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Introduction

© Local Computability:
e Every nonempty open set in R" has a computable point.
@ Not every nonempty co-c.e. closed set in IR" has a computable
point (Kleene, Kreisel, etc. 1940's-50's).
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Introduction

© Local Computability:

Every nonempty open set in R" has a computable point.

Not every nonempty co-c.e. closed set in R" has a computable
point (Kleene, Kreisel, etc. 1940's-50's).

If a nonempty co-c.e. closed subset F € R* has no
computable points, then F must be disconnected.

Does there exist a nonempty (simply) connected co-c.e. closed
set in R" without computable points?
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Introduction

© Local Computability:
e Every nonempty open set in R" has a computable point.
@ Not every nonempty co-c.e. closed set in IR" has a computable
point (Kleene, Kreisel, etc. 1940's-50's).
e If a nonempty co-c.e. closed subset F € R has no
computable points, then F must be disconnected.
e Does there exist a nonempty (simply) connected co-c.e. closed
set in R" without computable points?
© Global Computability:
e If a co-c.e. closed set is homeomorphic to an n-sphere,
then it is computable (Miller 2002).
e If a co-c.e. closed set is homeomorphic to an arc, then it is
“almost” computable, i.e., every co-c.e. arc is approximated
from the inside by computable arcs.
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Introduction

© Local Computability:

e Every nonempty open set in R" has a computable point.

@ Not every nonempty co-c.e. closed set in IR" has a computable
point (Kleene, Kreisel, etc. 1940's-50's).

e If a nonempty co-c.e. closed subset F € R has no
computable points, then F must be disconnected.

e Does there exist a nonempty (simply) connected co-c.e. closed
set in R" without computable points?

© Global Computability:

e If a co-c.e. closed set is homeomorphic to an n-sphere,
then it is computable (Miller 2002).

e If a co-c.e. closed set is homeomorphic to an arc, then it is
“almost” computable, i.e., every co-c.e. arc is approximated
from the inside by computable arcs.

© Let us study the computable content of Continuum Theory!
Here, “Continuum Theory” is a branch of topology studying connected
compact spaces.
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Computability Theory

Definition
{Beleen: an effective enumeration of all rational open balls.

@ x € R"is computable if {e € N: x € Be}isc.e.
Equivalently, x = (X1,...,Xn) € R" is computable iff x; is
computable for eachi < n.
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Computability Theory

Definition
{Beleen: an effective enumeration of all rational open balls.

@ x € R"is computable if {e € N: x € Be}isc.e.
Equivalently, x = (X1,...,Xn) € R" is computable iff x; is
computable for eachi < n.

Q@ FCcRisco-ce. ifF =R"\ Ueew Be forac.e. set W.
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Computability Theory

Definition
{Beleen: an effective enumeration of all rational open balls.

@ x € R"is computable if {e € N: x € Be}isc.e.
Equivalently, x = (X1,...,Xn) € R" is computable iff x; is
computable for eachi < n.

Q@ FCcRisco-ce. ifF =R"\ Ueew Be forac.e. set W.

© Aco-c.e. closed set F € R" is computable if {e : F N Be # 0}
is c.e.
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Computability Theory

Definition
{Beleen: an effective enumeration of all rational open balls.

O x € R" is computable if {e € N : x € Be}isc.e.
Equivalently, x = (Xg,...,Xn) € R" is computable iff x; is
computable for eachi < n.

Q@ FCcRisco-ce. ifF =R"\ Ueew Be forac.e. set W.

© Aco-c.e. closed set F € R" is computable if {e : F N Be # 0}
is c.e.

Remark
@ F isco-c.e. closed < F is a computable point in the
hyperspace A_(R") of closed subsets of R" under lower Fell
topology.
@ F is computable closed < F is a computable point in the
hyperspace A(RR") of closed subsets of R" under Fell
topology.
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Connected co-c.e. closed Sets

Fact

© (Kleene, Kreisel, etc.) There exists a nonempty co-c.e. closed
set P € R! which has no computable point.

@ Every nonempty connected co-c.e. closed subset P € R*?
contains a computable point.
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Connected co-c.e. closed Sets

Fact

© (Kleene, Kreisel, etc.) There exists a nonempty co-c.e. closed
set P € R! which has no computable point.

@ Every nonempty connected co-c.e. closed subset P € R*?
contains a computable point.

Fact

@ There exists a nonempty connected co-c.e. closed subset
P(2 ¢ R? which has no computable point.

© There exists a nonempty simply connected co-c.e. closed
subset P(® ¢ R® which has no computable point.

