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.
Main Theme
..
......Application of Recursion Theory to Descriptive Set Theory

.

......

Which Result in Recursion Theory is applied?

⇒ The Shore-Slaman Join Theorem (1999)

It was proved by using Kumabe-Slaman forcing.
It was used to show that
The Turing jump is first-order definable inDT .

.

......

Which Problem in Descriptive Set Theory is solved?

⇒ The Decomposability Problem of Borel Functions

The original decomposability problem was proposed by Luzin,
and negatively answered by Keldysh (1934).
A partial positive result was given by Jayne-Rogers (1982).
The modified decomposability problem was proposed by
Andretta (2007), Semmes (2009), Pawlikowski-Sabok (2012),
Motto Ros (2013).
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.

...... Decomposing a hard function F into easy functions

.

......

F(x) =


G0(x) if x ∈ I0
G1(x) if x ∈ I1
G2(x) if x ∈ I2
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...... Decomposing a discontinuous function F into easy functions

.

......

F(x) =


G0(x) if x ∈ I0
G1(x) if x ∈ I1
G2(x) if x ∈ I2
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......Decomposing a discontinuous function F into continuous functions
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.

...... Decomposing a discontinuous function into continuous functions

F

.

......
F(x) =

G0(x) if x < P1

0 if x ∈ P1
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...... Decomposing a discontinuous function into continuous functions
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.

...... Decomposing a discontinuous function into continuous functions

.

......

Dirichlet (x) = lim
m→∞

lim
n→∞

cos 2n(m!πx)

=⇒
Dirichlet (x) =

1, if x ∈ Q.

0, if x ∈ R \ Q.
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.

......

If F is a Borel measurable function on R, then can it be presented
by using a countable partition {Pn}n∈ω of dom(F) and a countable
list {Gn}n∈ω of continuous functions as follows?

F(x) =



G0(x) if x ∈ P0

G1(x) if x ∈ P1

G2(x) if x ∈ P2

G3(x) if x ∈ P3
...

...

.
Luzin’s Problem (almost 100 years ago)
..

......

Can every Borel function on R be decomposed into countably
many continuous functions?
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.
Definition (Baire 1899)
..

......

Baire 0 = continuous.

Baire α = the pointwise limit of a seq. of Baire < α functions.

Baire function = Baire α for some α.

The Baire functions = the smallest class closed under taking
pointwise limit and containing all continuous functions.

.
Definition (Borel 1904, Hausdorff 1913)
..

......

Σ
∼

0
1
= open.

Π
∼

0
α = the complement of a Σ

∼
0
α set.

Σ
∼

0
α = the countable union of a seq. of Π

∼
0
β

sets for some β < α.

Borel set = Σ
∼

0
α for some α.

The Borel sets = the smallest σ-algebra containing all open
sets.
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.
Definition (X , Y : topological spaces, B ⊆ P(X))
..
......f : X → Y is B-measurable if f −1[A ] ∈ B for every open A ⊆ Y .

.
Lebesgue-Hausdorff-Banach Theorem
..

......

�� ��Baire α =
�



�
	Σ

∼
0
α+1

-measurable

�� ��the Baire functions =
�� ��the Borel measurable functions
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.
Luzin’s Problem (almost 100 years ago)
..

......

Can every Borel function on R be decomposed into countably
many continuous functions?

.
Example
..

......

The Turing jump TJ : 2N → 2N is:

TJ(x)(n) =

1, if the n-th Turing machine with oracle x halts

0, otherwise

Then, TJ is Baire 1, but indecomposable!
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.
Example
..
......Turing jump TJ : 2N → 2N is indecomposable.

.
Lemma
..

......

For F : X → Y , the following are equivalent:
...1 F is decomposable into countably many continuous functions.
...2 (∃α ∈ 2N)(∀x ∈ 2N) F(x) ≤T x ⊕ α

Here, (x ⊕ y)(2n) = x(n) and (x ⊕ y)(2n + 1) = y(n).
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.

......Decomposable =⇒ (∃α)(∀x) F(x) ≤T x ⊕ α

.

......

F is decomposable into continuous functions Fi : Xi → Y .

(TTE) Since Fi is continuous,
it must be computable relative to an oracle αi !

Hence (∀x ∈ Xi) Fi(x) ≤T x ⊕ αi

(∀x ∈ X) F(x) ≤T x ⊕
⊕

i∈N αi

Put α =
⊕

i∈N αi . □
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.

......Decomposable⇐= (∃α)(∀x) F(x) ≤T x ⊕ α

.

......

Assume (∀x ∈ X) F(x) ≤T x ⊕ α.

Φe : the e-th Turing machine

(∀x ∈ X)(∃e ∈ N) Φe(x ⊕ α) = F(x)

e[x ]: The least such e for x ∈ X .

x 7→ Φe(x ⊕ α) is computable relative to α.

