
BOREL-PIECEWISE CONTINUOUS REDUCIBILITY FOR

UNIFORMIZATION PROBLEMS

TAKAYUKI KIHARA

Abstract. We study a fine hierarchy of Borel-piecewise continuous functions,
especially, between closed-piecewise continuity and Gδ-piecewise continuity.
Our aim is to understand how a priority argument in computability theory is

connected to the notion of Gδ-piecewise continuity, and then we utilize this con-
nection to obtain separation results on subclasses of Gδ-piecewise continuous
reductions for uniformization problems on set-valued functions with compact
graphs. This method is also applicable for separating various non-constructive

principles in the Weihrauch lattice.

1. Introduction

1.1. Historical Background. For topological spaces X and Y, a function f :
X → Y is σ-continuous (or countably continuous) if there is a countable cover
{Xn}n∈ω of X such that f ↾Xn is continuous for every n ∈ ω. If each Xn can be
chosen as a Γ set, then f is said to be Γ-piecewise continuous. It is clear that every
σ-continuous Borel function is always Borel-piecewise continuous. The notion of
σ-continuity was first proposed by Luzin, who asked, in the early 20th century,
whether every Borel function is σ-continuous. Although Luzin’s problem has been
solved negatively, in recent years, the notion of σ-continuity itself has received
increasing attention in descriptive set theory and related areas. In these areas,
researchers have accomplished an enormous amount of work connecting finite-level
Borel functions and Borel-piecewise continuous functions (see [9, 10, 12, 15, 24, 26,
29, 36, 45, 47, 50]). These works have also led us to the discovery that the notion
of piecewise continuity plays a crucial role in the study of the hierarchy of Borel
isomorphisms (see [23, 30]).

The hierarchies of closed-piecewise continuous functions have been extensively
studied in various areas of mathematics and computer science, e.g., in the context
of the levels of discontinuity [11, 16, 17, 42], the subhierarchy of Baire-one-star
functions [31, 41, 44], and the mind-change hierarchy [14]. The transfinite hierarchy
of levels of discontinuity (numbers of mind-changes, etc.) is actually useful for
analyzing the Baire hierarchy of Borel functions. For instance, Solecki [50, Theorem
3.1] used a transfinite derivation process to obtain his dichotomy theorem for Baire-
one functions, and Semmes [47, Lemma 4.3.3] introduced a higher level analog of a
transfinite derivation process to prove his Gδ-decomposition theorem for the Λ2,3

functions (a subclass of the Baire-two functions).
The class of σ-continuous functions which are not closed-piecewise continuous

is also found to have a crucial role in various fields. For instance, such a no-
tion is closely associated with the notion of countable-dimensionality in infinite
dimensional topology (see [51]). This class is also important in the study of Borel
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isomorphisms because, whenever two given Polish spaces are σ-continuously isomor-
phic, they are always Gδ-piecewise-continuously isomorphic, whereas they are not
necessarily closed-piecewise-continuously isomorphic (see [30, 51]). For another ex-
ample, Gδ-piecewise continuity is closely connected to the notion of partial learning
in computational learning theory (see [22]).

In this article, we will introduce variations of Wadge degrees to measure the dif-
ficulty of uniformization problems. The Wadge degrees provide a classification of
subsets of a topological space with respect to continuous reducibility. Recently, in
order to analyze the structure of subsets of a higher-dimensional Polish space, sev-
eral researchers started to study variations of Wadge degrees using finite-level Borel
functions (see [38]), which are known to be related to Borel-piecewise continuous
functions as mentioned above.

We will investigate subclasses of Gδ-piecewise continuous reductions to compare
uniformization problems which do not admit σ-continuous uniformizations. Recall
that the decomposition theorem of second-level Borel functions into Gδ-piecewise
continuous functions on finite dimensional Polish spaces has been proved by Semmes
[47]. Remarkably, Semmes utilized a priority argument (a standard technique in
computability theory) to prove his decomposition theorem on Gδ-piecewise Baire-
one functions. Our ultimate goal is to understand why a priority argument is useful
for analyzing Gδ-piecewise continuous/Baire-one functions.

1.2. Summary. In this article, the notion of Gδ-piecewise continuity is subdivided
into the notions of piecewise continuity with respect to labeled well-founded trees.
We will regard a labeled well-founded tree (which generates a certain subclass
of the Gδ-piecewise continuous functions) as a priority tree, and then function
application as the act of finding the true path of the priority tree. We will utilize
this way of thinking to obtain separation results on subclasses of Gδ-piecewise
continuous reductions for uniformization problems on set-valued functions with
compact graphs.

This method is also applicable for separating various non-constructive principles
in the Weihrauch lattice. For instance, our main results imply several statements
of the following kind:

(†) For any n ∈ ω, there exist multi-valued functions Fn, Gn : 2ω ⇒ 2ω whose
graphs are Π0

1 (hence Fn, Gn ≤W WKL) such that

WKL ≤W CN ⋆ (LPO
′)∗ ⋆ · · · ⋆ CN ⋆ LPO

′ ⋆ Fn,

WWKL ̸≤W (LPO′)∗ ⋆ CN ⋆ · · · ⋆ (LPO′)∗ ⋆ CN ⋆ Fn,

WKL ≤W CN ⋆ (LPO
′)∗ ⋆ · · · ⋆ CN ⋆ (LPO

′)∗ ⋆ LPO ⋆ Gn,

WWKL ̸≤W (LPO′)∗ ⋆ CN ⋆ · · · ⋆ (LPO′)∗ ⋆ CN ⋆ (LPO
′)∗ ⋆ Gn.

Here, A⋆B⋆ · · · indicates n repetitions of the sequential composition A⋆B,
i.e., (A ⋆ B)(n). The symbols WKL, WWKL, LPO, and CN denote weak
König’s lemma, weak weak König’s lemma, the limited principle of omni-
science, and the closed choice principle on the natural numbers, respectively.
Moreover, ⋆, ∗, and ′ denote sequential composition, finite parallelization,
and the jump operation, respectively.

For notations and terminologies in the above statement (†), see [6, 7, 8]. We
will not use any of the above notations and terminologies in the proof of our main
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theorems, so we do not require that the reader be familiar with the Weihrauch
lattice.

1.3. Notations. Let ω denote the set of all non-negative integers. For a set X, by
X<ω we mean the set of all finite strings σ from X, that is, all functions σ whose
domain is a finite initial segment of ω such that σ(n) ∈ X for all n ∈ dom(σ).
This dom(σ) is also written as |σ|, and called the length of σ. An individual string
σ ∈ X<ω is sometimes written as ⟨σ(0), σ(1), . . . , σ(|σ| − 1)⟩. In particular, the
empty string is denoted by ⟨⟩. For strings σ, τ ∈ X<ω, by σ⌢τ we denote the
concatenation of σ and τ . By σlast we denote the last entry of σ, and then σ− is
the result by dropping the last entry from σ, that is, σ = σ−⌢σlast. We write σ ⪯ τ
if σ is an initial segment of τ , and if n < |σ| then, by σ ↾n we denote the unique
initial segment of σ of length n. A tree T on X is a subset of X<ω closed under
taking initial segments. The unique ⪯-minimal element (that is, the empty string
⟨⟩) of a tree T is called the root. A string σ ∈ T is a terminal or a leaf if it is a
⪯-maximal node. By T leaf we denote the set of all leaves in T . For each σ ∈ T , by
succT (σ) we denote the set of all immediate successors of σ.

We also use several notions and techniques from Computability Theory. For
instance, by ≤T we denote Turing reducibility, and for x, y ∈ Xω, the sum x⊕ y is
defined by (x⊕ y)(2n) = x(n) and (x⊕ y)(2n+1) = y(n) for each n ∈ ω. For basic
terminology from Computability Theory and Computable Analysis, see Soare [49]
and Weihrauch [55], respectively.

2. Borel-Piecewise Continuous Reducibility

2.1. Uniformization Problems. In this article, a space is always assumed to
be separable metrizable. For spaces X and Y, a relation F ⊆ X × Y is called a
(partial) set-valued function or a (partial) multi-valued function, and denoted by
F :⊆ X ⇒ Y. We also denote by F (x) the set {y ∈ Y : (x, y) ∈ F}, and by dom(F )
the set {x ∈ X : F (x) ̸= ∅}. A function ψ : dom(F ) → Y is called a selection or a
uniformization of F if ψ(x) ∈ F (x) for all x ∈ dom(F ). In this case, we say that ψ
uniformizes F .

There are numerous works on uniformization theorems (measurable/continuous
selection theorems; see [25, 53, 54]). For instance, it is known that every Borel re-
lation in a product Polish space admits a uniformization which is measurable with
respect to the smallest σ-algebra including all analytic sets (Yankov-von Neumann),
while such a set does not necessarily admit a Borel uniformization (Novikov). Re-
cently, the classification problem of individual uniformization problems in classical
mathematics has started to be developed in Computable Analysis (see [4, 6, 7])
based on ideas originated from Reverse Mathematics.

In this article, we focus on uniformization problems on compact-valued func-
tions. Indeed, we require set-valued functions not only to be compact-valued, but
also to have compact graphs. We sometimes call such a function a compact-graph
multifunction. It is known that such a function is upper semi-continuous. Se-
lection/uniformization problems on upper semi-continuous closed-valued functions
have been widely investigated in various areas of mathematics (see Jayne-Rogers
[25]). In particular, one can deduce the following result from known facts:

Fact 2.1. A compact set K ⊆ 2ω × 2ω always admits a Baire-one uniformization,
wheareas K does not necessarily admit a σ-continuous uniformization.
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The above fact can also be obtained from the Kleene-Kreisel Basis Theorem,
and the Kleene Non-Basis Theorem (see Kihara [29] for how to interpret the results
from Computability Theory in the context of σ-continuity; see also Section 3.2).
Numerous number of results concerning compact-graph multifunctions on 2ω which
does not admit σ-continuous uniformizations are known in Computability Theory.
Here are some examples:

Example 2.2.

(1) There is a µ-positive compact set in a probability space (X , µ) which does
not admit a σ-continuous uniformization. For instance,

{(x, y) ∈ 2ω × 2ω : Kx(y ↾n) ≥ n− 1}
is such a set with respect to the product measure obtained by fair coin
tossing, where Kx(σ) is the prefix-free Kolmogorov complexity of a binary
string σ relative to an oracle x (that is, Kx(σ) is the length of a shortest
program in some fixed programming language describing the string σ with
the help of the oracle x; see [39]). See also Brattka-Gherardi-Hölzl [6].

(2) There is a compact set K ⊆ 2ω × [0, 1]2 such that K(x) is a nonempty con-
tractible dendroid (arcwise connected hereditarily unicoherent continuum)
for any x ∈ 2ω which does not admit a σ-continuous uniformization. See
Kihara [28].

There are also a large number of interesting examples of compact-graph multi-
functions on 2ω which admit σ-continuous uniformizations. Note that if a compact
set K ⊆ 2ω×2ω admits a σ-continuous uniformization, then it admits aGδ-piecewise
continuous uniformization as well (see Proposition 2.6).

Example 2.3.

(1) Let IVT(x) be the interval coded by a Π0
1-code x ∈ ωω (here recall that, in

descriptive set theory, we usually code a Borel set in a Polish space by using
a point in Baire space ωω). Then it is known that the set-valued function
x 7→ IVT(x) has a σ-continuous uniformization, but has no continuous
uniformization. In the context of Computable Analysis, the uniformization
problem of IVT is closely related to computability-theoretic analysis of the
Intermediate Value Theorem. See [4].

(2) Given a rapidly converging Cauchy sequence x = (qn)n∈ω ∈ Qω, let BE(x)
be the set of all binary expansions of the real r = limn qn. Then BE has a
σ-continuous uniformization, but has no continuous uniformization.

Note also that the above two examples admit both a Baire-one uniformization
and a σ-continuous uniformization; however they do not admit a Baire-one σ-
continuous uniformization.

2.2. Co-Wadge Reducibility. In this section, we propose various reducibility
notions to compare degrees of difficulty of uniformization problems. There are
several natural ways of introducing a notion of reducibility among uniformization
problems, e.g., one can adopt Wadge reducibility and Weihrauch reducibility for
this purpose. In this article, we will combine these reducibility notions with Borel-
piecewise continuity. Let K be a class of functions, e.g., continuous functions,
Gδ-piecewise continuous functions, and σ-continuous functions. Here we assume
that K absorbs continuous functions in the sense that for any continuous functions
φ and ψ, if θ is a K-function, then so is x 7→ φ(x, θ ◦ ψ(x)).
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For two subsets A,B ⊆ X of a topological space X , we say that A is K-Wadge
reducible to B if there is a K-function θ : X → X such that A = θ−1[B]. If we think
of a subset of X as a {0, 1}-valued function on X , then the equation A = θ−1[B] is
equivalent to A = B ◦ θ. Thus, it is natural to say that for functions f : X0 → Y
and g : X1 → Y, f is K-Wadge reducible to g if there is a K-function θ : X0 → X1

such that f = g ◦ θ.
We further extend K-Wadge reducibility to uniformization problems. Let us first

consider the following uniformization problem Fib(g) for a function g : X1 → Y:

Find s : B → X1 such that s(y) ∈ g−1(y) for all y ∈ B, where B is the image
of X1 under g.

It is not hard to check that f is K-Wadge reducible to g if and only if there is a
K-function θ : X0 → X1 such that for any solution s to Fib(f), θ ◦ s is a solution to
Fib(g), that is, one can show the following:

Proposition 2.4. For functions f : X0 → Y and g : X1 → Y, f is K-Wadge
reducible to g if and only if there is a K-function θ : X0 → X1 such that

(∀s : B → X0) [s uniformizes f−1 =⇒ θ ◦ s uniformizes g−1].

Proof. If f is K-Wadge reducible to g, then there is a K-function θ such that
f(x) = y if and only if g(θ(x)) = y for all x, y; therefore y ∈ f−1(x) if and only if
y ∈ g−1(θ(x)). This θ clearly satisfies the desired condition. Conversely, suppose
that we have a K-function θ transforming a uniformization of f−1 into that of g−1.
For any x, if f(x) = y then consider a uniformization s satisfying s(y) = x. Then
we have θ(s(y)) = θ(x) ∈ g−1(y). This implies f(x) = g(θ(x)) = y for any x and
y. □

Based on this observation, for multi-valued functions F : X ⇒ Y0 and G : X ⇒
Y1, we say that F is K-coWadge reducible to G if there is a K-function θ : Y1 → Y0

such that

(∀ψ : X → Y1) [ψ uniformizes G =⇒ θ ◦ ψ uniformizes F ].

