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ABSTRACT. The enumeration degrees of sets of natural numbers can be identified with
the degrees of difficulty of enumerating neighborhood bases of points in a universal
second-countable Ty-space (e.g. the w-power of the Sierpinski space). Hence, every
represented second-countable Ty-space determines a collection of enumeration degrees.
For instance, Cantor space captures the total degrees, and the Hilbert cube captures
the continuous degrees by definition. Based on these observations, we utilize general
topology (particularly non-metrizable topology) to establish a classification theory of

enumeration degrees of sets of natural numbers.
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1. INTRODUCTION

1.1. Background. The notion of an enumeration degree was introduced by Friedberg
and Rogers [19] in 1950s to estimate the degree of difficulty of enumerating a given set
of natural numbers. Roughly speaking, given sets A, B C w, A is enumeration reducible
to B (written A <. B) if there is a computable procedure that, given an enumeration
of B, returns an enumeration of A. Since then, the study of enumeration degrees have
been one of the most important subjects in computability theory.

Nevertheless, only a few subcollections of enumeration degrees have been isolated.
Some prominent isolated properties are totality, semirecursiveness [30], and quasi-minimality
[38]. Recently, the notion of cototality has also been found to be important and robust;
see Andrews et al. [1], Jeandel [29], and McCarthy [35]. Our aim is to understand
the profound structure of enumeration degrees by isolating further subcollections of
enumeration degrees and then establish a “zoo” of enumeration degrees.

To achieve our objective, we pay attention to a topological perspective of enumeration
degrees. The enumeration degrees can be identified with the degrees of difficulty of
enumerating neighborhood bases of points in a universal second-countable Ty-space
(e.g. the w-power of the Sierpinski space). Hence, every represented second-countable
Ty-space determines a collection of enumeration degrees.

This is exactly what Miller [41] did for metric spaces. Miller introduced the notion
of continuous degrees as the degree structure of a universal separable metric space, and
he described how this new notion can be understood as a substructure of enumeration
degrees. Subsequently, Kihara-Pauly [31] noticed that the total degrees are the enu-
meration degrees of neighborhood bases of points in (sufficiently effective) countable
dimensional separable metric spaces. This observation eventually led them to an ap-
plication of continuous degrees in other areas outside of computability theory, such as
descriptive set theory and infinite dimensional topology. Other applications of contin-
uous degrees can also be found in Day-Miller [9] and Gregoriades-Kihara-Ng [21].
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In this article, we further develop these former ideas. We utilize general topology
(particularly non-metrizable topology) to establish a classification theory of enumera-
tion degrees. For instance, we will examine which enumeration degrees can be realized
as points in Ty (Kolmogorov), T; (Fréchet), T, (Hausdorff), 755 (Urysohn), and sub-
metrizable spaces. Furthermore, we will discuss the notion of T;-quasi-minimality. We
will also provide a characterization of the notion of cototality in terms of computable
topology.

Our work reveals that general topology (non-metrizable topology) is extremely useful
to understand the highly intricate structure of subsets of the natural numbers.

1.2. Summary. In Section 3, we reveal what substructures are captured by the degree
structures of individual represented cby spaces (some of which are quasi-Polish). For
instance, we define various subcollections of e-degrees, and then show the following.

e We construct a represented, decidable, T, non-T5, quasi-Polish space X such
that the X'-degrees are precisely the telograph-cototal degrees (Proposition 5.5).

e We construct a represented, decidable, T, non-T5 5, quasi-Polish space X such
that the X-degrees are precisely the doubled co-d-CEA degrees (Theorem 5.7).

e We construct a represented, decidable, Th 5, non-submetrizable, quasi-Polish
space X such that the X-degrees are precisely the Arens co-d-CEA (the Roy
halfgraph-above) degrees (Theorems 5.12 and 5.15).

e We construct a represented, decidable, submetrizable, non-metrizable, quasi-
Polish space X such that the X-degrees are precisely the co-d-CEA degrees
(Proposition 5.24).

e Given a countable pointclass I', there is a computable extension v of the standard
representation of Cantor space (hence, it induces a submetrizable topology) such
that the (2¢,7)-degrees are exactly the I-above degrees (Proposition 5.16).

e Every e-degree is an X-degree for some decidable, submetrizable, cby space X
(Theorem 5.17). In particular, every e-degree is the degree of a point of a
decidable T5 5 space.

For the details of the above results, see Section 3. In Section 3.8, we emphasize the
importance of the notion of a network. A Gs-space is a topological space in which
every closed set is 5. A second-countable Tj-space X is a Gg-space if and only if
X has a countable closed network (Proposition 5.29). The following is an unexpected
characterization of cototality.

e An e-degree is cototal if and only if it is an X-degree of a computably Gs, cbg
space X (Theorem 3.27).
o There exists a decidable, computably G5, cby space AL, such that the AL -

degrees are exactly the cototal e-degrees (Theorem 5.36).
We also show several separation results for specific degree-notions. For instance,

e There are an n-semirecursive e-degree ¢ < 0” and a total e-degree d < 0” such
that the join ¢ @ d is not (n + 1)-semirecursive (Theorem 7.20).

e For any n € w, an n-semirecursive e-degree is either total or a strong quasi-
minimal cover of a total e-degree (Theorem 7.22).

e For any n, there is an (n + 1)-cylinder-cototal e-degree which is not n-cylinder-
cototal (Theorem 5.2).
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There is a co-d-CEA set A C w such that A is not cylinder-cototal (Proposition
7.34).

Every semirecursive, non-AJ e-degree is quasi-minimal w.r.t. telograph-cototal
e-degrees (Theorem 7.26).

There is a semirecursive set A C w which is quasi-minimal, but not quasi-
minimal w.r.t. telograph-cototal e-degrees (Theorem 7.28).

There is a cylinder-cototal e-degree which is quasi-minimal w.r.t. telograph-
cototal e-degrees (Theorem 7.35).

By (w*)gu(n) we denote the set w*” endowed with the X)-Gandy-Harrington
topology. For any distinct numbers n, m € w, there is no e-degree which is both
an (w*)amm)-degree and an (w*)gwm)-degree (Theorem 7.54).

There is a continuous degree which is neither telograph-cototal nor cylinder-
cototal (Proposition 7.42).

Moreover, we introduce the notion of a regular-like network, and give a characteriza-
tion in the context of a closure representation, which plays a key role in Section 7. By
using these notions, we will show the following separation results.

Let 7 be a countable collection of second-countable T} spaces. Then, there is a
T-quasi-minimal semirecursive e-degree (Theorem 7.13).

Let 7 be a countable collection of second-countable T; spaces. Then, there
is an (n + 1)-semirecursive e-degree which cannot be written as the join of an
n-semirecursive e-degree and an X-degree for X € T (Theorem 7.18).

For any represented Hausdorff space X', there is a cylinder-cototal e-degree which
is not an X-degree (Theorem 7.32).

e There is a cylinder-cototal e-degree which is NV -quasi-minimal (Theorem 7.33).
e Given any countable collection {S; };c,, of effective T; spaces, there is a telograph-

cototal e-degree which is S;-quasi-minimal for any ¢ € w (Theorem 7.37).
For any represented T;js-space X, there is an (N,,)”-degree which is not an
X-degree (Theorem 7.49).

e There is an (N,,)“-degree which is NV -quasi-minimal (Theorem 7.50).
e Let X = (X, N) be a regular Hausdorff space with a countable cs-network. Then

there is an (w”)gy-degree which is not an X-degree (Theorem 7.52).
The Gandy-Harrington space has no point of NV -degree (Theorem 7.53).

1.3. Structure of the article. To ease the reading, we are not giving proofs in Sec-
tions 3 and 4. Instead, we focus on the statements of the theorems and accompanying
narratives and explanations. The proofs omitted in these Sections are given in Sections
5 and 7. The statements of the theorems are repeated in the latter sections. Theorem
numbers always refer to the place where the theorems are given with proofs. In Section
6 narrative and proofs are not separated.

2. PRELIMINARIES

2.1. Notations. We use A€ to denote the complement of A, and U always means the
topological closure of U.
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2.2. General topology. We first review some basic concepts from general topology (see
also Steen-Seebach [60]). In most parts of this paper, we only deal with second-countable
To-spaces. However in Section 6 we also consider (non-second-countable) spaces which
have a countable cs-network, e.g. the Kleene-Kreisel space N¥' := C(NN,N). A normal
space having a countable cs-network is known as an Rg-space (see [39, 24]).

A space X is Ty (Kolmogorov) if any two distinct points are topologically distinguish-
able. We are only concerned with 7§ spaces in this paper. A space X is T} (Fréchet) if
every singleton is closed. A space X is Ty (Hausdorff) if the diagonal is closed. A space
X is Ty5 (Urysohn) if any two distinct points are separated by their closed neighbor-
hoods. A space X is T} if every singleton is the intersection of an open set and a closed
set. A space X is completely Hausdorff if any two distinct points are separated by a
continuous [0, 1]-valued function. A space X is submetrizable if it admits a continuous
metric. We have the following implications.

metrizable = submetrizable < 'completely Hausdorff = Th 5 = Th = 1) = Tp = Tp.

A space X is regular if the closed neighborhoods of a point x form a local network at
the point z, that is, every neighborhood of a point contains a closed neighborhood of the
same point. In the category of second-countable Ty spaces, by Urysohn’s metrization
theorem, the property being T3 (regular Hausdorff) is equivalent to metrizability. A
space in which every closed set is Gy is called a G-space. Every metrizable space is Gy
(see [60, Part I11]), and every Tp, Gs-space is 17 (see Section 3.8.1).

2.3. Computability theory.

2.3.1. Enumeration and Medvedev reducibility. We review the definition of enumeration
reducibility (see also Odifreddi [45, Chapter XIV], Cooper [7] & [8, Chapter 11]). Let
(D¢)ecw be a computable enumeration of all finite subsets of w. Given A, B C w, we say
that A is enumeration reducible to B (written A <, B) if there is a c.e. set ® such that

neA <= (3Je)[(n,e) € Pand D, C B].

The ® in the above definition is called an enumeration operator. An enumeration
operator induces a computable function on w®, and indeed, A <, B iff there is a
computable function f : w* — w® such that given an enumeration p of A, f(p) returns
an enumeration of B, where we say that p € w* is an enumeration of Aif A = {p(n)—1:
p(n) > 0} (p(n) = 0 indicates that we enumerate nothing at the n-th step).

Each equivalence class under the e-equivalence =.: =<, N >, is called an enumeration
degree or simply e-degree. The e-degree of a set A C w is written as deg,(A). The e-
degree structure forms a upper semilattice, where the join is given by the disjoint union
A®B={2n:ne A}U{2n+1:n € B}. We use the symbol D, to denote the set of
all e-degrees.

For P,QQ C w¥, we say that P is Medvedev reducible to @ (written P <,; @, [38])
if there is a partial computable function ¥ :C w“ — w® such that for any ¢ € @,

IBeing submetrizable and being completely Hausdorff coincides for spaces with hered-
itarily ~Lindel6f squares, which includes all spaces with countable networks, hence
all spaces relevant for our purposes. We are grateful to Taras Banakh for point-
ing this out to us on mathoverflow (https://mathoverflow.net/questions/280359/
does-second-countable-and-functionally-hausdorff-imply-submetrizable).
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U(q) € P. There is a natural embedding of the enumeration degrees into the Medvedev
degrees of the Baire space, by taking a set A to the class of all enumerations of A.

2.4. Represented spaces. The central objects of study in computable analysis are
the represented spaces, which allow us to make sense of computability for most space
of interest in everyday mathematics.

Definition 2.1. A represented space is a set X together with a partial surjection § :C
w* — X. We often write X for a represented space.

We say that p € w® is a d-name of x if x = d(p). We use Names(z) to denote the
set of all J-names of z, or just write Name(z), if the space is clear from the context.
Hereafter, by a point, we mean a pair of a point x € X and the underlying represented
space X = (X, d), denoted by x: X or simply x: .

A partial function F' :C w¥ — w* is called a realizer of a partial function f :C X — Y,
if 6y(F(p)) = f(éx(p)) for any p € dom(fdy). We then say that f is computable
(respectively continuous), if f has a computable (respectively continuous) realizer.

If v and § are representations, we say that « is (computably) reducible to 6 or 7 is
(computably) finer than § if there is a continuous (computable) function ® such that v =
do®. It is equivalent to saying that the identity map id: (X,v) — (X, d) is continuous
(computable). If v is (computably) reducible to § and § is (computably) reducible to
v, we call v and § (computably) equivalent. This corresponds to id: (X,v) — (X, 0)
being a (computable) isomorphism.

In the topological terminology, 7 is reducible to ¢ if and only if 75 C 7., where 7, and
Ts are the quotient topologies given by v and ¢, respectively. If X is equipped with a
topology 7, then ¢ is continuous if and only if 7 C 7.

2.4.1. Representation via a countable basis. A represented cb space is a pair (X, 3) of a
second-countable space X’ and an enumeration 8 = (f,)ecw 0f a countable open subbasis
of X. Here, “cb” stands for “countably based”. If a represented cb space is Ty, then it
is also called a represented cbg space. The enumeration [ is called a cb representation
of X.

One of the key observations is that specifying a cb representation 3 of a second-
countable Tj space X is the same thing as specifying an embedding of A" into the power
set Pw of w endowed with the Scott topology (that is, basic open sets are {X C w :
D C X} where D ranges over finite subsets of w). Hence, a cby representation 5 (and
the induced embedding) determines how a point € X' is identified with a subset of
the natural numbers.

This observation entails the known fact that the Scott domain Pw is a universal
second-countable Ty space, that is, every second-countable T space embeds into Pw.
We describe how an embedding : X < Pw is induced from a representation 5. One can
identify a point z in a represented cbq space (X, 3) with the coded neighborhood filter

Nbaseg(z) ={e € w:z € f.}.

It is not hard to see that Nbaseg: X — Pw is a topological embedding. An enumeration
of Nbaseg(x) is called a B-name of x, that is, for a p: w — w,

p is a f-name of x <= rng(p) = Nbaseg(x),
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where one can assume [y = X without loss of generality. If 3 is clear from the context,
we also use the symbol Nbase(z) instead of Nbaseg(x).

Clearly, a cb-representation § always induces a representation dz defined by dz(p) =
iff p is a B-name of = (i.e., p enumerates Nbaseg(x)). This entails that Nbasey(z) is
c.e. iff z: X is computable. In situations where no confusion is expected, we may speak
of a cb representation and its induced representation interchangeably. We can also
express computability of partial functions between represented cb spaces equivalently as
a special case of computability on represented spaces, or in the language of enumeration
reducibility: Saying that f :C X — ) is computable is equivalent to saying that there
is a single enumeration operator ¥ such that

(Vo € dom(f)) [Nbase(f(z)) <. Nbase(x) via ¥].

Remark 2.2. It is known that the Scott domain Pw is homeomorphic to the w-power
S¥ of the Sierpiriski space, where S = {0, 1} which has the three open sets 0, {1}, and
S (see [10, 51]).

Remark 2.3. In Weihrauch-Grubba [65], a represented cbg space is called an effective
topological space. However we prefer to emphasize second-countability (cb) since the
range of computability theory is far larger than second-countable spaces (see e.g. [51,
52, 56, 55, 14, 47, 12, 46, 53]). We also avoid the use of the terminology “effective”
since the definition of a represented cby space does not involve any effectivity.

2.4.2. Changing representations. We have introduced a cb representation as a countable
subbasis (5. )eecw, but without loss of generality, we can always assume that it is actually
a countable basis. To see this, let § = (f.)ec, be a countable subbasis of a cby space
X. Then we get a basis f7 of X by defining 5} = MNi<|o| Bo(i)- Note that there is no

difference between 8 and 1 from the computability-theoretic perspective:
e € Nbaseg(z) <= (e) € Nbaseg+(x),
o € Nbaseg+ () <= {0(0),...,0(|o] — 1)} C Nbaseg(z).

In other words, Nbaseg(x) is e-equivalent to Nbaseg+ (2) in a uniform manner. Indeed,
we find that every subbasis 3 is computably equivalent to the induced basis 8 (in the
sense of represented spaces).

We observe that translations between cby representations have a particular convenient
form: Let 8 and v be cbg representations of X. We see that 5 is computably reducible
to v (written B < ) if there is a single enumeration operator witnessing the reduction
Nbaseg(x) <. Nbase,(z) for any = € X. It is equivalent to saying that any S-basic open
set is y-c.e. open in an effective manner, that is, there is a computable function A such
that

e = Jd 10 € Wi},

where 7 is a basis for X defined as above.

Computable topological spaces. We will consider the following additional effective prop-
erties for represented cb spaces (X, 3).

(I) There is a c.e. set S such that ;N 5; = J{B : (i,7,¢€) € S}.

(E) {e: B # 0} is ce.
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In Weihrauch-Grubba [65], a represented cby space with (I) is called a computable
topological space. In Kurovina-Kudinov [32], a represented cb space with (I) and (E) is
called a effectively enumerable topological space.

Moreover, if every positive finite Boolean operation on [ is computable, then we say
that (X, 3) is decidable.

