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1 Local Computability:
Every nonempty open set in Rn has a computable point.
Not every nonempty co-c.e. closed set in Rn has a computable
point (Kleene, Kreisel, etc. 1940’s–50’s).

If a nonempty co-c.e. closed subset F ⊆ R1 has no
computable points, then F must be disconnected.
Does there exist a nonempty (simply) connected co-c.e. closed
set in Rn without computable points?

.

.

.

2 Global Computability:

If a co-c.e. closed set is homeomorphic to an n-sphere,
then it is computable (Miller 2002).
If a co-c.e. closed set is homeomorphic to an arc, then it is
“almost” computable, i.e., every co-c.e. arc is approximated
from the inside by computable arcs.

.

.

.

3 Let us study the computable content of Continuum Theory!
Here, “Continuum Theory” is a branch of topology studying connected

compact spaces.
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Computability Theory

.

Definition

.

.

.

. ..

.

.

{Be}e∈N: an effective enumeration of all rational open balls.

.

. .
1 x ∈ Rn is computable if {e ∈ N : x ∈ Be} is c.e.

Equivalently, x = (x1, . . . , xn) ∈ Rn is computable iff x i is
computable for each i ≤ n.

.

.

.

2 F ⊆ Rn is co-c.e. if F = Rn \∪e∈W Be for a c.e. set W .

.

.

.

3 A co-c.e. closed set F ⊆ Rn is computable if {e : F ∩ Be , ∅}
is c.e.

.

Remark

.

.

.

. ..

.

.

F is co-c.e. closed ⇐⇒ F is a computable point in the
hyperspaceA−(Rn) of closed subsets of Rn under lower Fell
topology.

F is computable closed ⇐⇒ F is a computable point in the
hyperspaceA(Rn) of closed subsets of Rn under Fell
topology.
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Connected co-c.e. closed Sets

.

Fact

.

.

.

. ..

.

.

.

. . 1 (Kleene, Kreisel, etc.) There exists a nonempty co-c.e. closed
set P ⊆ R1 which has no computable point.

.

.

.

2 Every nonempty connected co-c.e. closed subset P ⊆ R1

contains a computable point.

.

Fact

.

.

.

. ..

.

.

.

.

.

1 There exists a nonempty connected co-c.e. closed subset
P(2) ⊆ R2 which has no computable point.

.

.

.

2 There exists a nonempty simply connected co-c.e. closed
subset P(3) ⊆ R3 which has no computable point.
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X is n-connected ⇐⇒ the first n + 1 homotopy groups
vanish identically.

X is path-connected ⇐⇒ X is 0-connected.

X is simply connected ⇐⇒ X is 1-connected.

X is contractible ⇐⇒ the identity map on X is null-homotopic.

X is contractible =⇒ X is n-connected for any n.

.

Observation

.

.

.

. ..

.

.

Not every nonempty n-connected co-c.e. closed set in Rn+2

contains a computable point, for any n ∈ N.
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Observation (Restated)

.

.

.

. ..

.

.

Not every nonempty n-connected co-c.e. closed set in Rn+2

contains a computable point, for any n ∈ N.

Every nonempty n-connected co-c.e. closed set in Rn+1

contains a computable point, for n = 0.

.

Question

.

.

.

. ..

.

.

.

.

.

1 (Le Roux-Ziegler) Does every simply connected planar co-c.e.
closed set contain a computable point?

.

.

.

2 Does every contractible Euclidean co-c.e. closed set contain a
computable point?
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A ∈ P is ε-approximated from the inside by B ∈ Q

.

.

.

. ..

.

.

� �
A ∈ P

B ∈ Q

dH(A , B) < ε� �

.

Definition

.

.

.

. ..

.

.

.

.

.

1 The Hausdorff distance between nonempty closed subsets
A0, A1 of a metric space (X , d) is defined by:
dH(A0, A1) = max i<2 sup x∈A i

inf y∈B1−i d(x , y).

.

.

.

2 P,Q: classes of continua.
P is approximated (from the inside) by Q if
(∀A ∈ P) inf {dH(B , A ) : A ⊇ B ∈ Q} = 0.
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Proposition

.

.

.

. ..

.

.

Arc-Connected Continua is approximated by Locally Connected
Continua.

.

Proof

.

.

.

. ..

.

.

.

.
.

