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Let B, (X) be the Banach space of bounded real valued Baire class «
functions on X w.r.t. the supremum norm.

Main Problem (Motto Ros)

Suppose that X is a Polish space which cannot be written as

a union of countably many finite dimensional subspaces.

Then, is B, (X) linearly isometric to B, ([0, 1]"') for some n € N?
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Let B, (X) be the Banach space of bounded real valued Baire class «
functions on X w.r.t. the supremum norm.

Main Problem (Motto Ros)

Suppose that X is a Polish space which cannot be written as
a union of countably many finite dimensional subspaces.
Then, is B, (X) linearly isometric to B, ([0, 1]*') for some n € N?

v

@ We apply Recursion Theory (a.k.a. Computability Theory) to
solve Motto Ros’ problem!

@ More specifically, an invariant which we call degree
co-spectrum, a collection of Turing ideals realized as lower
Turing cones of points of a Polish space, plays a key role.

@ The key idea is measuring the quantity of all possible Scott
ideals (w-models of RCA + WKL) realized within the degree
co-spectrum (on a cone) of a given space.
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Background in Abstract Banach Space Theory

@ The basic theory on the Banach spaces 8B,(X) has been
studied by Bade, Dachiell, Jayne and others in 1970s.
@ Suppose that X is an uncountable Polish space:
e B,([0,1]) =i Bu(X) for @ > w.
e If X is a union of countably many finite dim. subspaces
Bn([0,1]) =i Bn(X) #i Bn([0,1]Y) for2 < n < w,
e (Motto Ros) Does there exist an X such that
B, ([0,1]) #i Bn(X) #i Bn([0,1]) for2 < n < w?
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Background in Abstract Banach Space Theory

@ The basic theory on the Banach spaces 8B,(X) has been
studied by Bade, Dachiell, Jayne and others in 1970s.
@ Suppose that X is an uncountable Polish space:
e B,([0,1]) =i Bu(X) for @ > w.
e If X is a union of countably many finite dim. subspaces
Bn([0,1]) =i Bn(X) i Bn([O, l]N) for2 £ n < w,
e (Motto Ros) Does there exist an X such that
B ([0,1]) #i Bn(X) #i Bn([0,1]Y) for2 < n < w?

(Jayne) An a-th level Borel isomorphism is a bijectionf : X — Y s.t.
E C X is of additive Borel class e iff f[E] € Y is of additive Borel class «.

y

By Jayne’s theorem (1974), Motto Ros’ problem is reformulated as:

The Second-Level Borel Isomorphism Problem

Find an uncountable Polish space which is second-level Borel
isomorphic neither to [0, 1] nor to [0, 1]".
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Consequently, Motto Ros’ problem is the problem on the second level
Borel isomorphic classification of Polish spaces. J
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Consequently, Motto Ros’ problem is the problem on the second level
Borel isomorphic classification of Polish spaces.

“We show that any two uncountable Polish spaces that are countable
unions of sets of finite dimension are Borel isomorphic at the second
level, and consequently at all higher levels. Thus the first level and
zero-th level (i.e. homeomorphisms) appear to be the only levels giving
rise to nontrivial classifications of Polish spaces.”

J. E. Jayne and C. A. Rogers, Borel isomorphisms at the first level |,
Mathematika 26 (1979), 125-156.
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Consequently, Motto Ros’ problem is the problem on the second level
Borel isomorphic classification of Polish spaces.

“We show that any two uncountable Polish spaces that are countable
unions of sets of finite dimension are Borel isomorphic at the second
level, and consequently at all higher levels. Thus the first level and
zero-th level (i.e. homeomorphisms) appear to be the only levels giving
rise to nontrivial classifications of Polish spaces.”

J. E. Jayne and C. A. Rogers, Borel isomorphisms at the first level |,
Mathematika 26 (1979), 125-156.

@ At that time, almost no nontrivial proper infinite dimensional Polish
spaces had been discovered yet.

@ Therefore, it had been expected that the structure of proper infinite
dim. Polish spaces is simple
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Consequently, Motto Ros’ problem is the problem on the second level
Borel isomorphic classification of Polish spaces.