Proposition 2.4. Let 5,v be representations of X such that v = p. If (X,B) is
computable, so is (X, 7).

Proof. For computability, since v < (3, given d and e, 74 and 7, can be written as -c.e.
open set Uy and U,. Thus, y4N~v. = UyNU,.. One can easily find a -index of the g-c.e.
open set Uy N U, that is, Uy N Ue = U, Br(nde)- Since B <+, we also have a y-index
of Ug N U,, that is, Uy NU. = U, Vgmn.ae)- Hence, va Nye = U, Ygn.de), that is, v is
computable. O

2.4.3. Multi-representations. As a technical took, we will rarely make use of multi-
representations. A (multi- Jrepresentation is a multi-valued partial surjection 6 :C w* =
X. We say that p € w” is a d-name of x if x € d(p). Notions such as realizer, computable
functions between multi-represented spaces, etc, are all defined analogously to the case of
ordinary representations. In the context of computable analysis, multi-representations
were introduced by Schréder [50]. They are an instance of assemblies from realizability

[61].

2.4.4. Admissible representation. For a topological space X = (X, 7), we say (following
Schroder [51]) that §: w — X is admissible if it is <-maximal among continuous
representations of X, that is, it is continuous, and every continuous representation of
X is reducible to §. Equivalently, a representation § :C w® — X is admissible if it
is continuous, and for any continuous representation v : w* — X, the identity map
(X,v) — (X,0) is continuous. Note also that admissible representations are the ones
which realize the coarsest quotient topology refining 7.

Observation 2.5. The representation dz induced from a cb-representation is always
admissible.

In fact, if N' = (N.)ee, is @ countable cs-network (see Section 6) for a Ty space X,
Schroder [51] showed that the following map 0, always gives an admissible representa-
tion of X

In(p) =2 <= {Npm) :n € w} is a strict network at x.

We call dy the induced w*-representation of X (obtained from N). We also use the
symbol Namey () to denote the set of all enumerations of a strict subnetwork of A/ at
x, that is,

Namey (z) = 6/ {z} = {p € w* : o (p) = '}

If NV is clear from the context, we also use Name(z) instead of Nameys(z). See Section
6 for more details.
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2.5. Quasi-Polish spaces. A quasi-Polish space is a second-countable space which is
Smyth-completely quasi-metrizable [10]. Recall that a set in a space is II9 if it is the
intersection of countably many constructible sets, where a constructible set is a finite
Boolean combination of open sets (see [10, 57]). De Brecht [10, Theorem 24] showed
that a space is quasi-Polish if and only if it is homeomorphic to a I3 subset of S¥. Be
careful that it is not always the case that II3 = Gs. Indeed, II3 = G5 holds if and only
if the underlying space is a G5 space (see Section 3.8.1).

Assume that X is a represented cby space. Consider the set of all names of points in
X:

Name(X) = {p € w* : (Jz € X) rng(p) = Nbase(x)}.

Essentially, Name(&X') is the domain of an admissible representation of the space X'.
For a pointclass I', we say that X is I'-named if Name(X') is T

Proposition 2.6 (De Brecht [10]). A represented cby space X is quasi-Polish if and
only if X is TI-named.

Proof. Note that Nbase : x — Nbase(z) is an embedding of X into S¥. If X" is quasi-
Polish, then so is the homeomorphic image Nbase[X]. By de Brecht [10, Theorem 21],
Nbase[X] is II3 in S¥. Note that Name(X') = rng~![Nbase[X]]. Since rng : w* — S¥ is
clearly continuous, Name(X') is II9, that is, X is TI3-named.

Conversely, if X is IIY-named, then Name(X) is Polish, and in particular, quasi-Polish.
Note that rng : Name(&x') — Nbase[X] is an open continuous surjection. Hence, by de
Brecht [10, Theorem 40], Nbase[X] is quasi-Polish. Consequently, X" is quasi-Polish
since X' is homeomorphic to Nbase[X]. O

Remark 2.7. Let 0 be an admissible representation of a space X. Then, consider

Eq(X,0) = {(p.q) € w* : p,q € dom(d) and d(p) = d(q)}.

Generally, de Brecht et al. [14] has studied the classification of spaces based on the
complexity of Eq(X,J).

The following fact is useful to show that a space is quasi-Polish.

Fact 1 (De Brecht [10, Theorems 40 and 41]). A Ty space X is quasi-Polish if and only
if there is an open continuous surjection from a Polish space onto X . U

Conversely, de Brecht has generalized the Hurewicz dichotomy from Polish to quasi-
Polish spaces in [11] to yield the following:

Theorem 2.8 (De Brecht [11, Theorem 7.2]). A I1i-subspace of a quasi-Polish is not
quasi-Polish if and only if it contains a homeomorphic copy of one of the following
spaces as a 115-subspace:

(1) Q with the subspace topology inherited from R

(2) weot, the integers with the cofinite topology

(3) we, the lower integers

(4) So, with underlying set w< equipped with the lower topology, where the basic
closed sets are of the form 1 p:={q € w<¥ | p <X q} (here < denotes the prefic
relation)
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Of these, we make use of Q and w.os to show that particular spaces are not quasi-
Polish. Recently, also a definition of what a computable quasi-Polish space should be
[13, 28]. We do not need it for our purposes, but we shall point out that whenever
we are arguing that a particular space is quasi-Polish, it will already be computably
quasi-Polish.

3. ENUMERATION DEGREE ZOO

3.1. Definitions and overview. In this section, we focus on the degree structures of
second-countable spaces. Our objective of this section is to see that general topology is
surprisingly useful for investigating the enumeration degrees.

3.1.1. The degree structure of a space. We now introduce one of the key notions in this
article. To each point x: X, we assign the degree of difficulty of calling a name of x.

Definition 3.1 (see Kihara-Pauly [31]). Let z: X and y: ) be points. Then, we define
2 X <py: Y &L Namey(z) <pr Namey(y).
One can see that if X and ) are represented cbg spaces, then
Name(z) <p; Name(y) <= Nbase(z) <. Nbase(y)
Therefore, reducibility between points can be defined in the following manner:
x: X <ty:)Y <= Nbasex(x) <. Nbasey(y)

We now describe how we classify the e-degrees by using topological notions. Let X’
be a represented cby space. We say that an enumeration degree d is an X -degree if
Nbase(z) € d for some x € X. By Dy, we denote the set of all X'-degrees. In other
words,

Dy = {deg, (Nbasey(z)) : z € X'}.

A key observation is that every represented chy space determines a subset Dy of the
e-degrees D..

Example 3.2. Cantor space 2¥, Baire space w®, Euclidean n-space R", and Hilbert
cube [0, 1]“ are represented in a standard manner.

(1) If X € {2¥,w¥”,R"}, then Dy is exactly the total degrees Dr.

(2) Djoy» exactly the continuous degrees D, (see Miller [41]).

(3) Let R. be the real numbers endowed with the lower topology, and represented
by Be = (ge, 00), where ¢, is the e-th rational. Then, Dg_ is exactly the semire-
cursive e-degrees (see Kihara-Pauly [31]).

For (1), Kihara-Pauly [31] showed that total e-degrees are characterized by countable
dimensionality, that is, a separable metrizable space X is countable dimensional iff, for
any representation [ of X, there is an oracle C' such that every (X, 3)-degree is total
relative to C. For (2), one can also easily see that metrizability captures continuous
degrees by universality of the Hilbert cube. These are what we indicated by our slogan
“utilizing general topology to classify e-degrees”.
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In classical computability theory, Medvedev [38] introduced the notion of quasi-
minimality. An e-degree a is quasi-minimal if for every total degree b <, a, we have
b = 0. It is equivalent to saying that there is A € d such that

(Vo € 2¥) [Nbasegw () <. A = Nbaseqw () is c.e.]
We introduce a topological version of quasi-minimality.

Definition 3.3. Let 7 be a collection of represented cbg spaces. We say that an e-
degree d is T -quasi-minimal if there is A € d such that

(VX € T)(Vx € X) [Nbasey(x) <. A = Nbasey(z) is c.e.]

3.1.2. Enumeration degree zoo. Our aim of this section is to investigate X-degrees for
specific represented cbg-spaces X'. Surprisingly, we will see that for most X, the X-
degrees have very simple descriptions.

A set A is total it A° <., A, and cototal [1, 29] if A <. A°. For a total function
g:w — wand b € w, we define the graph Graph(g), the cylinder-graph CGraph(g), and
the b-telograph TGraph(g) of g as follows:

Graph(g) = {(n,m) : g(n) = m},
CGraph(g) = {c € w=¥ : 0 < g},
TGraph,(g) = {(n,m) : g(n) = m and m > b}.

Definition 3.4. Let a be an enumeration degree.

(1) We say that a is graph-cototal [1, 59] if a contains the complement Graph(g)© of
the graph of a total function g.

(2) We say that a is cylinder-cototal if a contains the complement CGraph(g)© of
the cylinder graph of a total function g. We also say that a is n-cylinder-cototal
if it is the join of n many cylinder-cototal e-degrees.

(3) We say that a is telograph-cototal if a contains the join Graph(g)® @ TGraph,(g)
for some total function ¢ : w — w and b € w.

Recall that a subset of w is d-c.e. if it is the difference of two c.e. sets, and co-d-c.e.
if it is the complement of a d-c.e. set, that is, the union A U P of a c.e. set P and
co-c.e. set A such that A and P are disjoint. Note that an enumeration degree contains
a co-d-c.e. set if and only if it contains a 3-c.e. set.

Definition 3.5. Let a be an enumeration degree.
(1) We say that a is co-d-CFEA if a contains a set of the form (X & X¢) & (AU P)
for some X, A, P C w such that P and A° are X-c.e., and A and P are disjoint.
(2) Generally, we say that a is I'-above if a contains a set of the form (X & X¢) & Z
such that Z is I" in X.
(3) We say that a is doubled co-d-CFEA if a contains a set of the form

(XeX)®(AUP)® (BUN)

for some X, A, B, P, N C w such that P, N, and AU B are X-c.e., and that A,
B, P and N are pairwise disjoint.
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/ o \
cylinder-cototal co-d-CEA
n-cylinder-cototal doubled co-d-CEA
l \L(Prop. 5.8)
(n + 1)-cylinder-cototal telograph-cototal

graph-cototal

FIGURE 1. A zoo of enumeration degrees I

In Sections 5.3.1 and 5.3.2, we will introduce further variants of co-d-CEA degrees.
We will see that a co-d-CEA e-degree can be described using a Medvedev degree of
separability. Given S, A, B C w, consider the following notions:

Enum(S) = {p € w* : rng(p) = S},
Sep(4,B) ={C Cw:ACCand BNC = 0}.

Note that an enumeration degree a is total if and only if a contains a set S such that
Enum(S) is Medvedev equivalent to X & X @& Sep(A, B) for some X, A, B C w such
that A and B are disjoint and X-co-c.e.

Definition 3.6. An enumeration degree a is [I'g, I'1; I's]-separating-above ([['g, I'; Ta)-
SepA) if a contains a set S such that Enum(S) is Medvedev equivalent to X & X© @
Sep(A, B) for some X, A, B C w such that A and B are disjoint, A € Ty, B € 'Y, and
AUBeTy.

In this terminology, an enumeration degree a is total if and only if a is [II{, TI9; T19]-
SepA. We use * to denote the pointclass containing all sets. Then, for instance, we will
see that an enumeration degree a is co-d-CEA if and only if a is [, [17; IT{]-SepA.

We will identify the above classes of e-degrees as the degree structures of certain
second-countable Tj spaces.

co-d-CEA the w-power of the irregular lattice space (submetrizable)
Arens co-d-CEA the w-power of the quasi-Polish Arens square (75 5)

Roy halfgraph-above | the w-power of the quasi-Polish Roy space (T%.5)

doubled co-d-CEA the w-power of the double origin space (7%)
telograph-cototal the w-power of the telophase space (T})
n-cylinder-cototal the n-power of the cocylinder topology on w* (T})
graph-cototal the w-power of the cofinite topology on w (T})
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Arens co-d-CEA total continuous

[*, 1{; 19]-SepA <———— co-d-CEA

J/ (Prop. 5.25) \

[*, *; I{]-SepA Roy halfgraph-above AJ-above
(Thm. 5,6)1 \L
telograph-cototal <—— doubled co-d-CEA »9-above

m /

graph-cototal

|

cototal

FIGURE 2. A zoo of enumeration degrees II

For non-implications, there is a co-d-CEA e-degree which is not cylinder-cototal
(Proposition 7.34), there is a cylinder-cototal e-degree which is quasi-minimal w.r.t. telograph-
cototal e-degrees (Theorem 7.35), there is a telograph-cototal e-degree which is quasi-
minimal w.r.t. doubled co-d-CEA e-degrees (Theorem 7.37), there is a quasi-minimal
co-d-CEA e-degree (see Cooper [7]; Theorem 3.23), there is a doubled co-d-CEA e-degree
which is not co-d-CEA (Proposition 5.26) and for any n, there is an (n + 1)-cylinder-
cototal e-degree which is not n-cylinder-cototal (Theorem 5.2). We also show that there
is a continuous degree which is neither telograph-cototal nor cylinder-cototal (Theorem
7.42).

Andrews et al. [1] showed that every 9 e-degree is graph-cototal, while we will see
that there is a X9 e-degree which is quasi-minimal w.r.t. telograph-cototal e-degrees
(Theorem 7.26).

3.2. Degrees of points: Tj-topology. Let R. be the space of all reals equipped
with the lower topology generated by p. = ((¢,00) : ¢ € Q). Note that R. is a Tj
space which is not T;. Fixing a bijection e — ¢, : w — Q gives us a representation
of R. by setting 5. = (ge,00). Then, the coded neighborhood filter of x is given by
Nbase(z) = {e € w : ¢. < x}. For notational simplicity, hereafter we fix a standard
effective indexing e +— ¢., and always assume that every ¢ € Q is coded by a natural
number without explicitly mentioning e — ¢.. Then, for a point x € R., the coded
neighborhood filter of x is just given as follows:

Nbaseg_(z) = {qg € Q: ¢ < z}.

For notational simplicity, for a given z € R, we assume that Nbase(x) always means
Nbaseg(x), and Nbase. (z) always means Nbaseg_(x). We say that a real z € R is left-
c.e. if Nbase_ () is c.e. Similarly, a real x is right-c.e. if Nbase.(—x) is c.e. As pointed
out by Kihara-Pauly [31], the R_-degrees are exactly the semirecursive e-degrees [30].
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In other words:
Dg. ={d € D, : d is semirecursive}.

In Section 4.1.1, we investigate how R_-degrees behave. Moreover, for instance, in
Section 7.1.3, we will see that almost no R_.-degrees are realized by a point in a T}
space. Thus, the results on R_-degrees describe the behavior of typical non-T;-degrees.

3.3. Degrees of points: Tp-topology. A topological space is Tp if every singleton
can be written as the intersection of an open set and a closed set (see [3]). Note that a
space is Tp iff every singleton is AY in the sense of the non-metrizable Borel hierarchy
[10, 57): A set in a space is IT if it is the union of countably many constructible sets,
where a constructible set (in the sense of classical algebraic geometry) is a finite Boolean
combination of open sets. Note that A is not necessarily equal to F, NG (see Section
3.8.1). Recall that a space is T} if every singleton is closed.

Proposition 3.7. For every represented, T, cby space X, there is a represented T,
cby space Y such that Dy = Dy.

Proof. Since X = (X, 3) is Tp, for any # € X, there is an open set () such that
{z} = Bewy N F, for some closed set F,. Consider Y = {(e,z) € w x X' : e(x) = e},
whose representation is induced from X, that is, v4. = Y N ({d} X B¢). Then Y is T3
since {(e(x),x)} = {e(x)} x F,. Moreover, (j,k) € Nbasey(e(x),z) iff e(z) = j and
k € Nbasexy(x). Hence, Nbasey(e(x), x) is e-equivalent to Nbasey(z). O

One can also consider a uniform version of being T, that is, having a AJ-diagonal.
Again, be careful that such a space does not necessarily have a Gs-diagonal. Recall that
a space is Hausdorff if it has a closed diagonal. Following [47], we say that a represented
space X is computably Hausdorff if the diagonal Ay is I1%. For computability on
topological separation axioms, see also Weihrauch [63, 64].

Proposition 3.8. If X is a represented cby space which has a AS-diagonal, then there
s a computably Hausdorff cby space Y such that Dy = Dy.