(TTE) x 7→ Φe(x ⊕ α) is continuous.

For Xe = {x ∈ X : e[x ] = e} the restriction
F |Xe = Φe(∗ ⊕ α) is continuous □
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.
Hierarchy of Indecomposable Functions
..

......

(Keldysh 1934) For every α there is a Baire α function which
is not decomposable into countably many Baire < α functions!

The α-th Turing jump x 7→ x (α) is such a function.

.

......

Which Borel function can we decompose into countably many
continuous functions?

Let’s study a finer hierarchy than the Baire hierarchy!
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.

......

Borel =
∪
α<ω1

Σ
∼

0
α

.
Definition
..

......

...1 A function F : X → Y is Borel if

A ∈
∪
α<ω1

Σ
∼

0
α(Y) =⇒ F−1[A ] ∈

∪
α<ω1

Σ
∼

0
α(X).

...2 A function F : X → Y is Σ
∼

0
α-measurable if

A ∈ Σ
∼

0
1
(Y) =⇒ F−1[A ] ∈ Σ

∼
0
α(X).

...3 A function F : X → Y is Σ
∼α,β

if

A ∈ Σ
∼

0
α(Y) =⇒ F−1[A ] ∈ Σ

∼
0
β
(X).
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.

......

A function F : X → Y is Σ
∼α,β

if

A ∈ Σ
∼

0
α(Y) =⇒ F−1[A ] ∈ Σ

∼
0
β
(X).

�
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A function F : X → Y is Σ
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if

A ∈ Σ
∼

0
α(Y) =⇒ F−1[A ] ∈ Σ

∼
0
β
(X).

�

1;1

�

1;2

�
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�
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�
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�
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�
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�
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�
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�
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�
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�

4;5

�

5;5

�

1;6

�

2;6

�

3;6

�

4;6

�

5;6

Conti.

Heviside's fun
tion

Diri
hlet's fun
tion

Thomae's fun
tion

Lebesgue's fun
tion
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.
Definition
..

......

F : a function from a top. sp. X into a top. sp. Y .

F ∈ dec(Σ
∼α

) if it is decomposable into countably many

Σ
∼

0
α-measurable functions.

F ∈ decβ(Σ∼α
) if it is decomposable into countably many

Σ
∼

0
α-measurable functions with Π

∼
0
β

domains,

that is, there are a list {Pn}n∈ω of Π0
β

subsets of X with

X =
∪

n Pn and a list {Gn}n∈ω of Σ
∼

0
α-measurable functions

such that F ↾ Pn = Gn ↾ Pn holds for all n ∈ ω.
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.

......

�� ��Baire α =
�
�

�
�Σ

∼α+1

.

......

(fn)n∈N discretely converges to f if (∀x)(∀∞n) f (x) = f (x).

(fn)n∈N quasi-normally converges to f if
(∃εn)n∈ω → 0)(∀∞n) |f (x) − fn(x)| < εn .

.
Theorem (Császár-Laczkovich 1979, 1990)
..

......

X : perfect normal, f : X → R,�� ��discrete-Baire α =
�



�
	decα(Σ∼1)

Moreover, if α is successor,�� ��QN-Baire α =
�



�
	decα(Σ∼α

)
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Definition
..

......

F : a function from a top. sp. X into a top. sp. Y .

F ∈ dec(Σ
∼α

) if it is decomposable into countably many

Σ
∼

0
α-measurable functions.

F ∈ decβ(Σ∼α
) if it is decomposable into countably many

Σ
∼

0
α-measurable functions with Π

∼
0
β

domains,

that is, there are a list {Pn}n∈ω of Π0
β

subsets of X with

X =
∪

n Pn and a list {Gn}n∈ω of Σ
∼

0
α-measurable functions

such that F ↾ Pn = Gn ↾ Pn holds for all n ∈ ω.

.
The Jayne-Rogers Theorem 1982
..

......

X , Y : metric separable，X : analytic
For the class of all functions from X into Y ,�

�
�
�Σ

∼2,2 =
�



�
	dec1(Σ∼1)
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.

...... Borel Functions and Decomposability

1 2 3 4 5 6
1 Σ

∼1 Σ
∼2 Σ

∼3 Σ
∼4 Σ

∼5 Σ
∼6

2 – dec1Σ∼1 ? ? ? ?

3 – – ? ? ? ?
4 – – – ? ? ?
5 – – – – ? ?
6 – – – – – ?

.
The Jayne-Rogers Theorem 1982
..

......

X , Y : metric separable，X : analytic
For the class of all functions from X into Y ,�

�
�
�Σ

∼2,2 =
�



�
	dec1(Σ∼1)
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.

