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Goal
Develop the theory of degrees of unsolvability in topological spaces
(including spaces which are non-metrizable, not second-countable, etc.)

— What is the motivation?

In previous works [1,2], we utilized a generalization of the theory of
degrees of unsolvability to give (partial/complete) solutions to
preexisting open problems in other areas of mathematics.

We are looking for more applications — but currently, the theory
itself is still far from complete. So many things are yet to be done,
even in the very basic part.

[1] V. Gregoriades, T. Kihara, and K. M. Ng, Turing degrees in Polish spaces
and decomposability of Borel functions, submitted.

[2] T. Kihara, and A. Pauly, Point degree spectra of represented spaces,
submitted.

Takayuki Kihara (Berkeley) and Arno Pauly (Bruxelles) Degrees in topological spaces with countable cs-networks



Goal
Develop the theory of degrees of unsolvability in topological spaces
(including spaces which are non-metrizable, not second-countable, etc.)

— What is the motivation?

In previous works [1,2], we utilized a generalization of the theory of
degrees of unsolvability to give (partial/complete) solutions to
preexisting open problems in other areas of mathematics.

We are looking for more applications — but currently, the theory
itself is still far from complete. So many things are yet to be done,
even in the very basic part.

[1] V. Gregoriades, T. Kihara, and K. M. Ng, Turing degrees in Polish spaces
and decomposability of Borel functions, submitted.

[2] T. Kihara, and A. Pauly, Point degree spectra of represented spaces,
submitted.

Takayuki Kihara (Berkeley) and Arno Pauly (Bruxelles) Degrees in topological spaces with countable cs-networks



Definition
1 An (ωω-)representation of a set X is

a partial surjection δ :⊆ ωω → X.
2 A topological space X is admissibly represented if

it has a universal continuous representation δ, that is,

(∀ continuous ρ :⊆ ωω → X)(∃ continuous ν :⊆ ωω → ωω)
such that ρ = δ ◦ ν.

Suppose that X is represented by δ.

If δ(p) = x, then we think of p as a name of x.

The complexity of x is identified with that of δ−1{x}.
The degree of x is the degree of difficulty of calling a name of x.
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Degrees of difficulty of calling a name

(X, δX), (Y , δY): represented spaces.
1 A point x ∈ X is (Turing) reducible to y ∈ Y (x ≤T y) if

there is a partial computable function Φ :⊆ ωω → ωω s.t.
(∀p) [p is a name of y =⇒ Φ(p) is a name of x].

2 deg(x) = {z : z ≡T x} is called the (Turing) degree of x.

Example of representation
Let (Bn)n∈ω be an open basis of a space X. Then, each point
x ∈ X is named by an enumeration p of its nbhd basis, that is,

δ(p) = x ⇐⇒ range(p) = {n ∈ ω : x ∈ Bn}.
The degree of x is the enumeration degree of its nbhd basis.
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A network for a space X is a collectionN of subsets of X such that

(∀x ∈ X)(∀U open nbhd of x)(∃N ∈ N) x ∈ N ⊆ U.

Example of representation (II)
Let (Nn)n∈ω be a network for a space X. Then, each point x ∈ X is
named by an enumeration p of a local subnetwork at x, that is,

x ∈ Np(n) for any n ∈ ω,
(∀U open nbhd of x)(∃n) x ∈ Np(n) ⊆ U.
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Fact (Schröder)
For a topological space X, the following are equivalent:

1 X is admissibly represented.
2 X is a qcb0 space.
3 X has a countable cs-network.

A space is qcb0 if it is T0, and is a quotient of a countably based
space.
(Michael 1966) A cs-network is a network N such that every
convergent sequence converging to a point x ∈ U with U open,
is eventually in N ⊆ U for some N ∈ N .
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T0 enumeration degrees
T1 ?

Hausdorff ?
T2 1

2
?

metrizable continuous degrees
transfinite dimensional Turing degrees

Table: Degrees of second-countable spaces

Basic idea of “generalized” degree theory

Turing degrees are degrees of calling names of points of
separable metrizable spaces having transfinite inductive dimension.

Continuous degrees are degrees of calling names of points of
separable metrizable spaces.

Enumeration degrees are degrees of calling names of points of
second-countable T0 spaces.
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To develop our theory, we first deal with the following toy problem:

Toy Problem
Given m < n, does there exist a “degree” of a point of a Tm-space,
which CANNOT be a degree of a point of a Tn-space?
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T3-degrees vs. T2 1
2
-degrees.

A space is T3 if it is regular Hausdorff, that is,
given any point and closed set are separated by nbhds.

A space is T2 1
2

if any two distinct points are separated by closed nbhds.