One can also extend the notion of K-Wadge reducibility. We say that F : X0 ⇒ Y
is K-Wadge reducible to G : X1 ⇒ Y if there is a K-function θ : X0 → X1 such that

(∀ψ : X0 → Y) [ψ uniformizes F =⇒ ψ uniformizes G ◦ θ].
As in the proof of Proposition 2.4, one can see the one-to-one correspondence of

the dual K-Wadge degrees and the K-coWadge degrees:

Proposition 2.5. The K-Wadge degrees and the K-coWadge degrees of multi-
valued functions are dually isomorphic via the one-to-one correspondence F 7→
F−1. □

One can also see that the K-Wadge degrees and the K-coWadge degrees of multi-
valued functions with compact graphs are dually isomorphic as well since (the
graphs of) F and F−1 are homeomorphic. The following result states that if we
restrict our attention to compact-graph multi-functions, there is no need to consider
a class of functions larger than Gδ-piecewise continuous functions.

Proposition 2.6 (see Higuchi-Kihara [18, Proposition 23]). Suppose that F,G ⊆
2ω×2ω are compact. Then F is σ-continuously coWadge reducible to G if and only
if F is Gδ-piecewise continuously coWadge reducible to G. □



6 TAKAYUKI KIHARA

It is also natural to consider more powerful reductions among uniformization
problems. We say that F is weakly K-coWadge reducible to G if there is a K-
function k : X × Y1 → Y0 such that

(∀ψ : X → Y1) [ψ uniformizes G =⇒ k ◦ ⟨id, ψ⟩ uniformizes F ],

that is, y ∈ G(x) implies k(x, y) ∈ F (x).

Proposition 2.7. There is an order-reversing embedding of the weak K-coWadge
degrees of multi-valued functions into the K-Wadge degrees of single-valued func-
tions.

Indeed, the weak K-coWadge degrees of multi-valued functions are dually iso-
morphic to the K-Wadge degrees of trivial bundles. For a continuous surjection
π : E → B from a topological space E onto another topological space B, the triple
(E ,B, π) is called a bundle. A (global) section of a bundle (E ,B, π) is a right-inverse
of π, i.e., a map s : B → E such that π◦s = idB. Note that the section-finding prob-
lem is exactly the same as the uniformization problem Fib(π), since s is a section
if and only if s(y) ∈ π−1(y) for all y ∈ B. For a multi-valued function F ⊆ X × Y ,
the triple (F, dom(F ), πF ) forms a bundle, where πF (x, y) = x for every (x, y) ∈ F .
Such a triple is called a trivial bundle. Note that a section of a trivial bundle πF
corresponds to the cylinderification of a uniformization of F .

Proof of Proposition 2.7. We claim that F is weakly K-coWadge reducible to G if
and only if πG is K-Wadge reducible to πF . Let k ∈ K witness that F is weakly
K-coWadge reducible to G. Then we have πG(x, y) = πF (x, k(x, y)) since (x, y) ∈
dom(πG) = G, i.e., y ∈ G(x) implies k(x, y) ∈ F (x). Therefore, k0 : x 7→ (x, k(x, y))
witnesses that πG is K-Wadge reducible to πF . Conversely, let k ∈ K be a K-
Wadge reduction from πG to πF , and let ψ be a uniformization of G. Given x,
if ψ(x) ∈ G(x), and therefore πG(x, ψ(x)) = πF ◦ k(x, ψ(x)) = x. Note that
k(x, ψ(x)) ∈ X × Y0 where X and Y0 are the domain and the codomain of F ,
respectively. Thus k(x, ψ(x)) is of the form (k0(x, ψ(x)), k1(x, ψ(x))) and moreover
k0(x, ψ(x)) = x since πF ◦ k(x, ψ(x)) = x. Therefore we have k1(x, ψ(x)) ∈ F (x),
that is, k1 witnesses that F is weakly K-coWadge reducible to G. □

In particular, the K-coWadge degrees of compact-graph multifunctions are em-
bedded into the dual of the K-Wadge degrees of single-valued functions with com-
pact domains via the map F 7→ πF .

Finally, we introduce the notion of Weihrauch reducibility, which has already
been employed to classify numerous individual uniformization problems in classical
analysis and related areas (see [4, 6, 7]). Let H and K be classes of functions. For
multi-valued functions F : X0 ⇒ X1 and G : Y0 ⇒ Y1, we say that F is (K,H)-
Weihrauch reducible to G if and only if there are an H-function h : X0 → X1 and a
K-function k : X0 × Y1 → Y0 such that

(∀ψ : X1 → Y1) [ψ uniformizes G =⇒ k ◦ ⟨id, ψ ◦ h⟩ uniformizes F ],

that is, y ∈ G(h(x)) implies k(x, y) ∈ F (x).
Given a bundle π : E1 → B1 and an H-function h : B0 → B1, the pullback bundle

(h∗E1,B0, h
∗π) is the pullback of morphisms π and h together with the base space

B0 and the projection h∗π : h∗E1 → B0, that is,

h∗E1 = {(x, y) ∈ B0 × E1 : h(x) = π(y)},
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where the projection is h∗π : (x, y) 7→ x. Then, as in the proof of Proposition 2.7,
one can see that F is (K,H)-Weihrauch reducible to G if and only if there is an
H-function h : B0 → B1 such that the projection h∗πG (in the pullback bundle) is
K-Wadge reducible to πF .

One can also show analogous results of Proposition 2.6 for weak K-co-Wadge
reducibility and (K,H)-Weihrauch reducibility, that is, there is no need to think
about a class K of functions strictly larger than that of Gδ-piecewise continuous
functions; however note that it is not true for H.

Remark 2.8.

(1) Wadge [52] introduced the notion of C-Wadge reducibility and L-Wadge
reducibility for subsets of ωω where C and L are the classes of continuous
functions and Lipschitz functions. The notion of B-Wadge reducibility for
Borel functions B is introduced by Andretta-Martin [2], and B∗1-Wadge
reducibility for first-level Borel functions B∗1 (which are equivalent to closed-
piecewise continuous functions by the Jayne-Rogers Theorem [24], and also
to Baire-one-star functions) by Andretta [1]. For K-Wadge reducibility
with respect to other classes K, see also Motto Ros [34, 35, 37] and Motto
Ros-Schlicht-Selivanov [38]

(2) The notion of K-coWadge reducibility for various kinds of classes K of
σ-computable functions (e.g., Π0

1-piecewise computable functions) is first
introduced by the author in his master’s thesis to develop intermediate
notions between Medvedev reducibility and Muchnik reducibility for mass
problems, and essentially the same notion is further developed by Kihara
[27] and Higuchi-Kihara [18, 19].

(3) If both K and H are the sets of all computable functions, then the notion of
(K,H)-Weihrauch reducibility is known as Weihrauch reducibility [5], and
widely studied in Computable Analysis to classify Π2 theorems in classical
mathematics [4, 6, 7]. The notion of (K,H)-Weihrauch reducibility for
K = H = C is also known as continuous Weihrauch reducibility. If both K
and H are the sets of all σ-computable functions (see Section 3.2), then the
notion of (K,H)-Weihrauch reducibility is known as computable reducibility,
which is introduced by Dzhafarov [13] (see also Hirschfeldt-Jockusch [20]).
See also [43] for the category-theoretic view, and [40] for the relationship
with the Wadge degrees.

(4) This kind of use of a fibration is standard in categorical logic (see Jacobs
[21]). Especially, the above interpretation of Weihrauch reducibility in the
setting of a fibration is first explicitly introduced by Yoshimura [56, 57].

2.3. Borel-Piecewise Continuity. We now begin to develop a fine structure of
σ-continuous functions. The notion of Γ-piecewise continuity introduced in Section
1.1 provides us a way of measuring the complexity of functions. More specifically,
the complexity of a σ-continuous Borel function can be defined as the least Borel
complexity of a decomposition making the function be continuous. For instance,
Dirichlet’s nowhere continuous function χQ is obviously Gδ-piecewise continuous,
but not closed-piecewise continuous, so one can say that the Borel complexity of
Dirichlet’s function is exactly 2. One can also classify σ-continuous functions on
the basis of the least cardinality of such a decomposition (see also [42]). Indeed,
Dirichlet’s function is Gδ-2-wise continuous, where, a function f : X → Y is Γ-n-
wise continuous if there is a Γ-cover {Xk}k<n of X such that f ↾Xdiff

k is continuous,
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Figure 1. (Left) A labeled well-founded tree for Gδ-2-wise continuity;
(Right) A flowchart defining Dirichlet’s function χQ.

where Xdiff
k = Xk \

∪
j<kXj , for every k < n. As another example of a Gδ-n-wise

continuous function, it is known in topological dimension theory that there is a
Gδ-(n+1)-wise embedding of Rn into 2ω whereas there is no Gδ-n-wise embedding
of Rn into 2ω (see [51]).

However, this viewpoint is too coarse for our purpose. For instance, closed-
piecewise continuous functions are naturally classified in the context of the transfi-
nite mind-change hierarchy [11, 14] (or equivalently, the hierarchy of Baire-one-star
functions [31]); therefore, a decomposition of a function should be allowed to form
a well-founded tree. Indeed, Selivanov [46] found that, for k ∈ ω, the Wadge
degrees of ∆0

2-measurable k-valued functions f : ωω → k (which are indeed closed-
piecewise continuous since their values have only finitely many possibilities) can
be completely captured by using k-labeled countable forests with no infinite chains
up to homomorphism. Such a forest illustrates a dynamic process approximating
a closed-piecewise continuous function f . However, such a viewpoint involving a
complete classification is now too complicated to analyze functions f : ωω → ωω,
so we here take a bit coarser standpoint.

We keep thinking about a well-founded tree illustrating a dynamic process defin-
ing a σ-continuous Borel function. A Γ-piecewise continuous function in the sense
of Section 1.1 is controlled by a conditional branching described by a Γ formula.
The flowchart of this control process is represented as a (possibly infinitely branch-
ing) tree T of height 2, where the root of T is labeled by a Γ formula, and each leaf
(terminal node) of T is labeled by a partial continuous function.

Example 2.9 (see Figure 1). The tree associated with Dirichlet’s function is T =
{⟨⟩, ⟨0⟩, ⟨1⟩}, and the root node ⟨⟩ asks whether a given input x ∈ R is an irrational
or not. If x is rational, the algorithm goes to the righthand node ⟨1⟩, and returns 1
(that is, the constant function 1 is assigned to the node ⟨1⟩), and if x is irrational,
go to the lefthand node ⟨0⟩, and return 0 (that is, the constant function 0 is assigned
to the node ⟨0⟩). In other words, Dirichlet’s function consists of the tree T and the
Π0

2 formula on the root ⟨⟩ described above, and two constant functions x 7→ 0 and
x 7→ 1 on leaves ⟨0⟩ and ⟨1⟩ respectively.

Now it is natural to consider any well-founded tree T ⊆ ω<ω. Assume that each
non-terminal node σ ∈ T is labeled by some ordinal rkT (σ) which specifies the Borel
complexity of a question which can be arranged on the node σ. Then, as before,
we assign each non-terminal node σ of T to a Borel question of Borel rank rkT (σ),
and each terminal node of T to a continuous function. We think of this assignment
on a tree as a flowchart that defines a nested-piecewise continuous function.

Definition 2.10. A labeled well-founded tree is a pair T = (T, rkT ) of a well-
founded tree T ⊆ ω<ω and an ordinal-valued function rkT : T → ω1. A flowchart on
a labeled well-founded tree (T, rkT ) is a collection Λ = (Pσ, fρ)σ∈T,ρ∈T leaf satisfying
the properties (1), (2) and (3):
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(1) P⟨⟩ is a subset of X . The set P⟨⟩ is called the domain of the flowchart Λ,
and written as dom(Λ).

(2) For every non-terminal node σ ∈ T , ⟨Pτ : τ ∈ succT (σ)⟩ forms a Π0
rkT (σ)

cover of Pσ (where recall that succT (σ) is the set of all immediate successors
of σ in T ), that is, Pσ ⊆

∪
{Pσ⌢n : σ⌢n ∈ T} and Pσ⌢n is Π0

rkT (σ) for every
n.

By the covering condition (2), we have the following property:

(∀x ∈ dom(Λ))(∃ρ ∈ T leaf) x ∈
∩
σ⪯ρ

Pσ.

For every x ∈ dom(Λ), the leftmost one among such leaves ρ is called the true path
of Λ along x and denoted by TPΛ(x). Here, we say that σ is to the left of τ (written
as σ ≤left τ) if either σ = τ or there is n such that σ ↾n = τ ↾n but σ(n) < τ(n).
Then we define Dρ as the set of all x ∈ dom(Λ) such that TPΛ(x) = ρ.

(3) fρ : Dρ → Y is a continuous function with domain Dρ for every leaf ρ ∈
T leaf .

A flowchart Λ always defines a function fΛ : dom(Λ) → Y as follows:

fΛ(x) = fTPΛ(x)(x).

Intuitively, a flowchart Λ on a labeled well-founded tree T describes a (non-
effective) algorithm defining the function fΛ as follows: Given an input x, if the
algorithm reaches a non-terminal node σ ∈ T , the flowchart Λ asks the following:

What is the least n such that x ∈ Pσ⌢n?

Although this question is not necessarily computably decidable, our “algorithm”
following Λ is allowed to be non-effective, and so always answers to this question
by the correct value n. Then the algorithm moves to the node σ⌢n for such n. If
the algorithm reaches a terminal node ρ ∈ T leaf (that is, ρ is the true path of Λ
along x), then it returns the output fρ(x).

Definition 2.11. Let T = (T, rkT ) be a labeled well-founded tree. A function
f : X → Y is T-piecewise continuous if there is a flowchart Λ on T such that
f = fΛ.

For a countable ordinal ξ, a labeled well-founded tree T = (T, rkT ) is of Borel
rank (ξ, η) if rkT (σ) ≤ ξ for all infinitely branching nodes σ ∈ T , and rkT (σ) ≤ η for
all finitely branching nodes σ ∈ T . We mainly focus on labeled well-founded trees
T of Borel rank (1, 2). It is clear that T-piecewise continuity implies Gδ-piecewise
continuity whenever T is of Borel rank (1, 2).

Remark 2.12. One can also introduce piecewise continuity on a labeled directed
graph (which can be represented by a labeled tree T not necessarily well-founded)
by declaring that fΛ(x) is undefined whenever the algorithm following Λ on an
input x never reaches a halting state (i.e., a leaf of T ). This generalization seems
natural in computer science, e.g., a Blum-Shub-Smale (BSS) machine [3] has a
power to answer to a noncomputable Π0

1 question of the form “x = 0?”, and the
original definition of a BSS computation is clearly given by a flowchart on a labeled
directed graph.
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Weihrauch Reduction. Given a labeled well-founded tree T, one can define the
associated reducibility notions by using T-piecewise continuity. By TC we denote
the class of T-piecewise continuous functions, and we often omit the symbol C when
we mention associated reducibility notions, e.g., TC-Wadge reducibility is often
abbreviated as T-Wadge reducibility. Here the class of T-piecewise continuous
functions is not necessarily closed under composition; therefore, for instance, the
T-Wadge ordering may not be transitive. If we hope to recover transitivity of the
associated orderings, we have to consider a collection of labeled well-founded trees.
However, even if it does not satisfy transitivity, the understanding of the associated
reducibility still has a consequence in the context of Weihrauch degrees.