Takayuki Kihara Counterexamples in Computable Continuum Theory



@ X isn-connected & the first n + 1 homotopy groups
vanish identically.

@ X is path-connected < X is 0-connected.

@ X is simply connected <= X is 1-connected.

@ X is contractible < the identity map on X is null-homotopic.
@ X is contractible = X is n-connected for any n.

Observation

Not every nonempty n-connected co-c.e. closed set in R"+?
contains a computable point, for any n € N.
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@ Not every nonempty n-connected co-c.e. closed set in R"*+2
contains a computable point, forany n € N.




Observation (Restated)
@ Not every nonempty n-connected co-c.e. closed set in R"*+2
contains a computable point, for any n € N.

@ Every nonempty n-connected co-c.e. closed set in R"+1
contains a computable point, for n = 0.
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Observation (Restated)
@ Not every nonempty n-connected co-c.e. closed set in R"*+2
contains a computable point, for any n € N.

@ Every nonempty n-connected co-c.e. closed set in R"+1
contains a computable point, for n = 0.

Question
© (Le Roux-Ziegler) Does every simply connected planar co-c.e.
closed set contain a computable point?
© Does every contractible Euclidean co-c.e. closed set contain a
computable point?
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A € P is g-approximated from the inside by B € Q

AeP

Be@

du(A,B) <&

Definition
© The Hausdorff distance between nonempty closed subsets
Ao, A1 of a metric space (X, d) is defined by:
dy (Ao, A1) = MaXi<2 SUP yep, iNfyer,_ d(X,Y).
Q P, Q: classes of continua.
P is approximated (from the inside) by Q if
(YA € P) inf{dy(B,A): A DB € Q} = 0.
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Proposition
ARc-CoNNECTED CONTINUA is approximated by LocaLy CONNECTED
CONTINUA.

Proof
© By compactness, X has an &-net {x;}ij<n € X forany & > 0.
(i.e., Ui<n B(Xi; &) covers X)
@ Lety; € X be an arc with end points x; and x;.
©Q Y =Uij«7i €X,and dy(Y,X) < &.
Qo 7; is inductively defined as:
° 7i €7i Y U< 74-

o If yj intersects with U 1<) 7« » then y; N Uk,)<(ij) 7k 1S
an arc.

Q@ Y*=Uij«n yi’; is locally connected, Y* € Y € X, and
dH(Y*,X) S E.
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If a continua in a class C has no computable point, then
C is not approximated by CompuTaBLE CLOSED SETS.

Theorem (Miller 2002; lljazovic 2009)

© Every Euclidean co-c.e. n-sphere is computable.
Hence, Every co-c.e. Jordan curve is computable.

© Co-c.e. Arcs is approximated by CompuTABLE ARCS.
In this sense, every co-c.e. arc is “almost” computable.
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Continuum Theory

Definition

Let S be a topological space.
@ S is connected if it is not union of disjoint open sets.
© S is locally connected if it has a base of connected sets.
@ A continuum is a connected compact metric space.

© A dendroid is a continuum S such that (Vx,y € S)
S[x,y] = min{Y € X : x,y € Y & Y is connected} exists,
and such S[x,y] is an arc.

© A dendrite is a locally connected dendroid.
@ Atree is a dendrite with finitely many ramification points.
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We plot atree T € 2<¢ on the Euclidean plane R?.
Then the plotted picture W(T) € R? is a dendrite.

w(2<N)

'Protting 2<N on R2,

@ W(T)isatreeif T is finite.
@ However W(T) is not a tree if T is infinite.
@ Thus, W(2<) is a dendrite which is not a tree.
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co-c.e. closed Dendroids

A Cantor fan and a harmonic comb are dendroids, but not

dendrites.
-
_ Cantorset
Cantor fan Harmonic comb
\

Here a harmonic comb is defined by:

([0,2] x {0}) U (({0} U {1/n : n € N}) x [0, 1]).
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Denbroibs is approximated by TREEs. I




Effectiveness for Tree-Like Continua

Remark
Denbroibs is approximated by TREEs.

.

© CompuTasLE DeNDRITES is not approximated by Co-c.e. TREEs.
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Effectiveness for Tree-Like Continua

Remark
Denbroibs is approximated by TREeEs.

.

© CompuTasLE DeNDRITES is not approximated by Co-c.e. TREEs.

© Co-c.e. DenpRiTEs is not approximated by ComputABLE DENDRITES.
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Effectiveness for Tree-Like Continua

Remark
Denbroibs is approximated by TREeEs.