“We show that any two uncountable Polish spaces that are countable
unions of sets of finite dimension are Borel isomorphic at the second
level, and consequently at all higher levels. Thus the first level and
zero-th level (i.e. homeomorphisms) appear to be the only levels giving
rise to nontrivial classifications of Polish spaces.”

J. E. Jayne and C. A. Rogers, Borel isomorphisms at the first level |,
Mathematika 26 (1979), 125-156.

@ At that time, almost no nontrivial proper infinite dimensional Polish
spaces had been discovered yet.

@ Therefore, it had been expected that the structure of proper infinite
dim. Polish spaces is simple — this conclusion was too hasty!

@ By using Recursion Theory, we reveal that the second level Borel
isomorphic classification of Polish spaces is highly nontrivial!
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Main Theorem (K. and Pauly)

There exists a 2™ collection (Xq), <% Of topological spaces s.t.

@ X, is an infinite dimensional Cantor manifold for any a < 280,
i.e., X, is compact metrizable, and if X, \ C = U; U U, for some
nonempty open U;, U, then C must be infinite dimensional.
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Main Theorem (K. and Pauly)

There exists a 2™ collection (Xa) <2 Of topological spaces s.t.
@ X, is an infinite dimensional Cantor manifold for any a < 280,
i.e., X, is compact metrizable, and if X, \ C = U; U U, for some
nonempty open U;, U, then C must be infinite dimensional.

@ X, possesses Haver'’s property C (hence, weakly infinite
dimensional) for any a < 280,

Takayuki Kihara The Second Level Borel Isomorphism Problem



Main Theorem (K. and Pauly)

There exists a 2™ collection (Xa) <2 Of topological spaces s.t.

@ X, is an infinite dimensional Cantor manifold for any a < 28°,
i.e., X, is compact metrizable, and if X, \ C = U; U U, for some
nonempty open U;, U, then C must be infinite dimensional.

@ X, possesses Haver'’s property C (hence, weakly infinite
dimensional) for any a < 280,

Q If @ # B, then (Xo, E7 (X)) is not isomorphic to (Xg, £.(Xs))
forany n € w, i.e., X4 is not n-th level isomorphic to Xg.
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Main Theorem (K. and Pauly)

There exists a 2™ collection (Xa) <2 Of topological spaces s.t.

@ X, is an infinite dimensional Cantor manifold for any a < 28°,
i.e., X, is compact metrizable, and if X, \ C = U; U U, for some
nonempty open U;, U, then C must be infinite dimensional.

@ X, possesses Haver'’s property C (hence, weakly infinite
dimensional) for any a < 280,

Q If @ # B, then (Xo, E7 (X)) is not isomorphic to (Xg, £.(Xs))
forany n € w, i.e., X4 is not n-th level isomorphic to Xg.

Q If @ # B, then the Banach space B,,(X.) is not linearly
isometric to B, (Xg) forany n € w.
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Decomposition Theorem (K.; Gregoriades and K.; K. and Ng)

Let X be a Souslin space and Y be a Polish space.
Iff : X = Y is a function s.t.

Acz(Y) > Al e 22(X)

then, there exists a countable partition (X;)ie» Of X such that the
restriction f|y, is Zg_mﬂ-measurable foreveryi € w.

Takayuki Kihara The Second Level Borel Isomorphism Problem



Decomposition Theorem (K.; Gregoriades and K.; K. and Ng)

Let X be a Souslin space and Y be a Polish space.
Iff : X = Y is a function s.t.

Acz(Y) > Al e 22(X)

then, there exists a countable partition (X;)ie» Of X such that the
restriction f|y, is Zg_mﬂ-measurable foreveryi € w.

Proof Methods

@ K. showed a weaker version by applying the Shore-Slaman join
theorem on the Turing degrees (the Kumabe-Slaman forcing).
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Decomposition Theorem (K.; Gregoriades and K.; K. and Ng)

Let X be a Souslin space and Y be a Polish space.
Iff : X = Y is a function s.t.

Acz(Y) > Al e 22(X)

then, there exists a countable partition (X;)ie» Of X such that the
restriction f|y, is Zg_mﬂ-measurable foreveryi € w.

Proof Methods

@ K. showed a weaker version by applying the Shore-Slaman join
theorem on the Turing degrees (the Kumabe-Slaman forcing).