Proof. Let X be an effectively Tp cbg space. Then, the diagonal Ay is X9; therefore,
it is written as Ay = J, D,, where D,, is the intersection of a X! set G,, and a IIY set
F,. Consider &, = {x € X : (x,x) € D,}. Let (By)rew be a countable open basis of
X. If (z,x) is contained in an open set G in X2, then there is k such that z € By and
B? C G. In particular, for every x € X, there is k(z) € w such that (z,z) € Bz(x) and
A, N B,%(x) = Bﬁ(l,) NF,. Define X, = {x € X, : k(z) = k}. Then the diagonal on X,
is the restriction of F}, on X, ;. This is because, for any =,y € X, x, we have (z,y) € B}.
Therefore x = y if and only if (z,y) € F,. Consequently, the diagonal on X, , is IIY.
Then, define Y = {(n,k,z) : © € X,x}. One can easily see that Nbasey(n,k,z) is
e-equivalent to Nbasey (). O

For Propositions 3.7 and 3.8, the same observation is independently made by de
Brecht. Roughly speaking, these Propositions show that the Tp-degrees are exactly the
Ty-degrees, and the AY-diagonal-degrees are exactly the Th-degrees. Thus, we do not
need to consider the Tp-separation axiom (and any notion between T and T} such as
T% ), and its uniform version any more.
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3.4. Degrees of points: Tj-topology. A topological space is T if every singleton is
closed. We first consider the cofinite topology, which is one of the most basic construc-
tions obtaining a non-Hausdorff (actually non-sober) Tj-topology. Here, we consider
the cofinite topology on w, that is, a basis is given by (w \ D, : e € w), where D, is
the e-th finite subset of w. By weo, we denote the natural numbers w endowed with
the cofinite topology and the above representation. As before, we will not mention a
fixed canonical indexing e — D., and we treat a finite set D C w as if it were a natural
number.

The space weor itself is countable, and thus, not degree-theoretically interesting. In-
stead, we consider the w-power (weof)®, and then for any = € (weof)”, we have

Nbase(z) = {(n, D) : z(n) & D},

where D ranges over finite subsets of w. It is not hard to see that the (weof)“-degrees
are exactly the graph-cototal e-degrees (Definition 3.4), that is,

D(woor)» = {d € D, : d is graph-cototal }.

For basic properties on graph-cototal e-degrees, see Andrews et al. [1]. In this section,
we will isolate other proper subcollections of graph-cototal e-degree as degrees of points
of specific non-Hausdorff T;-spaces.

3.4.1. Cocylinder topology. For a represented cbg-space X = (X, f3), recall that g is
an enumeration of a countable open basis of a cbg space X. We introduce the co-
representation f° of X by f5° = X \ B.. We write X, = (X, 5°).

Example 3.9. We define A\, .,y = { € w* : z(n) = m} for any n,m € w. Then, X is a
representation of the Baire space w”. It is not hard to see that (w*, A\®) is computably
homeomorphic to (weof)®.

Example 3.10. We define 7, = {z € w¥ : 0 < z} for any ¢ € w<¥. Then, 7 is a
representation of the Baire space w®. It is easy to see that v is computably equivalent
to the representation A in Example 3.9, and therefore (w“, \) and (w*“, 7) are computably
homeomorphic. However, Proposition 7.34 shows that (w“, A\°) and (w*,~) are not
homeomorphic! This indicates that the topology on X induced from 5 heavily depends
on the choice of the representation 5 of X.

Remark 3.11. A better-behaved “co-topology” is known as the de Groot dual (after
[15, 16]). It only depends on the topology on X, but not on its representation. Un-
fortunately, the de Groot dual of a cby space is not necessarily second-countable, and
therefore it exceeds the scope of this article. However, it is worth mentioning that it
does NOT exceed the scope of computability theory (see also Section 6).

Hereafter, by w® we always mean the cocylinder space (w*, ). As usual, via a fixed
canonical bijection between w and w<¥, we treat a string o € w<% as if it were a natural
number. Then, for any x € w?,

Nbase(z) = {0 € w : 0 £ x}.

By definition, it is clear that the w¥ -degrees are exactly the cylinder-cototal e-degrees

(Definition 3.4), that is,

D,» = {d € D, : d is cylinder-cototal}.
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Recall that a join of n cylinder-cototal e-degrees is called n-cylinder-cototal. In other
words, the n-cylinder-cototal e-degrees are exactly the (w¥))"-degrees.

Observation 3.12. Fvery n-cylinder-cototal e-degree is graph-cototal.

Proof. 1t suffices to show that each product cocylinder space (w%)" is effectively em-

bedded into (weo)”. To see this, given & = (2, )m<n, consider Z(n) = P, ., Tm [ n. It
is not hard to check that x — & gives a desired computable embedding. It is also clear
that (we)* is effectively homeomorphic to (weef)®. O

We first show that cylinder-cototal e-degrees form a proper subclass of graph-cototal
e-degrees. As shown by Andrews et al. [1], every X9-above degree is graph-cototal. It
is not true for cylinder-cototal e-degrees.

Proposition (Proposition 7.34). There is a co-d-CEA set A C w such that A is not
cylinder-cototal.

The above proposition is useful for separating cylinder-cototal degrees and other
degrees, since we will see that most collections of degrees obtained from represented cbg
spaces in this article are larger than co-d-CEA e-degrees. We also show that w® has a
nontrivial X9 e-degree. An e-degree d is proper-%9 if d contains a 39 set, but no A set.

Proposition (Proposition 5.1). There is a proper-X9 cylinder-cototal degree.

3.4.2. Products of cocylinder topology. In this section, we will see that there is a hierar-
chy of graph-cototal e-degrees. We write D(X) for the substructure of D, consisting of
e-degrees of neighborhood bases of points in X'. We will then have the following proper
hierarchy of degree structures:

Dr =D(w") € Dwg) &+ & D((we)") & Dl(wee)™) S -+ & D((weot))

Theorem (Theorem 5.2). For any n, there is an (n+1)-cylinder-cototal e-degree which
15 not n-cylinder-cototal, that is,

D yn+1 € D yn-

3.4.3. Telophase topology. Let L be a linearly ordered set. The order topology on L is
generated by the subbasis ({z : @ < z},{z : * < a} : a € £). Assume that £ has a
countable basis B, that is, there is a countable set B C L such that for any a,b € L, if
a < b then there are ¢,d € B such that a < ¢ < d < b. Then the order topology on L is
separable and metrizable.

We now assume that £ has the greatest element 1. Choose 1, ¢ £. Then £ U {1,}
forms a partial order by adding the relation a < 1, for each a € £ with a # 1. Roughly
speaking, £ U {1,} is almost linear ordered except that it has two maximal elements
1 and 1,. The telophase space Lrp is defined as the set £ U {1,} equipped with the
Lawson topology, that is, generated by the following subbasis:

Hr:agzx}ae LU{L,}}U{{z:a<a}:ae L}
If £ has a countable basis B, the following gives us a countable subbasis of Lrp:

H{r:z<a}:aeBU{{z: 2 <a}:ac{l,L}}U{{z:a<z}:a€ B}
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Example 3.13 (see Steen-Seebach [60, I1.73]). Consider the Cantor space C = 2%,
which is linearly ordered by defining x < vy if and only if there is n € w such that
x [ n=uy | nand z(n) < y(n). Then, the greatest element 1 is the sequence 1%
consisting only of 1’s. One can easily see that the following gives us a countable subbasis
of CT pP-
{lo] : 0 € 2=} U{[o]s : 0 < 1*},

where [0, = ([o] \ {1}) U {1,}. Unfortunately, the degree structure of Crp is not so
interesting since every Crp-degree is total. This is because, this construction adds only
one new point, and thus, it is clear that Nbasec,.,(z) =, Nbasec(z) for any = € C, and
that 1, is computable, that is, Nbasec,,(14) is c.e.

Nevertheless, we will see that the degree structure of the w-power (Crp)“ is pretty
interesting. Note that for each x € (Crp), its coded neighborhood filter is given as

Nbase(z) = {(n,0,0) : 0 < x(n)} U {(n,1,k) : 1¥ < z(n) and z(n) # 1“}.

Example 3.14. Consider the one-point compactification @ = w U {oo} of w, which is
naturally linear ordered with the greatest element co. The telophase space wrp looks
like a “two-point compactification” of w. The topology is generated by

{{m}, [m, <], [m, 00,] : m € w}.
Then, for each x € (&rp)“, its coded neighborhood filter is given as
Nbase(z) = {(n,0,m) : z(n) = m} U {(n,1,m) : m < z(n) < oo}
U{(n,2,m):m < xz(n) < oo},
where m and n range over w.

It is easy to check that the spaces in Examples 3.13 and 3.14 are 77 but not Hausdorff
(since 1 and 1, cannot be separated by open sets). Later we will see the following:

Drpye = D@rpy» = {d € D, : d is telograph-cototal}
= {d € D, : [, ¥, I1}]-separating-above}.
Here, recall from Definitions 3.4 and 3.6 for the above notions.
Proposition (Proposition 5.3). Crp computably embeds into (Orp)®. Hence, Dicppy =
Deorpy--

We will also see that the hierarchy of telograph-cototal e-degrees collapses. For b € w,
we say that an enumeration degree a is b-telograph-cototal if it contains Graph(g)® @
TGraph,(g) for some total function g : w — w.

Proposition (Proposition 5.4). The 1-telograph-cototal e-degrees are exactly the total
degrees. For any natural numbers b,c > 1, the b-telograph-cototal e-degrees are exactly
the c-telograph-cototal e-degrees.

We will show that the (wpp)“-degrees are characterized by the telograph-cototal e-
degrees (Definitions 3.4).

Proposition (Proposition 5.5). The (wrp)“-degrees are exactly the telograph-cototal
e-degrees.
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We give another characterization of (wrp)“-degrees in terms of separating sets. For
any A, B C w, recall that Sep(A, B) is the collection of sets separating A and B:

Sep(A,B) ={C Cw:ACC and BNC = 0}.
We also recall that Enum(F) is the set of all enumerations of £ C w, that is,
Enum(FE) = {p € w” : mg(p) = E}.
To make our argument simple, we always assume that £ is nonempty. Note that D =, F

if and only if Enum(D) =), Enum(E).

Theorem (Theorem 5.6). The (wrp)¥-degrees (hence the telograph-cototal e-degrees)
are exactly the [, *, I19]-separating-above e-degrees. In other words, a nonempty set E C
w is e-equivalent to Nbase(x) for some x € (wrp)® if and only if there are X, A, B C w
such that AU B is X-co-c.e., AN B =1, and

Enum(E) =) {X} x Sep(A4, B).

3.5. Degrees of points: T,-topology. A topological space X is Ty or Hausdorff if
any distinct points x # y € X are separated by open sets, that is, there are disjoint
open sets U,V C X such that x € U and y € V. It is equivalent to saying that the
diagonal Ay = {(z,z) : z € X} is closed in X?.

3.5.1. Double Origin Topology. Let Ly and L4 be linearly ordered sets. Consider the
product £ = Ly x L1. Let 7, be the product of the order topologies on £y and £;. Fix
an element 0 = (0g,01) € L, and 0, € L. The double origin space Lpo is defined as the
set LU {0,} equipped with the topology generated by the following subbasis:

{U\{0}: U er}Uu{{0}U{(z,y) :a<z<bandy>o0;}:a<o0y<b}
U{{0,}U{(z,y):a<z<bandy <o01}:a<o0y< b},
where a, b, z range over Ly and y ranges over L;.
Example 3.15 (see Steen-Seebach [60, I1.74]). For each i < 2, let Q; be the unit open

rational interval, that is, Q; = QN (—1,1), equipped with the canonical ordering, and
put o9 = 07 = 0. Then, a countable subbasis of Qpp is given as follows:

{((p.q) x (r,5))\ {0} : p,g,r s € QN (=1, 1)}
UL((=,75 87 x (0,071)) U{0} s kL € w}
U{((=k B x (—071,0) U{0,} : k, £ € w}.

Clearly Qpo is countable, and so its degree structure is not interesting. Instead, we
consider the w-power (Qpp)“. We treat each z € (Qpp)“ as if it were a pair (x,y).
If z(n) # 0, for all n € w, it is actually a pair (z,y) given by z(n) = (x(n),y(n)) for
any n € w. If z(n) = 0, for some n € w, one may put 0, = (0,,0,) by choosing a new
symbol 0,, where we assume that 0, has no relationship with other rationals. Then, for
any point (z,y) € (Qpo)¥, its coded neighborhood filter is given as follows:
Nbase(z,y) ={(n,0,p,q,7,5) 1 p <z(n) < g, r <y(n) <s, and (z(n),y(n)) € {0,0,}}

U{(n,1,k.0) : (Ja(n)] < k™" and 0 < y(n) < £7') or (z(n),y(n)) = 0},
U{(n,2,k,0): (lz(n)| <k 'and — ¢ <y(n) <0)or (z(n),y(n)) =0,}.
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Example 3.16. Define Py =0 ~w+1, Py =w+14w*, and P = Py x P;. Here, recall
that @ = w U {oo} is a one-point compactification of w, and w* is the reverse order of
w. More precisely, Py is the set {n:n € w} U{*}U{n:n € w} ordered as follows:

0<l<--<n<n+4+l< - <sx<---<nH+l<n<---<1<0.

Then, define op = 0o € Py and 0; = * € P;. A countable subbasis of Ppo is given as
follows:

{[n,00] x {m} :new, m#xU{{(n,m)} :n€ew, meP}U{{n} x[nm]:nmew}
U{([n, 00] x (+,7]) U {0} : n € w} U{([n,00] x [n, %)) U{0,} : n € w},

It is clear that Ppo embeds into Qpp. To see this, consider embeddings jg : Py — Qo
and j; : P; — Qp defined by jo(n) = 27", jo(co) = 0, j1(n) = =27, ji(x¥) = 0, and
j1(m) = 27™. Then jo x j; clearly induces an embedding of Ppp into Qpo. An advantage
of using P is that (Ppp)® is quasi-Polish (see Proposition 5.37) while (Qpo)® is not.

We will show the following characterization of double origin spaces.
D(apo) = Dppoys = {d € D, : d is doubled co-d-CEA}.
Here, recall from Definition 3.5 for the above notion.

Theorem (Theorem 5.7). The (Qpo)“-degrees are exactly the doubled co-d-CEA de-
grees. In other words, an e-degree d is a (Qpo)¥-degree if and only if there are
X,A B,P N Cw such that A, B, P and N are pairwise disjoint, P, N, and (AU B)®
are X-c.e., and

XX @(AUP)®(BUN) ed.

A set is d-c.e. if it is a difference of two c.e. sets. A set is co-d-c.e. if it is the
complement of a d-c.e. set, that is, the union of a c.e. set and a co-c.e. set. Clearly,
double origin degrees include all co-d-c.e. degrees. It is known that there is a quasi-
minimal co-d-c.e. degree (see Cooper [7]). Thus, there is a quasi-minimal double origin
degree.

Moreover, one can see that the degree structure of the double origin space is included
in that of the telophase space.

Proposition (Proposition 5.8). Fvery doubled co-d-CEA e-degree is telograph-cototal.
Hence, we have Do) € Diyp)-

3.6. Degrees of points: T;5-topology. A topological space X is Ty 5 if any distinct
points z # y € X are separated by closed neighborhoods, that is, there are open sets
UV CXsuchthat € U,y e V,and UNV = 0. A topological space X is completely
Hausdorff or functionally Hausdorff if any distinct points x # y € X are separated by
a function, that is, there exists a continuous function f : X — [0,1] with f(z) =0
and f(y) = 1. Note that every metrizable space is completely Hausdorff, and every
completely Hausdorff space is T5 5, but none of the converse holds. In this section, we
examine the degree structure of a 755 space which is not completely Hausdorff (hence,
not submetrizable).
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3.6.1. Arens square. We would like to know a typical degree-theoretic behavior of a
space which is second-countable, T5 5, but not completely Hausdorff. As such an exam-
ple, Steen-Seebach [60, 11.80] mentioned the Arens square; however there it has been
found? that their definition contains an error, that is, the Arens square defined in [60,
I1.80] is not Ty 5. We here construct a simple example of a space which fulfills the above
required property by modifying the definition of Arens square. Rather than describing
the space as a subset of the rational unit square, we observe that the crucial ideas of
the construction are all order-theoretic in nature and thus use corresponding language.

Example 3.17. Consider a linear ordering £ of type w+ 1+ +1+w*. More precisely,
consider the sets w ={n:n € w}, w* ={":n € w}, and ¢ = {n¢ : n € Z}, and then,
let £ be the linear order consisting of the set wU{oo}U(U{ac} Uw* ordered as follows.

0<l< - <oo<- < (1) <0 <lf<--<0<---<1<0.
Consider the following subset I, of the ordinal w?® 4 1 for each x € L.
Iy=Ig={w’}, I, ={w* - (j+1):j € w},
Io={w* j4+w - 2k+1):jkecw}
Is={w* j+w - 2k+2):jkcw}
L ={w* j+w-2k)+2n—1:j,k € w},
Li={w j+w-Qk+1)+2n—1:jkcw},
Lo =A{w? j+w-2k+1)+2n:jk € w},
Iny, ={w* j+w-(2k) +2n: j, k € w}.
where n ranges over w\ {0}. Note that (I, : x € £\ {0}) is a partition of (w®+1)\ {0}.
Moreover, (I, : * € L") is a partition of the nonzero successor ordinals < w?, where

LT =L£\{0,0,0,00,50}. Then define a modified Arens square (which we will call the
quasi-Polish Arens space) QA C L x (w? + 1) as follows:

QA={(x,y):x € Land y € I,}.
The set QA is topologized by declaring the following as an open basis.
{wx (a,w?]:a <P U{w* x (a,w’] : a < W}

U{Cx (W jH+w-nw - (j+1)]:n,jecw}

U{[n, (—n)] x [w¥ +w(2k) +2n — 1,0* + w2k +1)] : n € wt, k,j € w}
U{[ne,m) x Wi +w@k+1) +2n - 1,0?j+ w2k +2)] :n€w', k,j€w}
U{{(z,y)}:z € L and y € I}

Remark 3.18. Note that the second projection m: QA — w? + 1 given by 7(z,y) =y

is continuous w.r.t. the order topology on the ordinal w® 4+ 1. Hence, given a name of
(r,y) € QA, one can compute a name of y w.r.t. a suitable representation of w3 + 1.

