Counterexamples in Computable Continuum Theory

Takayuki Kihara

Mathematical Institute, Tohoku University

Dagstuhl Seminar, October 11, 2011
Local Computability:

- Every nonempty open set in \mathbb{R}^n has a computable point.
- Not every nonempty co-c.e. closed set in \mathbb{R}^n has a computable point (Kleene, Kreisel, etc. 1940’s–50’s).

Global Computability:

- If a co-c.e. closed set is homeomorphic to an n-sphere, then it is computable (Miller 2002).
- If a co-c.e. closed set is homeomorphic to an arc, then it is "almost" computable, i.e., every co-c.e. arc is approximated from the inside by computable arcs.

Let us study the computable content of Continuum Theory! Here, "Continuum Theory" is a branch of topology studying connected compact spaces.
1 Local Computability:

- Every nonempty open set in \mathbb{R}^n has a computable point.
- Not every nonempty co-c.e. closed set in \mathbb{R}^n has a computable point (Kleene, Kreisel, etc. 1940’s–50’s).
- If a nonempty co-c.e. closed subset $F \subseteq \mathbb{R}^1$ has no computable points, then F must be disconnected.
- Does there exist a nonempty (simply) connected co-c.e. closed set in \mathbb{R}^n without computable points?

2 Global Computability:

- If a co-c.e. closed set is homeomorphic to an n-sphere, then it is computable (Miller 2002).
- If a co-c.e. closed set is homeomorphic to an arc, then it is "almost" computable, i.e., every co-c.e. arc is approximated from the inside by computable arcs.

Let us study the computable content of Continuum Theory!
Introduction

1 Local Computability:
- Every nonempty open set in \mathbb{R}^n has a computable point.
- Not every nonempty co-c.e. closed set in \mathbb{R}^n has a computable point (Kleene, Kreisel, etc. 1940’s–50’s).
- If a nonempty co-c.e. closed subset $F \subseteq \mathbb{R}^1$ has no computable points, then F must be disconnected.
- Does there exist a nonempty (simply) connected co-c.e. closed set in \mathbb{R}^n without computable points?

2 Global Computability:
- If a co-c.e. closed set is homeomorphic to an n-sphere, then it is computable (Miller 2002).
- If a co-c.e. closed set is homeomorphic to an arc, then it is “almost” computable, i.e., every co-c.e. arc is approximated from the inside by computable arcs.
Introduction

1 Local Computability:
 - Every nonempty open set in \mathbb{R}^n has a computable point.
 - Not every nonempty co-c.e. closed set in \mathbb{R}^n has a computable point (Kleene, Kreisel, etc. 1940’s–50’s).
 - If a nonempty co-c.e. closed subset $F \subseteq \mathbb{R}^1$ has no computable points, then F must be disconnected.
 - Does there exist a nonempty (simply) connected co-c.e. closed set in \mathbb{R}^n without computable points?

2 Global Computability:
 - If a co-c.e. closed set is homeomorphic to an n-sphere, then it is computable (Miller 2002).
 - If a co-c.e. closed set is homeomorphic to an arc, then it is “almost” computable, i.e., every co-c.e. arc is approximated from the inside by computable arcs.

3 Let us study the computable content of Continuum Theory!
 Here, “Continuum Theory” is a branch of topology studying connected compact spaces.
Computability Theory

Definition

\{B_e\}_{e \in \mathbb{N}}: \text{an effective enumeration of all rational open balls.}

1. \(x \in \mathbb{R}^n\) is \textit{computable} if \(\{e \in \mathbb{N} : x \in B_e\}\) is c.e.
 Equivalently, \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n\) is computable iff \(x_i\) is computable for each \(i \leq n\).
Definition

\(\{B_e\}_{e \in \mathbb{N}} \): an effective enumeration of all rational open balls.

1. \(x \in \mathbb{R}^n \) is computable if \(\{e \in \mathbb{N} : x \in B_e\} \) is c.e. Equivalently, \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \) is computable iff \(x_i \) is computable for each \(i \leq n \).

2. \(F \subseteq \mathbb{R}^n \) is co-c.e. if \(F = \mathbb{R}^n \setminus \bigcup_{e \in W} B_e \) for a c.e. set \(W \).
Definition

\[\{B_e\}_{e \in \mathbb{N}}: \text{an effective enumeration of all rational open balls.} \]

1. \(x \in \mathbb{R}^n \) is \emph{computable} if \(\{e \in \mathbb{N} : x \in B_e\} \) is c.e.
 Equivalently, \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \) is computable iff \(x_i \) is computable for each \(i \leq n \).

2. \(F \subseteq \mathbb{R}^n \) is \emph{co-c.e.} if \(F = \mathbb{R}^n \setminus \bigcup_{e \in W} B_e \) for a c.e. set \(W \).

3. A co-c.e. closed set \(F \subseteq \mathbb{R}^n \) is \emph{computable} if \(\{e : F \cap B_e \neq \emptyset\} \) is c.e.
Definition

\(\{B_e\}_{e \in \mathbb{N}} \): an effective enumeration of all rational open balls.

1. **\(x \in \mathbb{R}^n \) is computable** if \(\{e \in \mathbb{N} : x \in B_e\} \) is c.e.

 Equivalently, \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \) is computable iff \(x_i \) is computable for each \(i \leq n \).

2. **\(F \subseteq \mathbb{R}^n \) is co-c.e.** if \(F = \mathbb{R}^n \setminus \bigcup_{e \in W} B_e \) for a c.e. set \(W \).