Let us first consider the labeled well-founded tree Tξ,2 = (T, rkT ) defining Π0
ξ

2-wise continuity, that is, T = {⟨⟩, ⟨0⟩, ⟨1⟩} and rkT (⟨⟩) = ξ. One may notice that
T1,2-piecewise continuity (i.e., closed 2-wise continuity) has some connection with
the limited principle of omniscience (the law of excluded middle for Σ0

1 formulas)
in constructive analysis. In the context of Weihrauch degrees, the limited principle
of omniscience is interpreted by the function LPO : ωω → 2 defined by LPO(x) = 0
if x(n) = 0 for some n ∈ ω; otherwise LPO(x) = 1. Clearly LPO is closed 2-
wise continuous, and conversely, it is not hard to check that every closed 2-wise
continuous function g is of the form k ◦ ⟨id, LPO ◦ h⟩ for some continuous functions
h, k, that is, g is continuously Weihrauch reducible to LPO. We generalize this
observation to any labeled well-founded tree.

Proposition 2.13. Let T be a labeled well-founded tree. For a single-valued func-
tion f , the following are equivalent:

(1) f is T-piecewise continuous.
(2) f is coWadge reducible to TPΛ for some flowchart Λ on T.
(3) f is continuously Weihrauch reducible to TPΛ for some flowchart Λ on T.

Proof. To see the implication (1)⇒(2), assume that f is T-piecewise continuous.
Then there is a flowchart Λ = (Pσ, fρ) on T such that f = fΛ. Define k(x, ρ) =
fρ(x). Note that k is continuous since each fρ is continuous and T leaf is countable.
It is not hard to see that f(x) = k(x,TPΛ(x)). The implication from (2) to (3)
is obvious. To see the implication (3)⇒(1), we assume that f is continuously
Weihrauch reducible to TPΛ for some flowchart Λ = (Pσ, fρ) on T, that is, there
are continuous functions h, k such that f(x) = k(x,TPΛ(h(x))) for all x. Define
gρ(x) = k(x, ρ) and consider the flowchart Λ∗ = (h−1[Pσ], gρ). Note that the
continuous preimage does not increase the Borel complexity of a set; therefore Λ∗

is a flowchart on T. It is not hard to see that TPΛ∗(x) = TPΛ(h(x)). Consequently,
fΛ∗(x) = k(x,TPΛ(h(x))) = f(x) as desired. □

One can also show the similar result for multi-valued functions. For multi-valued
functions F and G, the composition G ◦ F is defined as follows:

dom(G ◦ F ) = {x ∈ dom(F ) : F (x) ⊆ dom(G)},
y ∈ G ◦ F (x) ⇐⇒ (∃z) [z ∈ F (x) and y ∈ G(z)].

Then, the sequential composition G ⋆ F (see [7, 8]) is defined as a multi-valued
function realizing the greatest Weihrauch degree among those of multi-valued func-
tions of the form G0 ◦ F0 such that G0 and F0 are Weihrauch reducible to G and
F , respectively.
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Proposition 2.14. Let T be a labeled well-founded tree, and let F and G be multi-
valued functions. Then, the following are equivalent:

(1) F is (T, C)-Weihrauch reducible to G.
(2) F is continuously Weihrauch reducible to TPΛ ⋆G for some flowchart Λ on

T.

Proof. Assume that F is (T, C)-Weihrauch reducible to G. Then there are a T-
piecewise continuous function k and a continuous function h such that for any x,
whenever y ∈ G(h(x)), we have k(x, y) ∈ F (x). We consider h0(x) = (x, h(x))
and G0(x, y) = {x} × G(y) = {(x, z) : z ∈ G(y)}. Clearly h0 is continuous, and
G0 is Weihrauch reducible to G. Moreover, by Proposition 2.13, k is continuously
Weihrauch reducible to TPΛ for some flowchart Λ on T. We claim that F is
Weihrauch reducible to k ◦G0 via k0 = id and h0, that is, z ∈ k ◦G0(h0(x)) implies
z ∈ F (x). We note that G0(h0(x)) = G0(x, h(x)) = {x} × G(h(x)). Therefore, if
z ∈ k ◦ G0(h0(x)), then there is y ∈ G(h(x)) such that z = k(x, y). Then, by our
choice of h and k, we have z ∈ F (x) as desired.

Conversely, assume that F is continuously Weihrauch reducible to TPΛ ⋆ G for
some flowchart Λ on T, that is, there are k∗ and G∗ such that k∗ is Weihrauch
reducible to TPΛ and G∗ is Weihrauch reducible to G, and moreover there are
continuous functions h1, k1 such that for any x, the condition y ∈ k∗ ◦ G∗(h1(x))
implies k1(x, y) ∈ F (x). Note that k∗ can be assumed to be single-valued since
TPΛ is single-valued, and therefore, a Weihrauch reduction to TPΛ gives a uni-
formization of k∗. Thus, every y ∈ k∗ ◦ G∗(h1(x)) is of the form k∗(z) for some
z ∈ G∗(h1(x)). Therefore, z ∈ G∗(h1(x)) implies k1(x, k

∗(z)) ∈ F (x). Let k2
and h2 be continuous functions witnessing that G∗ is Weihrauch reducible to
G. Then we get that y ∈ G(h2 ◦ h1(x)) implies k1(x, k

∗ ◦ k2(h1(x), y)) ∈ F (x).
Since k1, k2, and h1 are continuous, it is clear that the function k∗∗ defined by
k∗∗(x, y) = k1(x, k

∗ ◦ k2(h1(x), y)) is continuously Weihrauch reducible to k∗.
By Proposition 2.13, k∗∗ is T-piecewise continuous, and therefore, F is (T, C)-
Weihrauch reducible to G via k∗∗ and h2 ◦ h1. □

Example 2.15. By Proposition 2.14 and by the previous discussion, F is (T1,2, C)-
Weihrauch reducible to G if and only if F is continuously Weihrauch reducible to
LPO ⋆ G. We also have similar connections between T1,ω (closed-piecewise con-
tinuity) and the closed choice principle CN on the natural numbers, and between
T2,2 (Gδ-2-wise continuity) and the jump LPO′ of LPO (see [7] for the jump of a
multi-valued function).

Later, for a given suitable collection V of labeled well-founded trees, we will
construct a labeled well-founded tree T(V′) defining a class of piecewise continuous
functions not much larger than the class defined by V. By using the relationship
between piecewise continuity and sequential composition obtained from Proposi-
tion 2.14, we will prove a separation result of the following form: Given suitable
Π0

1 uniformization problems S and U on 2ω which do not admit σ-continuous uni-
formizations, one can construct another Π0

1 uniformization problem T on 2ω such
that

(1) S is Weihrauch reducible to TPΛ′ ⋆ T for some flowchart Λ′ on T(V′).
(2) U is not Weihrauch reducible to TPΛ ⋆ T for any flowchart Λ on T ∈ V.
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Figure 2. The b-branching of the vein V = {⟨⟩, ⟨∗⟩, ⟨∗, ∗⟩}, where b(⟨⟩) = 2
and b(⟨∗⟩) = 3.

Vein-Piecewise Continuity. Hereafter, we will not care about the number of
branches of a finitely branching node of a labeled well-founded tree T, that is, we
will only specify the type of a node: a leaf, a finitely branching node, or an infinitely
branching node. For instance, consider Π0

ξ-finite-piecewise-continuity, where we say

that a function is Π0
ξ-finite-piecewise continuous if it is Π0

ξ-k-wise continuous for

some k. Such a notion corresponds to the countable collection Tξ,<ω = {Tξ,k :
k ∈ ω} such that Tξ,k corresponds to Π0

ξ-k-wise continuity, i.e., a tree of height 2
whose root is k-branching and labeled by ξ.

We introduce a single tree Vξ (called a vein) generating the collection Tξ,<ω.
Let us think of 0, 1, and ω just as symbols indicating that it is a “leaf”, “finitely
branching”, and “infinitely branching”, respectively. In particular, we treat a 1-
branching node (that is, a non-terminal non-branching node) as if it were a finitely
branching node. Let Vξ = {⟨⟩, ⟨∗⟩} be the tree whose root is labeled by ξ. The
root is 1-branching, so it is “finitely branching”, and moreover labeled by ξ. Thus,
we regard that Vξ represents Π0

ξ-finite-piecewise continuity.

We now introduce the formal definition. For a tree T ⊆ ω<ω and a string σ ∈ T ,
by brT (σ) we denote the number of immediate successors of σ in T .

Definition 2.16. A vein is a labeled well-founded tree V = (V, rkV) such that
brV(σ) ∈ {0, 1, ω} for every σ ∈ V .

The intended meaning of this notion is that a vein V is not only a labeled well-
founded tree, but also represents the smallest collection of labeled well-founded
trees including V itself and closed under any transformation which converts a non-
branching non-terminal node σ ∈ V into a finitely-branching node whose successors
are copies of successors of σ. That is, the equation brV(σ) = 1 indicates that σ ∈ V
is a finitely-branching node in V, but the number of the immediate successors of σ
can be any finite value. For instance, we identify the above Vξ with Tξ,<ω.

We give the formal definition of the above idea. By Vfin we denote the set
of all non-terminal strings σ such that brV(σ) < ω. A branching function is a
function b : Vfin → ω. The role of this function is to convert each node σ ∈ V with
brV(σ) = 1 into the b(σ)-branching node whose successors are copies of successors
of σ as mentioned above (see Figure 2). Given a vein V = (V, rkV) and a branching
function b : Vfin → ω, we inductively define Vb = (Vb, rkVb), the b-branching of V
(see also Figure 2), with a copy-source-referring function ι : Vb → V as follows:

(1) ⟨⟩ ∈ Vb and ι(⟨⟩) = ⟨⟩.
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(2) If σ ∈ Vb and brV(ι(σ)) = 1, then σ is converted into a b(ι(σ))-branching
node, that is,

⟨rkVb(σ), brVb(σ)⟩ =⟨rkV(ι(σ)), b(ι(σ))⟩,

σ⌢n ∈ Vb, ι(σ⌢n) = ι(σ)⌢∗,

for every n < b(σ). Here ι(σ)⌢∗ is the unique immediate successor of ι(σ)
in V.

(3) If σ ∈ Vb and brV(ι(σ)) = ω, then σ remains the same as the copy source
node ι(σ), that is,

⟨rkVb(σ), brVb(σ)⟩ =⟨rkV(ι(σ)), ω⟩,

σ⌢n ∈ Vb, ι(σ⌢n) = ι(σ)⌢n,

for every n such that ι(σ)⌢n ∈ V .
(4) If σ ∈ Vb and brV(ι(σ)) = 0, then σ remains the same as the copy source

node ι(σ), that is,

⟨rkVb(σ), brVb(σ)⟩ =⟨rkV(ι(σ)), 0⟩.

We often identify V with the collection (Vb | b : Vfin → ω). A flow on a vein
V is a pair Λ = (T,Γ) such that Γ is a flowchart on a labeled well-founded tree
of the form T = Vb for some branching function b : Vfin → ω. A flow Λ = (T,Γ)
automatically induces a function fΛ as in Definition 2.10, that is, fΛ = fΓ.

Definition 2.17. Let V = (V, rkV) be a vein. A function f : X → Y is V-piecewise
continuous if there is a flow Λ on the vein V such that f = fΛ.

A vein V is of Borel rank (ζ, η) if it is of Borel rank (ζ, η) as a labeled well-founded
tree.

Operations on Veins. We first note that V-piecewise continuity may not be closed
under taking composition. Therefore, it is natural to introduce the notion of a
transitive closure of a vein V. Given two veins V0 = (V0, rkV0) and V1 = (V1, rkV1),
the concatenation V0

⌢V1 = (V0
⌢V1, rkV0⌢V1) of V0 and V1 is defined as follows:

V0
⌢V1 = {σ : (∃ρ ∈ V leaf

0 )(∃τ ∈ V1) σ ⪯ ρ⌢τ},

rkV0⌢V1(σ) =

{
rkV0(σ) if σ ∈ V0 \ V leaf

0 ,

rkV1(τ) if σ = ρ⌢τ for some ρ ∈ V leaf
0 .

If fi is Vi-piecewise continuous for each i < 2, the composition f1◦f0 is obviously
(V0

⌢V1)-piecewise continuous. Define V(1) = V, and V(n+1) = V(n)⌢V for each
n ∈ ω. Then, we can think of the countable collection trcl(V) := (V(n))n∈ω as the
transitive closure of V.

Next, it is also worth mentioning that every vein (indeed, every countable col-
lection of veins) is dominated by a single labeled well-founded tree. Here we say
that for collections V0,V1 of labeled well-founded trees, V1 dominates V0 if every
V0-piecewise continuous function is V1-piecewise continuous (recall that every vein
V is identified with the collection (Vb | b : Vfin → ω) of labeled well-founded trees).
Given a vein V = (V, rkV) we inductively define the closure V = (V, rkV) of V (with

a copy-source-referring function ι : V → V) as follows:
(1) ⟨⟩ ∈ V and ι(⟨⟩) = ⟨⟩.
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Figure 3. (Left) An original vein V; (Right) The closure T(V) of the vein V.

(2) If σ ∈ V and brV(ι(σ)) = 1, then we insert a new infinite branch of Borel
complexity 0 whose successors are copies of successors of ι(σ), that is,

⟨rkV(σ), brV(σ)⟩ =⟨0, ω⟩,
⟨rkV(σ

⌢n), brV(σ
⌢n)⟩ =⟨rkV(ι(σ)),brV(ι(σ))⟩,

σ⌢n, σ⌢n⌢∗ ∈ V, ι(σ⌢n⌢∗) = ι(σ)⌢∗,

for every n ∈ ω, where σ⌢∗ is the unique immediate successor of ι(σ) in V
(3) If σ ∈ V and brV(ι(σ)) ∈ {0, ω}, then σ remains unchanged.

We define a branching function d : Vfin → ω by d(σ) = σlast for every nonempty
string σ ∈ Vfin. Here, note that if ι(σ) = τ is a finitely branching node in V,
then there are infinitely many copies of τ below σ in the closure V. The branching
function d converts the n-th such copy into an n-branching node, that is, d realizes
our intended meaning of a finitely-branching node τ of a vein V that the number of
branches of τ can be any finite value. Then, we consider the labeled well-founded
tree T(V) := Vd (see also Figure 3).

Proposition 2.18. Every vein V is dominated by {T(V)}, that is, every V-piecewise
continuous function is T(V)-piecewise continuous.

