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Background

The theory of ωω-representations makes it possible to develop
computability theory on T0-spaces with countable cs-networks.

K.-Pauly (201x): Degree theory on ωω-represented spaces.

My original motivation came from my previous works trying to solve an open
problem in descriptive set theory; K. (2015) and Gregoriades-K.-Ng (201x).

K.-Lempp-Ng-Pauly (201x) established classification theory of
e-degrees by using degree theory on second-countable spaces.

This work includes degree-theoretic analysis of topological separation
property, submetrizability, Gδ-spaces, etc.

However, T0-spaces with countable cs-networks and continuous
functions form a cartesian closed category, which is far larger than
the category of second-countable T0 spaces.

Thus, one can study...
computability theory on some NON-second-countable spaces
without using notions from GRT such as α-recursion, E-recursion, ITTM, etc.
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Observation
One can study computability on some NON-2nd-countable spaces
without using notions from GRT such as α-recursion, E-recursion, ITTM, etc.

Question
Is it worth studying non-2nd-countable computability theory?

Answer
Definitely, YES! Because the space of higher type continuous
functionals is not second countable:
There is no 2nd-countable topology on C(NN,N) with continuous evaluation.

Kleene, Kreisel (’50s): Computability theory at higher types.

Hinman, Normann (’70s, ’80s):
Degree theory on higher type continuous functionals.
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C(NN,N): the space of continuous functions f : NN → N.

p = (⟨σs , ks⟩)s∈ω is a name of f ∈ C(NN,N) iff

{f} =
∩

s

[σs , ks],

where [σ, k ] = {g ∈ C(NN,N) : (∀x ≻ σ) g(x) = k }.
(In Kleene’s terminology, it is called an associate)

Write δKK (p) = f if p is a name of f . (KK stands for Kleene-Kreisel)

Consider the quotient topology τKK on C(NN,N) given by δKK .
The evaluation map is continuous w.r.t. τKK .

Observation (Openness is NOT a basic concept)

[σ, n] is closed, but NOT open w.r.t. τKK .
There is no countable collection of open sets generating τKK .
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Definition (Arhangel’skii 1959)

A network for a space X is a collectionN of subsets of X such that

(∀x ∈ X)(∀U open nbhd of x)(∃N ∈ N) x ∈ N ⊆ U.

open network = open basis

Example

([σ, k ])σ,k forms a countable (closed) network for C(NN,N).

N is a local network at x if x ∈ ∩N , and

(∀U open nbhd of x)(∃N ∈ N) x ∈ N ⊆ U.

Encoding of a space having a countable network

Let (Nn)n∈ω be a countable network for a space X.
Then, we say that p ∈ NN is a name of x ∈ X if

{Np(n) : n ∈ N} is a local network at x.
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A number of variants of networks has been extensively studied in
general topology, especially in the context of function space
topology (e.g. Cp-theory), generalized metric space theory, etc.

k -network, cs-network, cs∗-network, sn-network, Pytkeev
network, etc.

However, in such a context, spaces are mostly assumed to be regular T1.
e.g. cosmic space, ℵ0-space (Michael 1966), etc.

We don’t want to assume regularity, eg. (C(NN,N), τKK ) is not regular (Schröder)
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Fact (Schröder 2002)

For a T0-space X, the following are equivalent:
1 X is admissibly represented.
2 X has a countable cs-network.

For a sequential T0 space, these conditions are also equivalent to being qcb0:

A space is qcb0 if it is T0, and is a quotient of a second-countable (countably

based) space.

(Guthrie 1971) A cs-network is a network N such that every
convergent sequence converging to a point x ∈ U with U open,
is eventually in N ⊆ U for some N ∈ N .

“Cs-network comes first, then topology.”

In principle, we cannot recover topology from a network, but given a
countable cs-network, we can recover the sequentialization of the topology.

(Schröder) Sequential T0-spaces with countable cs-networks and
continuous functions form a cartesian closed category.

YX is topologized by the sequentialization of the cs-open topology.

Takayuki Kihara (Nagoya) and Arno Pauly (Bruxelles) De Groot duality in Computability Theory



Fact (Schröder 2002)
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Claim

The de Groot dual of NN is admissibly represented.

Definition (De Groot et al. 1969)

For a topological space X , the de Groot dual is the topology on X
generated by the complements of saturated compact sets w.r.t. the
original topology on X .