’

© CompuTasLE DeNDRITES is not approximated by Co-c.e. TREEs.

© Co-c.e. DenpRiTEs is not approximated by ComputABLE DENDRITES.
© CompuasLE DENDROIDS is Not approximated by Co-c.e. DENDRITES.
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Effectiveness for Tree-Like Continua

Remark
Denbroips is approximated by TRees.

’

© CompuTasLE DeNDRITES is not approximated by Co-c.e. TREEs.

@ Co-c.e. DenpriTEs is not approximated by ComputaBLE DENDRITES.
© CompuTaBLE DENDROIDS is not approximated by Co-c.e. DENDRITES.
© Co-c.e. Denproips is not approximated by ComputasLE DENDROIDS.
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Effectiveness for Tree-Like Continua

Remark
Denbroips is approximated by TRees.

’

ComputaBLE DENDRITES iS not approximated by Co-c.E. TREES.

Co-c.E. DeNDRITES is not approximated by ComPuTABLE DENDRITES.
ComputaBLE DENDROIDS IS not approximated by Co-c.e. DENDRITES.

Co-c.E. Denbroips is not approximated by CompuTaBLE DENDROIDS.

Not every contractible planar co-c.e. dendroid contains a
computable point.

00000
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Effectiveness for Tree-Like Continua

Remark
Denbroips is approximated by TRees.

’

ComputaBLE DENDRITES iS not approximated by Co-c.E. TREES.

Co-c.E. DeNDRITES is not approximated by ComPuTABLE DENDRITES.
ComputaBLE DENDROIDS IS not approximated by Co-c.e. DENDRITES.

Co-c.E. Denbroips is not approximated by CompuTaBLE DENDROIDS.

Not every contractible planar co-c.e. dendroid contains a
computable point.

e This is the solution to Question of Le Roux, and Ziegler.

00000
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Co-c.E. DENDRITES iS not approximated by CoMPUTABLE DENDRITES. l

4 0-rising b

Approximation of Basic Dendrite Basic Dendrite

- /
Basic Dendrite has 2" many n-risings of height 27".
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Fix a non-computable c.e. set A C N.
The Basic construction around an n-rising is following:

-

neA

n-rising \

né¢A

N

n € A = an n-rising will be a cut point.
n ¢ A = an n-rising will be a ramification point.
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To prove the theorem, we need to prepare some tools. J




To prove the theorem, we need to prepare some tools.

Lemma

© Every subdendrite of W(2<®) is homeomorphic to W(T)
for a subtree T € 2<¢.

@ T C 2<?is co-c.e. closed (c.e., computable, resp.) tree
iff W(T) € R? is co-c.e. closed (c.e., computable, resp.)
dendrite.

© Every computable subdendrite D € W(2<%)
there exists a computable subtree T € 2<“ such that
D € W(T) holds, and D and W(T) has same paths.
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Definition (Cenzer-K.-Weber-Wu 2009)

A co-c.e. closed subset P of Cantor space is tree-immune if a
co-c.e. tree Tp € 2<% has no infinite computable subtree.
Here Tp = {oc€2<?: (I Do) f € P}

The set of all consistent complete extensions of Peano Arithmetic
is tree-immune.

Lemma

Let P be a tree-immune co-c.e. closed subset of Cantor space,
and D € W(Tp) be any computable subdendrite.

Then D contains no path.
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Now we start True Construction.

-~

Tree-immune I'Ig set

Approximating basic n-rising Basic n-rising

N J
An n-rising has a copy of a tree-immune co-c.e. closed set of scale
2-",
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Fix a non-computable }:2 setA C N.
The True Construction around an n-rising is following:

a N

neA

\ Tree-immune I'Ig set

ne¢aA

N J
n € A = any top of an n-rising will be a cut point.
n ¢ A = any top of an n-rising will be

inaccessible by computable dendrites.
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Fix a non-computable Zg setA C N.
The True Construction around an n-rising is following:

a N

neA

\ Tree-immune I'Ig set

ne¢A

N J
n € A = If a dendrite D passes this n-rising,

then D contains a top of this n-rising.
n ¢ A = Any computable dendrite contains no top of n-rising.
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Co-c.E. DENDRITES is not approximated by CoMPUTABLE DENDRITES.

@ The construction of the co-c.e. closed dendrite H is
completed.
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Co-c.E. DENDRITES is not approximated by CoMPUTABLE DENDRITES.

@ The construction of the co-c.e. closed dendrite H is
completed.