...... The second level decomposability of Borel functions

1 2 3 4 5 6
1 Σ

∼1 Σ
∼2 Σ

∼3 Σ
∼4 Σ

∼5 Σ
∼6

2 – dec1Σ∼1 dec2Σ∼2 ? ? ?

3 – – dec2Σ∼1 ? ? ?

4 – – – ? ? ?
5 – – – – ? ?
6 – – – – – ?

.
Theorem (Semmes 2009)
..

......

For the class of functions on a zero dim. Polish space,�
�

�
�Σ

∼2,3 =
�



�
	dec2(Σ∼2)�

�
�
�Σ

∼3,3 =
�



�
	dec2(Σ∼1)
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.

...... The Decomposability Problem

1 2 3 4 5 6
1 Σ

∼1 Σ
∼2 Σ

∼3 Σ
∼4 Σ

∼5 Σ
∼6

2 – dec1Σ∼1 dec2Σ∼2 dec3Σ∼3 dec4Σ∼4 dec5Σ∼5

3 – – dec2Σ∼1 dec3Σ∼2 dec4Σ∼3 dec5Σ∼4

4 – – – dec3Σ∼1 dec4Σ∼2 dec5Σ∼3

5 – – – – dec4Σ∼1 dec5Σ∼2

6 – – – – – dec5Σ∼1

.
The Decomposability Conjecture (Andretta, Motto Ros et al.)
..

......

�
�

�
�Σ

∼m+1,n+1 =
�



�
	decn(Σ∼n−m+1)
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...... Overview of Previous Research
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...... Main Theorem
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.
Shore-Slaman Join Theorem 1999
..

......

The following sentence is true in the Turing degree structure.

(∀a, b )(∃c ≥ a)[((∀ζ < ξ) b ≰ a(ζ))

→ (c (ξ) ≤ b ⊕ a(ξ) ≤ b ⊕ c)

a

b




a

(5)
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.
Shore-Slaman Join Theorem 1999
..

......

(∀a, b )(∃c ≥ a)[((∀ζ < ξ) b ≰ a(ζ))

→ (c (ξ) ≤ b ⊕ a(ξ) ≤ b ⊕ c)

.
History in Turing degree theory
..

......

Posner-Robinson Join Theorem (1981) is partially generalized if
combined with Friedberg Jump Inversion Theorem (1957).

Jockusch-Shore Problem (1984): Generalize the join theorem to
α-REA operators.

Kumabe and Slaman introduced a forcing notion to solve it.

Slaman and Woodin showed the first-order definability of the double
jump in the Turing universe, by using set theoretic methods such as
Levy collapsing and Shoenfield absoluteness, and analyzing the
automorphism group of the Turing universe.

Shore and Slaman showed the join theorem by Kumabe-Slaman
forcing, and applied their join theorem to obtain the first-order
definability of the Turing jump from the Slaman-Woodin theorem.
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.

......
Question:

�
�

�
�Σ

∼m+1,n+1 =
�



�
	decn(Σ∼n−m+1) ?

.
Easy direction (Motto Ros 2013)
..

......

�



�
	decn(Σ∼n−m+1) ⊆

�
�

�
�Σ

∼m+1,n+1

.

......

Assume that F ∈ decn(Σ∼n−m+1).

Fi = F ↾ Qi is Σ
∼

0
n−m+1

-measurable, where Qi ∈ Π∼
0
n .

If P ∈ Σ
∼

0
m+1

, we have F−1
i

[P] ∩ Qi ∈ Σ∼
0
n+1

.

Hence, F−1[P] =
∪

i F−1
i

[P] ∩ Qi ∈ Σ∼
0
n+1

.

.

......

In the above proof, we can uniformly give a Σ
∼

0
n+1

-description of

F−1[P] from any Σ
∼

0
m+1

-description of P.
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......

In the previous proof, we can uniformly give a Σ
∼

0
n+1

-description of

F−1[P] from any Σ
∼

0
m+1

-description of P.

.
Definition (de Brecht-Pauly 2012)
..

......

F is Σ
∼α,β

iff F−1[·] ↾ Σ
∼

0
α is a function from Σ

∼
0
α into Σ

∼
0
β
.

F is Σ
∼
→
α,β

if F−1[·] ↾ Σ
∼

0
α is continuous, as a function from Σ

∼
0
α

into Σ
∼

0
β
.

Here the space of all Σ
∼

0
α subsets of a topological space is

represented by the canonical Borel code up to Σ0
α.

.
Easy direction (Motto Ros 2013)
..

......

�



�
	decn(Σ∼n−m+1) ⊆

�



�
	Σ

∼
→
m+1,n+1

Takayuki Kihara From Recursion Theory to Descriptive Set Theory



.
The Decomposability Problem
..

......

�
�

�
�Σ

∼m+1,n+1 =
�



�
	decn(Σ∼n−m+1)

.
Main Theorem (K.)
..