Proof. Given a branching function b : Vfin → ω, consider the Π0
0 cover (Pσ⌢i) for

every σ ∈ Vfin defined by Pσ⌢i = X for i = b(ι(σ−)) and Pσ⌢i = ∅ for i ̸= b(ι(σ−)).
By using these covers, it is not hard to check that Vb-piecewise continuous functions
are T(V)-piecewise continuous. □

By a similar argument, given a countable collection V∗ of veins, one can easily
construct a vein V∗ and a labeled well-founded tree T(V∗) on V∗ that dominates
V∗. One can also introduce a representation of the set Flow(V) of all flows on
Λ via representations of branching functions b, Π0

ξ sets Pσ (via Borel codes), and
continuous functions fρ. Under such a representation, one can see that a function
f : X → Y is T(V)-piecewise continuous if there is a continuous function Λ : X →
Flow(V) such that f(x) = fΛ(x)(x) for every x ∈ X .

We say that V0 is equivalent to V1 if V1 dominates V0 and vice versa. A vein
V = (V, rkV) is normal if every non-terminal rank 0 node is infinitely branching,
and for every non-terminal node σ ∈ V of positive length, if the Borel rank of
σ is not greater than that of the immediate predecessor σ−, then the number of
immediate successors of σ must be greater than that of σ−, that is, V satisfies the
following two conditions:

rkV(σ) = 0 =⇒ brV(σ) = ω,

rkV(σ
−) ≥ rkV(σ) =⇒ 1 = brV(σ

−) < brV(σ) = ω.

Lemma 2.19. Every vein is equivalent to a normal vein.
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Proof. Suppose that σ is a non-terminal finitely branching node such that rkV(σ) =
0. Then, for a given labeled well-founded tree V = (V, rkV ) on V, a finite collection
of rank 0 sets (Ui)i<k will be placed on each node τ ∈ V with ι(τ) = σ. Note that by
the definition of a vein, the shapes below τ⌢i in V for all i < k are exactly the same.
Then, consider leaves in V of the forms τ⌢i⌢ρ for i < k. Since (Ui)i<k are of Borel
rank 0, by combining (fτ⌢i⌢ρ)i<k, one can easily get a single continuous function
f∗τ⌢ρ. Therefore, it causes no effect on V-piecewise continuity even if we remove the

node σ from the vein V. For the latter condition of normality, if rkV(σ) ≤ rkV(σ
−)

and brV(σ) ≤ brV(σ
−) then we can remove σ from the vein as well. □

Consequently, we can always assume that, if our space is 2ω, every rank 0 set
assigned to a rank 0 node is the clopen set generated by a single binary string
η ∈ 2<ω. Hereafter we adopt this convention. We also say that a vein V = (V, rkV)
is strongly normal if it is normal, and moreover, for any non-terminal node σ ∈ V
either the following condition (1) or (2) holds:

(1) rkV(σ) < rkV(σ
−) and brV(σ) > brV(σ

−).
(2) rkV(σ) > rkV(σ

−) and brV(σ) < brV(σ
−).

Clearly, every strongly normal vein is normal. To simplify our argument, in our
main theorems, we assume strong normality of a vein; although the reader may
find that a straightforward (but notationally complicated) modification of our proof
gives us a similar result for non-strongly-normal veins.

We now introduce several operations on veins. First we consider the finitary (in-
finitary) ξ-increment operation, which adds a new finitely (infinitely) Π0

ξ-branching

node above the root ⟨⟩ of a given vein. For a countable ordinal ξ < ω1 the fi-

nite (infinite) ξ-increment of a vein V = (V, rkV), denoted by V⊕ξ = (V⊕ξ, rk⊕ξV )

(V⊕ωξ = (V⊕ωξ, rk⊕ωξ
V )), is defined as follows:

V⊕ξ = {⟨⟩} ∪ {⟨0⟩⌢σ : σ ∈ V}, rk⊕ξV (⟨⟩) = ξ, rk⊕ξV (0⌢σ) = rkV(σ),

V⊕ωξ = {⟨⟩} ∪ {⟨n⟩⌢σ : n ∈ ω and σ ∈ V}, rk⊕ωξ
V (⟨⟩) = ξ, rk⊕ωξ

V (n⌢σ) = rkV(σ).

Next we consider another operation. Given a labeled well-founded tree (T, rkT ),
we say that σ ∈ T is almost-terminal if it is minimal among strings which have only
finitely many successors in T , that is, there are only finitely many ρ ∈ T extending
σ, and every τ ≺ σ has infinitely many successors in T . More explicitly, for a leaf
ξ ∈ T leaf , if the immediate predecessor ξ− is finitely branching, then we define
ξ∗ = ξ−; otherwise, we define ξ∗ = ξ. If a vein V = (V, rkV) is normal, a string
σ ∈ V is almost-terminal if and only if it is of the form ξ∗ for some leaf ξ ∈ V leaf .
Let Vat denote the set of all almost-terminal nodes in V.

The ξ-replacement operation converts each almost-terminal node (and all exten-
sions) into an infinite Π0

ξ-branching node all of whose immediate successors are

leaves. For a countable ordinal ξ < ω1, the ξ-replacement of a vein V = (V, rkV),
denoted by V⊖ξ = (V⊖ξ, rk⊖ξV ), is defined as follows (see also Figure 4):

V⊖ξ = {σ ∈ V : σ ⪯ τ for some τ ∈ Vat} ∪ {τ⌢n : τ ∈ Vat and n ∈ ω},

rk⊖ξV (σ) =

{
ξ if τ ∈ Vat,

rkV(σ) otherwise.
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Figure 4. (Left) An original vein V, where almost-terminal nodes are sur-
rounded by squares; (Right) The 1-replacement V⊖1 of V.

Given a vein V, we consider the following veins V′ and V′′:

V′ =

{
V⊖1⊕(rkV(⟨⟩)+1) if brV(⟨⟩) = ω,

V⊖1⊕ω0⊕1 if brV(⟨⟩) = 1,

V′′ =

{
(V⊖1)⊕(rkV(⟨⟩)+1) if brV(⟨⟩) = ω,

(V⊖1)⊕1 if brV(⟨⟩) = 1,

Example 2.20. For each k ∈ {1, ω}, let Vξ,k be the vein such that Vξ,k is a tree
of height 2 whose root is k-branching and labeled by ξ.

(1) (V2,1)
′′ is equivalent to V1,ω: This is because (V2,1)

⊖1 = V1,ω, and V1,ω =
V1,ω. Moreover, (V1,ω)

⊕1 = V1,1
⌢V1,ω is clearly equivalent to V1,ω.

(2) (V1,ω
⌢V2,1)

′′ is equivalent to V2,1
⌢V1,ω: This is because, for V = V1,ω

⌢V2,1,

V⊖1 and hence V⊖1 are equivalent to V1,ω, and (V1,ω)
⊕2 = V2,1

⌢V1,ω,
where note that rkV(⟨⟩) + 1 = 2.

(3) (V2,1
⌢V1,ω

⌢V2,1)
′′ is equivalent to V1,1

⌢V0,ω
⌢V2,1

⌢V1,ω: This is because,

for V = V2,1
⌢V1,ω

⌢V2,1, V⊖1 = V2,1
⌢V1,ω and therefore V⊖1 = V0,ω

⌢V2,1
⌢V1,ω.

(4) Put Xm = V1,ω and Ym = V2,1 for anym. In general, we have the following:
(a) (X0

⌢Y0
⌢ . . .⌢Xn

⌢Yn)
′′ is equivalent to Y0

⌢X0
⌢ . . .⌢Yn

⌢Xn.
(b) (Y0

⌢X0
⌢ . . .⌢Yn

⌢Xn
⌢Yn+1)

′′ is equivalent to V1,1
⌢V0,ω

⌢Y0
⌢X0

⌢ . . .⌢Yn
⌢Xn.

3. Main Theorems

3.1. Topological Results. We now consider coWadge/Weihrauch reducibility as-
sociated with classes of V-piecewise continuous functions. For a vein V, we denote
by VC the class of all V-piecewise continuous functions, and by σC the class of all
σ-continuous functions. We often omit the symbol C, e.g., we use the terminology
such as V-coWadge reducibility instead of VC-coWadge reducibility.

We now focus on multi-valued functions which do not admit σ-continuous uni-
formizations. However, this non-uniformizability property is not strong enough to
obtain our main result, and so we will need to require functions to have a slightly
stronger property. For any known natural example U ⊆ 2ω × 2ω which does not
admit a σ-continuous uniformization, we may notice that even if we restrict the
domain of U to any set X of almost all inputs, U ↾ X still does not admit a σ-
continuous uniformization. However, we also notice that if U is compact, then U
admits a Borel (indeed, Baire-one) uniformization; therefore, for a set X of almost
all inputs, U ↾X admits a closed-piecewise continuous (i.e., layerwise continuous)
uniformization by Luzin’s theorem (indeed, if a σ-ideal I has the continuous read-
ing of names, then U ↾X admits a continuous uniformization on an I-positive set
X ). The latter “almost all” is, of course, µ-conullness with respect to the canonical
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product measure µ on 2ω while the former “almost all” is µ-conullness with respect
to the Martin measure µ on 2ω.

A tree E ⊆ 2<ω is pointed if it is pruned (i.e., there is no leaf), and every infinite
path through E computes E itself. A perfect set E ⊆ 2ω is pointed if it consists
of all infinite paths through a pointed tree. An important property of a pointed
perfect set E is that E contains all Turing degrees above the degree of the base tree
E. For A ⊆ 2ω we put µ(A) = 0 if and only if A has no pointed perfect subset, and
this µ is called the Martin measure (under the axiom of determinacy).

As mentioned above, we do not know any natural example which does not ad-
mit a σ-continuous uniformization, but admits a σ-continuous uniformization on a
pointed perfect set. (Of course, one can easily construct such an artificial example.)
Our requirement to U is to not admit a σ-continuous uniformization on a pointed
perfect set. In Section 4, we will show the following:

Theorem 3.1. Let V be a strongly normal vein of Borel rank (1, 2). For any
nonempty compact sets S,U ⊆ 2ω × 2ω, if U does not admit a σ-continuous uni-
formization on a pointed perfect set, then there exists a compact set T ⊆ 2ω × 2ω

such that

(1) T is coWadge reducible to S.
(2) S is V′′-coWadge reducible to T .
(3) U is not weakly V-coWadge reducible to T .

Note that V itself may not be transitive; therefore, it seems better to consider the
transitive closure trcl(V). One can define the notion trcl(V)′′ in a straightforward
manner. Then, as a corollary of Theorem 3.1, if d is a trcl(V)′′-coWadge degree
containing a compact problem without σ-continuous uniformization on a pointed
perfect set, then d contains an infinite decreasing chain of weak V-coWadge degrees
of compact problems.

We are also interested in whether our result gives a similar separation result for
continuous Weihrauch reducibility. Here we give a partial result. We say that a
function h : 2ω → 2ω is degree-invariant if there is c ∈ 2ω such that, for any x, y ≥T

c, the equation x ≡T y implies h(x) ≡T h(y). For a class F of functions, by Finv

we mean that the class of all degree-invariant F-functions. It is clear that weakly
V-coWadge reducibility implies (V, Cinv)-Weihrauch reducibility. By symbols ZF,
DC and AD we denote the Zermelo-Fraenkel set theory (without choice), the axiom
of dependent choice, and the axiom of determinacy, respectively.

Theorem 3.2 (ZF+DC+AD). Let V be a strongly normal vein of Borel rank (1, 2).
For any nonempty compact sets S,U ⊆ 2ω×2ω, if U does not admit a σ-continuous
uniformization on a pointed perfect set, then there exists a compact set T ⊆ 2ω×2ω

satisfying the assertions (1)–(4), where

(4) U is not (V, σinv)-Weihrauch reducible to T .

3.2. Computable Results. Now we consider the computable version of our main
result. For an oracle z, we say that a vein V = (V, rkV) of Borel rank (1, 2)
is z-computable if the tree V ⊆ ω<ω is z-computable, and the function rkV :
V → {0, 1, 2} is computable. A flow Λ = (V, rkV , (Pσ)σ∈V , (fρ)ρ∈V leaf ) on V is z-
computable if the labeled well-founded tree (V, rkV ) is generated by a z-computable
branching function, Pσ is Π0

rkV (σ)(z) uniformly in σ ∈ V , and fρ is partial z-

computable uniformly in ρ ∈ V leaf , that is, there are z-computable functions
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b : V fin → ω, p : V → ω and φ : V leaf → ω such that (V, rkV ) = (Vb, rkVb),
p(σ) is a Π0

rkV (σ)(z)-index of Pσ, and φ(σ) is an index of the partial z-computable

function fσ.
For a z-computable vein V we say that a function is V-piecewise z-computable

if it is of the form fΛ for some z-computable flow on V. We denote by VCz the
class of V-piecewise z-computable functions. We also use the terminology such as
z-computable V-coWadge reducibility instead of VCz-coWadge reducibility.

To state the computable version of our result, we need an effective version of
σ-continuous non-uniformizability. We first give a computability-theoretic inter-
pretation of a σ-continuous uniformization. One of the most fundamental results
in Computability Theory is the equivalence between “(topological) continuity” and
“oracle-computability”. This relativization principle for instance implies the follow-
ing well-known fact in Computability Theory (see also Kihara [29]).

Fact 3.3 (Folklore).

(1) A function f : 2ω → 2ω is σ-continuous if and only if there is an oracle
z ∈ 2ω such that f(x) ≤T x⊕ z for any x ∈ 2ω.

(2) If a function f : 2ω → 2ω is of Baire class α then there is an oracle z ∈ 2ω

such that f(x) ≤T (x⊕ z)(α) for any x ∈ 2ω.

As a corollary, we get the following characterization of a σ-continuous uniformiza-
tion.

Proposition 3.4. A multi-valued function U ⊆ 2ω × 2ω admits a σ-continuous
uniformization if and only if there is an oracle z ∈ 2ω such that U(x) has an
(x⊕ z)-computable element for all x ∈ dom(U).

We say that a function f : 2ω → 2ω is σ-computable if there is a countable
partition (Xn)n∈ω of 2ω such that f ↾ Xn is computable for each n ∈ ω. As in
the above fact, one can easily see that f is σ-computable if and only if f(x) ≤T

x for all x. For this reason, σ-computability is traditionally called non-uniform
computability. We now observe the following property:

Lemma 3.5. For any compact set U ⊆ 2ω × 2ω, if dom(U) is uncountable, and U
does not admit a σ-continuous uniformization, then

N(U) = {x ∈ 2ω : U(x) has no x-computable element}
has a perfect subset.

Proof. It is easy to see that N(U) is Borel. Therefore, if it has no perfect subset,
then it has to be countable. If it is countable, U has a σ-computable uniformiza-
tion except for countably many points. This implies that U has a σ-continuous
uniformization. □

A set E ⊆ 2ω is computably perfect if there is a computable pruned perfect
tree E ⊆ 2<ω such that E consists of all infinite paths through E. Clearly, every
computably perfect set is pointed. We say that U is computably non-σ-uniformizable
if N(U) has a computably-perfect subset E . For instance, the problems in Example
2.2 are computably non-σ-uniformizable via E = 2ω.

