De Groot duality in Computability Theory

Takayuki Kihara

Nagoya University, Japan

Joint Work with

Arno Pauly

Université Libre de Bruxelles, Belgium

The 15th Asian Logic Conference, Daejeon, Republic of Korea, July 12th, 2017

Background

- The theory of ω^ω-representations makes it possible to develop computability theory on *T*₀-spaces with countable cs-networks.
- K.-Pauly (201x): Degree theory on ω^{ω} -represented spaces.

My original motivation came from my previous works trying to solve an open problem in descriptive set theory; K. (2015) and Gregoriades-K.-Ng (201x).

 K.-Lempp-Ng-Pauly (201x) established classification theory of e-degrees by using degree theory on second-countable spaces.

This work includes degree-theoretic analysis of topological separation property, submetrizability, G_{δ} -spaces, etc.

Background

- The theory of ω^ω-representations makes it possible to develop computability theory on *T*₀-spaces with countable cs-networks.
- K.-Pauly (201x): Degree theory on ω^{ω} -represented spaces.

My original motivation came from my previous works trying to solve an open problem in descriptive set theory; K. (2015) and Gregoriades-K.-Ng (201x).

 K.-Lempp-Ng-Pauly (201x) established classification theory of *e*-degrees by using degree theory on second-countable spaces.

This work includes degree-theoretic analysis of topological separation property, submetrizability, G_{δ} -spaces, etc.

- However, *T*₀-spaces with countable cs-networks and continuous functions form a cartesian closed category, which is far larger than the category of second-countable *T*₀ spaces.
- Thus, one can study... computability theory on some NON-second-countable spaces without using notions from GRT such as α-recursion, *E*-recursion, ITTM, etc.

Observation

One can study computability on some NON-2nd-countable spaces

without using notions from GRT such as α -recursion, *E*-recursion, ITTM, etc.

Question

Is it worth studying non-2nd-countable computability theory?

Observation

One can study *computability on some* NON-2nd-countable spaces without using notions from GRT such as α -recursion, *E*-recursion, ITTM, etc.

Question

Is it worth studying non-2nd-countable computability theory?

Answer

Definitely, YES! Because the space of higher type continuous functionals is not second countable:

There is no 2nd-countable topology on $C(\mathbb{N}^{\mathbb{N}}, \mathbb{N})$ with continuous evaluation.

- Kleene, Kreisel ('50s): Computability theory at higher types.
- Hinman, Normann ('70s, '80s):
 Degree theory on higher type continuous functionals.

- $C(\mathbb{N}^{\mathbb{N}}, \mathbb{N})$: the space of continuous functions $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$.
- $p = (\langle \sigma_s, k_s \rangle)_{s \in \omega}$ is a *name* of $f \in C(\mathbb{N}^{\mathbb{N}}, \mathbb{N})$ iff

$$\{\mathbf{f}\} = \bigcap_{\mathbf{s}} [\sigma_{\mathbf{s}}, \mathbf{k}_{\mathbf{s}}],$$

where $[\sigma, k] = \{g \in C(\mathbb{N}^{\mathbb{N}}, \mathbb{N}) : (\forall x \succ \sigma) g(x) = k\}.$

(In Kleene's terminology, it is called an associate)

- $C(\mathbb{N}^{\mathbb{N}}, \mathbb{N})$: the space of continuous functions $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$.
- $p = (\langle \sigma_s, k_s \rangle)_{s \in \omega}$ is a *name* of $f \in C(\mathbb{N}^{\mathbb{N}}, \mathbb{N})$ iff

$$\{\mathbf{f}\} = \bigcap_{\mathbf{s}} [\sigma_{\mathbf{s}}, \mathbf{k}_{\mathbf{s}}],$$

where $[\sigma, k] = \{g \in C(\mathbb{N}^{\mathbb{N}}, \mathbb{N}) : (\forall x \succ \sigma) g(x) = k\}.$

(In Kleene's terminology, it is called an associate)

Write $\delta_{KK}(p) = f$ if p is a name of f. (*KK* stands for Kleene-Kreisel) Consider the quotient topology τ_{KK} on $C(\mathbb{N}^{\mathbb{N}}, \mathbb{N})$ given by δ_{KK} . The evaluation map is continuous w.r.t. τ_{KK} .

Observation (Openness is NOT a basic concept)

 $[\sigma, n]$ is closed, but NOT open w.r.t. τ_{KK} . There is no countable collection of open sets generating τ_{KK} .