......

For functions between Polish spaces with topological dim. , ∞
and for every m , n ∈ N,�



�
	decn(Σ∼n−m+1) ⊆

�



�
	Σ

∼
→
m+1,n+1

⊆
�



�
	dec(Σ

∼n−m+1)

Moreover, if 2 ≤ m ≤ n < 2m then�



�
	Σ

∼
→
m+1,n+1

=
�



�
	decn(Σ∼n−m+1)
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...... The decomposability of continuously Borel functions

1 2 3 4 5 6
1 Σ

∼1 Σ
∼2 Σ

∼3 Σ
∼4 Σ

∼5 Σ
∼6

2 – dec1Σ∼1 dec2Σ∼2 ? ? ?

3 – – dec2Σ∼1 dec3Σ∼2 ? ?

4 – – – dec3Σ∼1 dec4Σ∼2 dec5Σ∼3

5 – – – – dec4Σ∼1 dec5Σ∼2

6 – – – – – dec5Σ∼1

.
Main Theorem (K.)
..

......

If 2 ≤ m ≤ n < 2m then�



�
	Σ

∼
→
m+1,n+1

=
�



�
	decn(Σ∼n−m+1)
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......
Sketch of Proof of Σ

∼
→
m+1,n+1

⊆ dec(Σ
∼n−m+1)

.
Lemma (Lightface Analysis)
..

......

Let F : 2ω → 2ω be a function, and let p , q be oracles.
Assume that the preimage F−1[A ] of any lightface Σ0,p

m class A

under F forms a lightface ∆0,p⊕q
n+1

class, and one can effectively

find an index of F−1[A ] from an index of A .
Then (F(x) ⊕ p)(m) ≤T (x ⊕ p ⊕ q)(n) for every x ∈ 2ω.

.
Lemma (Boldface)
..

......

F ∈ Σ
∼
→
m+1,n+1

iff the preimage of any Σ
∼

0
m class under F forms a

∆
∼

0
n+1

class.

.
Lemma (Boldface Analysis)
..

......

If F ∈ Σ
∼
→
m+1,n+1

, then there exists q ∈ 2ω such that

(F(x) ⊕ p)(m) ≤T (x ⊕ p ⊕ q)(n) for all p ∈ 2ω.
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......
Sketch of Proof of Σ

∼
→
m+1,n+1

⊆ dec(Σ
∼n−m+1)

.
Shore-Slaman Join Theorem 1999
..

......

The following sentence is true in the Turing degree structure.

(∀a, b )(∃c ≥ a)[((∀ζ < ξ) b ≰ a(ζ))

→ (c (ξ) ≤ b ⊕ a(ξ) ≤ b ⊕ c)

.
Lemma (Boldface Analysis; Restated)
..

......

If F ∈ Σ
∼
→
m+1,n+1

, then there exists q ∈ 2ω such that

(F(x) ⊕ p)(m) ≤T (x ⊕ p ⊕ q)(n) for all p ∈ 2ω.

.
Decomposition Lemma
..

......
F ∈ Σ

∼
→
m+1,n+1

⇒ (∃q) F(x) ≤T (x ⊕ q)(n−m).
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......
Sketch of Proof of Σ

∼
→
m+1,n+1

⊆ dec(Σ
∼n−m+1)

.
Decomposition Lemma; Restated
..

......
F ∈ Σ

∼
→
m+1,n+1

⇒ (∃q) F(x) ≤T (x ⊕ q)(n−m).

.
Corollary
..

......
F ∈ Σ

∼
→
m+1,n+1

⇒ (∀x)(∃e) F(x) = Φe((x ⊕ q)(n−m)).

.

......

Ge : x 7→ Φe(x ⊕ q)(n−m) is Σ
∼

0
n−m+1

-measurable.

Pe := {x ∈ dom(Ge) : F(x) = Ge(x)}.

Then F ↾ Pe = Ge ↾ Pe , and dom(F) =
∪

e Pe .

Consequently, Σ
∼
→
m+1,n+1

⊆ dec(Σ
∼n−m+1)
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...... Main Theorem
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...... The decomposability of continuously Borel functions

1 2 3 4 5 6
1 Σ

∼1 Σ
∼2 Σ

∼3 Σ
∼4 Σ

∼5 Σ
∼6

2 – dec1Σ∼1 dec2Σ∼2 ? ? ?

3 – – dec2Σ∼1 dec3Σ∼2 ? ?

4 – – – dec3Σ∼1 dec4Σ∼2 dec5Σ∼3

5 – – – – dec4Σ∼1 dec5Σ∼2

6 – – – – – dec5Σ∼1

.
Main Theorem (K.)
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If 2 ≤ m ≤ n < 2m then�
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∼
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