Example
The Gandy-Harrington topology τGH is the topology on ωω

generated by all computably analytic (i.e., lightface Σ1
1
) sets.

(ωω, τGH) is second-countable, T2 1
2
, but not T3.
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Theorem (3 vs. 21
2 )

Let x be a sufficiently complicated point in ωω.
deg(x): the degree of x w.r.t. the Gandy-Harrington topology.

1 deg(x) is realized as the degree of a point in a T2 1
2

space.

2 deg(x) cannot be realized as the degree of a point in a T3
space.

3 Indeed, deg(x) cannot be a degree of a point of a Hausdorff
space having a countable closed cs-network.

Remark
Regular =⇒ Having a countable closed cs-network.

The converse is not true, e.g., the sequential topology on the
Kleene-Kreisel space NNN has a countable closed cs-network, but not
regular (Schröder).
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T2 1
2
-degrees vs. T2-degrees.

A space is T2 1
2

if any two distinct points are separated by closed nbhds.

A space is T2 if any two distinct points are separated by open nbhds.

Example
The relatively prime integer topology is the topology on the positive
integers generated by {Ub(a) : a and b are relatively prime}
where Ub(a) = {a + bn : n ∈ Z}.

This is second-countable, Hausdorff, but not T2 1
2
.
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2
-degrees vs. T2-degrees.

A space is T2 1
2

if any two distinct points are separated by closed nbhds.

A space is T2 if any two distinct points are separated by open nbhds.

Example
The relatively prime integer topology is the topology on the positive
integers generated by {Ub(a) : a and b are relatively prime}
where Ub(a) = {a + bn : n ∈ Z}.

This is second-countable, Hausdorff, but not T2 1
2
.

Takayuki Kihara (Berkeley) and Arno Pauly (Bruxelles) Degrees in topological spaces with countable cs-networks



Consider the countable product of the relatively prime integer
topology:

Theorem (21
2 vs. 2)

Let x ∈ Zω
>0

be sufficiently generic w.r.t. Baire topology.
deg(x): the degree of x w.r.t. the product relatively prime topology

1 deg(x) is realized as the degree of a point in a T2 space.
2 deg(x) cannot be realized as the degree of a point in a T2 1

2
space.

Moreover, even if we know a name of such an x, we cannot get
any new information on names of points in a T3 space...
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1 (Medvedev 1955) A point x is quasi-minimal if
it has no computable name, but
it has no nontrivial information on names of points in 2ω

x !T ∅ and (∀y ∈ 2ω)[y ≤T x =⇒ y ≤T ∅].
2 A point x is quasi-minimal w.r.t. P if

it has no computable name, but
it has no nontrivial information on names of points in P-spaces

Theorem (3 vs. 2 — the quasi-minimal version)
Let x ∈ Zω

>0
be Cohen 1-generic w.r.t. Baire topology.

deg(x): the degree of x w.r.t. the product relatively prime topology
1 deg(x) is realized as the degree of a point in a T2 space.
2 deg(x) is quasi-minimal w.r.t. T2 1

2
spaces having countable

closed cs-networks.
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T2-degrees vs. T1-degrees.

A space is T2 if the diagonal is closed.

A space is T1 if every singleton is closed.

Example
The cocylinder topology is the topology on ωω generated by
{ωω \ [σ] : σ ∈ ω<ω}, where [σ] = {x ∈ ωω : σ ≺ x}.

This is second-countable, T1, but not Hausdorff.
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Theorem (2 vs. 1)
Let x ∈ ωω be sufficiently fast-growing as a function on ω.
deg(x): the degree of x w.r.t. the cocylinder topology.

1 deg(x) is realized as the degree of a point in a T1 space.
2 deg(x) cannot be realized as the degree of a point in a

T2-space.
3 deg(x) is quasi-minimal w.r.t. T2 spaces having countable

closed cs-networks.

Takayuki Kihara (Berkeley) and Arno Pauly (Bruxelles) Degrees in topological spaces with countable cs-networks



T1-degrees vs. T0-degrees.

Example
The lower topology is the topology on R generated by
{(q,∞) : q ∈ Q}.

This is second-countable, T0, but not T1.

Theorem (1 vs. 0)
Let x ∈ R be neither left- nor right-c.e.
deg(x): the degree of x w.r.t. the lower topology.

1 deg(x) is realized as the degree of a point in a T0 space.
2 deg(x) is quasi-minimal w.r.t. T1 spaces.
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[second-countable]-degrees vs. [non-second-countable]-degrees.