@ Let D € H be any computable dendrite.
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Co-c.E. DENDRITES is not approximated by CoMPUTABLE DENDRITES. I

@ The construction of the co-c.e. closed dendrite H is
completed.

@ Let D € H be any computable dendrite.
@ It suffices to show that D cannot pass 2 distinct risings.
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Co-c.E. DENDRITES is not approximated by CoMPUTABLE DENDRITES. I

@ The construction of the co-c.e. closed dendrite H is
completed.

@ Let D € H be any computable dendrite.
@ It suffices to show that D cannot pass 2 distinct risings.

@ If D passes m, n-risings, then D passes a k -rising for all
k > min{m,n}.
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Co-c.e. DeENDRITES is not approximated by CoMPuTABLE DENDRITES. l

@ The construction of the co-c.e. closed dendrite H is
completed.

@ Let D € H be any computable dendrite.
@ It suffices to show that D cannot pass 2 distinct risings.

@ If D passes m, n-risings, then D passes a k -rising for all
k > min{m,n}.

@ Since D is co-c.e. closed, we can enumerate all k such that
D contains no top of any k -rising.
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Co-c.e. DeENDRITES is not approximated by CoMPuTABLE DENDRITES. l

@ The construction of the co-c.e. closed dendrite H is
completed.

@ Let D € H be any computable dendrite.
@ It suffices to show that D cannot pass 2 distinct risings.

@ If D passes m, n-risings, then D passes a k -rising for all
k > min{m,n}.

@ Since D is co-c.e. closed, we can enumerate all k such that
D contains no top of any k -rising.

@ This enumeration yields the complement of a c.e. set A.
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Co-c.e. DeENDRITES is not approximated by CoMPuTABLE DENDRITES. I

@ The construction of the co-c.e. closed dendrite H is
completed.

Let D € H be any computable dendrite.

It suffices to show that D cannot pass 2 distinct risings.

If D passes m, n-risings, then D passes a k -rising for all
k > min{m,n}.

@ Since D is co-c.e. closed, we can enumerate all k such that
D contains no top of any k -rising.

This enumeration yields the complement of a c.e. set A.

This contradicts non-computability of A.
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ComputaBLE DENDROIDS IS not approximated by Co-c.e. DENDRITES.




ComputaBLE DENDROIDS IS not approximated by Co-c.e. DENDRITES.

@ We will use harmonic combs in place of the Basic Dendrite.
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ComputaBLE DENDROIDS IS not approximated by Co-c.e. DENDRITES.

@ We will use harmonic combs in place of the Basic Dendrite.

@ Before starting the construction, we take account of the fact
that topologist’s sine curve is not path-connected.
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ComputaBLE DENDROIDS IS not approximated by Co-c.e. DENDRITES.

@ We will use harmonic combs in place of the Basic Dendrite.

@ Before starting the construction, we take account of the fact
that topologist’s sine curve is not path-connected.

@ It means that we cannot cut-pointize infinite many risings,
on one harmonic comb.
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ComputaBLE DENDROIDS IS not approximated by Co-c.e. DENDRITES.

@ We will use harmonic combs in place of the Basic Dendrite.

@ Before starting the construction, we take account of the fact
that topologist’s sine curve is not path-connected.

@ It means that we cannot cut-pointize infinite many risings,
on one harmonic comb.

@ Our idea is using a computable approximation of a certain
limit computable function.
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ComputaBLE DENDROIDS IS not approximated by Co-c.e. DENDRITES.

@ We will use harmonic combs in place of the Basic Dendrite.

@ Before starting the construction, we take account of the fact
that topologist’s sine curve is not path-connected.

@ It means that we cannot cut-pointize infinite many risings,
on one harmonic comb.

@ Our idea is using a computable approximation of a certain
limit computable function.

@ One harmonic comb replaces one rising.
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ComputaBLE DENDROIDS IS not approximated by Co-c.e. DENDRITES. I

@ We will use harmonic combs in place of the Basic Dendrite.

@ Before starting the construction, we take account of the fact
that topologist’s sine curve is not path-connected.

@ It means that we cannot cut-pointize infinite many risings,
on one harmonic comb.

@ Our idea is using a computable approximation of a certain
limit computable function.

@ One harmonic comb replaces one rising.