3. A co-c.e. closed set \(F \subseteq \mathbb{R}^n \) is **computable** if \(\{e : F \cap B_e \neq \emptyset\} \) is c.e.

Remark

- **\(F \) is co-c.e. closed \(\iff \) \(F \) is a computable point in the hyperspace \(\mathcal{A}_-(\mathbb{R}^n) \) of closed subsets of \(\mathbb{R}^n \) under lower Fell topology.**

- **\(F \) is computable closed \(\iff \) \(F \) is a computable point in the hyperspace \(\mathcal{A}(\mathbb{R}^n) \) of closed subsets of \(\mathbb{R}^n \) under Fell topology.**
Fact

1. (Kleene, Kreisel, etc.) There exists a nonempty co-c.e. closed set $P \subseteq \mathbb{R}^1$ which has no computable point.

2. Every nonempty connected co-c.e. closed subset $P \subseteq \mathbb{R}^1$ contains a computable point.
Connected co-c.e. closed Sets

Fact
1. (Kleene, Kreisel, etc.) There exists a nonempty co-c.e. closed set $P \subseteq \mathbb{R}^1$ which has no computable point.
2. Every nonempty connected co-c.e. closed subset $P \subseteq \mathbb{R}^1$ contains a computable point.

Fact
1. There exists a nonempty connected co-c.e. closed subset $P^{(2)} \subseteq \mathbb{R}^2$ which has no computable point.
2. There exists a nonempty simply connected co-c.e. closed subset $P^{(3)} \subseteq \mathbb{R}^3$ which has no computable point.
- \(X \) is \(n \)-connected \iff \(\) the first \(n + 1 \) homotopy groups vanish identically.

- \(X \) is path-connected \iff \(X \) is 0-connected.

- \(X \) is simply connected \iff \(X \) is 1-connected.

- \(X \) is contractible \iff \(\) the identity map on \(X \) is null-homotopic.

- \(X \) is contractible \implies \(X \) is \(n \)-connected for any \(n \).

Observation

Not every nonempty \(n \)-connected co-c.e. closed set in \(\mathbb{R}^{n+2} \) contains a computable point, for any \(n \in \mathbb{N} \).
Observation (Restated)

- **Not** every nonempty *n*-connected co-c.e. closed set in \mathbb{R}^{n+2} contains a computable point, for any $n \in \mathbb{N}$.
Observation (Restated)

- **Not** every nonempty *n*-connected co-c.e. closed set in \(\mathbb{R}^{n+2} \) contains a computable point, for any \(n \in \mathbb{N} \).
- Every nonempty *n*-connected co-c.e. closed set in \(\mathbb{R}^{n+1} \) contains a computable point, for \(n = 0 \).
Observation (Restated)

- Not every nonempty n-connected co-c.e. closed set in \mathbb{R}^{n+2} contains a computable point, for any $n \in \mathbb{N}$.
- Every nonempty n-connected co-c.e. closed set in \mathbb{R}^{n+1} contains a computable point, for $n = 0$.

Question

1. (Le Roux-Ziegler) Does every simply connected planar co-c.e. closed set contain a computable point?
2. Does every contractible Euclidean co-c.e. closed set contain a computable point?
\(A \in P \) is \(\varepsilon \)-approximated from the inside by \(B \in Q \)

\[d_H(A, B) < \varepsilon \]

Definition

1. The *Hausdorff distance* between nonempty closed subsets \(A_0, A_1 \) of a metric space \((X, d) \) is defined by:
 \[d_H(A_0, A_1) = \max_{i<2} \sup_{x \in A_i} \inf_{y \in B_{1-i}} d(x, y). \]

2. \(P, Q \): classes of continua.
 \(P \) is *approximated (from the inside)* by \(Q \) if
 \[(\forall A \in P) \ \inf \{ d_H(B, A) : A \supseteq B \in Q \} = 0. \]
Proposition

Arc-Connected Continua is approximated by Locally Connected Continua.

Proof

1. By compactness, X has an ε-net $\{x_i\}_{i<n} \subseteq X$ for any $\varepsilon > 0$. (i.e., $\bigcup_{i<n} B(x_i; \varepsilon)$ covers X)
2. Let $\gamma_{ij} \subseteq X$ be an arc with end points x_i and x_j.
3. $Y = \bigcup_{i,j<n} \gamma_{ij} \subseteq X$, and $d_H(Y, X) \leq \varepsilon$.
4. γ_{ij}^* is inductively defined as:
 - $\gamma_{ij}^* \subseteq \gamma_{ij} \cup \bigcup_{(k,l)<(i,j)} \gamma_{kl}$.
 - If γ_{ij} intersects with $\bigcup_{(k,l)<(i,j)} \gamma_{kl}$, then $\gamma_{ij}^* \cap \bigcup_{(k,l)<(i,j)} \gamma_{kl}$ is an arc.
5. $Y^* = \bigcup_{i,j<n} \gamma_{ij}^*$ is locally connected, $Y^* \subseteq Y \subseteq X$, and $d_H(Y^*, X) \leq \varepsilon$.
If a continua in a class \(C \) has no computable point, then \(C \) is not approximated by Computable Closed Sets.

Theorem (Miller 2002; Iljazović 2009)

1. Every Euclidean co-c.e. \(n \)-sphere is computable. Hence, Every co-c.e. Jordan curve is computable.
2. Co-c.e. Arcs is approximated by Computable Arcs. In this sense, every co-c.e. arc is “almost” computable.
Let S be a topological space.