1 By compactness, X has an ε-net {x i }i<n ⊆ X for any ε > 0.
(i.e.,

∪
i<n B(x i ; ε) covers X )

.

.

.

2 Let γij ⊆ X be an arc with end points x i and x j .

.

.

.

3 Y =
∪

i ,j<n γij ⊆ X , and dH(Y , X) ≤ ε.

.

.

.

4 γ∗
ij

is inductively defined as:

γ∗
ij
⊆ γij ∪

∪
(k ,l)<(i ,j) γkl .

If γij intersects with
∪

(k ,l)<(i ,j) γkl , then γ∗
ij
∩∪(k ,l)<(i ,j) γkl is

an arc.

.

.

.

5 Y∗ =
∪

i ,j<n γ
∗
ij

is locally connected, Y∗ ⊆ Y ⊆ X , and

dH(Y∗, X) ≤ ε.
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If a continua in a class C has no computable point, then
C is not approximated by Computable Closed Sets.

.

Theorem (Miller 2002; Iljazović 2009)

.

.

.

. ..

. .

.

.

.

1 Every Euclidean co-c.e. n-sphere is computable.
Hence, Every co-c.e. Jordan curve is computable.

.

.

.

2 Co-c.e. Arcs is approximated by Computable Arcs.
In this sense, every co-c.e. arc is “almost” computable.
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Continuum Theory

.

Definition

.

.

.

. ..

.

.

Let S be a topological space.

.

.
.

1 S is connected if it is not union of disjoint open sets.

.

.

.

2 S is locally connected if it has a base of connected sets.

.

.

.

3 A continuum is a connected compact metric space.

.

.

.

4 A dendroid is a continuum S such that (∀x , y ∈ S)
S[x , y ] = min {Y ⊆ X : x , y ∈ Y & Y is connected} exists,
and such S[x , y ] is an arc.

.

.

.

5 A dendrite is a locally connected dendroid.

.

.

.

6 A tree is a dendrite with finitely many ramification points.
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Example

.

.

.

. ..

.

.

We plot a tree T ⊆ 2<ω on the Euclidean plane R2.
Then the plotted picture Ψ(T) ⊆ R2 is a dendrite.� �

Protting 2<N on R2.

Ψ(2<N)

� �
Ψ(T) is a tree if T is finite.

However Ψ(T) is not a tree if T is infinite.

Thus, Ψ(2<ω) is a dendrite which is not a tree.
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co-c.e. closed Dendroids

.

Example

.

.

.

. ..

.

.

A Cantor fan and a harmonic comb are dendroids, but not
dendrites.� �

Cantor set

Cantor fan Harmonic comb� �
Here a harmonic comb is defined by:(
[0, 1] × {0}

)
∪
(
({0} ∪ {1/n : n ∈ N}) × [0, 1]

)
.
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Effectiveness for Tree-Like Continua

.

Remark

.

.

.

. ..

.

.

Dendroids is approximated by Trees.

.

Main Theorem

.

.

.

. ..

.

.

.

.

.

1 Computable Dendrites is not approximated by Co-c.e. Trees.

.

.

.

2 Co-c.e. Dendrites is not approximated by Computable Dendrites.

.

.

.

3 Computable Dendroids is not approximated by Co-c.e. Dendrites.

.

.

.

4 Co-c.e. Dendroids is not approximated by Computable Dendroids.

.

.

.

5 Not every contractible planar co-c.e. dendroid contains a
computable point.

This is the solution to Question of Le Roux, and Ziegler.
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Theorem

.

.

.

. ..

.

.

Co-c.e. Dendrites is not approximated by Computable Dendrites.

.

.

. ..

.

.

� �

Basic DendriteApproximation of Basic Dendrite

0-rising

1-rising1-rising

� �
Basic Dendrite has 2n many n-risings of height 2−n .
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. ..

.

.

Fix a non-computable c.e. set A ⊆ N.
The Basic construction around an n-rising is following:� �

n ∈ A

n < A
n-rising

� �
n ∈ A =⇒ an n-rising will be a cut point.
n < A =⇒ an n-rising will be a ramification point.
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.

. ..
.

.

To prove the theorem, we need to prepare some tools.

.

Lemma

.

.

.

. ..

.

.

.

.
.

1 Every subdendrite of Ψ(2<ω) is homeomorphic to Ψ(T)
for a subtree T ⊆ 2<ω.

.