2The problem was observed by Martin Sleziak on math.stackexchange.com. A direct fix
was then proposed by Brian M. Scott (https://math.stackexchange.com/questions/1715435/
is-arens-square-a-urysohn-space). Our modification can be seen as an abstraction of the one
proposed by Scott.


https://math.stackexchange.com/questions/1715435/is-arens-square-a-urysohn-space
https://math.stackexchange.com/questions/1715435/is-arens-square-a-urysohn-space
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The computability is ensured by just considering a quotient admissible representation of
w3 + 1 induced from 7, or equivalently, by considering an embedding h : w® +1 — [0,1]
defined by

hw?) =0, h(W’[j]) =277, h(w’[j +1][k]) =277 (1 +27F),
h(wW[j + 1]k +1][0]) = 279 (1 +275(1 4+ 275),

where fundamental sequences are given by w"*1[j] = w™ - j and (a + B)[k] = a + Blk].
Thus, one can consider the embedded image of w?® + 1 into the unit interval [0, 1]. Note
also that the ordinal space w3+1 is a (computably) zero-dimensional compact metrizable
space. Hence, for any = € (w® + 1)¥, Nbase(z) has a total e-degree.

Proposition (Proposition 5.9). The quasi-Polish Arens space QA is second-countable,
and Ty 5, but not completely Hausdorff.

From the descriptive set theoretic perspective, our modified Arens square QA is better
behaved than the original one in a certain sense: The space QA is quasi-Polish (hence
so is the w-power Q.A%) as we will see in Proposition 5.37.

We proceed to examine the degree structure of the product Arens space QA. For
z=(x(n),y(n))necw € QA the coded neighborhood basis of z is given as follows:

{{0,n,j) : x(n) € w and y(n) > w?j} U {(L,n,j) : 2(n) € w* and y(n) > w’j}
U{(2,n,5,k) : (n) € C and w?j +wk < y(n) < w?(j +1)}

U{(3,n, 45,k 0) : j <z(n) < (—j)c and w?k + w(20 + 1) +2j — 1 < y(n) < w’k +w(20 +2)}

U{{4,n,4,k, ) : je < z(n) < jand w’k +w(20) + 25 < y(n) < W’k +w(20+1)}
U{(,n,z,y) :z(n) =z € LT and y(n) =y € I.}.

We will see that the degree structure of the product quasi-Polish Arens space QA%
can be considered as a variant of the co-d-CEA degrees. To the similarity, we provide a
characterization of the co-d-CEA degrees similar to what we show below as Definition
3.19. Let £ be the collection of e-degrees d which contain a set S C w of the following
form

S=XaX°®(AUP)® (BUN)
for some A, B, P, N, X C w such that P/ N and (AU B) are c.e. in X, A, B, P, N are
pairwise disjoint, and P and N are X-computably separated over (AU B)°. Here, we

say that P and N are X-computably separated over C'if there are disjoint X-c.e. sets
HP,HN Q w such that C = HPUHN, P g Hp, and N g HN.

Observation (Observation 5.10). For an e-degree d, d € & if and only if d is co-d-
CEA.

Definition 3.19. We say that an e-degree d is Arens co-d-CFEA if d contains a set
S C w of the following form

S=YaY ®(LUJ,) @ (RUJR) & ((LURUN) U Jy)
for some L, R, N, J, Jg, Ju, Y C w such that N, Jr, Jgr, Jyr and (LU R) are c.e. in Y/,
L, R, N are pairwise disjoint, and Jy, Jg, Jiy C N are pairwise disjoint, where J;, and

Jr are Y-computably separated over N, that is, there is a Y-c.e. partition {Hy, Hg} of
N such that J;, C Hy, and Jp C Hp.



22 TAKAYUKI KIHARA, KENG MENG NG, AND ARNO PAULY
Observation (Observation 5.11). Every co-d-CEA e-degree is Arens co-d-CEA.

Theorem (Theorem 5.12). The degree structure of the product quasi-Polish Arens space
QA" consists exactly of Arens co-d-CFEA e-degrees:

Dos» ={d € D, : d is Arens co-d-CEA}.

3.6.2. Roy’s lattice space. We next introduce another space which has a similar property
as the Arens space Q.A. The space is a quasi-Polish version of Roy’s lattice space (see
Steen-Seebach [60, 11.126]).

Consider the Kleene-Brouwer ordering <kp on the well-founded tree O, = {0 €
w<: |o| < o(0)+1}. Then, (Oyw, <kgp) is order isomorphic to the ordinal (w* + 1, <).
Note that |o|kp is a successor ordinal iff o is a leaf (i.e., a terminal node), and that
|()|ks = w*. Hereafter, we use O™ to denote the set of leaves of O,.. Given o, 7 € O,
we define the interval [0, 7|xkp = {7 € Ouw : |o|lks < 7|k < |T|kB}. We define the
half-open interval (o, 7]kp etc. in a similar manner. One can see that for o € O, \ Ol
and j € w,

(0j,0lkp = {7 € Oy : T =0 or (Ik > j) 7 = ok}.
We topologize O« by declaring the following as an open basis:

{{o}:0 € O U {(0],0lkp : 0 & O and j € w}.

wY wY

One can see that O is homeomorphic to the order topology on the ordinal w*+1. As
in Remark 3.18, one can see that the ordinal space w“ 4 1 is zero-dimensional, compact,
and metrizable. For & > 0, consider the following subsets of the space O,w.

Iy =Iso ={0 € Op : o] = 0} = {0},
Ly ={0 €O : |o| =k}
I ={cc0%  |o| >2and (Vj > 1) ¢(j) = 0},
L1 ={0€0 |o|>k+2, o(k+1)>0and (Vj > k+1) o(j) = 0}.

ww

Note that (I : k € w) is a partition of the ordinal w® + 1. Moreover, each set I}
is cofinal in w* for k € w\ {0}. We now introduce the quasi-Polish Roy space, whose
underlying set is given as follows.

OR ={(z,y) :x€wandye€ I}

Let 7 be the topology on O, defined as above. The set QR is topologized by
declaring the following as an open basis.

{{2n+ 1} x U, {0,1} x U, 2n+1,2n+ 3] x U, 2n+ 1,00 X Oy :n €w, U € T}.

As in Remark 3.18, one can also ensure that the projection 7 : QR — w* + 1 defined
by 7(x,y) = y is (computably) continuous.

Proposition (Proposition 5.13). The quasi-Polish Roy space QR is a second-countable
Ty 5 space which is not completely Hausdorff.
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We now begin to examine the degree structure of the product chain space QR*. The
coded neighborhood basis of z = (z,,y,) € QR is given as follows.
{(0,n,k,0) -z, =2k +1and y, =0}
U{({l,n,k,oj) : |z, —2k| <1 and y, € (0j,0]ks}
u{(2,n,k): z, > 2k}.
Fix two symbols Lo, L; ¢ w, and consider @ = w U { 1o, L;}. Then, consider the
following halfgraph of a function f:w — @:
HalfGraph(f) ={2(n,m) : f(n) = 2m}
U{2(n,m)+1: f(n) € wand f(n) > 2m}.
We say that a function f : w — @ is half-c.e. if it has a c.e. halfgraph, that is,

HalfGraph(f) is c.e. We also say that a function f :w — @ is computably dominated if
there is a partial computable function g :C w — w such that

(Vn € w) [f(n) € w = n € dom(g) and f(n) < g(n)].
Then, we consider the extended halfgraph of f :w — @:
HalfGraph™(f) ={2(n,m) : f(n) = Lo or f(n) < 2m}
U{2(n,m) +1: f(n) = Ly or f(n) = 2m}.
We say that d is Roy halfgraph-above if d contains a set S of the form
S =Y @& Y*® HalfGraph™(f)

for some Y C w and f : w — @ such that f is half-c.e. and computably dominated
relative to Y.

Proposition (Proposition 5.14). Every co-d-CEA e-degree is Roy halfgraph-above. Ev-
ery Roy halfgraph-above e-degree is doubled co-d-CEA.

Theorem (Theorem 5.15). The QRY-degrees are ezxactly the Roy-halfgraph-above de-
grees, that is,

Dore = {d € D, : d is Roy-halfgraph-above}.

3.7. Degrees of points: submetrizable topology. We say that a space is submetriz-
able if it admits a continuous metric, that is, either it is metrizable or it has a coarser
metrizable topology (see [23]). Every submetrizable space is completely Hausdorff, and
every completely Hausdorff space is Ts 5:

submetrizable = completely Hausdorff = T5 5.

The Arens square and Roy’s lattice space are not completely Hausdorff, and hence,
not submetrizable. Extending the topology of a metrizable space always gives us a
submetrizable space which is not necessarily metrizable.
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3.7.1. Extension topology. One of the most basic constructions to obtain a non-metrizable,
completely Hausdorff topology is extending a metrizable topology by adding new open
sets. Concretely speaking, given a space X with a metrizable topology 7y, choose a
collection U of subsets of X', and consider the topology generated by 74 UU. We denote
the obtained space by Ay,. By definition, &}, is submetrizable (hence, completely Haus-
dorff, and Ty 5); however Ay, is not necessarily metrizable. In this article, since we are
only interested in a second-countable topology, we always assume that U/ is countable.

Example 3.20. Let us begin with Cantor space 2¥. Let U = (U,).e., be a countable
collection of subsets of 2. This induces a representation of the extension topology on
2¢ induced by U, and for any point = € (2¢),, its coded neighborhood filter is given as:

Nbase(z) = {(0,0) : 0 <z} U{(l,e) : x € U.}.

Let I be a countable collection of subsets of w x 2. We say that a set A Cwis I’
relative to X € 2% (written A € I'X) if there is G € I such that A = {n : (n, X) € G}.
We also say that an e-degree d is I'-above if A @® X @& X© € d for some A, X C w such
that A is I" relative to X.

Let 3 be a representation of a space X, and let v be a countable collection of (not
necessarily open) subsets of X. We say that v computably extends [ if there is a c.e.
set W such that 8, = {74 : (d,e) € W}. Then, v is a representation of X,.

Observation 3.21. If v computably extends (3, then Nbaseg(x) <. Nbase,(x) for any
rekX.

Proof. This is because e € Nbaseg(x) if and only if there is d such that (d,e) € W and
d € Nbase, (). O

Let A be the canonical representation of Cantor space, that is, A, is the set of all
extensions of the e-th binary string. We characterize I'-above e-degrees in terms of
extension topology.

Proposition (Proposition 5.16). The following are equivalent for a collection C of e-
degrees:

(1) There is 3 computably extending A such that C = D(gw),.
(2) There is a countable collection T of subsets of 2¥ such that

C={deD,:d is-above}.

3.7.2. A horrible behavior of extension topology. In this section, we examine the notion
of a T-quasi-minimal e-degree for a collection 7 of represented cbqy spaces, and try to
construct such a degree.

For instance, on the one hand, in Section 7.1.3, we will see that if 7 is a countable
collection of T} spaces, then there is a 7T-quasi-minimal e-degree. On the other hand,
in this section, we will show that if T is a collection of all decidable T7 spaces, there is
no 7T-quasi-minimal e-degree. At first glance, this looks paradoxical. — When we talk
about an effective version of some notion P, we often implicitly assume that there are
only countably many objects which are effectively-P. However, it is, strictly speaking,
sometimes incorrect. There is a possibility of the existence of uncountably many effective
objects.
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Consider partial computable functions on Baire space. Any restriction f [ A of a
partial computable function f :C w¥ — w* is also partial computable, and therefore,
there are uncountably many partial computable functions. Fortunately, every partial
computable function is merely a restriction of a partial computable function with a IT9
domain, and there are only countably many such functions. Hence, essentially, we only
need to deal with countably many partial computable functions.

Can we say the same thing about computable or decidable Tj-spaces? Is there a
countable collection (X,),e, of represented Tj-spaces such that every computable chg
space embeds into A&, for some n € w? Of course, it is true if ¢ = 0 since there is a
universal decidable cbg space, S¥ say, or if ¢ = 3 since there is a universal decidable
metric space, [0,1]“ say. In this section, we will show that the answer is “no,” for any
i€ {1,225}

In this section, we show that if 7 is a countable collection of 77 spaces, then there
is a T-quasi-minimal e-degree, whereas if 7 is a collection of all decidable 77 spaces,
there is no 7T-quasi-minimal e-degree.

Non-existence of universal spaces. Recall that every metrizable space is submetrizable,
and every submetrizable space is T55. In this section we show that every e-degree is
realized as the degree of a point in a decidable submetrizable space. In particular, every
e-degree is the degree of a point of a decidable T5 5 space.

Theorem (Theorem 5.17). Every e-degree is an X -degree for some decidable, submetriz-
able, cby space X, that is,

D. = U{DX : X is a decidable, submetrizable, cby space}.

We will give a more detailed analysis of Theorem 5.17. Recall from Proposition 2.6
that a represented space is II9-named if and only if it is quasi-Polish. We will also use
a stronger naming condition. Consider the following sets:

Sup(X) ={p € w*: (Ir € X') Nbase(z) C rng(p)},
Sub(X) = {p € w* : (3x € X) rng(p) C Nbase(x)}.
We always have Name(X) C Sup(X) N Sub(X). Moreover,
X is Ty = Name(X) = Sup(X) N Sub(X).
We say that X is strongly I'-named if there are I' sets P, N such that
Sub(X) C N, Sup(&') C P, and Name(X) = PN N.

For instance, one can easily see that Baire space w® is strongly II9-named, and the
telophase space (wrp)® is strongly IT15-named.

Proposition (Proposition 5.19). Let n > 4. If d is an e-degree of a AY set, then
there is a decidable, strongly 11°-named, submetrizable, cby space Xq such that d is an
Xq-degree.

In particular, there is a quasi-minimal e-degree realized in a strongly I13-named sub-
metrizable space since there is a 3-c.e. (hence AY) quasi-minimal e-degree (see Proposi-
tion 3.23). Indeed, Proposition 3.23 shows that a quasi-minimal e-degree can be realized
in a strongly I13-named submetrizable space.
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3.7.3. Gandy-Harrington topology. We now consider a special kind of extension topol-
ogy. Let GH, be the e-th X! subset of Baire space w*. The extension topology Tqm
on w* generated by GH = (GH.)ee, is known as the Gandy-Harrington topology. This
topology is known to have a number of applications in descriptive set theory and related
areas (e.g. [34, 20]).

We always assume that the Gandy-Harrington space (w“)gy = (W, Tgu) is repre-
sented by GH, and then, for any point z € (w*)gy, its coded neighborhood filter is
given as:

Nbase(z) ={e € w: 2z € GH.}.

It is clear that every (w*)gy-degree is Xi-above, but be careful that the converse is

not true. We now assume that A is the canonical representation of Baire space w®.

Proposition (Proposition 5.22). For every x € w* and a < wy ",

NbaseA(x(a)) <. Nbaseqp(r) <, Nbasey (z),
where % denotes the a-th Turing jump of x, and ™ denotes the hyperjump of x.

Recall that an e-degree is said to be continuous if it is an H-degree, where H is
Hilbert cube [0, 1]N with the canonical representation. Concretely speaking, the coded
neighborhood filter of z = (x(n))pe, € H is:

Nbase?—[(x> = {<n757p> : ’.CL‘(TL) _p’ < 278}7
where n and s range over w, and p ranges over Q N [0, 1].

Theorem (Theorem 5.23). No (w*)gm-degree is continuous.

3.7.4. Irregular Lattice Topology. As another example of an extension topology we con-
sider the irregular lattice topology. It indeed fails to be metrizable (and hence is ir-
regular) — this is a consequence of Proposition 3.23 below. Let & = w U {oo} be the
one-point compactification of w. For a point x € @w*, its coded neighborhood filter is
given as:
Nbasegw () = {(0,n, k) : z(n) =k} U{(1,n, k) : z(n) > k},

where n and k range over w. Note that @“ is a zero-dimensional compact metrizable
space. In the computability-theoretic context, this is rephrased as follows:

Observation 3.22. The w“-degrees are exactly the total degrees.

Proof. To see this (that is, to show totality of a point in @w*), we identify x € &* with
a partial function by interpreting x(n) = co as that z(n) is undefined. Then, it is not
hard to check that Nbase(x) is e-equivalent to Graph(z) @& Graph(z)®. The latter set is
clearly total. O

We consider an extension topology on (a subset of) &“ x w”. Let L be the space
whose underlying set is L = ((w x @) U { (00, 00)})* whose topology is generated by the
(subspace) topology on @w* x @“. Then define L;;, as the space obtained by extending
L by adding new open sets IL = (V)4 pew, Where

Vap = {(c,d) €w® : ¢ >a and d > b} U {(00, 00)}.