1. S is **connected** if it is not union of disjoint open sets.
2. S is **locally connected** if it has a base of connected sets.
3. A **continuum** is a connected compact metric space.
4. A **dendroid** is a continuum S such that $(\forall x, y \in S)$

 $$S[x, y] = \min\{Y \subseteq X : x, y \in Y & Y \text{ is connected}\}$$

 exists, and such $S[x, y]$ is an arc.
5. A **dendrite** is a locally connected dendroid.
6. A **tree** is a dendrite with finitely many ramification points.
Example

We plot a tree \(T \subseteq 2^{<\omega} \) on the Euclidean plane \(\mathbb{R}^2 \). Then the plotted picture \(\Psi(T) \subseteq \mathbb{R}^2 \) is a dendrite.

\[\Psi(2^{<\mathbb{N}}) \]

Protting \(2^{<\mathbb{N}} \) on \(\mathbb{R}^2 \).

- \(\Psi(T) \) is a tree if \(T \) is finite.
- However \(\Psi(T) \) is not a tree if \(T \) is infinite.
- Thus, \(\Psi(2^{<\omega}) \) is a dendrite which is not a tree.
A Cantor fan and a harmonic comb are dendroids, but not dendrites.

Here a harmonic comb is defined by:

$$
\left([0, 1] \times \{0\} \right) \cup \left(\left(\{0\} \cup \{1/n : n \in \mathbb{N}\} \right) \times [0, 1] \right).
$$
Remark

Dendroids is approximated by Trees.
Remark

Dendroids is approximated by **Trees**.

Main Theorem

Computable Dendrites is **not** approximated by **Co-c.e. Trees**.
Remark

Dendroids is approximated by **Trees**.

Main Theorem

1. **Computable Dendrites** is not approximated by **Co-c.e. Trees**.
2. **Co-c.e. Dendrites** is not approximated by **Computable Dendrites**.
Remark

Dendroids is approximated by Trees.

Main Theorem

1. Computable Dendrites is not approximated by Co-c.e. Trees.
2. Co-c.e. Dendrites is not approximated by Computable Dendrites.
3. Computable Dendroids is not approximated by Co-c.e. Dendrites.

Not every contractible planar co-c.e. dendroid contains a computable point. This is the solution to Question of Le Roux, and Ziegler.
Remark

Dendroids is approximated by Trees.

Main Theorem

1. Computable Dendrites is not approximated by Co-c.e. Trees.
2. Co-c.e. Dendrites is not approximated by Computable Dendrites.
3. Computable Dendroids is not approximated by Co-c.e. Dendrites.
4. Co-c.e. Dendroids is not approximated by Computable Dendroids.

Not every contractible planar co-c.e. dendroid contains a computable point. This is the solution to Question of Le Roux, and Ziegler.
Effectiveness for Tree-Like Continua

Remark
Dendroids is approximated by Trees.

Main Theorem
1. Computable Dendrites is not approximated by Co-c.e. Trees.
2. Co-c.e. Dendrites is not approximated by Computable Dendrites.
3. Computable Dendroids is not approximated by Co-c.e. Dendrites.
4. Co-c.e. Dendroids is not approximated by Computable Dendroids.
5. Not every contractible planar co-c.e. dendroid contains a computable point.
Effectiveness for Tree-Like Continua

Remark

Dendroids is approximated by Trees.

Main Theorem

1. **Computable Dendrites** is **not** approximated by Co-c.e. Trees.
2. Co-c.e. Dendrites is **not** approximated by **Computable Dendrites**.
3. **Computable Dendroids** is **not** approximated by Co-c.e. Dendrites.
4. Co-c.e. Dendroids is **not** approximated by **Computable Dendroids**.
5. **Not** every contractible planar co-c.e. dendroid contains a computable point.
 - This is the solution to *Question of Le Roux, and Ziegler*.
Theorem

Co-c.e. Dendrites is not approximated by Computable Dendrites.

Basic Dendrite has \(2^n\) many *n-risings* of height \(2^{-n}\).
Fix a non-computable c.e. set $A \subseteq \mathbb{N}$.

The Basic construction around an n-rising is following:

- If $n \in A$, then an n-rising will be a cut point.
- If $n \notin A$, then an n-rising will be a ramification point.
To prove the theorem, we need to prepare some tools.
To prove the theorem, we need to prepare some tools.

Lemma

1. Every subdendrite of $\Psi(2^{<\omega})$ is homeomorphic to $\Psi(T)$ for a subtree $T \subseteq 2^{<\omega}$.

2. $T \subseteq 2^{<\omega}$ is co-c.e. closed (c.e., computable, resp.) tree iff $\Psi(T) \subseteq \mathbb{R}^2$ is co-c.e. closed (c.e., computable, resp.) dendrite.

3. Every computable subdendrite $D \subseteq \Psi(2^{<\omega})$ there exists a computable subtree $T \subseteq 2^{<\omega}$ such that $D \subseteq \Psi(T)$ holds, and D and $\Psi(T)$ has same paths.
Definition (Cenzer-K.-Weber-Wu 2009)

A co-c.e. closed subset P of Cantor space is **tree-immune** if a co-c.e. tree $T_P \subseteq 2^{<\omega}$ has no infinite computable subtree. Here $T_P = \{\sigma \in 2^{<\omega} : (\exists f \supset \sigma) f \in P\}$.

Example

The set of all consistent complete extensions of Peano Arithmetic is tree-immune.