Theorem 3.6. Let V be a strongly normal computable vein of Borel rank (1, 2).
For any nonempty Π0

1 sets S,U ⊆ 2ω×2ω, if U is computably non-σ-uniformizable,
then there exists a Π0

1 set T ⊆ 2ω × 2ω such that
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(1) T is computably coWadge reducible to S.
(2) S is computably V′′-coWadge reducible to T .
(3) U is not computably (V, σ)-Weihrauch reducible to T .

In this case, we do not require a σ-computable reduction to be degree invariant.
In particular, by effectivizing Proposition 2.14, given such S and U we can effectively
construct a compact-graph multifunction T on 2ω such that

(1) S is Weihrauch reducible to TPΛ′ ⋆ T for some flow Λ′ on V′′.
(2) U is not Weihrauch reducible to TPΛ ⋆ T for any flow Λ on V.
In particular, Theorem 3.6 implies the statement (†) in Section 1.2. We will give

more details on how to verify the statement (†) in the end of Section 4.

4. Proof of Main Theorems

Convention. Before starting the proof of our main theorems, without loss of gen-
erality, we may assume that

dom(S) is uncountable, and dom(U) = 2ω.

This is because, if the domain of a uniformization problem is countable, then
it is easy to see that the problem admits a σ-continuous uniformization. Thus,
dom(U) must be uncountable. Moreover, it is easy to see that if a uniformization
problem U is continuously (V, σ)-Weihrauch reducible to another problem S, and
if S admits a σ-continuous uniformization, then so does U . Therefore, if dom(S)
is countable then T = S satisfies the desired property. It is known that each
uncountable Polish space has a homeomorphic copy C of Cantor space 2ω. Thus,
we restrict the uniformization problem U to C. The difficulty of the uniformization
problem U ↾C is continuously equivalent to that of a uniformization problem whose
domain is 2ω, and U ↾C is reducible to U . Therefore, we can always assume that the
domain of U is 2ω. For an effective treatment, use the fact that every computably
perfect computably presented Polish space has a computable homeomorphic copy
of Cantor space.

Proof Strategy. Suppose that U does not admit a σ-continuous uniformization
on a pointed perfect set. Then we first need the following lemma:

Lemma 4.1. If a compact-graph multifunction U on 2ω does not admit a σ-
continuous uniformization on a pointed perfect set, then there is a pointed perfect
set E such that for every x ∈ E, the value U(x) has no x-computable element.

Proof. By Martin’s Cone Theorem ([33]; see also Marks-Slaman-Steel [32, Lemma
3.5]), N(U) or its complement has a pointed perfect subset, where Borel determi-
nacy is enough to show Martin’s Cone Theorem for N(U) because compactness of
U implies its Borelness, and thus N(U) is Borel. Thus, N(U) has a pointed perfect
subset since its complement has no pointed perfect subset. □

Fix such E , and let d be a sufficiently powerful oracle making the pruned perfect
tree E be d-computable, and T be Π0

1(d). The aim of this section is to show that
the assertions (3) in Theorems 3.1 and 3.6 and (4) in Theorem 3.2 can be deduced
from the following property (⋆):

(⋆) For any V-piecewise r-computable function k,

(∀x ∈ dom(S))(∀z ∈ E) [r ≤T x⊕ d ≡T z → (∃y ∈ T (x)) k(y) ̸∈ U(z)].
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Lemma 4.2. The property (⋆) implies that:

(1) U is not weakly V-coWadge reducible to T .
(2) U is not computably (V, σ)-Weihrauch reducible to T , whenever d = ∅ and

E has a computable element.
(3) U is not (V, σinv)-Weihrauch reducible to T under the axiom of determi-

nacy.

Proof. (1) Suppose that U is weakly V-coWadge reducible to T . Then there is
a V-piecewise r-computable function k such that for any uniformization t of T ,
the composition k ◦ (id, t) uniformizes U , that is, k(x, t(x)) ∈ U(x) for all x ∈ 2ω.
Choose x ∈ E with r ≤T x. Such x exists since E is pointed. The function k0
defined by k0(y) = k(x, y) for any y is also V-piecewise x-computable. Therefore,
by the property (⋆), there is a uniformization t0 of T such that k0 ◦ t0(x) ̸∈ U(x).
However this contradicts our assumption since k(x, t0(x)) = k0 ◦ t0(x).

(2) Next suppose for the sake of the contradiction that U is computably (V, σ)-
Weihrauch reducible to T . Then there are a V-piecewise computable function k
and a σ-computable function h such that for any uniformization t of T , the function
k ◦ (id, t ◦ h) uniformizes U , that is, k(z, t(h(z))) ∈ U(z) for all z ∈ 2ω. Let z ∈ E
be a computable element. Then, h(z) is also computable since σ-computability of
h implies that h(z) ≤T z. In particular, z ≡T h(z). Moreover, the function k0
defined by k0(y) = k(z, y) for any y is also V-piecewise computable. Therefore, by
the property (⋆), there is a uniformization t0 of T such that k0 ◦ t0(h(z)) ̸∈ U(z).
However this contradicts our assumption since k(z, t0(h(z))) = k0 ◦ t0(h(z)).

(3) Suppose that U is (V, σinv)-Weihrauch reducible to T , that is, for a sufficiently
powerful oracle r, there are a V-piecewise r-computable function k and a degree-
invariant σ-computable-relative-to-r function h such that for any uniformization t of
T , the function k◦(id, t◦h) uniformizes U , that is, k(z, t(h(z))) ∈ U(z) for all z ∈ 2ω.
By σ-computability of h relative to r, we always have h(z) ≤T z for all z ≥T r. As
before, if z ∈ E then we cannot have r ≤T h(z) ⊕ d ≡T z; therefore, it must hold
that h(z) <T z for all z ≥T r ⊕ d and z ∈ E . In particular, h(z) <T z on a cone,
that is, there is c ∈ 2ω such that h(z) <T z for all z ≥T c since h is degree-invariant
and E is pointed (that is, E contains a Turing cone). By degree-invariance of h, we
can use the Slaman-Steel Theorem [48, Theorem 2] to get that h is constant on a
cone, that is, there are c, y ∈ 2ω such that h(z) ≡T y for all z ≥T c. Now recall that
every compact set admits a Baire-one uniformization, so let t be such a Baire-one
uniformization of T . In particular, whenever z ≥T c, we have t(h(z)) ≤T (y⊕u)′ for
some oracle u ∈ 2ω. Therefore, k(z, t(h(z))) ≤T r⊕z⊕ (y⊕u)′ holds for all z ≥T c.
Note that v := c⊕ r⊕ (y⊕u)′ is a constant, and we have k(z, t(h(z))) ≤T z⊕ v for
all z ∈ 2ω. This would imply that z 7→ k(z, t(h(z))) is σ-continuous. However, since
k(z, t(h(z))) ∈ U(z), this would give a σ-continuous uniformization of U , which is
a contradiction. Note that if we only consider degree-invariant σ-continuous Borel
functions, then we can avoid the use of the axiom of determinacy. □

We do not know whether the property (⋆) implies the similar separation result
for (V, σ)-Weihrauch reducibility as well.

Approximation of Trees. To prove the main theorems, we will need the property
(⋆). We first fix a sufficiently powerful oracle d which ensures that both S and U
are Π0

1(d). Let E be a pointed perfect set as in Lemma 4.1, so that U(z) has no z-
computable element for any z ∈ E . Without loss of generality, we may assume that
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d ≡T E, where E is a pointed tree generating E . This is because, for a canonical
E-computable homeomorphism ψ : 2ω → E , we consider Ed = {ψ(x⊕ d) : x ∈ 2ω}.
It is easy to see that Ed is Π0

1(d ⊕ E), and that z ≥T d ⊕ E holds for all z ∈ Ed.
Then, we replace d and E with d⊕ E and Ed, respectively.

Our d-computable construction of a compact set T will be fiber-wise, that is, we
will construct an (x ⊕ d)-computable tree T (x) uniformly in x (where T (x) is the
x-th fiber of the projection of T into the first coordinate). Hereafter, by S(x), T (x)
and U(x) we denote the (x⊕d)-computable trees whose infinite paths form the fibers
S(x), T (x) and U(x), respectively. Such trees exist since S(x), T (x) and U(x) are
Π0

1(x⊕d) subset of 2ω uniformly in x. On each fiber T (x) our strategy looks at the
fibers (U(z) : x⊕ d ≡T z ∈ E). If x⊕ d ≡T z ∈ E then, in particular, z ≥T d, and
therefore, by the property of d mentioned above, U(z) has no (x ⊕ d)-computable
element.

Now we describe a uniform (x⊕ d)-computable approximation of the collection
(U(z) : x⊕ d ≡T z ∈ E). Let Φd

i be the i-th partial d-computable function, and Φj

be the j-th partial computable function. If z ≡T x⊕ d then there are indices i and
j such that z = Φd

i (x) and x⊕d = Φj(z). In particular, Φj ◦Φd
i (x) = x⊕d. We will

define a tree Ux
i,j for each pair (i, j) of indices such that if Φj ◦ Φd

i (x) = x⊕ d and

Φd
i (x) ∈ E hold then Ux

i,j = U(Φd
i (x)); otherwise U

x
i,j is a finite tree. This ensures

that Ux
i,j has no (x⊕ d)-computable infinite path for any i, j ∈ ω.

We first note that since U is Π0
1(d), there is a d-computable map sending each

z into a Π0
1(z ⊕ d)-code of the fiber U(z). In other words, it is straightforward to

see that there is a uniformly d-computable way of approximating all fibers of U as
follows:

• Given a string τ ∈ 2<ω, U(τ) is a finite tree of height |τ |.
• If σ ≺ τ then U(τ)\U(σ) consists only of strings of length greater than |σ|.
• U(z) =

∪
n U(z ↾n) for all z ∈ 2ω.

Given σ ∈ 2<ω, as usual, by Φi(σ) we denote a binary string obtained by the
stage |σ|-approximation of the i-th Turing machine computation Φi by using σ as
an oracle. Given s, let ℓi,j [s] be the maximal length ℓ ∈ ω such that

Φj ◦ Φd
i (x↾s)↾ℓ = (x⊕ d)↾ℓ, and Φd

i (x↾s)↾ℓ ∈ E.

Then we define the stage s-approximation of Ux
i,j as follows:

Ux
i,j [s] = {σ ∈ U(Φd

i (x↾s)) : |σ| < li,j [s]}.

It is not hard to see that Ux
i,j :=

∪
s∈ω U

x
i,j [s] satisfies the desired condition, that

is, if z ∈ E and z ≡T x⊕ d via indices (i, j) then Ux
i,j = U(z), and if (i, j) is not a

correct pair of indices then Ux
i,j is finite.

Enumeration of Flows. To show our main theorems, we need the notion of a
partial flow. A partial flow on a vein V is a pair Λ = (V,Γ) of a labeled well-founded
tree V = (V, rkV ) and a partial flowchart Γ on V such that V is a labeled subtree of
Vb for some branching function b. Here, a partial flowchart Γ is a tuple (Pξ, fξ)ξ∈V
such that Pξ is aΠ

0
rkV (ξ) set and fξ is a partial continuous function. As in Definition

2.10, for a given x, the leftmost leaf ρ ∈ V leaf such that x ∈
∩

σ⪯ρ Pσ is said to

be the true path of Λ along x, and written as TPΛ(x), if such ρ exists. Here, note
that we do not require that (Pξ⌢n)n be a cover of Pξ, and the domain of fξ include
Dξ, where Dξ is the set of all x such that TPΛ(x) is defined, and TPΛ(x) = ξ. A
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partial flow Λ always defines a partial function fΛ by fΛ(x) = fTPΛ(x)(x) for any
x such that TPΛ(x) defines some value ξ and x ∈ dom(fξ). The set of all such x’s
is called the actual domain of Λ, and denoted by dom(Λ), which is now possibly
different from P⟨⟩.

Hereafter we assume that all veins V are of Borel rank (1, 2). Let V = (V, rkV) be
a vein, and Λ = (V, rkV , (Pξ), (fξ)) be a partial flow on the vein V, where (V, rkV )
is of the form (Vb, rkVb) for some branching function b. Then, one can define a Π0

2

(Π0
1, resp.) formula p (q, resp.) on V ×ω×2<ω×2<ω (with a parameter z), a partial

function η :⊆ V ×ω → 2<ω, and a partial continuous function f :⊆ V leaf ×2ω → 2ω

as follows:

x ∈ Pξ⌢n ⇐⇒


(∀s)(∃t ≥ s) p(ξ, n, x↾ t, z ↾ t) if rkV (ξ) = 2,

(∀s) q(ξ, n, x↾s, z ↾s) if rkV (ξ) = 1,

x↾ |η(ξ, n)| = η(ξ, n) if rkV (ξ) = 0,

fξ(x) = f(ξ, x) if ξ ∈ V leaf and x ∈ dom(fξ).

Here recall our convention mentioned after Lemma 2.19 that a rank 0 set assigned
to a rank 0 node is generated by a single binary string. If we know all information
on (b, p, q, η, f) and z, then we can recover the partial flow Λ. We now introduce
an enumeration of (partial) flows on a fixed vein V = (V, rkV).

Given an oracle z ∈ 2ω and e = ⟨e0, e1, e2, e3, e4⟩ let us consider the tuple
(φz

e0 , pe1 , qe2 , η
z
e3 ,Φ

z
e4), where φz

d :⊆ Vfin → ω is the d-th partial z-computable

function, pd (qd, resp.) is the d-th Π0
2 (Π

0
1, resp.) formula on ω<ω×ω×2<ω×2<ω, ηzd :

ω<ω×ω → 2<ω is the d-th partial z-computable function, and Φd :⊆ ω<ω×2ω → 2ω

is the d-th partial computable function.
Note that our branching function φz

e0 is partial, so we need to describe how to
produce a labeled well-founded tree from a partial branching function. The idea is
that we put successors of σ into our tree only after φz

e0(σ) returns some outcome.
In other words, if the computation φz

e0(σ) never halts, all successors of σ would
vanish. We also note that ηze3 is partial as well, so we also require ηze3(σ, n) to

be defined before putting the node σ⌢n into our tree. Based on the above idea,
we define Vz

e,s = (V z
e,s, rk

z
e,s), the stage s approximation of the e-th z-computable

branching of V (with a copy-source-referring function ι : V z
e,s → V), as follows:

(1) ⟨⟩ ∈ V z
e,s and ι(⟨⟩) = ⟨⟩.