@ Later, Gregoriades and K. showed a finite dimensional version of
this theorem by combining Louveau’s separation theorem (the
Gandy-Harrington topology).
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Decomposition Theorem (K.; Gregoriades and K.; K. and Ng)

Let X be a Souslin space and Y be a Polish space.
Iff : X = Y is a function s.t.

Acz(Y) > Al e 22(X)

then, there exists a countable partition (X;)ie» Of X such that the
restriction f|y, is Zg_m_l_l-measurable foreveryi € w.

Proof Methods

@ K. showed a weaker version by applying the Shore-Slaman join
theorem on the Turing degrees (the Kumabe-Slaman forcing).

@ Later, Gregoriades and K. showed a finite dimensional version of
this theorem by combining Louveau’s separation theorem (the
Gandy-Harrington topology).

@ Eventually, K. and Ng showed the complete version of this theorem
by extending the Shore-Slaman join theorem to infinite dimensional
Polish spaces.
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Let X and Y be topological spaces.

© X is piecewise homeomorphic to Y (written as X =, Y) if
there are countable covers {Xi}iew and {Yj}ie, Of X and Y
such that X; is homeomorphic to Y; for every i € w.

@ X is piecewise embedded into Y (written as X <py Y) if
X is piecewise homeomorphic to a subspace of Y.

By the Decomposition Theorem:

Let X and Y be Polish spaces. Then, the following are equivalent:
© B, (X) is linearly isometric to B, (Y) for some n > 2.
© X is second level Borel isomorphicto Y.
© X is piecewise homeomorphic to Y.
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Theorem (Hurewicz; Hurewicz-Wallman 1941)
Let X be an uncountable Polish space. Then,

X =py 22 & dim(X) <

(Urysohn 1922) dim (#) = —-1; dim (X) < « iff for every point x € X,
there are arbitrarily small open neighborhoods U 5 x with dim (dU)< «;
dim (X) < oo iff there is an ordinal @ such that dim (X) = .

v

The Piecewise Embeddability Problem

Does there exist an uncountable Polish space X such that

2N <ow X <pw [0,1]?

v

The above problem is equivalent to the 2" level Borel isomorph. problem.

@ The Borel isomorphism problem on Souslin spaces was able to be
reduced to the same problem on zero-dimensional Souslin spaces.

@ The second-level Borel isomorphism problem is inescapably tied to
infinite dimensional topology.
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@ (Alexandrov 1948) X is weakly infinite dimensional (w.i.d.) if
for each sequence (A;, B;) of pairs of disjoint closed sets in X
there are partitions L; in X separating A; and B; s.t. (; Li = 0.
@ (Haver 1973, Addis-Gresham 1978) X is a C-space (S¢ (O, 0)) if
for each sequence (U;) of open covers of X there is a pairwise
disjoint open family (V) refining (24) s.t. U; Vi covers X.

X Zow 2V © dim(X) <0 = XisC = Xisw.id.

@ (Alexandrov 1951) 3 a w.i.d. metrizable compactum X >p, 217
@ (R. Pol 1981) There exists a metrizable C-compactum X >py 2N,

@ (E. Pol 1997) There exists an infinite dimensional C-Cantor
manifold, i.e., a C-compactum which cannot be separated by any
hereditarily weakly infinite dimensional closed subspaces.

@ (Chatyrko 1999) There is a collection {X,},<» Of continuum many
infinite dimensional C-Cantor manifolds such that X, cannot be
embedded into Xg whenever a # £.
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Main Lemma (K. and Pauly)

Let M, be the class of all infinite dimensional C-Cantor manifolds.
Then, there is an order embedding of ([N1]“, €) into (Mo, <pw ).

@ This solves Motto Ros’ problem (and the second level Borel
isomorphism problem).

@ This strengthen R. Pol's theorem and Chatyrko’s theorem in
infinite dimensional topology.

To show Main Lemma, we again use Recursion Theory! J

Takayuki Kihara The Second Level Borel Isomorphism Problem



27N

(a) Any point in R" (b) Some point in [0, 1]Y




Idea of Proof: Upper/Lower Approximation by Zero Dim Spaces

27N

(a) Any pointin R" (b) Some point in [0, 1N

@ By approximating each point in a space X by a zero-dim space,
we measure “how similar the space X is to a zero-dim space”.