We note that (n,00) € V,; for any n € w. This is known as the irregular lattice topology
(see Steen-Seebach [60, I1.79]).
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We introduce a countable open subbasis of (L) as follows. First put P,;, = {(a,b)},
Usp = {(a,d) € wx @©:d> b}, and V, for a,b € w. Given Q C Ly, and n € w, we
write Q" = {z € (Lr)” : (n) € Q}. Then, (P, Uy, Vit a,b € w) forms a subbasis
of (Lrr)“. For instance, an open neighborhood {(¢,d) € L : ¢ > a and d > b} of (00, 00)
can be written as V., UJ,~, Ucp.

Each point z € (£;)* can be thought of as the unique pair (z,y) satisfying z(n) =
(z(n),y(n)) for all n € w. Then, the coded neighborhood filter of (z,y) € (L) is
given as:

Nbase(z,, )« (z,y) ={(0,n,a,b) : x(n) = a and y(n) = b}
U{(1,n,a,b) : x(n) =a and b < y(n)}
U{(2,n,a,b) : z(n) = y(n) = oo or [a < z(n) and b < y(n) < ool}.
We will show that
Dy = {d € D, : d is co-d-CEA}
={d € D, : d is [x,II{ I1{]-separating-above}.

Proposition (Proposition 5.24). The (L1)“-degrees are exactly the co-d-CEA degrees.

Proposition (Proposition 5.25). The (L;y,)*-degrees (hence the co-d-CEA degrees) are
exactly the [x, 119, T1Y]-separating-above e-degrees. In other words, a nonempty set E C w
is co-d-CEA if and only if there are X, A, B C w such that B and AU B are X-co-c.e.,
ANB =0, and

Enum(E) =) {X} x Sep(A4, B).

Kalimullin has shown that there is a quasi-minimal co-d-c.e. e-degree. As a conse-
quence:

Proposition 3.23. The product irreqular lattice space LY contains a AY point of quasi-
minimal degree.

We also show that the product irregular lattice space is strictly smaller than the
product double-origin space in the sense of degrees.

Proposition (Proposition 5.26). There is a doubled co-d-CEA e-degree which is not
co-d-CFEA.

3.8. Degrees of points: Gs-topology. The next stop in our investigation are the
degrees of points in Gg-spaces and see that these are just the cototal degrees. We
briefly recall the definition of Gs-spaces:

Definition 3.24. A Gs-space or a perfect space is a topological space in which every
closed set is G (i.e. an intersection of countably many open sets).

In other words, a Gg-space is a space in which the classical Borel hierarchy is well-
behaved. Recall from Section 2.5 that a set is IIY if it can be obtained as a countable
intersection of constructible sets (in the sense of classical algebraic geometry). Note
that we always have G C TI9.

Observation (Observation 5.28). A space is Gs if and only if Gs = IIJ.
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3.8.1. Closed networks and Gs-spaces. One of the key notions in this article is a network
of a topological space introduced by Arhangel’skii in 1959, which has become one of the
most fundamental notions in modern general topology.

Definition 3.25 (Arhangel’skii). A network N for a topological space X is a collection
of subsets (not necessarily open) of X such that, for any open neighborhood U C X of
a point z € X, there is N € N such that z € N C U.

If T is a collection of subsets of X, by a I' network, we mean a network consisting
of I' sets. For instance, an open network for X is precisely an open basis of X. A
closed network is a network consisting of closed sets. Later, we will see that the notion
of a closed network plays an important role in our work. We first see the following
characterization of Ti-spaces.

Observation (Observation 5.27). A Ty space X is Ty if and only if X has a closed
network.

Proposition (Proposition 5.29). A second-countable space X is a Gs-space if and only
if X has a countable closed network.

Note that even if X is not second-countable, the proof of Proposition 5.29 shows the
following implications:

X has a countable closed network =— X is G5 = X has a closed network.

Thus, the property being a Gs-space can be thought of as a strengthening of being 7}
in the category of Tj spaces. One can see further implications as follows:

Observation (Observation 5.30). For a second-countable Ty space, we have the follow-
ing implications:

compact and T}

S

Gs = Ti.

A

metrizable
We will also see that none of the above implications can be reversed.

Observation 3.26. There is a non-compact non-metrizable second-countable Gs-space.

For instance, the double origin space (Qpo)* is non-compact, non-metrizable, but Gs.
O

Proposition (Proposition 5.31). There exist a second-countable submetrizable space
which is not Gs. For instance, the indiscrete irrational extension of R s second-
countable, submetrizable, but not Gs.

As seen in Section 3.7.1, extending topology has an undesirable degree-theoretic be-
havior, that is, even if we assume decidability of bases, any e-degree can be realized
by extending a metrizable topology. Therefore, extension topologies must avoid any
nontrivial degree-theoretic characterizations. An important observation obtained from
Proposition 5.31 is that extending topology destroys the property being G5. We will ex-
plain the reason of this phenomenon in terms of degree theory: In contrast to extension
topologies, Gs-spaces are, degree-theoretically, extremely well-behaved.
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3.8.2. Cototal enumeration degrees. In this section, we describe how the notion of a
Gs-space is useful in computability theory.

Recall that a set A C w is cototal if A <., A€ holds. In this section, we will see that
the notion of cototality is captured by Gs-spaces. A represented space is computably
Gy if given a code of a closed set, one can effectively find its G5 code (see Definition
3.32 for the precise definition).

Theorem 3.27. An e-degree is cototal if and only if it is an X-degree of a computably
Gy, cby space X, that is,

{d € D, : d is cototal} = U{DX : X is a computably Gs, cby space}

Moreover, we will construct a decidable Gs-space Ag>  which is universal in the sense
that A captures exactly the cototal e-degrees:

max

Theorem (Theorem 5.36). There exists a decidable, computably Gs, cby space X =
A such that

max

Dy ={d € D, : d is cototal}.
Uniform cototality. We first introduce notions of cototality for a space.

Definition 3.28. We say that a space X is relatively cototal if there are an oracle C'
and an enumeration operator ¥ such that

(Vz € X) Nbase(x) = ¥(Nbase(z) & C & C°).
If C can be empty, we say that X is uniformly cototal.

It is clear that if x is a point in a uniformly cototal space X, then Nbasey(x) is
cototal. Baire space, the Hilbert cube, the double origin space, the telophase space, the
cocylinder space, etc. are all uniformly cototal.

Example 3.29 (Jeandel [29]). In universal algebra, a quasi-variety is a class of struc-
tures satisfying a Horn clause. Jeandel [29] coded this notion as follows. Let S C w<*
be a set. We say that X C w satisfies S if for any 0 € S, if o(n) € X for all0 < n < |o|,
then o(0) € X. A quasi-variety V defined by a set S is the class of all X C w satisfying
S. If S is c.e. we call V' a c.e. quasi-variety. For instance, the set of all (forbidden
languages of) subshifts Sfy, over a finite alphabet ¥, and the set of all (words of) groups
Gr,, with n generators are c.e. quasi-varieties.

For each Y C w, we define [Y] ={X Cw:Y C X}. AsetY C w is a presentation
of X e Vit VNY]=VnN[X]. Apoint X € V is finitely presented if X has a finite
presentation. A point X € V' is mazimal if X # w and V N [X] = {X,w}. Maximal
points in Sfy and Gr,, are minimal subshifts and simple groups, respectively.

Given a quasi-variety V', consider the following space (as a subspace of P(w) ~ S¥):

Ve ={X Cw:X“eV, and X is maximal in V}.

max

Jeandel [29] showed that if V' is a c.e. quasi-variety such that w is finitely presented,

then V. is uniformly cototal. In particular, the spaces (Sfy)%  and (Gr,) —are

uniformly cototal.

Remark 3.30. For a quasi-variety V', the space V. is computably homeomorphic to

max

the space of all maximal elements in V' equipped with the basis ([D].,), where [D]., =
{X : XN D=0}, and D ranges over all finite subsets of w.
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Example 3.31 (McCarthy [35]). We topologize P(w<*) by putting [D] = {X C w<¥:
D C X} as a basic open set for any finite set D C w<“. Consider the following subspace
of P(w=v):

A ={X Cw™¥: X is a maximal antichain}.

Then, A  is uniformly cototal. Moreover, McCarthy [35] showed that the A

max max_

degrees and the (Sfy)¢ -degrees are exactly the cototal e-degrees:
Dyco = Distyyeo = {d € D, : d is cototal}.

Recall that a represented cby space (X, ) is decidable if {(d,e) : 55 C B’} is com-
putable, where we assume that () and X appear in S.

co
max

Observation (Observation 5.32). AL is a decidable cby space.

max

Then, what kind of topological property is shared by these spaces? To answer this
question, we effectivize the notion of a Gs-space. It is obvious that a space is G if and
only if every open set is F,. We introduce an effective version of this property.

Definition 3.32. We say that X is computably G if there is a computable procedure
that, given a code of open set, returns its F,-code, that is, there is a computable function
f such that

(Ve e w) B = U Pr(en), where Py = X'\ U{Bc cc € Wyt

new

Note that a second-countable Tj space is Gy if and only if it is computably Gy relative
to some oracle, or equivalently, it is computably Gs w.r.t. some representation f3.
We now show an effective topological characterization of uniform cototality.

Theorem (Theorem 5.33). Let X = (X, ) be a represented cby space. Then, X is
computably Gs if and only if there is a representation v = 6 of X such that (X,7) is
uniformly cototal.

Theorem 3.27 clearly follows from Theorem 5.33. This gives us an (effective) topolog-
ical explanation of why continuous degrees, double origin degrees, graph cototal degrees,
etc. are cototal.

Theorems 3.27 and Theorems 5.36 conclude that the cototal e-degrees are charac-
terized by the degrees of difficulty of enumerating (neighborhood bases of) points in
(decidable) computably G5 spaces.

3.9. Quasi-Polish topology. Contrary to the fact that we always have the completion
of a metric, there is no hope of getting the notion of “quasi-completion” which preserves
T;-separation axioms for ¢ # 0,3 (see Section 3.7.2). Instead of considering the notion
of quasi-completion, we will directly show the existence of a quasi-Polish space at ev-
ery separation level. Remember the spaces (wrp)“, (Ppo)®, and QA“ introduced in
Examples 3.14 and 3.16 and in Section 5.3.1, respectively.

Proposition (Proposition 5.37). For any i € {0,1,2,2.5}, there is a quasi-Polish T,
space which is not T for any j > i. Indeed,

(1) The telophase space (wrp)® is a quasi-Polish Ti-space which is not Ts.
(2) The double origin space (Ppo)® is a quasi-Polish Ts-space which is not Ty 5.
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(3) The Arens space QA“ is a quasi-Polish Ty 5-space which is not submetrizable.

(4) The irregular lattice space (L) is a quasi-Polish submetrizable space which is
not metrizable.

(5) The quasi-completion R. = R. U {oo} of the lower real line is a quasi-Polish
Ty-space which 1s not T .

We also show that several natural spaces are not quasi-Polish.
Proposition (Proposition 5.38).

(1) (De Brecht) The Gandy-Harrington space (w*)gm is not quasi-Polish.
(2) The Golomb space Ny, (see Section 4.3) is not quasi-Polish.

(3) The mazimal antichain space A, is not quasi-Polish.

For (1), [43, Theorem 6.1] by Mummert and Stephan implies that the Gandy-Harrington
space can be represented as the maximal elements of an omega-algebraic domain. There-
fore, the Gandy-Harrington space embeds as a (necessarily strict) co-analytic subset of
a quasi-Polish space.

4. FURTHER DEGREE THEORETIC RESULTS

In the light of Theorem 5.17 showing that any enumeration degree can be realized in
a decidable, submetrizable, cby space, it may seem that separating separation axioms
via degree-theoretic properties is not possible. This is not the case. By generalizing the
notion of quasi-minimality, we can obtain such separation results.

Definition 4.1. Let 7 be a collection of represented spaces. We say that z: X is
T -quasi-minimal in y: Y if

VZeT)Vze€2Z)z: Z<rx: X = z: Z<yy: ).

i.e. if x cannot compute any more points in spaces from 7 than y can. If in addition
it holds that y: Y <t x: X, we say that x: X a strong T -quasi-minimal cover of y: ).
We just say that x: X is T-quasiminimal, if x: X is a strong T -quasi-minimal cover of
0v: 2%,

Recall that an e-degree a is quasi-minimal if for every total degree b <. a, we have
b = 0. Medvedev [38] first constructed a quasi-minimal e-degree by showing that
every enumeration 1-generic (see Definition 7.3) is quasi-minimal. Our definition is a
generalization, in as far as an enumeration degree is quasi-minimal iff it is {2“}-quasi-

minimal.
We use D7 to denote the union | J{Dz: Z € T}.

4.1. Ty-degrees which are not T;.

4.1.1. Quasi-minimality. Arslanov-Cooper-Kalimullin [2] showed that if a point € R_
is neither left- nor right-c.e., then it has a quasi-minimal enumeration degree. We can
relativize this property in the following sense.

Lemma (Lemma 7.1). (see also Kihara-Pauly [31]) Let X be any represented cby space,
r €29 yeR,, and z € X. If Nbasey(r) <. Nbase_(y) ® Nbasey(z), then either
Nbasegw () <. Nbasexy(z) or Nbase.(—y) <. Nbasex(z) holds.
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The total degrees in R. can be characterized as follows.

Proposition (Proposition 7.2). Let a be an R_-degree. Then, the following are equiv-
alent.

(1) a is a total e-degree.

(2) a is a 11V e-degree.

(3) a is the e-degree of Nbase(x) of a left- or right-c.e. real x € R_.
(4) a is not quasi-minimal.

In particular, if Nbase.(x) <. Nbase.(y) and z is right-c.e., but not left-c.e., then y
is right-c.e. Note that the structure Dr_ has a maximal element, i.e., the e-degree of
K*¢. One can also see that the structure of the c.e. degrees (R, <r) is isomorphic to the
substructure of Dg_ consisting of the right-c.e. reals (which are exactly the II{ e-degrees
by Proposition 7.2).

As mentioned above, it is known that each enumeration 1-generic e-degree is quasi-
minimal. Therefore, we know at least two ways of constructing a quasi-minimal enumer-
ation degree; choosing a point x € R_ which is neither left- nor right-c.e., or choosing an
enumeration generic point. Here we show that these two constructions are incomparable
in the following sense.

Proposition (Proposition 7.4). No RZ-degree computes an enumeration 2-generic.
Le. if x is a real and G C w be an enumeration 2-generic, then G £, Nbase(x).

Note that we can see that every nonzero R_-degree bounds a quasi-minimal e-degree.

Proposition (Proposition 7.5). For every x € R, either Nbase(x) is c.e. or there is
quasi-minimal S C w such that S <, Nbase.(x).

4.1.2. Degree Structure. It is immediate that every recursively presented perfect® Polish
space X has a computable homeomorphic copy of Cantor space. Hence, the jump
inversion theorem holds in X'. However, the lower reals R. obviously contain no copy
of Cantor space. Nevertheless, we can have the jump inversion theorem for R, though
the jump and join operations are not in the same space. Indeed, we here give a short
proof of McEvoy’s quasi-minimal jump inversion theorem [37] inside R..

The enumeration jump operator is introduced by Cooper [6]. Given A C w, define
K4 ={e €w:ee€ U, (A}, where U, is the e-th enumeration operator. Then, the
enumeration jump of A is the set EJ(A) = K4 @ (K*)°. Gregoriades-Kihara-Ng [21]
introduced the jump of a point in a represented cby space X = (X, ). The jump of
x € X is the point Jy(x) € 2¥ defined by Jy(z) = {e € w: e € U}, where U? is the
e-th c.e. open set in &X'. One can see that for any x € X,

Nbasegw (Jx(x)) =. EJ(Nbasex(x)).

The notation such as Jy(x) =7 C also make sense. This is equivalent to saying that
Nbasegw (Jx(x)) =. C @ C°.

We now show the Semirecursive Jump Inversion Theorem, which generalizes McEvoy’s

quasi-minimal jump inversion theorem; nevertheless our proof is far simpler than McEvoy’s
one:

3Unlike the classical case, here perfect cannot be replaced by uncountable as shown by Gregoriades
[20].
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Proposition (Proposition 7.7). For any C' > () there is a semirecursive set A C w
such that A is quasi-minimal and EJ(A) =, C & C°.

We now focus on the first order degree structure of the lower reals. One of the most
fundamental questions in degree theory is whether a given degree structure forms an
upper (lower) semilattice or not. It is not hard to see that Dr_ has no supremum oper-
ation. A somewhat more involved argument also establishes that Dr_ has no infimum
operation.

Proposition (Proposition 7.8). The structure Dg_ is not an upper semilattice.
Indeed, if x is not AY (as a point in R), then the pair Nbase.(x) and Nbase.(—x)
has no common upper bound in Dg_.