Lemma

Let P be a tree-immune co-c.e. closed subset of Cantor space, and $D \subseteq \Psi(T_P)$ be any computable subdendrite. Then D contains no path.
Now we start *True Construction*.

An n-rising has a copy of a tree-immune co-c.e. closed set of scale 2^{-n}.
Fix a non-computable Σ_1^0 set $A \subseteq \mathbb{N}$.

The True Construction around an n-rising is following:

- $n \in A \implies$ any top of an n-rising will be a cut point.
- $n \notin A \implies$ any top of an n-rising will be inaccessible by computable dendrites.

Takayuki Kihara
Counterexamples in Computable Continuum Theory
Fix a non-computable Σ_1^0 set $A \subseteq \mathbb{N}$.

The True Construction around an n-rising is following:

$n \in A \implies$ If a dendrite D passes this n-rising, then D contains a top of this n-rising.

$n \notin A \implies$ Any computable dendrite contains no top of n-rising.
The construction of the co-c.e. closed dendrite H is completed.
Theorem (Restated)

Co-c.e. Dendrites is not approximated by Computable Dendrites.

- The construction of the co-c.e. closed dendrite H is completed.
- Let $D \subseteq H$ be any computable dendrite.
Theorem (Restated)

Co-c.e. Dendrites is not approximated by Computable Dendrites.

- The construction of the co-c.e. closed dendrite H is completed.
- Let $D \subseteq H$ be any computable dendrite.
- It suffices to show that D cannot pass 2 distinct risings.
The construction of the co-c.e. closed dendrite \(H \) is completed.

Let \(D \subseteq H \) be any computable dendrite.

It suffices to show that \(D \) cannot pass 2 distinct risings.

If \(D \) passes \(m, n \)-risings, then \(D \) passes a \(k \)-rising for all \(k \geq \min\{m, n\} \).
Theorem (Restated)

Co-c.e. Dendrites is not approximated by Computable Dendrites.

- The construction of the co-c.e. closed dendrite H is completed.
- Let $D \subseteq H$ be any computable dendrite.
- It suffices to show that D cannot pass 2 distinct risings.
- If D passes m, n-risings, then D passes a k-rising for all $k \geq \min\{m, n\}$.
- Since D is co-c.e. closed, we can enumerate all k such that D contains no top of any k-rising.
Theorem (Restated)

Co-c.e. Dendrites is not approximated by Computable Dendrites.

- The construction of the co-c.e. closed dendrite H is completed.
- Let $D \subseteq H$ be any computable dendrite.
- It suffices to show that D cannot pass 2 distinct risings.
- If D passes m, n-risings, then D passes a k-rising for all $k \geq \min\{m, n\}$.
- Since D is co-c.e. closed, we can enumerate all k such that D contains no top of any k-rising.
- This enumeration yields the complement of a c.e. set A.

Takayuki Kihara
Counterexamples in Computable Continuum Theory
Theorem (Restated)

Co-c.e. Dendrites is not approximated by Computable Dendrites.

- The construction of the co-c.e. closed dendrite H is completed.
- Let $D \subseteq H$ be any computable dendrite.
- It suffices to show that D cannot pass 2 distinct risings.
- If D passes m, n-risings, then D passes a k-rising for all $k \geq \min\{m, n\}$.
- Since D is co-c.e. closed, we can enumerate all k such that D contains no top of any k-rising.
- This enumeration yields the complement of a c.e. set A.
- This contradicts non-computability of A.
Theorem

Computable Dendroids is not approximated by Co-c.e. Dendrites.
Theorem

Computable Dendroids is not approximated by Co-c.e. Dendrites.

- We will use *harmonic combs* in place of *the Basic Dendrite.*
Theorem

Computable Dendroids is not approximated by Co-c.e. Dendrites.

- We will use harmonic combs in place of the Basic Dendrite.
- Before starting the construction, we take account of the fact that topologist’s sine curve is not path-connected.
Theorem

Computable Dendroids is not approximated by Co-c.e. Dendrites.

- We will use harmonic combs in place of the Basic Dendrite.
- Before starting the construction, we take account of the fact that topologist’s sine curve is not path-connected.
- It means that we cannot cut-pointize infinite many risings, on one harmonic comb.
Theorem

Computable Dendroids is not approximated by Co-c.e. Dendrites.

- We will use *harmonic combs* in place of the Basic Dendrite.
- Before starting the construction, we take account of the fact that *topologist's sine curve* is not path-connected.
- It means that we cannot *cut-pointize* infinite many risings, on one harmonic comb.
- Our idea is using a computable approximation of a certain *limit computable function*.
Theorem

Computable Dendroids is not approximated by Co-c.e. Dendrites.

- We will use *harmonic combs* in place of *the Basic Dendrite*.
- Before starting the construction, we take account of the fact that *topologist’s sine curve* is not path-connected.
- It means that we cannot *cut-pointize* infinite many risings, on one harmonic comb.
- Our idea is using a computable approximation of a certain *limit computable function*.
- One harmonic comb replaces one rising.
Theorem

Computable Dendroids is not approximated by Co-c.e. Dendrites.