@ (a) Upper and lower approximations by a zero-dim space meet.

@ (b) There is a gap between upper and lower approximations by a
zero-dim space
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Idea of Proof: Upper/Lower Approximation by Zero Dim Spaces

Spec(y)
Spec(z) = {p € 2N : & <r p}
oy
coSpec(z) = {p € 2V : p <y =}
Spec(y)
(a) Any point in R" (b) Some point in [0, 1N

@ Spedx) ={p € 2" : x <71 p}.
@ coSpe€x) = {p € 2V : p <7 x}.
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Key Idea
Classification of topological spaces by degrees of unsolvability:

@ The Turing degrees = the degree structure on Cantor space 2~ and
Euclidean spaces R".

@ The enumeration degrees = the degree structure on the Scott
domain P(N).

© Hinman (1973): degrees of unsolvability of continuous functionals
~ the degree structure on the space NY' of Kleene-Kreisel
continuous functionals.

© J. Miller (2004): continuous degrees = the degree structure on the
function space C([0, 1]) and the Hilbert cube [0, 1]".
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Definition

Let X and Y be second-countable Ty spaces with

fixed countable open basis {Bff}new and {B:}new.

A point x € X is “Turing reducible” to a pointy € Y (x <t y) if

hnew:xeB}<e{new:yeB})

In other words, we identify the “Turing degree” of x € X with
the enumeration degree of the (coded) neighborhood filter of x.

v

@ The degree structure of Cantor space is exactly the same as the
Turing degrees.

@ The degree structure of Hilbert cube (a universal Polish space) is
exactly the same as the continuous degrees.

@ The degree structure of the Scott domain O(N) (a universal
quasi-Polish space) is exactly the same as the enumeration
degrees.
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Idea of Proof: Upper/Lower Approximation by Zero Dim Spaces

Spec(y)
Spec(z) = {p € 2N : & <r p}
oy
coSpec(z) = {p € 2V : p <y =}
Spec(y)
(a) Any point in R" (b) Some point in [0, 1N

@ Spedx) ={p € 2" : x <71 p}.
@ coSpe€x) = {p € 2V : p <7 x}.
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Spedx) = {p € 2 : x <7 p}; SpedX) = {Spedx) : x € X}.
coSpe¢x)={p € 2" : p <t x};coSpe¢X)={coSpe€x) : x € X} J
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Spedx) = {p € 2" : x <t p}; SpedX) = {Speqx) : x € X}.
coSpe€x)={p € 2V : p <1 x};coSpe€X)={coSpe¢x) : x € X}

Lemma (K. and Pauly)

X =5y Y => Spec'(X) = Spec'(Y) for some oracle r € 2¢.
= coSpec ' (X) = coSpec'(Y) for some oracle r € 2.

v
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Spedx) = {p € 2" : x <1 p}; SpedX) = {Spedx) : x € X}.
coSpe€x) ={p € 2" : p <t x};coSpe¢X)={coSpe¢x) : x € X}

Lemma (K. and Pauly)

X =~pw Y = Spec'(X) = Spec'(Y) for some oracle r € 2¢.
= coSpec ' (X) = coSpec'(Y) for some oracle r € 2.

v

© ATuring ideal J € 2¢ is realized by x if J = coSpe¢x).
@ A countable set J € P(w) = 2¢ is a Scott ideal
& (0,9) = RCA + WKL.

Realizability of Scott ideals (J. Miller 2004)

Q 2 =y w® =y R" =, @, R". (Turing degrees.)
No Scott ideal is realized in these spaces!

Q [0,1]® ~pw C([0,1]) =pw 2. (full continuous degrees.)
Every countable Scott ideal is realized in these spaces!
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Idea of Proof: Upper/Lower Approximation by Zero Dim Spaces

Spec(y)
Spec(z) = {p € 2N : @ <r p}
oy
coSpec(z) = {p € 2N : p <r z}
GSpec(y)
(a) Any point in R" (b) Some point in [0, 1]

@ Spec determines the pw-homeomorphism type of a space,
and coSpec is invariant under pw-homeomorphism.

@ The coSpec of any point in a space of dim < oo has to be a
principal Turing ideal.