Proposition (Proposition 7.10). The structure Dg_ is not a lower semilattice.
Indeed, there are right-c.e. reals x,y € R such that the pair Nbase.(x) and Nbase. (V)
has no greatest lower bound in Dg_.

We have already noted that the degree structure of R. has a maximal element. Now,
it is natural to ask whether this degree structure has a minimal element. Recall that
the degree structure of 2¢ and [0, 1] has continuum many minimal elements, whereas
Guttridge [25] showed that there is no minimal degree in S“. Indeed, we can see that
R. has no minimal degree.

Proposition (Proposition 7.11). There is no R.-degree which is minimal among R -
degrees.

Indeed, we will see that every noncomputable point X € S“ computes a noncom-
putable point y € R.. It is equivalent to saying that every nonzero e-degree bounds
a nonzero semirecursive e-degree. This generalizes the well-known result of Guttridge
that there are no minimal e-degrees.

4.1.3. Ty -quasi-minimal degrees. We extend our idea of the proof of Lemma 7.1 to show
the existence of a Ti-quasi-minimal degree.

Theorem (Theorem 7.13). Let T be a countable collection of second-countable Ty
spaces. Then, there is a T -quasi-minimal semirecursive e-degree.

Indeed, we will show that all but countably many semirecursive e-degree satisfy the
above property. In particular, almost no point z € R. compute a nontrivial point in a
T1 space.

4.1.4. Products of lower topology. We say that an e-degree d is n-semirecursive if there
are semirecursive e-degrees cq, . ..c, such that

d=c;® - -Pc,.

Clearly, the R”-degrees are exactly the n-semirecursive e-degrees. These degrees have
also been studied by Kihara-Pauly [31]. In this section, using the idea developed in
Sections 3.2 and 7.1.3, we provide a more detailed analysis of n-semirecursive e-degrees.

We first see degree-theoretic differences among R, R., R x R, and R%. We say that
y € Ris left-c.e. inx € X if y: R is X9(x), that is, Nbase.(y) <. Nbasey(x). Similarly,
y € R is right-c.e. in x € X if Nbase.(—y) <. Nbasex(z).

The latter result shows that R_-points are useless to compute a 2¥-point.
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Proposition (Proposition 7.15). Let X' be a represented cby space. For any x € X
and y € R, if y is neither left- nor right-c.e. in x, then (x,y): X x R is a strong
quasi-minimal cover of x: X. In particular, we have the following.
(1) Every X x R_-degree is either an (X xR)-degree or a strong quasi-minimal cover
of an X -degree.
(2) For any X-degree d, there is an (X x R.)-degree which is a strong quasi-minimal
cover of d.

Indeed, we can show the following:

Proposition (Proposition 7.16). Let X be a represented cby space, and let T be a
countable collection of second-countable Ti-spaces. For any x € X, there is y € R such
that (z,y): X x R. is a strong T -quasi-minimal cover of x: X.

We now turn our attention to the lower real plane R%. The space RZ also has a point
which is a strong quasi-minimal cover of () (since any right-c.e. real has a total degree).

However, we will show that R2 has no point which is a strong quasi-minimal cover of
0", which implies Drxr. < Dge .

Proposition (Proposition 7.17). Every 2-semirecursive e-degree is either total or quasi-
minimal in ().
Next we will discuss degree-theoretic properties of n-semirecursive e-degrees. We

first construct an (n + 1)-semirecursive e-degree which cannot be obtained from an
n-semirecursive e-degree by joining a Ti-degree.

Theorem (Theorem 7.18). Let T be a countable collection of second-countable T}
spaces. Then, there is an (n + 1)-semirecursive e-degree which cannot be written as
the join of an n-semirecursive e-degree and a T -degree. That is,

D1 Z{c®d:ccDgr and (3X € T)d € Dx}.

We next see a degree-theoretic behavior of the join of a n-semirecursive e-degree and
a total e-degree.

Theorem (Theorem 7.20). There are an n-semirecursive e-degree ¢ < 0" and a total
e-degree d < 0" such that the join ¢ ® d is not (n + 1)-semirecursive. In particular,

n+1
DRXRZ Z ]R< :

The next theorem reveal a strong quasi-minimal behavior of a finite join of semire-
cursive e-degrees.

Theorem (Theorem 7.22). For any n € w, an n-semirecursive e-degree is either total
or a strong quasi-minimal cover of a total e-degree.

4.1.5. Quasi-minimality w.r.t. telograph-cototal degrees. In the proof of Theorem 7.13,
we will see that every semirecursive, non-AY e-degree is quasi-minimal w.r.t. strongly
[19-named T}-spaces (see 7.14). However, to the best of our knowledge, the only known
strongly I13-named 7T} spaces are w* and their small variants, and we do not think that
the spaces (weof)®, (W*)eo and (wrp)¥ are strongly I19-named. Then we introduce a
different technique to prove that, if z € R is not A9, then Nbase(x) is (&rp)*-quasi-
minimal.
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Theorem (Theorem 7.26). Every semirecursive, non-AY e-degree is quasi-minimal
w.r.t. telograph-cototal e-degrees.

We will also show that quasi-minimality w.r.t. telograph-cototal e-degrees is strictly
stronger than quasi-minimality (w.r.t. total e-degrees).

Theorem (Theorem 7.28). There is a semirecursive set A C w which is quasi-minimal,
but not quasi-minimal w.r.t. telograph-cototal e-degrees.

Theorem 7.26 implies that there is a 39 e-degree which is quasi-minimal w.r.t. telograph-
cototal e-degrees. However, the proof of Theorem 7.28 indeed implies that a semire-
cursive, AJ, e-degree is not necessarily quasi-minimal w.r.t. telograph-cototal e-degrees
(see Lemma 7.12).

4.2. Ti-degrees which are not 7,. We consider two cb-representations of w*. When
we simply write w®, we assume that w*“ is endowed with the usual Baire representation.
We again use (w“)., to denote the represented space whose underlying set is w* whose
cbh-representation is given by B, := {f € w¥ : 0 £ f}. In this section, we will show the
following;:

Theorem (Theorem 7.32). For any represented Hausdorff space X, there is a cylinder-
cototal e-degree which is not an X -degree, that is,

D(ww)co g DX

Our proof of Theorem 7.32 is applicable to show the existence of a quasi-minimal
degree w.r.t. some non-second-countable space. We will later introduce the notion
of degrees of points of certain non-second-countable (but still separable) spaces. In
particular, we will deal with the degree structure of the Kleene-Kreisel space NNN, which
has been studied by Hinman [27], Normann [44], and others. Then we will show the
following;:

Theorem (Theorem 7.33). There is a cylinder-cototal e-degree which is NNN-quasz'—
minimal.

One can also show the following by using the techniques from previous sections:

Theorem (Theorem 7.35). There is a cylinder-cototal e-degree which is quasi-minimal
w.r.t. telograph-cototal e-degrees.

4.2.1. Ti-degrees which are Ty-quasi-minimal. In this section, we show that there is a
T-degree which is Th-quasi-minimal. This is one of the most important theorems in this
article. Indeed, the product telophase space (wrp)® contains a point of To-quasi-minimal
degree in the following sense.

Theorem (Theorem 7.37). Given any countable collection {S;}ic. of effective Ty spaces,
there is a telograph-cototal e-degree which is S;-quasi-minimal for any i € w.

4.2.2. Continuous degrees. Recall that a continuous degree is a degree of a point in a
computable metric space. It is known that there is no quasi-minimal continuous degree
(see Miller [41]). Therefore, there is a co-d-c.e. e-degree which is not continuous (see
Proposition 3.23). Conversely, by using the notion of cospectrum, we can show the
following;:
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Proposition (Proposition 7.42). There is a continuous degree which is neither telograph-
cototal nor cylinder-cototal.

4.3. Th-degrees which are not 755. Let Z, be the set of all positive integers. The
relatively prime integer topology Ty, on Z. is generated by {a + bZ : ged(a,b) = 1},
where a +b0Z = {a +bn € Z, : n € Z}. This space is also known as the Golomb space.
We write N, := (Z4,7yp). It is known that N, is second-countable, Hausdorff, but
not Ty5 (see Steen-Seebach [60, I1.60]). Its countable product Ny also has the same
properties. Note that the coded neighborhood basis of = € N, is described as follows.

Nbase(z) = {(n,a,b) : x(n) = a mod b, and a and b are relatively prime}.

Theorem (Theorem 7.49). For any represented T 5-space X, there is an (Nyp)*-degree
which is not an X -degree, that is,

D(Nrp)w g DX .

As before, our proof of Theorem 7.49 is applicable to show the existence of a quasi-
minimal degree w.r.t. some non-second-countable space.

Theorem (Theorem 7.50). There is an (N,p)*-degree which is NN -quasi-minimal.

4.4. Ty 5-degrees which are not T3. Recall that (w*)gy is the set w* endowed with
the Gandy-Harrington topology. Recall from Theorem 5.23 that no (w*)gy-degree is
continuous. In this section, we will prove much stronger results.

Theorem (Theorem 7.52). Let X = (X, N) be a reqular Hausdorff space with a count-
able cs-network. Then there is an (w*)qp-degree which is not an X-degree, that is,

D(w“)GH Z Dy.

Theorem (Theorem 7.53). The Gandy-Harrington space has no point of NNN-degree,
that s,

D(w“)GH N DNNN = (.

For an w-parametrized pointclass I', the I'-Gandy-Harrington topology is the topology
7 on w* generated by the subbasis consisting of all I' subsets of w*”. By (w*”)arm), we
denote w* endowed with the X! -Gandy-Harrington topology. We show that there is a
hierarchy of degree structures of Gandy-Harrington topologies.

Theorem (Theorem 7.54). For any distinct numbers n,m € w, there is no e-degree
which is both an (W*)auwm)-degree and an (W*)aHm)-degree, that is,
= 0.

n#m = Diw) ND

GH(n) W) GH(m)

5. PROOFS FOR SECTION 3

5.1. Degrees of points: Ti-topology.
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5.1.1. Cocylinder topology.
Proposition 5.1. There is a proper-X5 cylinder-cototal degree.

Proof (Sketch). We will construct a point x in the cocylinder space fulfilling the following
requirements:

Pp.aw : ¥(Nbase(r)) # D or ®(D) # Nbase(r) or D is not Aj.

where D ranges over all XY subsets of w, and ® and ¥ range over all enumeration
operators. The following describe the action of a Pp ¢ w-strategy &:

(1) Choose o¢, and enumerate o¢ into A = Nbase(z).

(2) Wait for ®(D)(o¢) = A(o¢) =1 by ®(D) enumerating o with some use F' C D.

(3) Wait for FF C W(A) with some use G C A.

(4) Then the strategy ¢ declares that we decided to enumerate G \ {o¢} into A
forever.

(5) Remove o¢ from A.

(6) Wait for ®(D)(o¢) = A(oe) = 0 being recovered by ®(D) removing o¢. This
forces I Z D.

(7) Then enumerate o¢ into A. This recovers G C A, and therefore forces F* C W(A)
and thus W(A) | F £ D | F.

(8) Wait for F' C D being recovered. This may recover W(A) [ F' = D [ F, but this
forces ®(D)(o¢) = 1. Then go back to Step 5.

For each stage reaching at Step 5, the strategy & returns the infinitary outcome oc.
Otherwise, the strategy & returns the finitary outcome f. It should be careful about the
choice of o¢. Let ¢ be the maximal string such that (oo <X ¢.

(1) Let o¢ be the lexicographically least immediate successor of o, which is neither
chosen by any strategy nor declared to be determined.

(2) Enumerate all strings incomparable with o, into A. Remove all initial segments
of o¢ from A. O

5.1.2. Products of cocylinder topology.

Theorem 5.2. For any n, there is an (n + 1)-cylinder-cototal e-degree which is not
n-cylinder-cototal, that is,
Dewgyr+t € Dewgyn-

Proof. First note that a basic open set in (w&)" is of the form [],_, [Dx] for some
collection (Dy)k<n of finite sets of strings. We code the set [],_, [Di]® by (Di)k<n-
Therefore, an enumeration operator from (w® )™ to (W)™ is a c.e. set ¥ of collection of
(n + m)-tuples of the form ((ox)k<n, (D¢)e<m). For each such enumeration operator W,
we write WI¥ for its k-th section, that is, a collection of tuples of the form (o4, (Dg)rem).

We will construct a tuple & = (x,)r<, € (w2)" ! fulfilling the following requirements:

Rige : [(Gy € (wi)" 3" = Nbase(y)] = W)**®) £ Nbase(x).

Let s = (d, e). Inductively we assume that zj, | s is constructed for every k < n. We
also assume that we have constructed a collection (Ej s)r<n of finite sets of strings such
that o & Eg for any o < xy | s, where Eyo = (. At stage s, proceed the following
strategy:
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(1) Choose an (n + 1)-tuple (a)g<n of large numbers which are not mentioned by

(2) Ask whether there exists a finite collection D = (D)<, of finite sets of strings
such that (((zg [ $)"ak)k<n, (De)e<n) € Ve.

(3) If there is no such D, for each k < n, choose a large number a) # aj not
mentioned in Fy ¢, and define z4(s) = aj, and Ej 11 = Ers. Go to stage s + 1.

(4) If such a D exists, we say that a finite set G of strings is k-avoidable if G' has no
initial segment of (25 | $)"ax. Then we say that a (n+ 1)-tuple (Gy)r<, of finite
sets of strings is avoidable except for j if Gy is k-avoidable for any k # j, and
that (Gg)g<n is all-but-one avoidable if it is avoidable except for at most one j.

(5) Ask whether for any ¢ < n there is an all-but-one avoidable tuple (G% )<, such
that for any o € Dy, (0, (G%)r<n) € @gl.

(6) If yes, define Ej 1 = Ers UUcp G%. Note that there is m < n such that
G*, is m-avoidable for any £ < n since ((G%)r<n)e<n is an n-tuple of all-but-one
avoidable (n + 1)-tuples. For such m, we put a,, = a,,, and for each k # m,
choose a large aj, # a; not mentioned in Ej ¢1. Then define xx(s) = aj. Go to
stage s + 1.

(7) If no with £ < n, note that if Gy and G; are k-avoidable, so is GoUG. Therefore,
for any j < n, there is 0; € D, such that if (Gj)r<n is avoidable except for j, we
have (0, (Gy)k<n) & @Y.

(8) If 0; and o; are incomparable for some i # j, define zx(s) = a5, and Esy = E.
Go to stage s + 1.

(9) If (0});<n is pairwise comparable, then let op be the shortest one.

Case 1. We reach Step (3). In this case, note that for any y € (w)", W) qoes

not enumerate ((zy, | $)"ax)p<n, that is, if WY@ is a neighborhood basis of a point

(2k)k<n € (W)™ then z; must extend (z | s)"ay for some k& < n. Since our action
at Step (3) ensures that xj | s + 1 is incomparable with (zj [ s)"ay for every k < n,
the requirement R is fulfilled.

Case 2. Otherwise, for @ = (ag)k<n, let Dy be the set of all D’s witnessing that the
question in Step (2) is true. Consider the case that we reach Step (6) or (8) with some
D € D,.

Assume that we reach Step (6) with a collection ((G%)r<n)e<n of avoidable tuples. Fix
m < n such that G%, is m-avoidable. Then J, G%, is also m-avoidable, and moreover,
E,, s is m-avoidable by our choice of a,,. Therefore, E,, ;1 is also m-avoidable, and
therefore, E,, ;11 has no initial segment of x,, [ s+1 = (2, [ $)"a,,. Moreover, for each
k # m, by our choice of a}, Ej s+1 has no initial segment of xj, [ s+1 = (2, | s)"aj}. Since
GY, C Ej 41 for any £ < n and k < n, given © = (x1,)g<n, if 3 is an extensions of z, |
s+ 1, then (G%)z<, C Nbase(zx), and therefore, the (-th section of <I>§base(w) enumerates
all strings in D, for any ¢ < n. However, since we have (((zx [ s)"ax)k<n, (De)i<n) € Ve,

if U 0™ enumerates a neighborhood basis of a point (2;)x<n € (W)™, 2, cannot

extend (zy [ s)"ag for any k < n. Since x,, | s+ 1 = (¢ | $) @, we must have
U, )" £ Nbase(z). Thus, the requirement Ra,e is fulfilled.

Assume that we reach Step (8) with ¢ and incomparable o; and ¢;. Later we will also
use the symbol ¢p to specify this ¢. In this case, our action ensures that x; [ s+ 1 =
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(xr | $)"ag, and therefore, if (Gi)r<n € Nbase(x), then Gy must be k-avoidable for
any k < n. In particular, for any k¥ < n, (Gy)g<n is avoidable except for k. Thus, we

have (o, (Gk)k<n) & @gl. Since (o) )r<n contains an incomparable pair, the ¢-th section

(I)gbase(w) does not define a point in w®. Thus, the requirement Ry is fulfilled.

Case 3. Assume that we reach Step (9) for any D € D,. We say that z = (zx)k<n €
(we )™ is all-but-one good (for a = (ag)r<n) if 21 extends (zy | s)"ay for all but one
k < n. If z is all-but-one good, any G C Nbase(z) is all-but-one avoidable. Therefore,
if égbase(z) enumerates a neighborhood basis of a point (y;)i<n, y¢ must extend op,
where ¢ = (p.