Definition (Arhangel'skii 1959)

A network for a space X is a collection N of subsets of X such that

 $(\forall x \in X)(\forall U \text{ open nbhd of } x)(\exists N \in N) x \in N \subseteq U.$

open network = open basis

Example

 $([\sigma, k])_{\sigma,k}$ forms a countable (closed) network for $C(\mathbb{N}^{\mathbb{N}}, \mathbb{N})$.

Definition (Arhangel'skii 1959)

A network for a space X is a collection N of subsets of X such that

 $(\forall x \in X)(\forall U \text{ open nbhd of } x)(\exists N \in N) x \in N \subseteq U.$

open network = open basis

Example

 $([\sigma, k])_{\sigma,k}$ forms a countable (closed) network for $C(\mathbb{N}^{\mathbb{N}}, \mathbb{N})$.

N is a *local network at* **x** if $x \in \bigcap N$, and

 $(\forall U \text{ open nbhd of } x)(\exists N \in \mathcal{N}) x \in N \subseteq U.$

Encoding of a space having a countable network

Let $(N_n)_{n \in \omega}$ be a countable network for a space X. Then, we say that $p \in \mathbb{N}^{\mathbb{N}}$ is a *name* of $x \in X$ if

 $\{N_{p(n)} : n \in \mathbb{N}\}$ is a local network at **x**.

A number of variants of networks has been extensively studied in general topology, especially in the context of function space topology (e.g. C_p -theory), generalized metric space theory, etc.

k-network, cs-network, cs*-network, sn-network, Pytkeev network, etc.

However, in such a context, spaces are mostly assumed to be regular T_1 . e.g. cosmic space, \aleph_0 -space (Michael 1966), etc.

We don't want to assume regularity, eg. ($C(\mathbb{N}^{\mathbb{N}},\mathbb{N}), \tau_{KK}$) is not regular (Schröder)

Fact (Schröder 2002)

For a T_0 -space X, the following are equivalent:

- X is admissibly represented.
- 2 X has a countable cs-network.

For a sequential T_0 space, these conditions are also equivalent to being qcb₀: A space is qcb_0 if it is T_0 , and is a quotient of a second-countable (countably based) space.

(Guthrie 1971) A cs-network is a network N such that every convergent sequence converging to a point x ∈ U with U open, is eventually in N ⊆ U for some N ∈ N.

Fact (Schröder 2002)

For a T_0 -space X, the following are equivalent:

- X is admissibly represented.
- 2 X has a countable cs-network.

For a sequential T_0 space, these conditions are also equivalent to being qcb₀: A space is qcb_0 if it is T_0 , and is a quotient of a second-countable (countably based) space.

- (Guthrie 1971) A cs-network is a network N such that every convergent sequence converging to a point x ∈ U with U open, is eventually in N ⊆ U for some N ∈ N.
- "Cs-network comes first, then topology."

In principle, we cannot recover topology from a network, but given a countable cs-network, we can recover the *sequentialization* of the topology.

• (Schröder) Sequential **T**₀-spaces with countable cs-networks and continuous functions form a cartesian closed category.

 Y^{X} is topologized by the sequentialization of the cs-open topology.

Claim

The de Groot dual of $\mathbb{N}^{\mathbb{N}}$ is admissibly represented.

Definition (De Groot et al. 1969)

For a topological space X, the *de Groot dual* is the topology on X generated by the complements of saturated compact sets w.r.t. the original topology on X.

We use X^d to denote the de Groot dual of X.

Dual Representation (K.-Pauly)

The category of admissibly represented sps. is cartesian closed. Thus, if \boldsymbol{X} is admissibly represented, then so is the following:

 $\mathcal{A}_1(X) = \{ f \in C(X, \mathbb{S}) : f^{-1}\{\bot\} \text{ is singleton} \},\$

where $\mathbb{S} = \{\mathsf{T}, \bot\}$ is the Sierpiński space, whose open sets are \emptyset , $\{\mathsf{T}\}$, and $\{\mathsf{T}, \bot\}$.

Roughly speaking, $\mathcal{R}_1(X)$ is the space of closed singletons in X.

Given an adm. rep. δ of **X**, we get an adm. rep. δ_1 of $\mathcal{A}_1(\mathbf{X})$. We define the *dual representation* δ^c of δ by:

 $\delta^{\mathbf{c}}(p) = x \iff (\delta_1(p))^{-1}\{\bot\} = \{x\}.$

Write X^{c} for the represented space (X, δ^{c}) .

x has a computable name in X^c iff $\{x\}$ is a Π^0_1 singleton in **X**.

- Defining points in $X^c \approx$ "implicitly" defining points in X.
- If **X** is admissibly represented, so is the dual **X**^c.

Claim

The de Groot dual of $\mathbb{N}^{\mathbb{N}}$ is admissibly represented.