We use Xd to denote the de Groot dual of X .
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Dual Representation (K.-Pauly)

The category of admissibly represented sps. is cartesian closed.
Thus, if X is admissibly represented, then so is the following:

A1(X) = {f ∈ C(X , S) : f−1{⊥} is singleton},

where S = {⊤,⊥} is the Sierpiński space, whose open sets are ∅,
{⊤}, and {⊤,⊥}.
Roughly speaking,A1(X) is the space of closed singletons in X .

Given an adm. rep. δ of X , we get an adm. rep. δ1 ofA1(X).
We define the dual representation δc of δ by:

δc(p) = x ⇐⇒ (δ1(p))−1{⊥} = {x}.

Write Xc for the represented space (X , δc).

x has a computable name in Xc iff {x} is a Π0
1

singleton in X .
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Defining points in Xc ≈ “implicitly” defining points in X .

If X is admissibly represented, so is the dual Xc .

Claim

The de Groot dual of NN is admissibly represented.

De Brecht (2014) introduced the notion of a quasi-Polish space
to develop “non-metrizable/non-Hausdorff descriptive set theory”.

Schröder (unpublished) introduced the notion of a co-Polish space.

A space is co-Polish if C(X , S) is quasi-Polish.

(Schröder) If X is quasi-Polish, so is C(C(X , S), S).

If X is Polish, then the topology on C(X , S) is indeed the
compact-open topology.

Therefore, if X is Polish, the sequentialization of the cs-open
topology on C(X , S) coincides with the compact-open topology.

This concludes Xd ≃ Xc whenever X is Polish.
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Xd ≃ Xc whenever X is Polish.

We do not know whether Xd ≃ Xc for non-Polish X .

Xc is better-behaved than Xd from the viewpoint of TTE.

Xc is admissibly represented whenever X is.

But, it is unclear whether the classical duality results hold for Xc .

De Groot et al., Lawson, and others

X is a Hausdorff k -space =⇒ Xdd ≃ X .

X is stably compact =⇒ Xdd ≃ X .

Some partial result:

Theorem (K.-Pauly)

X is second-countable and Hausdorff =⇒ Xcc ≃ X .
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Suppose that X is represented by δ :⊆ NN → X .

If δ(p) = x, then we think of p as a name of x.

The complexity of x is identified with that of δ−1{x} (all names of x).

The degree of x is the degree of difficulty of calling a name of x.

Definition (K.-Pauly 201x)

Let X , Y be represented spaces. Write x : X ≤T y : Y if there is an
algorithm which, given a name of y, returns a name of x.

That is, x : X ≤T y : Y iff

(∃Φ)(∀p) [p is a name of y =⇒ Φ(p) is a name of x]

The degree of difficulty of calling a name of a point x in Xc

≈ that of finding an oracle z making x be a Π0
1
(z) singleton in X .
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SN is a universal second-countable T0-space.

The degrees of points in SN = enumeration degrees.

Observation

Given A ⊆ N, define χA ∈ SN by χA(n) = ⊤ iff n ∈ A .

In the theory of e-degrees, A ⊆ N is called quasi-minimal iff

(∀y ∈ 2N) [y : 2N ≤T χA : SN =⇒ y : 2N ≤T ∅].

Definition (De Brecht-K.-Pauly)

For represented spaces X , Y , a point x ∈ X is Y -quasi-minimal if

(∀y ∈ Y) [y : Y ≤T x : X =⇒ y : Y ≤T ∅].
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We say that x ∈ NN is a Π0
1
-lost melody if there is z ∈ NN s.t.

x is implicitly Π0
1

definable relative to z

x is not explicitly ∆0
2

definable relative to z.

In other words, {x} is a Π0
1
(z) singleton, but x ≰T z′.

This terminology comes from an analogous concept in the theory of ITTMs.

Theorem (K.-Pauly)

Every Π0
1
-lost melody x is, as a point in the dualspace (NN)c ,

SN-quasiminimal:

(∀Y ∈ SN) [y : SN ≤T x : (NN)c =⇒ y : SN ≤T ∅]

This result can be relativized for any oracle A :
Every Π0

1
(A)-lost melody x is, as a point in the dualspace (NN)c , quasiminimal

w.r.t. all spaces in SCA
0 ,

where SCA
0 is the class of all A -computable second-countable T0 spaces.
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