If there are D, D’ € D, such that {p = ¢p and that op is incomparable with op,
then this means that & ) is not a neighborhood basis of a point for any all-but-one
good tuple z. In this case, by putting xx(s) = ax, and Ejy 1 = Ej s for each k < n, the
requirement R is fulﬁlled. Then go to stage s + 1.

Case 4. Otherwise, for any D, D" € D,,, if {p = {p/, then op and op/ are comparable.
Then we define of for any ¢ < n and large tuple @ not mentioned in E; as follows:

of = J{op : D € D, and (p = (}.

If there is a tuple (ax)r<, such that, whenever xj extends (zy | s)"ay for any k < n,

(I)gbase(a:) w

does not enumerate a neighborhood basis of a point in (w®)”, then we just
put x(s) = a; and Ej 41 = Ej s for each £ < n, and then go to stage s + 1.

Therefore, we can assume that for any (ag)r<n, there are = (xy)g<, such that xzy
extends (zy, | s)"ax and that ®)"**® enumerates a neighborhood basis of a point in
(w@)™. Under this assumption, we show the following claim.

Claim. For any (n + 1)-tuples a,b € w™™! of large numbers and ¢ < n, o¢ and o? are
comparable.

Proof. Given large a, assume that z is an all-but-one good tuple (for a), and that

q)gbase(z) defines a neighborhood basis of a point y € (w¥)™. For any ¢, there is D € D,
such that {p = ¢ and o} | t < op. As mentioned in Case 3, for any such D, y,
extends op. In particular, we have of [ ¢ < y,. Since t is arbitrary, we get of < yp.
Note that [ s followed by a = (ag, a1, as,...,a,) is all-but-one good for alby/ag] :=
(bo, a1,az...,a,), T | s followed by alby/aog| is all-but-one good for alby/ag, bi/a1] :=
(bo, b1, as...,a,), and so on. Therefore, for any & = (zx)r<n, if x5 extends (xy [ $) ag
for every k and if ®)"*°®) defines a neighborhood basis of a point (y¢)een € (%)™,
then y, extends o, afo’“l’“*“"“n), aébo’blm"“’a"), and so on. This implies that all of
these strings are comparable. By our assumption, for any large a, there is such «, and
therefore, for any large a and b, and any ¢ < n, 0 and ¢? are comparable. Thus, our
claim is verified. U

Now, for any a € (w?)"™, we define r(a) € (w+ 1)" as follows:

r(a)(f) = |o|.

Consider any infinite sequence (@');c., of large (n 4 1)-tuples a’ = (aj,)x<n such that
if i # j then a}, # a), for any k < n. Let <" be the product order on (w + 1)". Since
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w+ 1 is a well quasi order, so is ((w + 1)",<") by Dickson’s lemma. Thus, there are
j < i such that r(a’) <" r(a'). Put a = a’ and b = a’, and define z;(s) = a; for each
k <s.

Assume that xy extends zy [ s+ 1 for any k < n. Then, (xy [ $)"bg)k<n € Nbase(x)
since xx(s) = ay # by for any k < n. If <I>§base(m) defines a neighborhood basis of a point
Y = (Yo)o<n € (W)™ then we must have y, = of for every ¢ < n. Since r(b) <" r(a), we
get y, = of for every ¢ < n. However, by our choice of a2, if {((xx | 8) b )r<n, D) € V.,
then for ¢ = (p, there is ¢ € D, such that ¢ < ¢b. Therefore, D, contains an initial
segment of yy, and thus D ¢ Nbase(y). Hence, we have ghbase) Nbase(x), that is,
\Deégbase(w) # Nbase(x). Put Eys11 = Ej s for each k < n, and then go to stage s + 1.
Then, the requirement R gy is fulfilled. U

5.1.3. Telophase topology.
Proposition 5.3. Crp computably embeds into (rp)?. Hence, Dicypye = Di@pp)e -

Proof. We define a function ¢ : Crp — 2 by ¢(z) = 1¥ if x = 1,; otherwise c¢(z) = x.
Given x € Crp, we define h(x)(n + 1) = c¢(x)(n). We define h(x)(0) = n if we find that
1"0 < x. Otherwise, z € {1, 1,}. If x = 1, then define h(z)(0) = oo, and if x = 1,, then
define h(x)(0) = oo,. It is not hard to check that h: Crp — (wrp)® is an embedding,
that is, there are enumeration operators ®, ¥ witnessing that Nbase(xz) =, Nbase(h(z))
for any x € Crp.

For the latter assertion, it is clear that X“*“ is computably homeomorphic to X¥.
Thus, (Crp)* computably embeds into (Wrp)“, and therefore Dic, ) = Dppye- O

Proposition 5.4. The 1-telograph-cototal e-degrees are exactly the total degrees. For
any natural numbers b, c > 1, the b-telograph-cototal e-degrees are exactly the c-telograph-
cototal e-degrees.

Proof. For the first assertion, given ¢ : w — w, consider
G ={(n,m,0) - g(n) #m+1}U{({n,m,1) : g(n) = m+1}.
Clearly, G is total, and one can check that G =, Graph(g) & TGraph,(g).

Omne can easily check that every b-telograph-cototal e-degree is (b + 1)-telograph-
cototal by considering g(n) = g(n) + 1. To see that every b-telograph-cototal e-degree
is 2-telograph-cototal, given g : w — w and i < b, consider the following:

0 if g(n) =1,
gi(n) =<1 if g(n) < b and g(n) # 1,
gn)—b+2 if g(n) >b.

Define g by g(bn + i) = gi(n). Then, we claim that Graph(g)® & TGraph,(g) =,
Graph(g)® ® TGraph,(g). It is straightforward to see the following for n,m € w and
1< b,

(bn +1i,0) € Graph(g)*

(9
(bn +1i,1) € Graph(g
(

<= (n,i) € Graph(g)",
7)° e

<~

<~

(

(Vj <) j=1ior(n,j) € Graph(g)S,
(n,m + b) € Graph(g)-,

(n,m + by € TGraph,(g).

(bn +1i,m + 2) € Graph(g)©
(bn 4 i,m + 2) € TGraph,(g)
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The reduction <, clearly follows from the above equivalences. For the reduction >, see
the first, third, and forth equivalences. O

Proposition 5.5. The (wrp)¥-degrees are exactly the telograph-cototal e-degrees.

Proof. By Proposition 5.4, it suffices to show that the (&rp)“-degrees are exactly the
2-telograph-cototal e-degrees. Given a point x € (wrp)“, consider the following g,:

0 if x(n) = oo,
gz(n) =41 if x(n) = ooy,
z(n)+2 ifz(n) € w.
We claim that Nbase(z) =, Graph(g,)® @ TGraph,(g,). Recall from Example 3.14

the definition of Nbase(z) in the telophase space (wrp)®. To verify the reduction <.,
we claim that

(n,0,m) € Nbase(z) <= (n,m + 2) € TGraph,(g.),

(n,1,m) € Nbase(z) <= (n,1),(n,2),...,{(n,m+ 1) € Graph(g,)",

(n,2,m) € Nbase(z) < (n,0),(n,2),...,(n,m+ 1) € Graph(g,)“.
This is because, for the first equivalence, if x(n) = m € w, then g,(n) = m+2 > 2,
and thus (n,m + 2) is enumerated into TGraph,(g,). For the second equivalence,
m < z(n) < oo if and only if z(n) # oo, and x(n) € {0,...,m — 1}. This means that
(n,1) & Graph(g,) and (n,2),...,(n,m — 1+ 2) ¢ Graph(g,). The last equivalence
holds by a similar reason. The above three equivalences give us a reduction witnessing
Nbase(z) <. Graph(g,)® ® TGraph,(g,).

For the reduction >, first note that g,(n) # oo if and only if m < z < oo, for some

m € w. Similarly, g,(n) # oo, if and only if m < x < oo for some m € w. Therefore,
for v < 2,

(n,i) € Graph(g,)® <= (n,2 —1i,m) € Nbase(z).

For m € w, g.(n) # m + 2 if and only if either z(n) = k for some k < m or k < x for
some k > m. Therefore, for m € w,

(n,m +2) € Graph(g,)° <= (3k <m) (n,0,k) € Nbase(z)
or (3k > m)(Fi < 2) (n,i+ 1,k) € Nbase(x).
Finally, it is clear that for any n,m € w,
(n,m) € TGraphy(g,) <= m > 2 and (n,0,m — 2) € Nbase(z).

The above equivalences give us a reduction witnessing Graph(g,) ® TGraph,(g,) <.
Nbase(z). This concludes the proof. O

Theorem 5.6. The (wrp)“-degrees (hence the telograph-cototal e-degrees) are exactly
the [*,*, I19]-separating-above e-degrees. In other words, a nonempty set E C w is e-
equivalent to Nbase(z) for some x € (wrp)® if and only if there are X, A, B C w such
that AU B is X-co-c.e., ANB =1, and

Enum(E) =) {X} x Sep(A4, B).
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Proof. Given a point x € (wrp)®, we define
X ={2(n,m) : z(n) =m}U{2(n,m)+1: x(n) # m},

where m ranges over w. Clearly, X is total. We define A = {n € w : z(n) = oo} and
B ={n€w:z(n)=o00}. It is clear that ANB = (). Note that AU B is co-c.e. relative
to X, since n € AU B if and only if 2(n,m) + 1 € X for any m > 0.

It is clear that X @ X°© <. Nbase(x). To see Sep(A, B) <j; Nbase(z), given n € w,
wait for the first triple (n,i,m) to be enumerated into Nbase(x). If i = 1 (then,
x(n) # oo,), enumerate n into C. If i = 2 (then, xz(n) # o0), enumerate n into C°.
If i = 0 (then, z(n) € w), enumerate n into C. The constructed set C' satisfies that
C € Sep(A, B).

Conversely, assume that C' € Sep(A, B) is given. For each n, if n € C, then x(n) #
00,. Thus, enumerate (n,1,m) into Nbase(x) (which indicates that m < z(n) < oo) if
2(n, k) + 1 is enumerated into X. If n & C, then z(n) # co. Thus, enumerate (n, 2, m)
into Nbase(z) (which indicates that m < z(n) < oo,) if 2(n, k) + 1 is enumerated into
X. Moreover, if 2(n, m) is enumerated into X, then enumerate (n,0,m) and (n,i+1, k)
into Nbase(z) for each ¢ < 2 and £k < m. It is not hard to check that this procedure
eventually enumerates Nbase(z).

Now let A, B be a pair of disjoint sets such that A U B is X-co-c.e. We construct
a point € (wrp)¥ such that {X} ® Sep(A, B) is equivalent to Nbase(z). We define
z(2n) to be X(n). Fix an X-computable enumeration of the complement of AU B. We
define z(2n + 1) as follows:

oo ifn € A,
z(2n+1) =< oo, if n € B,
s if we see n € AU B at stage s.

As in the above argument, it is not hard to see that {X} ® Sep(A, B) is Medvedev-
equivalent to Nbase(x). O

5.2. Degrees of points: T5-topology.

5.2.1. Double Origin Topology.

Theorem 5.7. The (Qpo)“-degrees are exactly the doubled co-d-CEA degrees. In other
words, an e-degree d is a (Qpo)*-degree if and only if there are X, A, B, P, N C w such
that A, B, P and N are pairwise disjoint, P, N, and (AU B) are X-c.e., and

XX ®(AUP)® (BUN) ed.

Proof. We first show the “only if” part. Define ¢: Q; U {0} — Q; by c¢(z) = = if
x # 0,; otherwise ¢(z) = 0. One can think of ¢(z) as a natural number via an effective
indexing of rationals. Given (z,y) = (Tn,Yn)new € (Qpo)*, define ¢4 (2n) = c(y,)
and c¢(zy)(2n + 1) = c(y,). Then, let X be the graph of c(,). Moreover, we define
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A, B, P, N as follows:

A={new: (z,,y,) = 0},
B={n€cw: (x,,yn) = 0.},
P={new:y, >0},
N={necw:y, <0}

Clearly, A, B, P, N are pairwise disjoint, A U B is X-co-c.e., and P, N are X-c.e.
It is easy to see that X @& X¢ <, Nbase(x,y). Note that (n,1,1,1) is enumerated
into Nbase(z,y) if and only if n is enumerated into A U P. Similarly, (n,2,1,1) is
enumerated into Nbase(x,y) if and only if n is enumerated into B U N. Therefore, we
get X @ X ®(AUP)® (BUN) <, Nbase(z,y).

Conversely, assume that an enumeration of X & X @& (AU P) @ (BUN) is given.
Then we proceed the following algorithm:

(I) If we see n ¢ AU B by using X & X€, we start to enumerate all tuples of the
form (n,0,p,q,1,j) such that p < ¢(z,) < ¢ and r < ¢(y,) < s.
(IT) if we see n € AU P, by using X @ X¢, we start to enumerate all tuples of the
form (n,1, k,¢) such that |c(x,)| < k=! and c(y,) < £71.
(III) If we see n € BU N, by using X @& X¢, we start to enumerate all tuples of the
form (n, 2, k, ¢) such that |c(x,)| < k' and —71 < c(y,).

Here, for (I), recall that A U B is co-c.e. relative to X. We claim that the above
procedure gives us an enumeration of Nbase(z,y). To show this claim, let Nbase, (z, y)
be the n-th section of Nbase(z,y), that is, Nbase,(x,y) = {a : (n,a) € Nbase(z,y)}.

If n € A, clearly, Nbase(z,y) = {(1,k,¢) : k,{ € w}. Since n € A, our algorithm
only proceeds (IT), and since c(x,) = ¢(y,) = 0, we have |c(z,)| < k7 and c(y,) < 7!
for all k,/ € w. Thus, the n-th section enumerated by the above algorithm is exactly
Nbase,(z,y). If n € B, a similar argument holds. If n € P, then Nbase,(x,y) is the
union of the set of all (0,p,q,r,s) such that p < z, < ¢ and r < y,, < s, and that of
all (n,1,k, () such that |z,| < k7! and y, < £~!. Since n € P, our algorithm proceeds
(I) and (II), and clearly, ¢(x,) = x,, and ¢(y,) = y,. Thus, the n-th section enumerated
by the above algorithm is exactly Nbase,(x,y). If n € N, a similar argument holds.
Finally, assume that n ¢ AU BU P U N. In this case, Nbase,(z,y) is the set of all
(0,p,q,r,s) such that p < z, < gand r < y, < s. Sincen € AUBU P U N, our
algorithm only proceeds (I), and clearly, ¢(x,) = z, and ¢(y,) = y,. Thus, the n-th
section enumerated by the above algorithm is exactly Nbase,(x,y). This verifies the
claim.

To show the “if” part, let X, A, B, P, N be such that A, B, P, and N are disjoint, and
P, N, and AU B° are X-c.e. We will construct a point (z,y) = (Tpn, Yn)new € (Qpo)®
such that X@® X<®(AUP)®(BUN). Fix X-computable enumerations of AU B, P, and
N. First, (xa,, Yo2,) is used to code X @ X€. For instance, put (zo,, y2,) = (X (n)/2,1/2).
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We first define ¢(zg,+1) and ¢(yon11) as follows:

275 if weseen & AU B at stage s,
'Z‘ n
1) =\ ifne AU B,
if we see n € P at stage s,
(Yans1) —27° if we see n € N at stage s,
iftng PUN,
If (c(zans1), c(Yons1)) = , then define (z2,41,y2,41) = 0 if z € A, and define

(Tont1,Yons1) = O, if © € B We can then decode A, B, P, N as before, and we get
XeX@®(AUP)® (BUN) =, Nbase(x,y) as in the above argument. Note that
(x,y) is contained in the image of a computable embedding of (Ppp)“ into (Qpo)®
constructed in Example 3.16. Hence, (x,y) has a (Ppo)”-degree. O

Proposition 5.8. Every doubled co-d-CEA e-degree is telograph-cototal. Hence, we
have D(QDO)“’ g 'D(A

Qrp)© -

Proof. Every doubled co-d-CEA e-degree is of the form Y = (CeC°)d(AUP)S(BUN)
such that P, N, (AU B)® are C-c.e. Put Z = (AUP)®(BUN). It suffices to construct a
total function g such that CeC*®Z =, C®C°@® Graph(g) @ TGraph,(g) (since we can
remove C'@ C® from the right-hand set by replacing g with g such that g(2n) = C(n)+2
and g(2n + 1) = g(n)). Fix C-computable enumerations of P, N, and (AU B)®. For
each n, let 2 (t1, resp.) be the first stage such that n is enumerated into P (N, resp.) if
n € PUN. Then we define g as follows.

0, ifng AUP,
g(2n) =<1, itn e A,
\t91+2’ ifn e P,

(0, if n¢ BUN,
g2n+1) =<1, ifne B,
\t711+2’ if n € N,

Clearly, g is total. Note that
A=(AUB)\(BUN), and B=(AUB)\ (AUP).