Remark
The category of admissibly represented sps. is cartesian closed.
Thus, if X is admissibly represented, then so is the following space:

A1(X) = {f ∈ C(X, S) : f−1{⊥} is singleton},

where S = {⊤,⊥} is the Sierpiński space, whose open sets are ∅,
{⊤}, and {⊤,⊥}.
Roughly speaking,A1(X) is the space of closed singletons in X.

Recursion-theoretic view
The degree of difficulty of calling a name of a point {x} inA1(X)
≈ that of finding an oracle z making x be a Π0

1
(z) singleton.
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One may think ofA1(ωω) as one of the easiest
non-second-countable spaces.

We say that x ∈ ωω is a lost melody if there is z ∈ ωω such that
{x} is a Π0

1
(z) singleton (i.e., {x} ≤T z), but x !T z′.

Theorem ([second-countable] vs. [non-second-countable])
Let x ∈ ωω be a lost melody s.t. {x} is not computable.
deg({x}): the degree of {x} as a point inA1(ωω).
Then, deg({x}) is quasi-minimal w.r.t. second-countable spaces.
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More remarks onA1(X)

Proposition
1 If X is Hausdorff, {{x}} 3→ x : A1A1(X) → X is continuous.
2 There is a T1 space X such that {{x}} 3→ x : A1A1(X) → X

is not continuous (indeed, not Borel).
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Proof of Theorem (3 vs. 21
2 )

The degree of a complicated point in the Gandy-Harrington space cannot be a
degree of a point of a Hausdorff space having a countable closed cs-network.

Recall: a point x in a space X with a countable cs-network N is named
by an enumeration p of a local subnetwork at x, that is,

x ∈ Np(n) for any n ∈ ω,

(∀U open nbhd of x)(∃n) x ∈ Np(n) ⊆ U.

Consider another representation δ̄N of X defined by δ̄N(p) = x iff

x ∈ Np(n) for any n ∈ ω,

(∀U open nbhd of x)(∃n) x ∈ Np(n) ⊆ U.
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Proof of Theorem (3 vs. 21
2 )

The degree of a complicated point in the Gandy-Harrington space cannot be a
degree of a point of a Hausdorff space having a countable closed cs-network.

Regular =⇒ Having a countable closed cs-network.

Proposition
If X is a Hausdorff space having a countable closed cs-network N
then id : (X, δ̄N) → (X, δN) is continuous.

Lemma
(X, δN): Hausdorff space having a countable cs-network.
Let z ∈ (ωω, τGH) and x ∈ X.
If a δN -name of x is computable relative to a GH-name of z,
then no GH-name of z is computable relative to a δ̄N -name of x.
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Lemma
If a δN -name of x is computable relative to a GH-name of z,
then no GH-name of z is computable relative to a δ̄N -name of x.

Se : the e-th lightface Σ1
1

set.
A GH-name of x is an enumeration of Gx = {e : x ∈ Se}.

Assume that x ≤T z via Ψ, that is,
(e,D) ∈ Ψ and D ⊆ Gx =⇒ z ∈ Ne .
U open nbhd of z =⇒ ∃(e,D) ∈ Ψ [D ⊆ Gx and z ∈ Ne ⊆ U]

L = {n : ∀(m,D) ∈ Ψ [D ⊆ Gx =⇒ Nm ∩ Nn ! ∅]}.
If n ∈ L then z ∈ Nn.
Suppose z ≤T (x, δ̄N) via an enumeration Γ:

e ∈ Gx ⇐⇒ (∃D finite)[(e,D) ∈ Γ and D ⊆ L].
Since L is Π1

1
(x), this gives a Π1

1
(x) definition of Gx ;

however Gx is clearly Σ1
1
(x) complete, a contradiction.
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then no GH-name of z is computable relative to a δ̄N -name of x.

Se : the e-th lightface Σ1
1

set.
A GH-name of x is an enumeration of Gx = {e : x ∈ Se}.
Assume that x ≤T z via Ψ, that is,

(e,D) ∈ Ψ and D ⊆ Gx =⇒ z ∈ Ne .
U open nbhd of z =⇒ ∃(e,D) ∈ Ψ [D ⊆ Gx and z ∈ Ne ⊆ U]

L = {n : ∀(m,D) ∈ Ψ [D ⊆ Gx =⇒ Nm ∩ Nn ! ∅]}.
If n ∈ L then z ∈ Nn.
Suppose z ≤T (x, δ̄N) via an enumeration Γ:

e ∈ Gx ⇐⇒ (∃D finite)[(e,D) ∈ Γ and D ⊆ L].
Since L is Π1

1
(x), this gives a Π1

1
(x) definition of Gx ;

however Gx is clearly Σ1
1
(x) complete, a contradiction.
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