@ The Basic Dendroid will be constructed by connecting
infinitely many harmonic combs.
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0-harmonic comb

Basic Dendroid

N

)

Basic Dendroid has 2" many n-harmonic combs of height 27".
Each n-harmonic comb has infinitely many risings.
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(n, 2)-rising
(n, 1)-rising
(n, 0)-rising (n, w)-rising
n-harmonic comb
-

Basic Dendroid has 2" many n-harmonic combs of height 27".
Each n-harmonic comb has (w + 1)-many risings;
They are (n, @)-risings for @ < w + 1.
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To prove the theorem, we need the following lemma. J




To prove the theorem, we need the following lemma.

Lemma

There exists a limit computable function p such that, for every
uniformly c.e. sequence {Un} of cofinite c.e. sets, it holds that
p(n) € U, for almost all n.
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To prove the theorem, we need the following lemma.

Lemma

There exists a limit computable function p such that, for every
uniformly c.e. sequence {Un} of cofinite c.e. sets, it holds that
p(n) € U, for almost all n.

Proof

@ {V.}: an effective enumeration of uniformly c.e. decreasing
sequence of c.e. sets.

@ o(e,x) ={i <e:x € (Vi)e): The e-state of x.
@ p(e) chooses x to maximize the e-state.
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p = limg ps: a limit computable function in the previous lemma.
The construction on an n-harmonic comb is following:

4 ™
ps(n) =m

(n, m)-rising\

ps(n) #m

\_ /
(3s) ps(n) = m = an (n, m)-rising will be a cut point.
(¥s) ps(n) # m = an (n, m)-rising will be a ramification point.
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p = limg ps: a limit computable function in the previous lemma.
The construction on an n-harmonic comb is following:

4 N
ps(n) =m

(n, m)-rising\

ps(n) #m

\_ /

Since p(n) = lims ps(n) changes his mind at most finitely often,
he cut-pointizes only finitely many risings on an n-harmonic comb.
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p = limg ps: a limit computable function in the previous lemma.
The construction on an n-harmonic comb is following:

4 N
ps(n) =m

(n, m)-rising\

ps(n) #m

\_ /

Thus each n-harmonic comb, actually, will be homeomorphic to a
harmonic comb. The construction yields computable dendroid K.
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Recall that a dendrite is a locally connected dendroid.
On a harmonic comb, any top of almost all rising must be
inaccessible by a dendrite.

4 n-harmonic comb Locally connected D )
2
D contains to-ps of only three risings;
L (n, 1)-rising; (n, 4)-rising; (n, w)-rising )

Takayuki Kihara
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ps(n) =m

(n, m)-rising\

ps(n) #m

N

(3s) ps(n) = m = any top of an (n, m)-rising will be
a cut point.

Meanwhile, any top of almost all risings will be inaccessible by a
given dendrite.
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N

ps(n) = m

(n, m)—rising\

ps(n) #m

J

(3s) ps(n) = m = If a dendrite D passes an (n, m)-rising,

Meanwhile, any dendrite contains no top of almost all risings.

then D contains a top of an (n, m)-rising.
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ps(n) = m

(n, m)-rising\

ps(n) #m

\_ J
Ur'?: the set of all (n, m)-risings whose top is not accessed by a
dendrite D. Then Ur'? is cofinite for all n.

If D passes n-harmonic comb then p(n) ¢ UP.
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CompuTaBLE DENDROIDS iS not approximated by Co-c.e. DENDRITES.

@ K: the computable dendroid in the construction.
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CompuTaBLE DENDROIDS iS not approximated by Co-c.e. DENDRITES.

@ K: the computable dendroid in the construction.
@ D: a co-c.e. closed subdendrite of K .
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CompuTaBLE DENDROIDS iS not approximated by Co-c.e. DENDRITES.

@ K: the computable dendroid in the construction.
@ D: a co-c.e. closed subdendrite of K .

@ Uy: the set of all (n, m)-risings whose top is not accessed by
a dendrite D.
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CompuTaBLE DENDROIDS iS not approximated by Co-c.e. DENDRITES. I

K: the computable dendroid in the construction.
D: a co-c.e. closed subdendrite of K.

Upn: the set of all (n, m)-risings whose top is not accessed by
a dendrite D.

U, is cofinite by previous observation.

Takayuki Kihara Counterexamples in Computable Continuum Theory



ComputaBLE DENDROIDS IS not approximated by Co-c.e. DENDRITES. I

K: the computable dendroid in the construction.

D: a co-c.e. closed subdendrite of K .

@ Uy: the set of all (n, m)-risings whose top is not accessed by
a dendrite D.

@ U, is cofinite by previous observation.

{Un} is uniformly c.e., since D is co-c.e. closed.
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ComputaBLE DENDROIDS IS not approximated by Co-c.e. DENDRITES. l

K: the computable dendroid in the construction.
D: a co-c.e. closed subdendrite of K.