(2) If σ ∈ V z
e,s, brV(ι(σ)) = 1 and the computation φz

e0(ι(σ)) converges by stage
s, then σ is converted into a φz

e0(ι(σ))-branching node, that is,

⟨rkze,s(σ),brV z
e,s

(σ)⟩ =⟨rkV(ι(σ)), φz
e0(ι(σ))⟩,

σ⌢n ∈ V z
e,s, ι(σ⌢n) = ι(σ)⌢∗,

for every n < φz
e0(σ). Here ι(σ)⌢∗ is the unique immediate successor of

ι(σ) in V.
(3) If σ ∈ V z

e,s and brV(ι(σ)) = ω, then we proceed as follows: First, if the
Borel rank of σ is greater than 0, then σ remains the same as the copy
source node ι(σ). If the Borel rank of σ is 0 and moreover the associated
rank 0 set ηze (σ, n) is determined at stage s, then σ remains the same as the
copy source node ι(σ), as well. Otherwise (that is, the e3-th computation
has not yet computed the associated rank 0 set ηze3(σ, n) at stage s) we do
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not put σ⌢n. Formally speaking, we always define

⟨rkze,s(σ), brV z
e,s

(σ)⟩ = ⟨rkV(ι(σ)), ω⟩,

and moreover, for any n such that ι(σ)⌢n ∈ V,

σ⌢n ∈ V z
e,s, ι(σ⌢n) = ι(σ)⌢n,

if rkV(σ) > 0; or if rkV(σ) = 0 and the computation ηze3(σ, n) converges by
stage s.

(4) If σ ∈ V z
e,s and brV(ι(σ)) = 0, then σ remains the same as the copy source

node ι(σ), that is,

⟨rkze,s(σ), brV z
e,s

(σ)⟩ =⟨rkV(ι(σ)), 0⟩.

Moreover, we put σ into V z,leaf
e,s . Note that even if σ is a leaf of V z

e,s, the

leaf σ may not belong to V z,leaf
e,s .

We call Λz
e,s = (V z

e,s, rk
z
e,s, pe1 , qe2 , η

z
e3 , f

z
e4) the stage s approximation of the e-th

partial z-computable flow on V. We then recover (P z,e
ξ : ξ ∈ V z

e,s) by using the
above mentioned equivalence.

Weak-Totalization of Flows. Without loss of generality, we can always assume
that for any ξ ∈ V z

e,s, if ξ is finitely branching and φz
e0(ι(ξ)) is defined by stage s

then (P z,e
ξ⌢n

) covers P z,e
ξ (by assuming that the rightmost immediate successor of

a finite branching node accepts all reals x). However, it is not generally true for
infinite branching nodes. To get the covering property for infinite branching nodes
(by modifying our tree V z

e,s), we note that, since our vein is strongly normal, the
predecessor of an infinite branching node ζ of positive length is finitely branching
and rkze,s(ζ) < rkze,s(ζ

−). Now consider a finite branching node ξ ∈ V z
e,s with

successors (ξ⌢n)n<c. We double the number of branches of ξ, and consider:

P z,e
ξ⌢2n

= 2ω \
∪
m

P z,e
ξ⌢n⌢m

, P z,e
ξ⌢2n+1

= P z,e
ξ⌢n

, and P z,e
ξ⌢2n+1⌢m

= P z,e
ξ⌢n⌢m

.

Note that the Borel complexity of P z,e
ξ⌢2n

is rkze(ξ
⌢n) + 1 ≤ rkze(ξ) by normality,

and P z,e
ξ⌢n

is covered by (P z,e
ξ⌢n⌢m

)m. It is clear that this modification does not

produce any change on the generated function fΛz
e
. We call this procedure the weak-

totalization of a given vein. We will give a formal description of weak-totalization
below.

A partial flow Λ = (V, rkV , p, q, η, f) automatically yields (Pξ)ξ∈V where P⟨⟩ =
2ω (note that P⟨⟩ is possibly different from the actual domain of the generated
function fΛ). Such a flow is said to be weakly total if for every non-terminal ξ ∈ V ,
Pξ is covered by (Pξ⌢n)n. Let Λ = (V, rkV , p, q, η, f) be a partial flow on a vein

V. We first note that for any σ ∈ V we have that rkV (σ
⌢i) = rkV (σ

⌢j) and
that brV (σ

⌢i) = ω if and only if brV (σ
⌢j) = ω whenever σ⌢i, σ⌢j ∈ V since V

is obtained as the b-branching of a vein for some branching function b. Now we
focus on a non-terminal string σ ∈ V such that brV (σ) < ω and brV (σ

⌢j) = ω for
some/any j. Let V ∗ be the set of all such strings. We define the weak-totalization
Λtot = (V tot, rktotV , ptot, qtot, ηtot, f tot) (with a copy-source-referring function ι :
V tot → V ) as follows:



24 TAKAYUKI KIHARA

(1) If the root of V is infinitely branching, i.e., brV (⟨⟩) = ω, then we add a new
two-branching node above the root:

⟨rktotV (⟨⟩), brV tot(⟨⟩)⟩ = ⟨rkV (⟨⟩) + 1, 2⟩,
⟨⟩, ⟨0⟩, ⟨1⟩ ∈ V tot, ι(⟨0⟩) = ⋆, ι(⟨1⟩) = ⟨⟩.

Here ⋆ is a fixed new symbol which is not contained in V (see the items
(4)–(5)).

(2) If σ ∈ V tot, ι(σ) ∈ V ∗, then we double the number of branches of σ, that
is,

⟨rktotV (σ), brV tot(σ)⟩ =⟨rkV (ι(σ)), 2 · brV (ι(σ))⟩,
σ⌢2n ∈ V tot, ι(σ⌢2n) = ⋆,

σ⌢2n+ 1 ∈ V tot, ι(σ⌢2n+ 1) = ι(σ)⌢n

for every n < brV (ι(σ)) such that ι(σ)⌢n ∈ V .
(3) If σ ∈ V tot and ι(σ) ̸∈ V ∗, then σ remains unchanged, that is,

⟨rktotV (σ), brV tot(σ)⟩ = ⟨rkV (ι(σ)), brV (ι(σ))⟩,
σ⌢n ∈ V tot, ι(σ⌢n) = ι(σ)⌢n,

for every n ∈ ω such that ι(σ)⌢n ∈ V . Moreover, if ι(σ) ∈ V leaf , then we
declare that σ ∈ V tot,leaf .

(4) If σ ∈ V tot and ι(σ) = ⋆, then we declare that σ is a leaf, that is,

⟨rktotV (σ), brV tot(σ)⟩ =⟨0, 0⟩.

and we declare that σ ∈ V tot,leaf .
(5) For every σ ∈ V tot, if ι(σ) ∈ V ∗, say rkV (ι(σ)) = 2 and rkV (ι(σ)

⌢j) = 1
for some/any j, then we define

ptot(σ, 2n, α, β) ⇐⇒ (∀m) ¬q(ι(σ)⌢n,m, α, β),
ptot(σ, 2n+ 1, α, β) ⇐⇒ p(ι(σ), n, α, β).

For other cases, we also define the corresponding formulas on σ by the same
way. if ι(σ) ̸∈ V ∗, then we define ptot as follows:

ptot(σ, n, α, β) ⇐⇒ p(ι(σ), n, α, β)

Similarly, we also define qtot and ηtot in the same way. For σ ∈ V tot,leaf

with ι(σ) ̸= ⋆, we define f tot(σ, ·) = f(ι(σ), ·) as well. Finally, if ι(σ) = ⋆,
then we define f tot(σ, ·) as a nowhere defined function.

It is not hard to check that Λtot is weakly total and fΛ = fΛtot . By strong-
normality mentioned above, it is also clear that the underlying vein Vtot of the weak-
totalization Λtot is of the form V⊕rkV (⟨⟩)+1 if the root of V is infinitely branching;
otherwise Vtot = V. We now think of each e ∈ ω as an index of weakly total flows
(Λz,tot

e,s )s∈ω.

Requirements. To prove Theorems 3.1, 3.2 and 3.6, we will construct a (z ⊕ d)-
computable tree T (z) ⊆ 2<ω uniformly in z which fulfills the following requirements:

G : (∃g ∈ V′′Cd)(∀x ∈ T (z)) g(z, x) ∈ S(z),
N z

e,i,j : S(z) ̸= ∅ −→ (∃x ∈ T (z)) fΛz⊕d
e

(x) ̸∈ Uz
i,j .

where recall that V′′Cd is the class of all V′′-piecewise d-computable functions.



BOREL-PIECEWISE CONTINUOUS REDUCIBILITY 25

The global requirement G clearly ensures the assertion (2) in Theorems 3.1 and
3.6. The requirements (N z

e,i,j) ensure the assertions (3) in Theorems 3.1 and 3.6 and
(4) in Theorem 3.2. To see this, it suffices to check that the requirements (N z

e,i,j)
entail the property (⋆) since the property (⋆) implies these assertions as mentioned
before. Let k be a V-piecewise r-computable function for some r ≤T z ⊕ d. Then
there is an index e such that k = Λz⊕d

e . Moreover, if y ≡T z ⊕ d then there are
indices i, j such that U(y) = Uz

i,j . Therefore, by choosing a uniformization t of T
satisfying t(z) = x for an x in the above N z

e,i,j , we have k ◦ t(z) ̸∈ U(y) as desired.
To simplify our argument, we assume that z = d = ∅. The proof for general z

and d is a straightforward relativization of our strategy for z = d = ∅. Moreover,
for instance, we use the symbols S, T, U instead of S(∅), T (∅), U(∅), respectively, if
there is no confusion.

First note that if S := S(∅) is nonempty, there are infinitely many strings ρ
such that ρ is a minimal string which is not contained in the tree S. Let ρe be
the e-th such string. Clearly ρd is incomparable with ρe whenever d ̸= e. For any
e, i, j, s ∈ ω, we will construct a computable monomorphism γe,i,js : S → 2<ω, that
is, σ ⪯ τ if and only if γe,i,js (σ) ⪯ γe,i,js (τ). The monomorphism γe,i,js also satisfies
that γe,i,js (α) ⪰ ρ⟨e,i,j⟩ for any α ∈ S. Then the stage s approximation of our tree
Ts will be defined as follows:

Ts = S ∪ {τ ∈ 2<ω : (∃e, i, j)(∃α ∈ S) τ ⪯ γe,i,js (α)}.

Moreover, we will ensure that γe,i,js+1 (α) ∈ Ts for all α ∈ S and s ∈ ω. Therefore
T will be defined as follows:

T =
∩
s∈ω

Ts = S ∪ {τ ∈ 2<ω : (∃e, i, j)(∃α ∈ S) τ ⪯ lim
s→∞

γe,i,js (α)}.

In particular, the ∅-th fiber T of our compact set will be of the following form:

T = S ∪
{
lim
ℓ

lim
s
γe,i,js (x↾ℓ) : e ∈ ω and x ∈ S

}
.

Note that our requirement Ne will be ensured in the following way:

Ne,i,j : (∀x ∈ S) fΛe(lim
ℓ

lim
s
γe,i,js (x↾ℓ)) ̸∈ Ui,j .

This construction will automatically ensure that S ⊆ T . Therefore, the identity
map witnesses the assertion (1) in Theorems 3.1 and 3.6.

Priority Tree. To simplify our notations, we first fix e, i, j, and remove e, i, j
from superscripts and subscripts, e.g., hereafter γe,i,js and ρe,i,j will be denoted
by γs and ρ respectively. Let Λ = (V, rk, p, q, η, f) be the weak-totalization of the
e-th partial computable flow on a fixed vein V = (V, rkV) (we also abbreviate all
superscripts and subscripts in Λtot

e for notational convenience). We call V a priority
tree (associated with the Λ-piecewise computation), and each ξ ∈ V a Λ-strategy (or
simply, a strategy). At the beginning of stage s, we inductively assume that Ts has
already been constructed, where T0 is the tree consisting of all strings comparable
with ρ = ρe,i,j . Let Λs = (Vs, rks, p, q, ηs, fs) be the stage s approximation of the
weakly total flow Λ.

For each string σ ∈ Ts of length s, we will inductively define the current true
path tpΛ(σ) ∈ Vs and for each strategy ξ ∈ V , the ξ-timer tΛ(ξ, σ) ∈ ω. On the root
⟨⟩, reset the ξ-timer to be tΛ(ξ, ⟨⟩) = 0 for each strategy ξ ∈ V . Assume that the
current true path tpΛ(σ

−) ∈ Vs and the ξ-timer tΛ(ξ, σ
−) for every strategy ξ ∈ V
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has been already defined. Assume inductively that ξ := tpΛ(σ)↾n has already been
produced.

(1) If the computation rk(ξ) does not converge by stage s, then recall that ξ
has no successor in Vs. Then we define tpΛ(σ) = ξ.

(2) If ξ ̸∈ V leaf and rk(ξ) = 2, the outcome of the strategy ξ is the least i such
that p(ξ, i, σ ↾ tΛ(ξ, σ−)), and define tpΛ(σ)↾n+ 1 = ξ⌢i.

(3) If ξ ̸∈ V leaf and rk(ξ) = 1, the outcome of the strategy ξ is the least i such
that q(ξ, i, σ ↾j) for every j < s, and define tpΛ(σ)↾n+ 1 = ξ⌢i.

(4) If ξ ̸∈ V leaf and rk(ξ) = 0, there are two cases:
(a) If there is i ≤ s such that the computation of η(ξ, i) converges by stage

s and σ ⪰ η(ξ, i), then the outcome of ξ is the least such i, and define
tpΛ(σ)↾n+ 1 = ξ⌢i.

(b) Otherwise, define tpΛ(σ) = ξ.
(5) If ξ is a leaf of V , then define tpΛ(σ) = ξ.

For (2) and (3), we note that such i must exist by weak-totality of Λ. If ξ ⪯
tpΛ(σ), then we say that ξ is eligible to act along σ, and the strategy ξ sets the ξ-
timer ahead by one second, i.e., tΛ(ξ, σ) = tΛ(ξ, σ

−)+ 1. Otherwise, put tΛ(ξ, σ) =
tΛ(ξ, σ

−).

Lemma 4.3. TPΛ(x) = lim infn→∞ tpΛ(x↾n), that is, TPΛ(x) is the leftmost leaf
of S that is eligible to act along x↾n for infinitely many n. □

Obviously, σ 7→ tpΛ(σ) is computable. Therefore, this is an effective procedure
approximating the piecewise computation induced by the flow Λ.

Definition 4.4 (Priority-Value). Given σ ∈ T|σ|, the priority value priorΛ(ξ, σ) of
ξ ∈ V along a string σ is defined as follows:

priorΛ(ξ, σ) =

|σ|∑
s=0

#{ζ <left ξ : ζ is eligible to act along σ ↾s}.