@ (Miller) Every countable Scott ideal is realized as coSpec of a point
in Hilbert cube.
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Definition

r:2Y - [0,1]" is w-left-CEA operator if the infinite sequence
F(y) = (xo,X1,X2,...) is generated in a uniformly left-computably
enumerable manner by a single Turing machine, that is,

there is a left-c.e. operator y such that for all i,

Xj = r(y)(l) = Y(y,iaxo,xla-",xi—l)-

An w-left-CEA operator I' : N x 2% — [0, 1]" is universal if for
every w-left-CEA operator W, there is e such that W = Ay.l(e,y).
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Let wCEA denote the graph of a universal w-left-CEA operator.

Theorem (K.-Pauly)

The space wCEA (as a subspace of Hilbert cube) is an
intermediate Polish space:

2N <ow WCEA <py [0, 1Y

Remark
Furthermore, wCEA is pw-homeomorphic to the following:

@ Rubin-Schori-Walsh (1979)’s strongly infinite dimensional totally
disconnected Polish space.

@ Roman Pol (1981)’s weakly infinite dimensional compactum which is
not decomposable into countably many finite-dim subspaces
(a solution to Alexandrov’'s problem).
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S
\gilz/ pec(y)

\
! oy

’I‘he w-th Turing jump

‘coSpec(z) @ GSpec(y)

(a) 2 (b) wCEA ©) [0, 1]

@ (@) coSpec is principal, and meets with Spec.

@ (b) coSpec is not always principal, but the “distance” between Spec
and coSpec has to be at most the w-th Turing jump.

@ (c) coSpec can realize an arbitrary countable Scott ideal, hence
Spec and coSpec can be separated by an arbitrary distance.
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Proof Sketch of 2 ¥ <, wCEA <, [0, 1]"

wCEA = {(e,p,X0,X1,...) € @ X 2 x [0, 1]* :
(Vi) x; is the e-th left-c.e. real in (P, X0y X1+« s Xj=1)-}

Lemma
For any p € 2¢, the following Scott ideal is not realized in wCEA:

JP ={ze€2“:(An) z <7 p(@n)y,

@ Pickz = (e,p,Xg;X1,-..) € WCEA.
@ Then, p € coSpec (z) and p®) € Spec(z).
@ Clearly, p(“*1) ¢ coSpec (z).

Since coSpec (up to an oracle) is invariant under
pw-homeomorphism, we have wCEA <, [0, 1]".
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Another separation is based on Kakutani’s fixed point theorem.

Theorem (J. Miller 2004)

There is a nonempty convex-valued computable function
W : [0, 1] = P([0, 1]V) with a closed graph such that for every
fixed point (xg, X1,...) € Fix(W¥),

coSpec (<X0’ X1y X250 >) = {X0s X1, X254+ }-

Moreover, such an x realizes a Scott ideal.

@ Fix(W) is a MY subset of [0, 1]

@ Inductively find (xg, X1,...) € Fix(W), where x4 is the “leftmost”
value s.t. (Xo, X1, ..,Xj+1) is extendible in Fix (V).

@ Then, Xj4 is left-c.e. in (Xo, X1, - - - , X{ ), Uniformly.

@ X;4+1 does not depend on the choice of a name of (Xg, ..., X;).
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S
\gilz/ pec(y)

\
! oy

’I‘he w-th Turing jump

(a) 2 (b) wCEA © [0, 1]"

@ (@) coSpec is principal, and meets with Spec.

@ (b) coSpec is not always principal, but the “distance” between Spec
and coSpec has to be at most the w-th Turing jump.

@ (c) coSpec can realize an arbitrary countable Scott ideal, hence
Spec and coSpec can be separated by an arbitrary distance.
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© coSpec (2") = all principal Turing ideals.
@ cospec ([0, 1]V) = all principal Turing ideals and Scott ideals.
© What do we know about coSpec (wCEA)?

@ It cannot realize an w-jump ideal.

o It realizes a non-principal Turing ideal.

@ We know absolutely nothing about what kind of Turing ideals it
realizes; even whether it realizes a jump ideal or not.

How can we control coSpec of a Polish space?