Upn: the set of all (n, m)-risings whose top is not accessed by
a dendrite D.

U, is cofinite by previous observation.

{Un} is uniformly c.e., since D is co-c.e. closed.

It suffices to show that D cannot pass 2 distinct combs.

Takayuki Kihara Counterexamples in Computable Continuum Theory



ComputaBLE DENDROIDS IS not approximated by Co-c.e. DENDRITES. l

K: the computable dendroid in the construction.
D: a co-c.e. closed subdendrite of K.

Upn: the set of all (n, m)-risings whose top is not accessed by
a dendrite D.

U, is cofinite by previous observation.
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ComputaBLE DENDROIDS IS not approximated by Co-c.e. DENDRITES. l

K: the computable dendroid in the construction.
D: a co-c.e. closed subdendrite of K.

Upn: the set of all (n, m)-risings whose top is not accessed by
a dendrite D.

U, is cofinite by previous observation.
{Un} is uniformly c.e., since D is co-c.e. closed.
It suffices to show that D cannot pass 2 distinct combs.

If D passes an n-comb, it must hold that p(n) ¢ Uy.
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ComputaBLE DENDROIDS IS not approximated by Co-c.e. DENDRITES. I

K: the computable dendroid in the construction.

D: a co-c.e. closed subdendrite of K .

Upn: the set of all (n, m)-risings whose top is not accessed by
a dendrite D.

U, is cofinite by previous observation.

{Un} is uniformly c.e., since D is co-c.e. closed.

It suffices to show that D cannot pass 2 distinct combs.
If D passes an n-comb, it must hold that p(n) ¢ Uy.

It contradicts our choice of p which satisfies p(n) € Uy, for
almost all n.
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@ Not every nonempty n-connected co-c.e. closed set in R"+2
contains a computable point, for any n € N.




Observation (Restated)
@ Not every nonempty n-connected co-c.e. closed set in R"*+2
contains a computable point, for any n € N.

@ Every nonempty n-connected co-c.e. closed set in R"+1
contains a computable point, for n = 0.
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Observation (Restated)
@ Not every nonempty n-connected co-c.e. closed set in R"*+2
contains a computable point, for any n € N.

@ Every nonempty n-connected co-c.e. closed set in R"+1
contains a computable point, for n = 0.

Question
© (Le Roux-Ziegler) Does every simply connected planar co-c.e.
closed set contain a computable point?
© Does every contractible Euclidean co-c.e. closed set contain a
computable point?
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Observation (Restated)

@ Not every nonempty n-connected co-c.e. closed set in R"*+2
contains a computable point, for any n € N.

@ Every nonempty n-connected co-c.e. closed set in R"+1
contains a computable point, for n = 0.

Question

© (Le Roux-Ziegler) Does every simply connected planar co-c.e.
closed set contain a computable point?

© Does every contractible Euclidean co-c.e. closed set contain a
computable point?

Not every nhonempty contractible planar co-c.e. closed set contains
a computable point.
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A fat approximation of Cantor set:

A construction of Cantor set  Fat approx. of Cantor set

N

@ P: aco-c.e. closed subset of Cantor set.
@ P: afat approximation of P at stage s.
@ lg,rs: the leftmost and rightmost of Ps.

Takayuki Kihara Counterexamples in Computable Continuum Theory



A fat approximation of Cantor set:

A construction of Cantor set  Fat approx. of Cantor set

@ P: aco-c.e. closed subset of Cantor set.

@ P: afat approximation of P at stage s.

@ lg,rs: the leftmost and rightmost of Ps.

® [lIs,ls4+1] N Ps, [rs+1,rs] N Ps contains intervals IL, Ig-
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A fat approximation of Cantor set:

A construction of Cantor set  Fat approx. of Cantor set

@ P: aco-c.e. closed subset of Cantor set.

@ P: afat approximation of P at stage s.

@ lg,rs: the leftmost and rightmost of Ps.

® [lIs,ls4+1] N Ps, [rs+1,rs] N Ps contains intervals IL, Ig-

@ We call these intervals I'S, I; C Ps \ Ps41 free blocks.
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Prepare a stretched co-c.e. closed class D' = P x [0, 1].

-

N

_ Free block
Body
_ Free block

Stretched

@ P c R!: a co-c.e. closed set without computable points.
@ Pg: afat approximation of P (Note that P = N Ps).
° DO‘ = [0, 1] x Po.
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Dy is the following connected closed set.