.

.

2 T ⊆ 2<ω is co-c.e. closed (c.e., computable, resp.) tree
iff Ψ(T) ⊆ R2 is co-c.e. closed (c.e., computable, resp.)
dendrite.

.

.

.

3 Every computable subdendrite D ⊆ Ψ(2<ω)
there exists a computable subtree T ⊆ 2<ω such that
D ⊆ Ψ(T) holds, and D and Ψ(T) has same paths.
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.

.
.

1 Every subdendrite of Ψ(2<ω) is homeomorphic to Ψ(T)
for a subtree T ⊆ 2<ω.

.

.

.

2 T ⊆ 2<ω is co-c.e. closed (c.e., computable, resp.) tree
iff Ψ(T) ⊆ R2 is co-c.e. closed (c.e., computable, resp.)
dendrite.

.

.

.

3 Every computable subdendrite D ⊆ Ψ(2<ω)
there exists a computable subtree T ⊆ 2<ω such that
D ⊆ Ψ(T) holds, and D and Ψ(T) has same paths.
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Definition (Cenzer-K.-Weber-Wu 2009)

.

.

.

. ..

.

.

A co-c.e. closed subset P of Cantor space is tree-immune if a
co-c.e. tree TP ⊆ 2<ω has no infinite computable subtree.
Here TP = {σ ∈ 2<ω : (∃f ⊃ σ) f ∈ P}

.

Example

.

.

.

. ..

. .

The set of all consistent complete extensions of Peano Arithmetic
is tree-immune.

.

Lemma

.

.

.

. ..

.

.

Let P be a tree-immune co-c.e. closed subset of Cantor space,
and D ⊆ Ψ(TP) be any computable subdendrite.
Then D contains no path.
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Now we start True Construction.� �

Approximating basic n-rising Basic n-rising

Tree-immune Π0
1

set

� �
An n-rising has a copy of a tree-immune co-c.e. closed set of scale
2−n .
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.

Fix a non-computable Σ0
1

set A ⊆ N.
The True Construction around an n-rising is following:� �

Tree-immune Π0
1

set

n ∈ A

n < A

� �
n ∈ A =⇒ any top of an n-rising will be a cut point.
n < A =⇒ any top of an n-rising will be

inaccessible by computable dendrites.
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.

Fix a non-computable Σ0
1

set A ⊆ N.
The True Construction around an n-rising is following:� �

Tree-immune Π0
1

set

n ∈ A

n < A

� �
n ∈ A =⇒ If a dendrite D passes this n-rising,

then D contains a top of this n-rising.
n < A =⇒ Any computable dendrite contains no top of n-rising.
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Theorem (Restated)

.

.

.

. ..

.

.

Co-c.e. Dendrites is not approximated by Computable Dendrites.

.

.

. ..

.

.

The construction of the co-c.e. closed dendrite H is
completed.

Let D ⊆ H be any computable dendrite.

It suffices to show that D cannot pass 2 distinct risings.

If D passes m , n-risings, then D passes a k -rising for all
k ≥ min {m , n}.
Since D is co-c.e. closed, we can enumerate all k such that
D contains no top of any k -rising.

This enumeration yields the complement of a c.e. set A .

This contradicts non-computability of A .
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Theorem

.

.

.

. ..

.

.

Computable Dendroids is not approximated by Co-c.e. Dendrites.

.

.

. ..

.

.

We will use harmonic combs in place of the Basic Dendrite.

Before starting the construction, we take account of the fact
that topologist’s sine curve is not path-connected.

It means that we cannot cut-pointize infinite many risings,
on one harmonic comb.

Our idea is using a computable approximation of a certain
limit computable function.

One harmonic comb replaces one rising.

The Basic Dendroid will be constructed by connecting
infinitely many harmonic combs.
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.

� �

Basic Dendroid

0-harmonic comb

1-h.c. 1-h.c.

� �
Basic Dendroid has 2n many n-harmonic combs of height 2−n .
Each n-harmonic comb has infinitely many risings.
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.

.

� �

n-harmonic comb

(n , 0)-rising

(n , 1)-rising
(n , 2)-rising

(n , ω)-rising

� �
Basic Dendroid has 2n many n-harmonic combs of height 2−n .
Each n-harmonic comb has (ω+ 1)-many risings;
They are (n , α)-risings for α < ω+ 1.
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.