In other words, the current true path tpΛ(σ) forces all strategies strictly to the
right of tpΛ(σ) to increase their priority values. Clearly, if a strategy is an initial
segment of the true path, then its priority value converges to some finite number.
It is also not hard to see the following:

Lemma 4.5. Consider the following partial functions s̃, ŝ: Let n ∈ ω, x ∈ ωω, and
a strategy ξ ∈ V be given (as inputs). For any u ∈ ω and any strategy ζ which is
eligible to act along x↾u,

(1) if u ≥ s̃(ξ, x, n), and if ξ <left ζ, then the priority value of ζ must be greater
than n,

(2) if u ≥ ŝ(x, n), either ζ is an initial segment of the true path or else the
priority value of ζ must be greater than n.

Then, ŝ : 2ω × ω → ω is total, and s̃(ξ, x, n) is defined for all x ∈ 2ω and n ∈ ω
whenever ξ is an initial segment of the true path. Moreover, s̃ is computable.

Proof. There are infinitely many stages (ti)i∈ω such that the true path is eligible
to act along x ↾ ti. Let tn > s0 be the n-th such stage. Then, after stage tn, the
priority value of any strategy strictly to the right of the true path becomes greater
than n by definition. We now define the function s̃ as follows: given ξ, x, n, we wait
for seeing the n-th stage un at which the strategy ξ is eligible to act along x, and
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define s̃(ξ, x, n) = un (this value may not be defined if ξ is not an initial segment
of the true path). This procedure is computable. If ξ is an initial segment of the
true path, then s̃(ξ, x, n) = tn which satisfies the desired condition. To define ŝ,
by using Lemma 4.3, we choose a stage s0 such that no strategy strictly to the left
of the true path is eligible to act along x↾s0. We also choose ξ, an initial segment
of the true path. Then, if t ≥ max{s0, s̃(ξ, x, n)}, ζ is eligible to act along x ↾ t,
and the priority value of ζ is not greater than n, then ζ must be an initial segment
of the true path. Consequently, ŝ(x, n) = max{s0, s̃(ξ, x, n)} satisfies the desired
condition. □

Construction. We first put γ0(α) = ρ⌢α for every α ∈ S. Assume that γs(α)
(and hence Ts) has already been constructed.

We say that α ∈ S is active at stage s if the length of γs(α) is at most |ρ|+ s. In
other words, γs(α) is an initial segment of a string of T ∗s , where T

∗
s is the set of all

strings in Ts of length |ρ|+ s. Given σ ∈ T ∗s , let γ
←
s (σ) denote the maximal string

α ∈ S such that γs(α) ⪯ σ. Then the set of all active strings of S (with respect to
a fixed triple e, i, j) at stage s can be written as follows:

Ss = {α ∈ S : (∃σ ∈ T ∗s ) α ⪯ γ←s (σ)}.
For a leaf ξ ∈ V leaf , if the immediate predecessor ξ− is finitely branching, then

we define ξ∗ = ξ−; otherwise, we define ξ∗ = ξ. A strategy is said to be almost-
terminal if it is of the form ξ∗ for some leaf ξ ∈ V leaf . We write V leaf

ξ as the set of

leaves in V extending ξ. Note that V leaf
ξ is finite for any almost-terminal strategy

ξ.
We now see that each σ ∈ T ∗s is layered as

γs(γ
←
s (σ)↾0) ≺ γs(γ

←
s (σ)↾1) ≺ · · · ≺ γs(γ

←
s (σ)) ⪯ σ

Given σ, an almost-terminal strategy ξ calculates the priority value p = prior(ξ, σ),
and then monitors the p-th level of the above layer. The almost-terminal strategy
ξ is allowed to extend the p-th level string as γs+1(γ

←
s (σ)↾p) ≻ γs(γ

←
s (σ)↾p). Such

an action may injure all lower priority strategies. Formally speaking, we say that
an almost-terminal strategy ξ ∈ V is active along σ if ξ is eligible to act along σ
and moreover, its priority value prior(ξ, σ) is less than or equal to the length of
γ←s (σ). Then we also say that ξ monitors α along σ if ξ is active along σ, and if

α = γ←s (σ)↾prior(ξ, σ).

Strategy. Stage s has substages t ≤ u at which an almost-terminal strategy ξ ∈ V
of the priority value t along some string may act, where u is the length of a longest
string in Ss. We describe the action of our strategy at substage t.

(1) We say that an almost-terminal strategy ξ requires attention at substage t
if

(∃σξ ∈ T ∗s )(∃αξ ∈Ss ∩ 2t) [ξ monitors αξ along σξ,

and (∃λ ∈ V leaf
ξ ) fλ(γs(αξ)) ≺ fλ(σξ) ∈ U [s]],

where recall that U [s] is the stage s approximation of Uz
i,j for z = ∅ and

fixed i and j. Recall also that U :=
∪

s U [s] has no computable element.
(2) If such a ξ ∈ V exists, choose a strategy ξ having the shortest γs(αξ) among

strategies requiring attention at substage t. Then we say that ξ receives
attention along σξ at substage t, and the strategy ξ acts as follows:
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(a) Define γs+1(αξ) to be such a string σξ ∈ Ts.
(b) Then, injure all lower priority constructions by defining γs+1(αξ

⌢β) =
γs+1(αξ)

⌢β for every β such that αξ
⌢β ∈ S. For a string β ∈ S which

does not extend αξ, we define γs+1(β) = γs(β). We have γs+1(β) ⪰
γs(β) unless β ≻ αξ.

(c) Skip all substrategies after t+ 1, and go to substage 0 of stage s+ 1.
(3) If there is no such ξ and if t < u, go to substage t+1. If t = u, then define

γs+1(α) = γs(α) for all α ∈ S and go to substage 0 of stage s+ 1.

By our construction, it is clear that σ ∈ T ∗s implies σ⌢τ ∈ Ts for all τ ∈ 2<ω.
Therefore, this construction ensures that γs+1(α) ∈ Ts for all α ∈ S.

Lemma 4.6. Every strategy requires attention at most finitely often. Therefore,
lims γ(α, s) converges for every α ∈ S.

Proof. For α ∈ S, inductively assume that we have already shown that lims γs(β)
converges for any initial segment β ≺ α. Let s0 be the least stage such that
γs(β) = γs0(β) for all s ∈ ω and β ≺ α. The item (2-b) in our construction ensures
that γs(α) is monotone after stage s0. Suppose for the sake of contradiction that
x = lims γs(α) does not converge, that is, x is an infinite string. By monotonicity
of γs(α) after stage s0 and effectivity of our construction, it is not hard to see that
x is computable.

We first note that if γs+1(α) ≻ γs(α) happens for some s ≥ s0, then this change
is caused by a strategy ξ monitoring α along some string σξ at stage s. Moreover,
this σξ must be an initial segment of x. Otherwise, the change γs+1(α) ≻ γs(α)
is caused by an action of a strategy along σξ ̸≺ x, and then the strategy requires
γs+1(α) to become σξ ̸≺ x, which contradicts monotonicity of γs(α) after stage s0.

Let ξ := TPΛ(x) be the true path through Λ along x. By our construction, only
strategies ξ with prior(ξ, x↾s) ≤ |α| can change the value γs(α). Let ŝ(x, |α|) be a
stage in Lemma 4.5, and let s1 be the maximum of s0 and ŝ(x, |α|). Then, if γs(α)
changes after stage s1, this change must be caused by an initial segment ξ of the
true path TPΛ(x). Clearly, there is a unique almost-terminal strategy ξ which is
an initial segment of the true path TPΛ(x).

Let s(n) ≥ s1 be the n-th stage such that γs(n)+1(α) ≻ γs(n)(α) happens. In
this case, the unique almost-terminal strategy ξ ≺ TPΛ(x) requires attention at
substage |α| of stage s(n) with witnesses σξ ≺ x and α, and therefore, there is
a leaf λ(n) ∈ V extending ξ such that fλ(n)(γs(n)(α)) ≺ fλ(n)(σξ) ∈ U . More-
over, since the change of γs(α) is caused by this strategy ξ, it must receive atten-
tion along σξ, and therefore γs(n)+1(σξ) = σξ. Hence, we have fλ(n)(γs(n)(α)) ≺
fλ(n)(γs(n)+1(α)) ∈ U for every n ∈ ω. By the definition of being almost-terminal,
there are only finitely many leaves in V extending ξ. Therefore, by the pigeonhole
principle, there is a leaf λ ∈ V extending ξ such that fλ(γs(n)(α)) ≺ fλ(γs(n)+1(α)) ∈
U for infinitely many n ∈ ω. By monotonicity of γ after stage s0 and the above
property, fλ(x) produces an infinite string and fλ(x) ∈ U . Since fλ and x are
computable, fλ(x) is a computable element of U . However, this contradicts our
assumption that U has no computable element. □

Hereafter we write γ(x) = limℓ lims γs(x ↾ ℓ). Recall that every y ∈ T extending
ρ is of the form γ(x) for some x ∈ S. By Lemma 4.6, given y ∈ T and n ∈ ω,
for any sufficiently large ℓn and sn such that γ←sn(y ↾ℓn)↾n is uniquely determined.
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Therefore, we define γ←(y) as an infinite string satisfying γ←(y)↾n = γ←sn(y ↾ℓn)↾n.
It is not hard to see that γ←(γ(x)) = x for every x ∈ S.

Lemma 4.7. fΛ(γ(x)) ̸∈ U for every x ∈ S.

Proof. Otherwise, there is x ∈ S such that fΛe(γ(x)) ∈ U . Recall that Λ is the
weak-totalization of the e-th partial computable flow Λe; therefore Λ is equivalent
to Λe. In particular, fΛ(γ(x)) = fΛe(γ(x)) holds. We denote by ξ the true path
TPΛ(γ(x)) along γ(x), and then we have fΛ(γ(x)) = fξ(γ(x)). Since ξ is the true
path along γ(x), there is stage s0 such that the priority value of ξ along γ(x)
converges to some p ∈ ω, that is, prior(ξ, γ(x) ↾ s) = p for all s ≥ s0. By Lemma
4.6 there is stage s1 ≥ s0 such that γu(α) = γs1(α) for any α ∈ S of length at most
p and any stage u ≥ s1. In particular, no strategy which monitors α ∈ S of length
at most p along some string receives attention at substage t ≤ p of stage after s1.
For α = γ←(γ(x)) ↾ p, note that γu(α) for any u ≥ s1 is of the form γ(x) ↾ ℓ for
some ℓ ∈ ω. However, if fξ(γ(x)) ∈ U then for any ℓ ∈ ω there is u ≥ s1 such that
fξ(γ(x)↾ℓ) ≺ fξ(γ(x)↾v) ∈ U [v] for all v ≥ u. Moreover, ξ is eligible to act at some
stage v ≥ u since ξ is the true path along Λ at γ(x). Therefore, some strategy must
receive attention at substage ≤ p of such stage v ≥ u ≥ s1, which is a contradiction
because of our choice of s1. □

Finally, we direct our attention to the global requirement G, and therefore, we
have to analyze the whole picture of the ∅-th fiber of T . To see the property of T (∅)
we now need to restore the subscripts and superscripts such as e, i, j. For instance,
we consider γe,i,j(x) = limℓ lims γ

e,i,j
s (x↾ℓ) and γ←e,i,j defined as above. Recall that

the ∅-th fiber of T is defined as S(∅) ∪ {γe,i,j(x) : e, i, j ∈ ω and x ∈ S(∅)}. To
make sure that the global requirement G is satisfied, we will construct a V′-piecewise
computable function g∅ : T (∅) → S(∅). We consider the following function:

g∅(y) =

{
y if y ∈ S(∅),
x if y is of the form γe,i,j(x).

Lemma 4.8. g∅ is V′-piecewise computable.

Proof. In this proof, to avoid confusion, we use the symbols ⌈m0, . . . ,mn⌉ to denote
a natural number coding the tuple ⟨m0, . . . ,mn⟩. We need to construct a flow Λ′

on the vein V′ such that fΛ′ is equal to g∅. Recall that V′ is of the form V⊖1⊕ω0⊕1

if the root of V is finitely branching; otherwise, it is of the form V⊖1⊕k, where
k = rk(⟨⟩) + 1. Thus, all new nodes in V′ are infinitely branching except for
the root. To define the flow, our branching function b′ first converts the root
of V into a 2-branching node, and put the 1-replacement of the (e, i, j)-th flow
below ⟨1, ⌈e, i, j⌉⟩. That is, the branching function b′ is defined by b′(⟨⟩) = 2 and
b′(⟨k, ⌈e, i, j⌉⟩⌢ξ) = be(ξ) for all k, e, i, j ∈ ω and ξ ∈ Ve. Here, if the root of V is
infinitely branching, then hereafter we think of ⟨1, ⌈e, i, j⌉⟩⌢ξ as an abbreviation of
⟨1, ⌈e, i, j, n⌉⟩⌢ζ, where ξ = n⌢ζ.

If the root of V is finitely branching, we define the labeled well-founded tree V′

as the result after removing all extensions of ⟨0⟩ from (V′)b′ . More explicitly, we
may define the labeled well-founded tree V′ = (V ′, rk′) on the vein V′ as follows:

V ′ = {⟨⟩, ⟨0⟩, ⟨1⟩} ∪ {⟨1, ⌈e, i, j⌉⟩⌢ξ : e, i, j ∈ ω and ξ ⪯ ζ for some ζ ∈ V at
e }

∪ {⟨1, ⌈e, i, j⌉⟩⌢ξ⌢n : ξ ∈ V at
e and n ∈ ω},
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where recall that V at
e is the set of all almost-terminal strings in Ve, and rk′ is defined

in a straightforward manner. If the root of V is infinitely branching, we convert
⟨0⟩ into a two-branching Borel-rank-1 node such that the lefthand side ⟨00⟩ is a
leaf and the righthand side ⟨01⟩ is an infinitely-branching Borel-rank-0 node all of
whose successors are leaves. Formally speaking, we define the labeled well-founded
tree V′ = (V ′, rk′) on the vein V′ as follows:

V ′ = {⟨⟩, ⟨0⟩, ⟨1⟩, ⟨00⟩, ⟨01⟩} ∪ {⟨1, ⌈e, i, j⌉⟩⌢ξ : e, i, j ∈ ω and ξ ⪯ ζ for some ζ ∈ V at
e }

∪ {⟨01e⟩ : e ∈ ω} ∪ {⟨1, ⌈e, i, j⌉⟩⌢ξ⌢n : ξ ∈ V at
e and n ∈ ω},

and rk′(⟨⟩) = rk(⟨⟩) + 1, rk′(⟨0⟩) = 1, and rk′(⟨01⟩) = 0; the other values of rk′ are
defined in a straightforward manner.