-~ I\
Free block
Body
Free block

\_ Stretched )

The desired co-c.e. closed set D will be obtained by carving Dp.
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Destination
@ a € R: an incomputable left-c.e. real.

@ There is a computable sequence {Js} of rational open
intervals s.t.
@ mnJs » @ass — oo.
e diam(Js) » 0ass — oo.
e Either Js41 € Js or max Js < min Js41, for each s.
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Our construction starts with Dg.

-
Free block
Body
Free block
\_ Stretched




By carving free blocks, stretch Py toward max Jg.

/
max Jg




By carving free blocks, stretch Py toward min Jo.

/

min Jg




Proceed one step with a fat approximation of P.

-

min Jg max Jg




D; is defined by this,

-

Zoom




D; is defined by this,
4 N
Zoom

- /

@ If J; € Jg, then the construction of D, is similar as that of D;.

@ i.e., on the top block, stretch toward max J; and back to
min J;, by caving free blocks.
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D; is defined by this,
4 N

Zoom

\ J

@ If J; € Jg, then the construction of D, is similar as that of D;.

@ i.e., on the top block, stretch toward max J; and back to
min J;, by caving free blocks.
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D; is defined by this,
4 N

Zoom

\ J

@ If J; € Jg, then the construction of D, is similar as that of D;.

@ i.e., on the top block, stretch toward max J; and back to
min J;, by caving free blocks.

@ In general, similar for Js4+1 C Js.
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D; is defined by this,
4 N

Zoom

\ J

@ If J; € Jg, then the construction of D, is similar as that of D;.

@ i.e., on the top block, stretch toward max J; and back to
min J;, by caving free blocks.

@ In general, similar for Js4+1 C Js.

@ Only the problem is the case of Js 11 & J!
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In the case of Js+1 ¢ Js:
- h

Overview of Ds (above Dp)
Js+1
-
Js
==
Jp

o
Pick the greatest p < s such that Js; C Jp.
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In the case of Js+1 ¢ Js:

/
Overview of Ds (above Dp)
Js+1
-
—
N T

Go back to Dy by caving free blocks into the shape of P.
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Overview of Ds (above Dp)
Js+1

-

N Jo

By caving free blocks on Dy, into the shape of P, stretch toward
max Js+1 and back to min Jg41.

/
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Main Theorem (Restated)

Not every nonempty contractible planar co-c.e. closed set contains
a computable point.

@ D = N Ds is co-c.e. closed.
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Main Theorem (Restated)

Not every nonempty contractible planar co-c.e. closed set contains
a computable point.

@ D = N Ds is co-c.e. closed.
@ D is obtained by bundling [0,1] x P at (@,y) € R? for somey.
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Main Theorem (Restated)

Not every nhonempty contractible planar co-c.e. closed set contains
a computable point.

@ D = N Ds is co-c.e. closed.
@ D is obtained by bundling [0,1] x P at (@,y) € R? for somey.

@ D is path-connected by the property of an approximation {Js}
of the incomputable left-c.e. real a.
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Main Theorem (Restated)

Not every nhonempty contractible planar co-c.e. closed set contains
a computable point.

@ D = N Ds is co-c.e. closed.
@ D is obtained by bundling [0,1] x P at (@,y) € R? for somey.

@ D is path-connected by the property of an approximation {Js}
of the incomputable left-c.e. real a.

@ Therefore, D is homeomorphic to Cantor fan, and contractible.
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Main Theorem (Restated)

Not every nonempty contractible planar co-c.e. closed set contains
a computable point.

@ D = N Ds is co-c.e. closed.
@ D is obtained by bundling [0,1] x P at (@,y) € R? for somey.

@ D is path-connected by the property of an approximation {Js}
of the incomputable left-c.e. real a.

@ Therefore, D is homeomorphic to Cantor fan, and contractible.
@ Stretching [0, 1] x P cannot introduce new computable points.
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Main Theorem (Restated)

Not every nonempty contractible planar co-c.e. closed set contains
a computable point.

D = N Ds is co-c.e. closed.

D is obtained by bundling [0,1] x P at (@,y) € R? for some y.

D is path-connected by the property of an approximation {Js}
of the incomputable left-c.e. real a.

Therefore, D is homeomorphic to Cantor fan, and contractible.

Stretching [0, 1] x P cannot introduce new computable points.

Of course, (a,y) is also incomputable.
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Main Theorem (Restated)

Not every nonempty contractible planar co-c.e. closed set contains
a computable point.