To prove the theorem, we need the following lemma.

.

Lemma

.

.

.

. ..

.

.

There exists a limit computable function p such that, for every
uniformly c.e. sequence {Un} of cofinite c.e. sets, it holds that
p(n) ∈ Un for almost all n.

.

Proof

.

.

.

. ..

.

.

{Ve}: an effective enumeration of uniformly c.e. decreasing
sequence of c.e. sets.

σ(e, x) = {i ≤ e : x ∈ (Vi)e}: The e-state of x .

p(e) chooses x to maximize the e-state.
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.
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.

.

There exists a limit computable function p such that, for every
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Proof
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.
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. ..
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.
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.

p = lim s ps : a limit computable function in the previous lemma.
The construction on an n-harmonic comb is following:� �

ps(n) = m

ps(n) , m
(n ,m)-rising

� �
(∃s) ps(n) = m =⇒ an (n ,m)-rising will be a cut point.
(∀s) ps(n) , m =⇒ an (n ,m)-rising will be a ramification point.
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.

p = lim s ps : a limit computable function in the previous lemma.
The construction on an n-harmonic comb is following:� �

ps(n) = m

ps(n) , m
(n ,m)-rising

� �
Since p(n) = lim s ps(n) changes his mind at most finitely often,
he cut-pointizes only finitely many risings on an n-harmonic comb.
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.

p = lim s ps : a limit computable function in the previous lemma.
The construction on an n-harmonic comb is following:� �

ps(n) = m

ps(n) , m
(n ,m)-rising

� �
Thus each n-harmonic comb, actually, will be homeomorphic to a
harmonic comb. The construction yields computable dendroid K .
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.

Recall that a dendrite is a locally connected dendroid.
On a harmonic comb, any top of almost all rising must be
inaccessible by a dendrite.� �

⊇

Locally connected Dn-harmonic comb

D contains tops of only three risings;
(n , 1)-rising; (n , 4)-rising; (n , ω)-rising� �
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.

� �
ps(n) = m

ps(n) , m
(n ,m)-rising

� �
(∃s) ps(n) = m =⇒ any top of an (n ,m)-rising will be

a cut point.
Meanwhile, any top of almost all risings will be inaccessible by a
given dendrite.
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.

� �
ps(n) = m

ps(n) , m
(n ,m)-rising

� �
(∃s) ps(n) = m =⇒ If a dendrite D passes an (n ,m)-rising,

then D contains a top of an (n ,m)-rising.
Meanwhile, any dendrite contains no top of almost all risings.
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.

� �
ps(n) = m

ps(n) , m
(n ,m)-rising

� �
UD

n : the set of all (n ,m)-risings whose top is not accessed by a
dendrite D. Then UD

n is cofinite for all n.
If D passes n-harmonic comb then p(n) < UD

n .

Takayuki Kihara Counterexamples in Computable Continuum Theory



.

Theorem (Restated)

.

.

.

. ..

.

.

Computable Dendroids is not approximated by Co-c.e. Dendrites.

.

.

. ..

.

.

K : the computable dendroid in the construction.

D : a co-c.e. closed subdendrite of K .

Un : the set of all (n ,m)-risings whose top is not accessed by
a dendrite D .

Un is cofinite by previous observation.

{Un} is uniformly c.e., since D is co-c.e. closed.

It suffices to show that D cannot pass 2 distinct combs.

If D passes an n-comb, it must hold that p(n) < Un .

It contradicts our choice of p which satisfies p(n) ∈ Un for
almost all n.
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Observation (Restated)

.

.

.

. ..

.

.

Not every nonempty n-connected co-c.e. closed set in Rn+2

contains a computable point, for any n ∈ N.

Every nonempty n-connected co-c.e. closed set in Rn+1

contains a computable point, for n = 0.

.

Question

.

.

.

. ..

. .

.

.

.

1 (Le Roux-Ziegler) Does every simply connected planar co-c.e.
closed set contain a computable point?

.

.

.

2 Does every contractible Euclidean co-c.e. closed set contain a
computable point?

.

Main Theorem

.

.

.

. ..

.

.

Not every nonempty contractible planar co-c.e. closed set contains
a computable point.
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.

A fat approximation of Cantor set:� �
A construction of Cantor set Fat approx. of Cantor set

� �
P: a co-c.e. closed subset of Cantor set.