We place a flowchart Λ′ on the labeled well-founded tree (V ′, rk′). We first
assume that the root of V is finitely branching, and therefore V′ is of the form
V⊖1⊕ω0⊕1. Recall that the root ⟨⟩ branches into two nodes in V ′, and the Borel
rank rk′(⟨⟩) of this branching is 1. We put the Π0

1-branch on the root ⟨⟩ which
asks whether a given input x ∈ 2ω extends ρe,i,j for some e, i, j or not. Formally
speaking, the first Π0

1-branching condition is given as follows:

(∀σ ∈ 2<ω) q′(⟨⟩, 0, σ) ⇐⇒ (∀e, i, j ∈ ω) ρe,i,j ̸⪯ σ,

and q′(⟨⟩, 1, σ) is a formula which is always true for any σ ∈ 2<ω.
Next, recall that if we answer yes to this first Π0

1-question on the root ⟨⟩, then
the computation directs into the left node ⟨0⟩, which is a terminal node in V ′;
therefore, some continuous function f⟨0⟩ has to be placed on this terminal node ⟨0⟩.
We describe the following instruction in our flowchart Λ′: If we answer yes to the
first Π0

1-question with a given input x, that is, if q′(⟨⟩, 0, x ↾n) for all n ∈ ω, then
return x itself. In other words, we define f⟨0⟩ to be the identity function.

Recall also that if we answer no to the first Π0
1-question on the root ⟨⟩, then the

computation directs into the right node ⟨1⟩, which is an infinitely branching node
in V ′ with Borel rank 0; therefore, a ∆0

0-conditional branch (given by a collection
(η′(⟨1⟩, ⌈e, i, j⌉))e,i,j∈ω of binary strings) has to be placed on the node ⟨1⟩. We
describe the following instruction in our flowchart Λ′: If we answer no to the first
Π0

1-question with a given input x, then consider the ∆0
0-question which asks what

the least number ⌈e, i, j⌉ such that x extends the string ρe,i,j is. In other words,
we define η′(⟨1⟩, ⌈e, i, j⌉) to be ρe,i,j .

If we answer (e, i, j) to the ∆0
0-question on ⟨1⟩, recall that the shape of the labeled

well-founded tree (V ′, rk′) below ⟨1, ⌈e, i, j⌉⟩ is exactly the same as the labeled
well-founded tree (V tot

e , rktote ) in the weak-totalization of the e-th flowchart Λe

except that each almost-terminal node ξ in Ve becomes an infinitely branching node
⟨1, ⌈e, i, j⌉⟩⌢ξ in V ′ with Borel rank 1. Thus, if a node is of the form ⟨1, ⌈e, i, j⌉⟩⌢ζ
for some ζ ∈ Ve which does not reach an almost-terminal node, then we put the
same question on ⟨1, ⌈e, i, j⌉⟩⌢ζ in our flowchart Λ′ as that on ζ in the e-th flowchart
Λe.

Now, for any almost-terminal node ξ in Ve, we need to put a new Π0
1-branching

condition on ⟨1, ⌈e, i, j⌉⟩⌢ξ and a new continuous function on each leaf ⟨1, ⌈e, i, j⌉⟩⌢ξ⌢k.
The length-of-agreement of a leaf λ in the original tree Ve with respect to a tree
U∅i,j is defined as follows:

ℓi,jλ (σ) = max{n ∈ ω : fλ(σ;m) ↓ for every m < n, and fλ(σ)↾n ∈ U∅i,j}.
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For an almost-terminal node ξ in Ve, if a computation reaches the node ⟨1, ⌈e, i, j⌉⟩⌢ξ
in V ′ along our flowchart, consider the following Borel-rank-1 question: Give the
pair (s, n) satisfying the following:

(I) s is the least stage after which no Λe-strategy ζ <left ξ acts,
(II) and n is the total number of lengths-of-agreement of leaves λ in the original

tree Ve extending ξ.

Here recall that an almost-terminal node has only finitely many successors, and
therefore, the sum of lengths-of-agreement must be finite. Formally speaking, if ξ
is an almost-terminal node in the original tree Ve, then we consider the following
Π0

1 formula on the node ⟨1, ⌈e, i, j⌉⟩⌢ξ in V ′:

q′(⟨1, ⌈e, i, j⌉⟩⌢ξ, ⌈s, n⌉, σ) ⇐⇒ (∀t) [(s < t < |σ|) → (¬∃ζ <left ξ) ζ ⪯ tpΛe
(σ ↾ t)]

and ℓi,jξ (σ) :=
∑{

ℓi,jλ (σ) : ρ ∈ V leaf
e and ξ ⪯ λ

}
≤ n,

It is not hard to check that this formula is Π0
1.

Finally, we need to place a continuous function f ′θ on each leaf θ := ⟨1, ⌈e, i, j⌉⟩⌢ξ⌢⌈s, n⌉
in V ′, where ξ is an almost-terminal node in Ve. The function f ′θ will act under
the belief that ξ is an initial segment of the true path through Λtot

e , and s and n
are the correct values satisfying the above conditions (I) and (II). In particular,
f ′θ(x) always believes that ⟨1, ⌈e, i, j⌉⟩⌢ξ⌢⌈s, n⌉ is the true path through our new
flowchart Λ′ along any given input x. Given an input x ∈ 2ω, the value f ′θ(x) is
computed in the following manner:

(1) First, calculate the priority value p := priorΛtot
e
(ξ, σ) of ξ along x↾s.

(2) Next, wait for seeing stage s0 ≥ s such that the sum of lengths-of-agreement
has become n, and moreover ξ has already received attention because of the
change of the total value of lengths-of-agreement to n by stage s0. Formally
speaking, for any stage u ∈ ω and any leaf λ ∈ (V tot

e )leafξ , consider the

value v(λ, u) defined by the maximal length of fλ(σξ) such that ξ receives
attention along σξ witnessed by ρ at a substage of some stage s′ < u. Then,
wait for stage s0 ≥ s such that we see the following equations:∑

{v(λ, s0) : λ ∈ V leaf
ξ } = ℓi,jξ (x↾s0) = n.

(3) Moreover, for any ℓ ≥ p, wait for seeing stage s(ℓ) = max{s̃(ξ, x, ℓ), s0}
where s̃ is the partial computable function in Lemma 4.5.

(4) For a given ℓ ≥ p, search for the unique αℓ of length ℓ such that γs(ℓ)(αℓ) ⪯
x, and then return fθ(x)(ℓ−1) = αℓ(ℓ−1). Such αℓ exists whenever x ∈ T .

Note that fθ is partially computable uniformly in e, i, j, ξ, s, n.

Claim. If x is an infinite path through T (∅) and θ = ⟨1, ⌈e, i, j⌉⟩⌢ξ⌢⌈s, n⌉ is the
true path through our new flowchart Λ′ along an input x, then fθ(x) = γ←e,i,j(x)
holds.

It is not hard to see that if ⟨1, ⌈e, i, j⌉⟩⌢ξ⌢⌈s, n⌉ is the true path then (s, n) is
the correct pair satisfying the above conditions (I) and (II). Therefore, the priority
value of ξ never changes after stage s, that is, the value stabilizes to p, and the
almost-terminal strategy ξ never receives attention after stage s0 where s0 is the
stage in (2). As mentioned in the second paragraph in the proof of Lemma 4.6, if

an action of a strategy causes γe,i,js+1 (αℓ) ≻ γe,i,js (αℓ) for some stage s ≥ s(ℓ), then

this strategy must act along an initial segment of x unless x ̸∈ T (∅) since γe,i,js(ℓ) (αℓ)
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is an initial segment of x. However, no strategy can act along x after stage s(ℓ).
Therefore, it has to be true that, for any stage u ≥ s(ℓ), no strategy can change the

value γe,i,ju (αℓ) along x. In other words, we have lims γ
e,i,j
s (αℓ) = γe,i,js(ℓ) (αℓ) ≺ x.

By uniqueness of such αℓ, we must have γ←e,i,j(x) ↾ ℓ = αℓ. Consequently, we get
that fθ(x) = γ←e,i,j(x).

We next consider the case that the root of V is infinitely branching. In this case,
we first need to put a Π0

rk(⟨⟩)+1-question on the root. If rk(⟨⟩) = 1, then we put the

following Π0
2-question:

p′(⟨⟩, 0, σ) ⇐⇒ ¬(∃e, i, j, n ∈ ω) [ρe,i,j ⪯ σ and qe(⟨⟩, n, σ)],

and if rk(⟨⟩) = 0, then we put the following Π0
1-question:

q′(⟨⟩, 0, σ) ⇐⇒ ¬(∃e, i, j, n ∈ ω) [ρe,i,j ⪯ σ and ηe(⟨⟩, n) ⪯ σ]

In other words, these questions ask whether it is true that if a given input x
extends ρe,i,j for some e, i, j then the first outcome along the weak-totalization of Λe

is 0, that is, x ̸∈ dom(Λe). If we answer yes to this question, then the computation
reaches the two-branching Borel-rank-1 node ⟨0⟩. We put the Π0

1-question on ⟨0⟩
asking whether a given input extends ρe,i,j for some e, i, j or not:

q′(⟨0⟩, 0, σ) ⇐⇒ (∀e, i, j ∈ ω) ρe,i,j ̸⪯ σ,

and then we put the identity function on the leaf ⟨00⟩ as in the finitely-branching
case. Similarly, we put the rank-0 question on the infinitely-branching Borel-rank-
0 node ⟨01⟩ asking for the unique triple (e, i, j) such that a given input extends
ρe,i,j , that is, define η(⟨01⟩, ⌈e, i, j⌉) = ρe,i,j for each e, i, j ∈ ω. Now we need to
put a continuous function f01⌈e,i,j⌉ on the leaf ⟨01⌈e, i, j⌉⟩ for each e, i, j ∈ ω. The
function believes that a given input x extends ρe,i,j and the first outcome along the
weak-totalization of Λe is 0. The function f01⌈e,i,j⌉ proceeds similarly to the function
fθ described above except that we do not need to care about the length-of-agreement
and the priority value, because the function f01⌈e,i,j⌉ believes that x ̸∈ dom(Λe)
and ⟨0⟩ is always the leftmost path of Λtot

e . By the same argument as above, we
can show that if x is an infinite path through T (∅) and ⟨01⌈e, i, j⌉⟩ is the true
path through our new flowchart Λ′ along an input x, then f01⌈e,i,j⌉(x) = γ←e,i,j(x)
holds. All other parts in the infinitely-branching case are similar as the finitely-
branching case except that we consider ⟨1, ⌈e, i, j, n⌉⟩⌢ζ instead of ⟨1, ⌈e, i, j⌉⟩⌢ξ
where ξ = n⌢ζ.

We are now ready for proving that fΛ′ agrees with g∅ on the domain T (∅). Given
an input x ∈ T (∅), consider the case that the first outcome of the true path through
Λ′ along x is 0. There are two cases. First, consider the case that the root of the
original vein V is finitely branching. Then, if the first outcome through Λ′ is 0
then we answer yes to the first Π0

1-question on the root ⟨⟩, which means that x
does not extend ρe,i,j for any e, i, j ∈ ω. Therefore, we must have x ∈ S(∅). Since
the identity function is placed on the left node ⟨0⟩ in our flowchart Λ′, we have
fΛ′(x) = x ∈ S(∅). If the first two outcomes of the true path through Λ′ along
x are ⟨1, ⌈e, i, j⌉⟩, then the true path is of the form θ = ⟨1, ⌈e, i, j⌉⟩⌢ξ⌢⌈s, n⌉ for
some almost-terminal node ξ. Then, by the above claim, we have fΛ′(x) = fθ(x) =
γ←e,i,j(x) ∈ S as desired.

We can use a similar argument for the case that the root of the original vein V
is infinitely branching. □
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It is straightforward to relativize our argument to (z⊕ d)-computably construct
each z-th fiber T (z) = S(z) ∪ {γze,i,j(x) : e, i, j ∈ ω and x ∈ S(z)} to satisfy
the requirements (N z

e,i,j)e,i,j uniformly in z ∈ 2ω. Consequently, T = {(z, x) :

x ∈ T (z)} is Π0
1(d). Moreover, as in the above argument, for such T (z), one can

uniformly construct a Λ′-piecewise continuous function gz : T (z) → S(z) obtained
from some flow Λ′z on the vein V′. Note that our description of the flow Λ′ is
effective, and by relativizing this, one can obtain a d-computable function producing
such a flow Λ′z from z ∈ 2ω. It is not hard to check that this implies that the
function g defined by g(z, x) = gz(x) is V′′-piecewise d-computable. Consequently,
our construction fulfills the global requirement G. This concludes the proof of
Theorems 3.1, 3.2 and 3.6.

Proof of (†). Finally, we verify the statement (†) claimed in Section 1.2. As
mentioned in Example 2.15, V1,1, V1,ω, and V2,1 correspond to LPO, CN, and
LPO′, respectively. Here, we say that a vein V corresponds to a function F (or to
a collection F of functions) if for any computable flow Λ on V, TPΛ is Weihrauch
reducible to F (for some F ∈ F), and if (for any F ∈ F) there is a computable flow
Λ on V such that F is Weihrauch reducible to TPΛ.

As in the proof of Propositions 2.13 and 2.14, one can check that V2,1
⌢V1,ω

corresponds to (CN ⋆ (LPO
′)ℓ)ℓ∈ω, and that V0,ω

⌢V2,1 corresponds to the finite par-
allelization (LPO′)∗. Therefore V1,ω

⌢V2,1 (which is equivalent to V1,ω
⌢V0,ω

⌢V2,1)
corresponds to (LPO′)∗ ⋆CN. Generally, it is straightforward to show the following:

(1) V1,ω
⌢V2,1

⌢ . . .⌢V1,ω
⌢V2,1 corresponds to (LPO′)∗ ⋆CN ⋆ · · ·⋆ (LPO′)∗ ⋆CN.

(2) V2,1
⌢V1,ω

⌢ . . .⌢V2,1
⌢V1,ω corresponds to CN ⋆ (LPO

′)∗ ⋆ · · · ⋆CN ⋆ (LPO
′)ℓ

with ℓ ∈ ω.
(3) V1,1

⌢V0,ω
⌢V2,1

⌢V1,ω
⌢ . . .⌢V2,1

⌢V1,ω corresponds to CN ⋆ (LPO
′)∗ ⋆ · · · ⋆

CN ⋆ (LPO
′)∗ ⋆ LPOℓ with ℓ ∈ ω.

Let S be WKL. It is easy to see that there is a Π0
1 set U ⊆ 2ω × 2ω which

is Weihrauch reducible to WWKL such that U(x) is nonempty and has no x-
computable element for any x ∈ 2ω (e.g., consider the set mentioned in Example
2.2 (1) or (1/2)-WWKL in [6]). We then apply Theorem 3.6 with veins mentioned
in Example 2.20 (4) to get Fn and Gn. This verifies the third inequality in the
statement (†). The first and second inequalities in (†) require ℓ = 1 in the above
item (2), which is guaranteed by our proof of Theorem 3.6 (see Lemma 4.8). For
the fourth inequality in (†), we need to replace ℓ in the above item (3) with finite
parallelization ∗. This is ensured by effective compactness of U and Gn.
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