- We will use *harmonic combs* in place of *the Basic Dendrite*.
- Before starting the construction, we take account of the fact that *topologist’s sine curve* is not path-connected.
- It means that we cannot *cut-pointize* infinite many risings, on one harmonic comb.
- Our idea is using a computable approximation of a certain *limit computable function*.
- One harmonic comb replaces one rising.
- *The Basic Dendroid* will be constructed by connecting infinitely many harmonic combs.
Basic Dendroid has 2^n many n-harmonic combs of height 2^{-n}. Each n-harmonic comb has infinitely many risings.
Basic Dendroid has 2^n many \textit{n-harmonic combs} of height 2^{-n}. Each \textit{n-harmonic comb} has $(\omega + 1)$-many risings; They are (n, α)-risings for $\alpha < \omega + 1$.
To prove the theorem, we need the following lemma.

There exists a limit computable function p such that, for every uniformly c.e. sequence $\{U_n\}$ of cofinite c.e. sets, it holds that $p(n) \in U_n$ for almost all n.

Proof. $\{V_e\}$: an effective enumeration of uniformly c.e. decreasing sequence of c.e. sets. $(e; x) = \{i \leq e: x \in (V_i)_e\}$: The e-state of x. $p(e)$ chooses x to maximize the e-state.
To prove the theorem, we need the following lemma.

Lemma

There exists a limit computable function p such that, for every uniformly c.e. sequence $\{U_n\}$ of cofinite c.e. sets, it holds that $p(n) \in U_n$ for almost all n.
To prove the theorem, we need the following lemma.

Lemma

There exists a limit computable function \(p \) such that, for every uniformly c.e. sequence \(\{U_n\} \) of cofinite c.e. sets, it holds that \(p(n) \in U_n \) for almost all \(n \).

Proof

- \(\{V_e\} \): an effective enumeration of uniformly c.e. decreasing sequence of c.e. sets.
- \(\sigma(e, x) = \{i \leq e : x \in (V_i)_e\} \): *The e-state of x*.
- \(p(e) \) chooses \(x \) to maximize the e-state.
\(p = \lim_s \rho_s \): a limit computable function in the previous lemma.

The construction on an \(n \)-harmonic comb is following:

\[
\rho_s(n) = m
\]

\((n, m)\)-rising

\[
\rho_s(n) \neq m
\]

\((\exists s) \rho_s(n) = m \Rightarrow \text{an } (n, m)\text{-rising will be a cut point.} \]

\((\forall s) \rho_s(n) \neq m \Rightarrow \text{an } (n, m)\text{-rising will be a ramification point.} \)
\(p = \lim_s p_s \): a limit computable function in the previous lemma.

The construction on an \(n \)-harmonic comb is following:

\[
\begin{align*}
\forall m \in \mathbb{N} & , \\
\lim_{s \to m} p_s(n) & = m \\
\lim_{s \to m} p_s(n) & \neq m
\end{align*}
\]

Since \(p(n) = \lim s p_s(n) \) changes his mind at most finitely often, he cut-pointizes only finitely many risings on an \(n \)-harmonic comb.
\(p = \lim_{s} p_s \): a limit computable function in the previous lemma.

The construction on an \(n \)-harmonic comb is following:

\[
p_s(n) = m
\]

\[
(n, m) \text{-rising}
\]

\[
p_s(n) \neq m
\]

Thus each \(n \)-harmonic comb, actually, will be homeomorphic to a harmonic comb. The construction yields *computable dendroid* \(K \).
Recall that a dendrite is a *locally connected* dendroid. On a harmonic comb, any top of almost all rising must be *inaccessible* by a dendrite.

\[\supseteq \]

Locally connected \(D \)

\(n \)-harmonic comb

\(D \) contains tops of only three risings; \((n, 1)\)-rising; \((n, 4)\)-rising; \((n, \omega)\)-rising
$(\exists s)\ p_s(n) = m \implies$ any top of an (n, m)-rising will be a cut point.

Meanwhile, any top of almost all risings will be inaccessible by a given dendrite.
If a dendrite D passes an (n, m)-rising, then D contains a top of an (n, m)-rising. Meanwhile, any dendrite contains no top of almost all risings.
$p_s(n) = m$

$\begin{align*}
\text{(n, m)-rising} \\
\downarrow \\
p_s(n) &\neq m
\end{align*}$

U_D^n: the set of all (n, m)-risings whose top is not accessed by a dendrite D. Then U_D^n is cofinite for all n. If D passes n-harmonic comb then $p(n) \notin U_D^n$.
Theorem (Restated)

Computable Dendroids is not approximated by **Co-c.e. Dendrites.**

- \(K \): the computable dendroid in the construction.
Theorem (Restated)

Computable Dendroids is not approximated by Co-c.e. Dendrites.

- **K**: the computable dendroid in the construction.
- **D**: a co-c.e. closed subdendrite of K.
Theorem (Restated)

Computable Dendroids is not approximated by Co-c.e. Dendrites.

- K: the computable dendroid in the construction.
- D: a co-c.e. closed subdendrite of K.
- U_n: the set of all (n, m)-risings whose top is not accessed by a dendrite D.

- U_n is cofinite by previous observation.
- $\{U_n\}$ is uniformly c.e., since D is co-c.e. closed.
- It suffices to show that D cannot pass 2 distinct combs.
- If D passes an n-comb, it must hold that $p(n) < U_n$.
- It contradicts our choice of p which satisfies $p(n) \in U_n$ for almost all n.

Takayuki Kihara
Counterexamples in Computable Continuum Theory
Theorem (Restated)

Computable Dendroids is not approximated by Co-c.e. Dendrites.

- K: the computable dendroid in the construction.
- D: a co-c.e. closed subdendrite of K.
- U_n: the set of all (n, m)-risings whose top is not accessed by a dendrite D.
- U_n is cofinite by previous observation.
Theorem (Restated)

Computable Dendroids is not approximated by Co-c.e. Dendrites.