D = N Ds is co-c.e. closed.

D is obtained by bundling [0,1] x P at (@,y) € R? for some y.

D is path-connected by the property of an approximation {Js}
of the incomputable left-c.e. real a.

Therefore, D is homeomorphic to Cantor fan, and contractible.
Stretching [0, 1] x P cannot introduce new computable points.
Of course, (a,y) is also incomputable.

Hence, D has no computable points.
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CompuTaBLE DENDRITES iS not approximated by Co-c.E. TREES.
Co-c.E. DeNDRITES is not approximated by CoMPuTABLE DENDRITES.
ComputaBLE DENDROIDS IS not approximated by Co-c.e. DENDRITES.

Co-c.e. DenbRroips is not approximated by CompuTABLE DENDROIDS.

Not every contractible planar co-c.e. dendroid contains a
computable point.

e This is the solution to Question of Le Roux, and Ziegler.
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@ There is a contractible & locally contractible & computable
closed set, which is [ComputaBLE PATH]-cOnnected, but not
[Co-c.E. ARc]-connected.
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@ There is a contractible & locally contractible & computable
closed set, which is [CompuTaBLE PATH]-cOnnected, but not
[Co-c.E. ARc]-connected.

@ ConTRACTIBLE & LocALLy CONTRACTIBLE & Co-C.E. CLOSED SETS

is not approximated by
CoNNECTED & LocALLy CoNNECTED & CoMPUTABLE CLOSED SETS.
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@ There is a contractible & locally contractible & computable
closed set, which is [CompuTaBLE PATH]-cOnnected, but not
[Co-c.E. ARc]-connected.

@ ConTrAcCTIBLE & LocALly CoNTRACTIBLE & Co-C.E. CLOSED SETS
is not approximated by
CoNNECTED & LocALLy CoNNECTED & CoMPUTABLE CLOSED SETS.

© ContracTiBLE & ComputaBLE CLOSED SETS is not approximated by
ConNECTED & LocALLy CoNNECTED & Co-c.E. CLOSED SETS.
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@ There is a contractible & locally contractible & computable
closed set, which is [CompuTaBLE PATH]-cOnnected, but not
[Co-c.E. ARc]-connected.

@ ConTRACTIBLE & LocALLy CoNTRACTIBLE & Co-C.E. CLOSED SETS

is not approximated by
CoNNECTED & LocALLy CoNNECTED & CoMPUTABLE CLOSED SETS.

© ContracTiBLE & ComputaBLE CLOSED SETS is not approximated by

CoNNECTED & LocALly CoNNECTED & Co-c.E. CLOSED SETS.

© ContracTiBLE & Co-c.E. CLoSED SETs is not approximated by
CoNNECTED & CoMPUTABLE CLOSED SETS.
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@ There is a contractible & locally contractible & computable
closed set, which is [CompuTaBLE PATH]-cOnnected, but not
[Co-c.E. ARc]-connected.

@ ConTRACTIBLE & LocALLy CoNTRACTIBLE & Co-C.E. CLOSED SETS

is not approximated by
CoNNECTED & LocALLy CoNNECTED & CoMPUTABLE CLOSED SETS.

© ContracTiBLE & ComputaBLE CLOSED SETS is not approximated by
CoNNECTED & LocALly CoNNECTED & Co-c.E. CLOSED SETS.

© ContracTiBLE & Co-c.E. CLoSED SETs is not approximated by
CoNNECTED & CoMpuTABLE CLOSED SETS.

Not every contractible planar co-c.e. closed set contains a
computable point.

Takayuki Kihara Counterexamples in Computable Continuum Theory



@ There is a contractible & locally contractible & computable
closed set, which is [CompuTaBLE PATH]-cOnnected, but not
[Co-c.E. ARc]-connected.

@ ConTRACTIBLE & LocALLy CoNTRACTIBLE & Co-C.E. CLOSED SETS

is not approximated by
CoNNECTED & LocALLy CoNNECTED & CoMPUTABLE CLOSED SETS.

© ContracTiBLE & ComputaBLE CLOSED SETS is not approximated by
CoNNECTED & LocALly CoNNECTED & Co-c.E. CLOSED SETS.

© ContracTiBLE & Co-c.E. CLoSED SETs is not approximated by
CoNNECTED & CoMpuTABLE CLOSED SETS.

Not every contractible planar co-c.e. closed set contains a
computable point.

@ This is the solution to Question of Le Roux, and Ziegler.

Takayuki Kihara Counterexamples in Computable Continuum Theory



Thank you!