For instance, given @ << 8 < w1, we need a technique for constructing a
Polish space such that

@ it cannot realize a B-jump ideal,

@ it realizes an a-jump ideal.
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We say that G : 2N — 2V is an oracle I'Ig singleton if it has a I'Ig graph.
For instance, the a-th Turing jump operator TJ¢ is an oracle I'Ig singleton.

.

Definition (Modified wCEA Space)
The space wCEA(G) consists of (d,e,r,x) € N2 x 2¥ x [0, 1]"
such that for every i,
Q eitherx; = G'(r), or
@ there areu < v <i such that
xi € [0,1] is the e-th left-c.e. real in {r, X<i, X|(u))
and x(y) = 6'()(r), where I (u) = ®q(u,r,X<v).
Here: G°(x) = x and 6"**(x) = G"(x) ® G(G" (x)).

We define Ref(G) = wCEA(G) N (N? x Fix (W)).
The subspace Ref(G) (as a subspace of [0, 1]") is Polish
whenever G is an oracle I'Ig singleton.
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Suppose that G is an oracle Hg—singleton. For every oracle r € 2V,
consider two Turing ideals defined as

Jr(Gr) =z €2": (An e N) x <1 6" (1)),
Ja(G:1) = {z €27 (3n € N) x <4 6"(1)).

Here: <, is the arithmetical reducibility.

Main Lemma (coSpec -Controlling)
© For every x € Ref(G), there is r € 2 such that
coSpec (x) € Ja(G,r).
@ Foreveryr € 2V, there is x € Ref(G) such that
Jr(G,r) S coSpec (x).

If G = TJ is the @-th Turing jump operator for @ > w,
@ coSpec (Ref(TJ)) realizes no B-jump ideal for 8 > @ - w,
© coSpec (Ref(TJ?)) realizes an a-jump ideal.
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@ By coSpec -Controlling Lemma, given an oracle ° singleton G
we can construct a Polish space which realizes all Turing ideals
closed under G.

© Ref(G) is strongly infinite dimensional and totally disconnected.

© Hence, its compactification yRef(G) (in the sense of Lelek) is a
“Pol-type space”, hence, a metrizable C-compacta.

© Note that Lelek’s compactification preserves Spec and coSpec .

Main Lemma (K. and Pauly)

Let M., be the class of all infinite dimensional C-Cantor manifolds.
Then, there is an order embedding of ([N1]“, €) into (Mo, <pw ).
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Main Theorem (K. and Pauly)

There exists a 2™ collection (Xa)a<2% Of topological spaces s.t.
@ X, is an infinite dimensional Cantor manifold for any & < 280,

@ X, possesses Haver’s property C for any a < 280,

Q If @ # B, then X, is not n-th level isomorphic to Xg for any
n € w.

Q If @ # B, then the Banach space B,,(X.) is not linearly
isometric to B, (Xg) for any n € w.

Summary of This Work
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Summary of This Work

© Defining the notion of Spec and coSpec .
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There exists a 2™ collection (Xa)a<2% Of topological spaces s.t.
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Q If @ # B, then X, is not n-th level isomorphic to Xg for any
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@ Using Spec and coSpec as “pw -topological” invariant.
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Main Theorem (K. and Pauly)

There exists a 2™ collection (Xa)a<2% Of topological spaces s.t.
@ X, is an infinite dimensional Cantor manifold for any & < 280,

@ X, possesses Haver’s property C for any a < 280,

Q If @ # B, then X, is not n-th level isomorphic to Xg for any
n € w.

Q If @ # B, then the Banach space B,,(X.) is not linearly
isometric to B, (Xg) for any n € w.

Summary of This Work
© Defining the notion of Spec and coSpec .
@ Using Spec and coSpec as “pw -topological” invariant.

@ Proving coSpec -Controlling Lemma.
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@ X, is an infinite dimensional Cantor manifold for any & < 280,
@ X, possesses Haver’s property C for any a < 280,

Q If @ # B, then X, is not n-th level isomorphic to Xg for any
n € w.

Q If @ # B, then the Banach space B,,(X.) is not linearly
isometric to B, (Xg) for any n € w.

Summary of This Work
© Defining the notion of Spec and coSpec .
@ Using Spec and coSpec as “pw -topological” invariant.

@ Proving coSpec -Controlling Lemma.

© Solving the second-level Borel isomorpshim problem.
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