- **K:** the computable dendroid in the construction.
- **D:** a co-c.e. closed subdendrite of K.
- **U_n:** the set of all (n, m)-risings whose top is not accessed by a dendrite D.
- **U_n** is cofinite by previous observation.
- **$\{U_n\}$** is uniformly c.e., since D is co-c.e. closed.
Theorem (Restated)

Computable Dendroids is not approximated by Co-c.e. Dendrites.

- **K**: the computable dendroid in the construction.
- **D**: a co-c.e. closed subdendrite of K.
- **U_n**: the set of all (n, m)-risings whose top is not accessed by a dendrite D.
- **U_n** is cofinite by previous observation.
- **{U_n}** is uniformly c.e., since D is co-c.e. closed.
- It suffices to show that D cannot pass 2 distinct combs.
Theorem (Restated)

Computable Dendroids is not approximated by Co-c.e. Dendrites.

- **K**: the computable dendroid in the construction.
- **D**: a co-c.e. closed subdendrite of K.
- **U_n**: the set of all (n, m)-risings whose top is not accessed by a dendrite D.
- U_n is cofinite by previous observation.
- $\{U_n\}$ is uniformly c.e., since D is co-c.e. closed.
- It suffices to show that D cannot pass 2 distinct combs.
Theorem (Restated)

Computable Dendroids is not approximated by **Co-c.e. Dendrites.**

- *K*: the computable dendroid in the construction.
- *D*: a co-c.e. closed subdendrite of *K*.
- *Uₙ*: the set of all *(n, m)*-risings whose top is not accessed by a dendrite *D*.
- *Uₙ* is cofinite by previous observation.
- \{*Uₙ*\} is uniformly c.e., since *D* is co-c.e. closed.
- It suffices to show that *D* cannot pass 2 distinct combs.
- If *D* passes an *n*-comb, it must hold that *p(n) ∉ Uₙ*.
Theorem (Restated)

Computable Dendroids is not approximated by Co-c.e. Dendrites.

- **K:** the computable dendroid in the construction.
- **D:** a co-c.e. closed subdendrite of K.
- **U_n:** the set of all (n, m)-risings whose top is not accessed by a dendrite D.
- U_n is cofinite by previous observation.
- $\{U_n\}$ is uniformly c.e., since D is co-c.e. closed.
- It suffices to show that D cannot pass 2 distinct combs.
- If D passes an n-comb, it must hold that $p(n) \notin U_n$.
- It contradicts our choice of p which satisfies $p(n) \in U_n$ for almost all n.

Takayuki Kihara
Counterexamples in Computable Continuum Theory
Observation (Restated)

- Not every nonempty n-connected co-c.e. closed set in \mathbb{R}^{n+2} contains a computable point, for any $n \in \mathbb{N}$.
Observation (Restated)

- Not every nonempty n-connected co-c.e. closed set in \mathbb{R}^{n+2} contains a computable point, for any $n \in \mathbb{N}$.
- Every nonempty n-connected co-c.e. closed set in \mathbb{R}^{n+1} contains a computable point, for $n = 0$.

1. (Le Roux-Ziegler) Does every simply connected planar co-c.e. closed set contain a computable point?
2. Does every contractible Euclidean co-c.e. closed set contain a computable point?

Main Theorem

Not every nonempty contractible planar co-c.e. closed set contains a computable point.
Observation (Restated)

- Not every nonempty n-connected co-c.e. closed set in \mathbb{R}^{n+2} contains a computable point, for any $n \in \mathbb{N}$.
- Every nonempty n-connected co-c.e. closed set in \mathbb{R}^{n+1} contains a computable point, for $n = 0$.

Question

1. (Le Roux-Ziegler) Does every simply connected planar co-c.e. closed set contain a computable point?
2. Does every contractible Euclidean co-c.e. closed set contain a computable point?
Observation (Restated)

- Not every nonempty n-connected co-c.e. closed set in \mathbb{R}^{n+2} contains a computable point, for any $n \in \mathbb{N}$.
- Every nonempty n-connected co-c.e. closed set in \mathbb{R}^{n+1} contains a computable point, for $n = 0$.

Question

1. (Le Roux-Ziegler) Does every simply connected planar co-c.e. closed set contain a computable point?
2. Does every contractible Euclidean co-c.e. closed set contain a computable point?

Main Theorem

Not every nonempty contractible planar co-c.e. closed set contains a computable point.
A fat approximation of Cantor set:

- P: a co-c.e. closed subset of Cantor set.
- P_s: a fat approximation of P at stage s.
- l_s, r_s: the leftmost and rightmost of P_s.

We call these intervals $I_{l_s}; I_{r_s} \subseteq P_s \setminus P_s$ free blocks.
A fat approximation of Cantor set:

<table>
<thead>
<tr>
<th>A construction of Cantor set</th>
<th>Fat approx. of Cantor set</th>
</tr>
</thead>
<tbody>
<tr>
<td>_________________</td>
<td>________________________</td>
</tr>
<tr>
<td>___ ___</td>
<td>___ ___</td>
</tr>
<tr>
<td>___ ___</td>
<td>___ ___</td>
</tr>
<tr>
<td>___ ___</td>
<td>___ ___</td>
</tr>
</tbody>
</table>

- **P**: a co-c.e. closed subset of Cantor set.
- **P_s**: a fat approximation of P at stage s.
- **l_s, r_s**: the leftmost and rightmost of P_s.
- **$[l_s, l_{s+1}] \cap P_s, [r_{s+1}, r_s] \cap P_s$** contains intervals I_s^l, I_s^r.

