perform computable procedures
▷ Merlin and Nimue can see both “names” and “points”,

and Merlin and Nimue can perform any procedure.
F is LT-reducible to G ⇐⇒ Arthur-Nimue has a winning strategy

where Arthur’s strategy is computable.
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