- De Brecht (2014) introduced the notion of a *quasi-Polish space* to develop "non-metrizable/non-Hausdorff descriptive set theory".
- Schröder (unpublished) introduced the notion of a co-Polish space.

A space is co-Polish if C(X, S) is quasi-Polish.

(Schröder) If X is quasi-Polish, so is C(C(X, S), S).
 If X is Polish, then the topology on C(X, S) is indeed the

compact-open topology.

- Therefore, if X is Polish, the sequentialization of the cs-open topology on C(X, S) coincides with the compact-open topology.
- This concludes $X^d \simeq X^c$ whenever X is Polish.

- $X^d \simeq X^c$ whenever **X** is Polish.
- We do not know whether $X^d \simeq X^c$ for non-Polish X.
- X^c is better-behaved than X^d from the viewpoint of TTE.

X^c is admissibly represented whenever X is.

• But, it is unclear whether the classical duality results hold for X^c.

De Groot et al., Lawson, and others

- X is a Hausdorff k-space $\implies X^{dd} \simeq X$.
- X is stably compact $\implies X^{dd} \simeq X$.

Some partial result:

Theorem (K.-Pauly)

X is second-countable and Hausdorff $\implies X^{cc} \simeq X$.

Suppose that **X** is represented by $\delta :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbf{X}$.

- If $\delta(p) = x$, then we think of **p** as a name of **x**.
- The complexity of **x** is identified with that of $\delta^{-1}{x}$ (all names of **x**).
- The degree of **x** is the *degree of difficulty of calling a name of* **x**.

Definition (K.-Pauly 201x)

Let **X**, **Y** be represented spaces. Write $x : X \leq_T y : Y$ if there is an algorithm which, given a name of **y**, returns a name of **x**.

That is, $x : X \leq_T y : Y$ iff

 $(\exists \Phi)(\forall p)$ [p is a name of $y \implies \Phi(p)$ is a name of x]

The degree of difficulty of calling a name of a point **x** in $X^c \approx$ that of finding an oracle **z** making **x** be a $\Pi^0_{+}(z)$ singleton in **X**.

• $\mathbb{S}^{\mathbb{N}}$ is a universal second-countable T_0 -space.

• The degrees of points in $\mathbb{S}^{\mathbb{N}}$ = enumeration degrees.

Observation

- Given $\mathbf{A} \subseteq \mathbb{N}$, define $\chi_{\mathbf{A}} \in \mathbb{S}^{\mathbb{N}}$ by $\chi_{\mathbf{A}}(n) = \top$ iff $n \in \mathbf{A}$.
- In the theory of *e*-degrees, $A \subseteq \mathbb{N}$ is called *quasi-minimal* iff

$$(\forall y \in 2^{\mathbb{N}}) \ [y \colon 2^{\mathbb{N}} \leq_T \chi_A \colon \mathbb{S}^{\mathbb{N}} \implies y \colon 2^{\mathbb{N}} \leq_T \emptyset].$$

Definition (De Brecht-K.-Pauly)

For represented spaces X, Y, a point $x \in X$ is Y-quasi-minimal if

 $(\forall y \in Y) [y: Y \leq_T x: X \implies y: Y \leq_T \emptyset].$

We say that $x \in \mathbb{N}^{\mathbb{N}}$ is a \prod_{1}^{0} -lost melody if there is $z \in \mathbb{N}^{\mathbb{N}}$ s.t.

- x is implicitly Π_1^0 definable relative to z
- **x** is not explicitly Δ_2^0 definable relative to **z**.

In other words, $\{x\}$ is a $\Pi_1^0(z)$ singleton, but $x \not\leq_T z'$.

This terminology comes from an analogous concept in the theory of ITTMs.

Theorem (K.-Pauly)

Every Π_1^0 -lost melody **x** is, as a point in the dualspace $(\mathbb{N}^{\mathbb{N}})^c$, $\mathbb{S}^{\mathbb{N}}$ -quasiminimal:

$$(\forall Y \in \mathbb{S}^{\mathbb{N}}) [y: \mathbb{S}^{\mathbb{N}} \leq_{T} x: (\mathbb{N}^{\mathbb{N}})^{c} \implies y: \mathbb{S}^{\mathbb{N}} \leq_{T} \emptyset]$$

This result can be relativized for any oracle A:

Every $\Pi^0_1(A)$ -lost melody x is, as a point in the dualspace $(\mathbb{N}^{\mathbb{N}})^c$, quasiminimal w.r.t. all spaces in SC^A_0 ,

where SC_0^A is the class of all A-computable second-countable T_0 spaces.