Takayuki Kihara
Counterexamples in Computable Continuum Theory
A fat approximation of Cantor set:

<table>
<thead>
<tr>
<th>A construction of Cantor set</th>
<th>Fat approx. of Cantor set</th>
</tr>
</thead>
<tbody>
<tr>
<td>___________________________</td>
<td>___________________________</td>
</tr>
<tr>
<td>___ ___</td>
<td>___ ___</td>
</tr>
</tbody>
</table>

- \(P \): a co-c.e. closed subset of Cantor set.
- \(P_s \): a fat approximation of \(P \) at stage \(s \).
- \(l_s, r_s \): the leftmost and rightmost of \(P_s \).
- \([l_s, l_{s+1}] \cap P_s, [r_{s+1}, r_s] \cap P_s\) contains intervals \(l_s^l, l_s^r \).
- We call these intervals \(l_s^l, l_s^r \subseteq P_s \setminus P_{s+1} \) free blocks.
Prepare a stretched co-c.e. closed class $D_0^- = P \times [0, 1]$.

- $P \subseteq \mathbb{R}^1$: a co-c.e. closed set without computable points.
- P_s: a fat approximation of P (Note that $P = \bigcap_s P_s$).
- $D_0^- = [0, 1] \times P_0$.
D_0 is the following connected closed set.

The desired co-c.e. closed set D will be obtained by carving D_0.
\(\alpha \in \mathbb{R} \): an incomputable left-c.e. real.

There is a computable sequence \(\{J_s\} \) of rational open intervals s.t.

1. \(\min J_s \to \alpha \) as \(s \to \infty \).
2.=2.0\textwidth\ thrust=0.5ex\ rightsep=0.5em\>
\(\text{diam}(J_s) \to 0 \) as \(s \to \infty \).
3. Either \(J_{s+1} \subset J_s \) or \(\max J_s < \min J_{s+1} \), for each \(s \).
Our construction starts with D_0.

![Diagram showing a stretched block with free blocks on the sides.](image-url)
By carving free blocks, stretch P_0 toward $\max J_0$.

max J_0
By carving free blocks, stretch P_0 toward $\min J_0$.
Proceed one step with a fat approximation of P.

\[\min J_0 \quad \max J_0 \]
D_1 is defined by this,
D_1 is defined by this,

If $J_1 \subset J_0$, then the construction of D_2 is similar as that of D_1.

i.e., on the top block, stretch toward $\max J_1$ and back to $\min J_1$, by caving free blocks.
D_1 is defined by this,

- If $J_1 \subset J_0$, then the construction of D_2 is similar as that of D_1.
- i.e., on the top block, stretch toward $\text{max } J_1$ and back to $\text{min } J_1$, by caving free blocks.
D_1 is defined by this,

- If $J_1 \subset J_0$, then the construction of D_2 is similar as that of D_1.
- i.e., on the top block, stretch toward $\max J_1$ and back to $\min J_1$, by caving free blocks.
- In general, similar for $J_{s+1} \subset J_s$.
D_1 is defined by this,

If $J_1 \subset J_0$, then the construction of D_2 is similar as that of D_1.

i.e., on the top block, stretch toward $\max J_1$ and back to $\min J_1$, by caving free blocks.

In general, similar for $J_{s+1} \subset J_s$.

Only the problem is the case of $J_{s+1} \not\subset J_s$!
In the case of $J_{s+1} \not\subset J_s$:

Overview of D_s (above D_p)

Pick the greatest $p \leq s$ such that $J_{s+1} \subset J_p$.
In the case of $J_{s+1} \not\subseteq J_s$:

Overview of D_s (above D_p)

Go back to D_p by caving free blocks into the shape of P.
Overview of D_s (above D_p)

By caving free blocks on D_p into the shape of P, stretch toward $\max J_{s+1}$ and back to $\min J_{s+1}$.
Main Theorem (Restated)

Not every nonempty contractible planar co-c.e. closed set contains a computable point.

\[D = \bigcap_s D_s \] is co-c.e. closed.
Main Theorem (Restated)

Not every nonempty contractible planar co-c.e. closed set contains a computable point.

- $D = \bigcap_s D_s$ is co-c.e. closed.
- D is obtained by bundling $[0, 1] \times P$ at $(\alpha, y) \in \mathbb{R}^2$ for some y.
Main Theorem (Restated)

Not every nonempty contractible planar co-c.e. closed set contains a computable point.

- $D = \bigcap_s D_s$ is co-c.e. closed.
- D is obtained by bundling $[0, 1] \times P$ at $(\alpha, y) \in \mathbb{R}^2$ for some y.
- D is path-connected by the property of an approximation $\{J_s\}$ of the incomputable left-c.e. real α.
Main Theorem (Restated)

Not every nonempty contractible planar co-c.e. closed set contains a computable point.

- \(D = \bigcap_s D_s \) is co-c.e. closed.
- \(D \) is obtained by bundling \([0, 1] \times P \) at \((\alpha, y) \in \mathbb{R}^2\) for some \(y \).
- \(D \) is path-connected by the property of an approximation \(\{J_s\} \) of the incomputable left-c.e. real \(\alpha \).
- Therefore, \(D \) is homeomorphic to Cantor fan, and contractible.
Main Theorem (Restated)

Not every nonempty contractible planar co-c.e. closed set contains a computable point.