Ps : a fat approximation of P at stage s .

ls , rs : the leftmost and rightmost of Ps .

[ls , ls+1] ∩ Ps , [rs+1, rs ] ∩ Ps contains intervals I l
s , I

r
s .

We call these intervals I l
s , I

r
s ⊆ Ps \ Ps+1 free blocks.
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.

Prepare a stretched co-c.e. closed class D−
0

= P × [0, 1].� �

Body

Free block

Free block

Stretched� �
P ⊆ R1: a co-c.e. closed set without computable points.

Ps : a fat approximation of P (Note that P =
∩

s Ps ).

D−
0

= [0, 1] × P0.
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.

.

D0 is the following connected closed set.� �

Body

Free block

Free block

Stretched� �
The desired co-c.e. closed set D will be obtained by carving D0.
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Destination

.

.

.

. ..

.

.

α ∈ R: an incomputable left-c.e. real.
There is a computable sequence {Js } of rational open
intervals s.t.

min Js → α as s → ∞.
diam(Js) → 0 as s → ∞.
Either Js+1 ⊂ Js or max Js < min Js+1, for each s .
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.

Our construction starts with D0.� �

Body

Free block

Free block

Stretched� �
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.

.

By carving free blocks, stretch P0 toward max J0.� �
max J0

� �
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.

By carving free blocks, stretch P0 toward min J0.� �
min J0

� �
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.

.

Proceed one step with a fat approximation of P.� �
min J0 max J0

� �
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.

D1 is defined by this,� �
Zoom

� �

If J1 ⊂ J0, then the construction of D2 is similar as that of D1.

i.e., on the top block, stretch toward max J1 and back to
min J1, by caving free blocks.

In general, similar for Js+1 ⊂ Js .

Only the problem is the case of Js+1 1 Js !
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.

In the case of Js+1 1 Js :� �

Jp

Js

Js+1
Overview of Ds (above Dp )

� �
Pick the greatest p ≤ s such that Js+1 ⊂ Jp .

Takayuki Kihara Counterexamples in Computable Continuum Theory



.

.

. ..

.

.

In the case of Js+1 1 Js :� �

Jp

Js+1
Overview of Ds (above Dp )

� �
Go back to Dp by caving free blocks into the shape of P.
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.

� �

Jp

Js+1
Overview of Ds (above Dp )

� �
By caving free blocks on Dp into the shape of P, stretch toward
max Js+1 and back to min Js+1.
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Main Theorem (Restated)

.

.

.

. ..

.

.

Not every nonempty contractible planar co-c.e. closed set contains
a computable point.

.

.

. ..

.

.

D =
∩

s Ds is co-c.e. closed.

D is obtained by bundling [0, 1]× P at (α, y) ∈ R2 for some y .

D is path-connected by the property of an approximation {Js }
of the incomputable left-c.e. real α.

Therefore, D is homeomorphic to Cantor fan, and contractible.

Stretching [0, 1] × P cannot introduce new computable points.

Of course, (α, y) is also incomputable.

Hence, D has no computable points.
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Main Theorem (Restated)

.

.

.

. ..

.

.

.

.
.

1 Computable Dendrites is not approximated by Co-c.e. Trees.

.

.
.

2 Co-c.e. Dendrites is not approximated by Computable Dendrites.

.

.

.

3 Computable Dendroids is not approximated by Co-c.e. Dendrites.

.

.

.

4 Co-c.e. Dendroids is not approximated by Computable Dendroids.

.

.

.

5 Not every contractible planar co-c.e. dendroid contains a
computable point.

This is the solution to Question of Le Roux, and Ziegler.
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Corollary

.

.

.

. ..

.

.

.

.
.

1 There is a contractible & locally contractible & computable
closed set, which is [Computable Path]-connected, but not
[Co-c.e. Arc]-connected.

.

.
.

2 Contractible & Locally Contractible & Co-c.e. Closed Sets
is not approximated by

Connected & Locally Connected & Computable Closed Sets.

.

.

.

3 Contractible & Computable Closed Sets is not approximated by
Connected & Locally Connected & Co-c.e. Closed Sets.

.

.

.

4 Contractible & Co-c.e. Closed Sets is not approximated by
Connected & Computable Closed Sets.

.

.

.

5 Not every contractible planar co-c.e. closed set contains a
computable point.

This is the solution to Question of Le Roux, and Ziegler.
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