- \(D = \bigcap_s D_s \) is co-c.e. closed.
- \(D \) is obtained by bundling \([0, 1] \times P\) at \((\alpha, y) \in \mathbb{R}^2\) for some \(y\).
- \(D \) is path-connected by the property of an approximation \(\{J_s\}\) of the incomputable left-c.e. real \(\alpha\).
- Therefore, \(D\) is homeomorphic to Cantor fan, and contractible.
- Stretching \([0, 1] \times P\) cannot introduce new computable points.
Main Theorem (Restated)

Not every nonempty contractible planar co-c.e. closed set contains a computable point.

- \(D = \bigcap_s D_s \) is co-c.e. closed.
- \(D \) is obtained by bundling \([0, 1] \times P\) at \((\alpha, y) \in \mathbb{R}^2\) for some \(y\).
- \(D \) is path-connected by the property of an approximation \(\{J_s\} \) of the incomputable left-c.e. real \(\alpha\).
- Therefore, \(D\) is homeomorphic to Cantor fan, and contractible.
- Stretching \([0, 1] \times P\) cannot introduce new computable points.
- Of course, \((\alpha, y)\) is also incomputable.
Main Theorem (Restated)

Not every nonempty contractible planar co-c.e. closed set contains a computable point.

\[D = \bigcap_s D_s \] is co-c.e. closed.

\[D \] is obtained by bundling \([0, 1] \times P\) at \((\alpha, y) \in \mathbb{R}^2\) for some \(y\).

\[D \] is path-connected by the property of an approximation \(\{J_s\}\) of the incomputable left-c.e. real \(\alpha\).

Therefore, \(D\) is homeomorphic to Cantor fan, and contractible.

Stretching \([0, 1] \times P\) cannot introduce new computable points.

Of course, \((\alpha, y)\) is also incomputable.

Hence, \(D\) has no computable points.
Main Theorem (Restated)

1. **Computable Dendrites** is not approximated by **Co-c.e. Trees**.
2. **Co-c.e. Dendrites** is not approximated by **Computable Dendrites**.
3. **Computable Dendroids** is not approximated by **Co-c.e. Dendrites**.
4. **Co-c.e. Dendroids** is not approximated by **Computable Dendroids**.
5. **Not** every contractible planar co-c.e. dendroid contains a computable point.

 - This is the solution to *Question of Le Roux, and Ziegler*.

Not every contractible planar co-c.e. dendroid contains a computable point.
Corollary

There is a contractible & locally contractible & computable closed set, which is \(\text{computable Path} \)-connected, but not \(\text{co-c.e. Arc} \)-connected.

\(\text{Connected & Locally Connected & Computable Closed Sets} \) is not approximated by \(\text{Connected & Locally Connected & computable Closed Sets} \).

Not every contractible planar co-c.e. closed set contains a computable point.

This is the solution to Question of Le Roux, and Ziegler.
There is a contractible & locally contractible & computable closed set, which is [\text{Computable Path}]-connected, but not [\text{Co-c.e. Arc}]-connected.
Corollary

1. There is a contractible & locally contractible & computable closed set, which is [Computable Path]-connected, but not [Co-c.e. Arc]-connected.

2. Contractible & Locally Contractible & Co-c.e. Closed Sets is not approximated by Connected & Locally Connected & Computable Closed Sets.
Corollary

1. There is a contractible & locally contractible & computable closed set, which is [Computable Path]-connected, but not [Co-c.e. Arc]-connected.

2. Contractible & Locally Contractible & Co-c.e. Closed Sets is not approximated by Connected & Locally Connected & Computable Closed Sets.

Corollary

1. There is a contractible & locally contractible & computable closed set, which is [Computable Path]-connected, but not [Co-c.e. Arc]-connected.

2. **Contractible & Locally Contractible & Co-c.e. Closed Sets** is **not** approximated by **Connected & Locally Connected & Computable Closed Sets**.

3. **Contractible & Computable Closed Sets** is **not** approximated by **Connected & Locally Connected & Co-c.e. Closed Sets**.

4. **Contractible & Co-c.e. Closed Sets** is **not** approximated by **Connected & Computable Closed Sets**.

Not every contractible planar co-c.e. closed set contains a computable point. This is the solution to Question of Le Roux, and Ziegler.

Takayuki Kihara
Counterexamples in Computable Continuum Theory
Corollary

1. There is a contractible & locally contractible & computable closed set, which is \([\text{Computable Path}]-\text{connected}\), but not \([\text{Co-c.e. Arc}]-\text{connected}\).

2. **Contractible & Locally Contractible & Co-c.e. Closed Sets** is not approximated by **Connected & Locally Connected & Computable Closed Sets**.

3. **Contractible & Computable Closed Sets** is not approximated by **Connected & Locally Connected & Co-c.e. Closed Sets**.

4. **Contractible & Co-c.e. Closed Sets** is not approximated by **Connected & Computable Closed Sets**.

5. **Not** every contractible planar co-c.e. closed set contains a computable point.
Corollary

1. There is a contractible & locally contractible & computable closed set, which is \([\text{Computable Path}]\)-connected, but not \([\text{Co-c.e. Arc}]\)-connected.

2. Contractible & Locally Contractible & Co-c.e. Closed Sets is not approximated by Connected & Locally Connected & Computable Closed Sets.

5. Not every contractible planar co-c.e. closed set contains a computable point.
 ∙ This is the solution to Question of Le Roux, and Ziegler.
Thank you!