Thus, n € Aif and only if n € AU B and 2n + 1 € Z¢. Similarly, n € B if and only
if n € AU B and 2n € Z¢. Thus, we note that

g(2n) #0 <= 2n € Z,
g(2n) #1 <= ne (AUB)or2n+1¢€ Z,
g2n)=m+2 = m=1t.
Here, note that the equality m = t° is C-computable. Similarly,
g2n+1)#0 < 2n+1€ Z,
g2n+1)#1 <= ne (AUB) or2n € Z,
g2n+1)=m+2 < m=t,.
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The above equivalences clearly witness that C'® C° @ Z is e-equivalent to C' & C° &
Graph(g)© @ TGraph,(g). Consequently, Y has a telograph-cototal e-degree. O

5.3. Degrees of points: 715 5-topology.
5.3.1. Arens square.

Proposition 5.9. The quasi-Polish Arens space QA is second-countable, and Ts 5, but
not completely Hausdorff.

Proof. 1t is clear that QA is second-countable. To see that QA is Ty 5, choose two
distinct points (20, 90) # (z1,41) in QA. If yo # 1, then there are dlSJOlHt open sets
U,V C w?+1 such that 3y € U and y; € V (w.r.t. the order topology on w?+1). Then,
it is easy to see that £ x U and £ x V separate (z¢,yo) and (x1,y1). If yo = y1, then we
must have {zg,z;} = {0,0} and yo = y1 = w?. Assume that zo = 0 and z; = 0. Then,
it is easy to see that w x (w? + 1) and w* x (w? + 1) separate (zo,yo) and (z1,y1).

Assume for the sake of a contradiction that there is a continuous function f : QA4 — R
such that f(0,w?) = 0 and f(0,w?) = 1. As {w x (,w?] : @ < wW?} (respectively
{w* x (,w?] : a < w3}) is a neighbourhood basis of (0,w?) (respectively of (0,w?)),
there is @ < w? such that f(z,y) < 1/4if x € w and y > «, and that f(z,y) > 3/4 if
r € w* and y > a. Note that if 8 € I, and 8 > «, then (00, 5) € w X (a,w?]. This is
because S is a limit ordinal, and hence [ is an accumulation point of I,, for any n € w.
Hence, f(oo,f) < 1/4. Similarly, (30, 5) € w* x (o, w?], and hence f(30,5) < 3/4.
Choose v € Iy, such that v > a, and consider the value f(0¢,7). There is ¢ such that
a <0 <~vyand |f(z,y) — f(Oc,7)| < 1/8 for any x € ( and 6 <y < ~. Since 7 is of the
form w? - j, v is an accumulation point of both I, and Ix. Hence, there are 8 € I
and 8 € Ix such that o < § < 3,8 < . Then, we also have (00, 3), (35, 8) € ¢ x (d,7].
Hence,

> 2
87

ol =

3 =1

S 2 f(008) + 5 2 F(007) 2 f(0,8) — ¢ =
which is clearly a contradiction. U
Observation 5.10. For an e-degree d, d € £ if and only if d is co-d-CEA.

Proof. Tt is clear that if d is co-d-CEA, then d € £. Conversely, assume that S =
X®X@(AUP)D (BUN) for some A, B, P, N, X C w satisfying the above mentioned
conditions. Define Z = (AU P)U Hp, and then Z <, S since Hp is X-c.e. One can see
that Z¢ = (BUN)U Hy, and thus Z¢ <. S. Then, we have AUP = ZN((AUB)NP)
and BUN = Z°N ((AUB)NN). Since P, N, AU B¢ are X-c.e., the sets AU P and
B U N are co-d-c.e. relative to X & Z. Hence, S® Z & Z° =, S is co-d-CEA. U

Observation 5.11. Fvery co-d-CFEA e-degree is Arens co-d-CEA.

Proof. If an e-degree d is co-d-CEA, then there are X, A, P C w such that P and A€
are X-c.e., A and P are disjoint, and (X @ X)®(AUP). Pt Y =X, L=A, J, =P,
N = L¢, and R = Jr = Jy; = (. This witnesses that d is Arens co-d-CEA. O

Theorem 5.12. The degree structure of the product quasi-Polish Arens space QA%
consists exactly of Arens co-d-CFEA e-degrees:

Doa» ={d € D, : d is Arens co-d-CEA}.
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Proof. Assume that z = (z,, Yn)new € QA* is given. Consider the following sets:
L={ncw: (r,,y,) = (0,°)},
R={ncw: (zny,) = (0,0},
M={ncw:z,=0}={ncw: (3j €w)y, =w?j},
Jp={new:z, cw\{0}}={necw: (Fkcw\{0}) y, € I},
Jr={new:z, e \{0}}={new: (Fkew\{0})y, € I},
Ju={necw:z, € (\{0}} ={necw:(3Fke\{0})y, € I}

Let Y code the information on the second coordinate (¥, ),en- Then Y is total as seen
in Remark 3.18. The sets L U R, M, Jy, Jr, and Jy; are characterized only by using
(Yn)new- For instance, n € LUR iff y,, = w?, which is co-c.e. condition relative to Y. One
can also see that n € Jy iff y,, € I}, for some k € w, which is a c.e. condition relative to Y,
since I, consists of successor ordinals, which are isolated in the space w® + 1. Similarly,
Jr, and Jys are c.e. in Y. Define N = (LU RU M). Then, N = {n: y(n) &€ {w? w? 5 :
J € w}}, which is a c.e. condition relative to Y. Define H, = {n : 0 < z,, < 0¢}, and
Hgr = {n:0; <z, <0}. Clearly, {Hy, Hg} is a partition of N. Note that n € H, iff
Yn € oo U Uk€w+ I U Iy, which is c.e. condition relative to Y. Similarly, Hg is c.e.
inY. Hence, A=Y ®Y°® (LUJ,) D (RUJR)® ((LURUN)TUJy) is of an Arens
co-d-c.e. e-degree.

We first check that A <. Nbase(z). It is easy to see that

ne€LUJ, < (3j) (0,n,j) € Nbase(z),
ne€ RUJg < (3j) (1,n,j) € Nbase(z).
Moreover, one can see that (LU RU N)° = M, and therefore,
ne(LURUN)UJy=MUJy < (34,k) (2,n,7,k) € Nbase(z).

This verifies that A <. Nbase(z). Conversely, we first recover y(n) from an enumer-
ation of Y @ Y. Then consider the following.

(1) If y(n) is a successor ordinal, then one finds it at finite stage. One can then
compute x(n) = My, which determines z(n) = (z(n),y(n)). Enumerate all
neighborhoods of z(n).

(2) Even if y(n) is a limit ordinal, if n & Iy U Iy U Iy, we see w?k +wu +2j — 1 <
y(n) < w?k+w(u+1) at some finite stage. If u is even, u = 2¢ say, it is ensured
that j < z(n) < (—j)¢, and hence we can enumerate (3,n, j, k, () into Nbase(z).
If u is odd, u = 2¢ 4 1 say, it is ensured that jo < z(n) < j, and hence we can
enumerate (4,n, j, k, £) into Nbase(z).

(3) Simultaneously, wait until n is enumerated into (LU J1) ® (RU Jg) & (M U Jy).

o If we see n € L U Jp, enumerate (0,n, j) for any j such that y(n) > w?j.
e If we see n € RU Jg, enumerate (1,n,7) for any j such that y(n) > w?;.
o If we see n € MUJy, enumerate (2,n, j, k) for any j, k such that w?j+wk <
y(n) <w?(j+1).
One can check that the above procedure witnesses that Nbase(z) <. A. Next, given
such L, R, N, Jr,, Jg, Ju, Y C w, we define a point z € Q.A*. We first define z(2n+1) =
(1,1)if n € Y;; otherwise z(2n+1) = (2,3). This clearly ensures that Y ®Y <, Nbase(z).
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Fix Y-computable enumerations of N, Jr, JJg, Jas, and (LU R). If n € L, define
2(2n) = (0,w?). If n € R, define 2(2n) = (0,w?). Put M = (LURUN)". If n & (LUR)
happens, then let s be the first stage when we confirm that (w.r.t. a Y-computable
enumeration of L U R). If n € M, we define z(2n) = (0¢,w?-(s+1)). If n € (LURUM)
happens, that is, if n € N, then we see either n € Hy or n € Hg at some stage .
Put j = 1ifn € Hy,and j = 21ifn € Hg. If n € N\ (Jp U Jg U Jy), define
z(2n) = (co,w? - s + w(2t + j)). If n € Jp U Jg U Jy; happens, let u be the first stage
when we confirm that. If n € J;, U Jg, define the second coordinate of z(2n) to be
w? s+ w(2t+j — 1) 4+ 2u+ 1; otherwise define it to be w? - s +w(2t + j — 1) + 2u. The
second coordinate uniquely determines the first coordinate.

Now, it is not hard to verify that the coded neighborhood basis of the second co-
ordinate of z is e-reducible to Y & Y. Moreover, the sets L, R, N, Jr, Jg, Jys satisfy
the equations mentioned in the first paragraph in this proof (where z(2n) = (2, yn)).
Hence, the above argument shows that A =, Nbase(z) as desired. O

5.3.2. Roy’s lattice space.

Proposition 5.13. The quasi-Polish Roy space QR is a second-countable Ty 5 space
which is not completely Hausdortff.

Proof. It is clear that the space QR is second-countable. To see that QR is Ty 5, let
(z0,%0), (x1,11) € QR be given two distinct points. If yy # y1, since the ordinal space
w® + 1 is metrizable; hence T5 5, choose open sets U,V C O, w such that yo € U, y; € V,
and UNV = (). Then @ x U and & x V separate (g, %o) and (z1,y1). If yo = y1, then we
must have {xg,z;} = {0, 00} and yo = y; are the empty string (), since (I, : z € w\{0})
is a partition of the ordinal w®. Then define U = {0,1} x O e and V = [5,00] X Oe.
Clearly, we have (0,()) € U, (00,{)) € V, U C [0,2] x Ope and V C [4,00] x O e.
Hence, U and V' separates (g, yo) and (z1,y1).

To see that QR is not completely Hausdorff, suppose for the sake of contradiction that
there is a continuous function f: QR — [0, 1] such that f(0,()) =0 and f(oo, ()) = 1.
Since every open neighborhood of (oo, ()) is of the form [2n + 1,00] X Oy, there is
k € w such that f(n,o) > 3/4 for any n > 2k and o € O,. Similarly, since the open
sets of the form {0,1} x ((m), ()]xp form a local basis at (0, ()), there is m such that
{1} x ({m), ()]s € f710,¢). Put e =471 and ¢ = max{m, k}+1. Then, in particular,
we have {1} x ((¢ — 1), ()]xs C f7[0,471).

Note that (2, (¢)) € QR since the length of (¢) is 1, and thus (¢) € I5. The closure of
{1} x ((£—1), (¢)]xp contains the point (2, ¢) for some m since every open neighborhood
of (2, (¢)) contains {1} x ({, 1), (¢)]xp for almost all ¢t € w. In particular, the closure of
F710,471) contains (2, (¢)). This shows that f(2,(¢)) < 47! Since f71{0,471 +472) is
an open set containing the point (2, (£)), it also includes {3} x ({¢,t), (¢)]xp for almost
all t € w. Then there is ¢; such that {3} x ((¢,t; — 1), ((,to)]xs C f1[0,471 +472). By
the same argument as above, one can see that (4, (¢,¢;)) is contained in the closure of
the above set, and thus f(4, (¢,t)) < 4714472 Continue this procedure. We eventually
get a string o = ((,t1,...,t,1) such that f(2¢,0) < 27! Since 2¢ > 2k, by our choice
of k, we get 3/4 < f(2(,0) < 1/2, a contradiction. O

Proposition 5.14. Fvery co-d-CEA e-degree is Roy halfgraph-above. Every Roy halfgraph-
above e-degree is doubled co-d-CEA.
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Proof. Let d is a co-d-CEA degree. Then, X & X< ® (AU P) € d for some X, A, P Cw
such that A° and P are ce. in X, and A and P are disjoint. Define f(n) = L,
if n € A; f(n) = 0 if n € P; otherwise put f(n) = 1. One can check that f is
half-c.e. since A and P are c.e. in X. Clearly, f is X-computably dominated. We
claim that X @ X @ (AU P) =, X @ X¢ @ HalfGraph™(f). For the direction <.,
one can see that n € AU P iff 2(n,0) € HalfGraph™(f). For the converse direction,
2(n,0) + 1 € HalfGraph™ (f) iff n ¢ A, which is a X-c.e. condition. Moreover, whenever
m > 0, we always have 2(n,m) € HalfGraph™*(f) and 2(n,m) + 1 ¢ HalfGraph™(f).
Hence, every co-d-CEA degree is Roy halfgraph-above.

For the second assertion, let d be a Roy halfgraph-above degree. Then, d contains
a set of the form Y & Y @ HalfGraph™(f), where f is Y-half-c.e. and Y-computably
dominated. We define A = {n: f(n) = Lo}, B={n: f(n) = L1}, and given I C w,
we also define C; = {n : f(n) € I}. We claim that S = Y @ Y° @ HalfGraph™(f) is
e-equivalent to the following set Q.

Q=YY D (A U C{o}) SP, @(B U C{zk’oo)) S7) @ C[zk,2k+2]-
kew kew

It is obvious that n € AU Cygy iff 2(n,0) € HalfGraph™(f), and that n € B U
Clak,o0) iff 2(n,m) € HalfGraph™(f). To see Q <. S, note that n € Clok,2k+2) iff
2(n, k) + 1,2(n, k + 1) € HalfGraph™(f). Similarly, to see S <. @, one can see that
2(n,m) € HalfGraph™ (f) iff n € AUCqpy or n € Cpap or42) for some k& < m. This verifies
the claim.

We define Aoy, = A, By, = B, Py, = Cioy = {n: f(n) = 0}, and Ny = Clap0) = {1 :
f(n) > 2k}. Note that n & AgxUBsy iff there is m such that 2(n, m)+1 € HalfGraph(f).
It is also easy to see that n € Py iff 2(n,m) € HalfGraph(f), and that n € Ny iff
2(n,m) € HalfGraph(f). Since f is Y-half-c.e., the above shows that Py, Nox, and
(Agx U Boi)© are c.e. in Y. It is clear that Ay, Bog, Par, and Ny are disjoint. Hence,
Zo =Y @YD (Ao U Poy) @ (Bag, U Noy.) is doubled-co-d-c.e.

We now start to code Claior+9) in a set of a doubled co-d-CEA degree. Note that
Clakok+2) 18 3-c.e. in Y, and hence it is e-equivalent to a set which is co-d-c.e. in YV
(see Cooper [7]). For the sake of completeness (and to check uniformity of the proof)
we explicitly write the coding procedure. Since f is Y-half-c.e., there is a uniform Y-
computable enumeration of (Claogoo))kew- We use the symbol Clay ooy [s] to denote the
set of elements enumerated into Clor,) by stage s. Note that Cioy o0)[s] is computable
uniformly in £ and s. Then, we define Ag, 1 and Py as follows.

Agr1 = {(n, s) : either n € Cppo0)[s] or n € AU B U Clg 42},
Pory1 = {(n,s) :n € Cppoo)[s] and n € Cpopiay}

We define Bapy1 = Nopi1r = 0. Note that n € Aoy iff n € Cpopo)[s] or 2(n, k) +1 &
HalfGraph(f). Hence, Agyq is co-c.e. in Y. It is also easy to see that n € Py iff
n € Cpgoo[s] and 2(n, k + 1) € HalfGraph(f), which is a Y-c.e. condition. Therefore,
ng+1 =Y ) Ye D <A2k+1 U P2k+1) is co-d-CEA.

We claim that Zy,11 is e-equivalent to Y @ Y ® Cpap ort2)- Note that n € Clapo0)[5]
ensures that n ¢ AU B, and hence if n € Cpap o) [s], then the condition n € Agy1UPopiy
is equivalent to that n € Clgyop42). Hence, n € Ciop k42 if and only if there is s such
that n € Cppoo)[s] and (n,s) € Aggy1 U Papqq. For the converse direction, one can see
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that (n,s) € Agpi1 U Popyq iff either n € Clog o)[s] or n € Clog2r42). Thus, we conclude
that @, Z; is e-equivalent to Q.

We claim that @, Z; is also doubled co-d-CEA. To see this, consider Z =Y @Y @
co-c.e. in Y, and @, A;, D, Bi, @, P;, and P, N; are disjoint. Hence, Z is doubled
co-d-CEA. Tt is easy to check that Z is e-equivalent to €D, Z;, which is also e-equivalent
to S. Consequently, every Roy halfgraph-above degree is doubled-co-d-CEA. U

Theorem 5.15. The QR"-degrees are exactly the Roy-halfgraph-above degrees, that is,
Dore = {d € D, : d is Roy-halfgraph-above}.

Proof. Assume that z = (2, Yn)new € QR is given. To see that Nbase(z) has a Roy
halfgraph-above degree, we define f : w — @ as follows.

f(n) =1y <= x,=0,
f(n):J—l <~ Iy = OQ,
fn)=k <= z,=k+1 <= y, € l141.

Let Y be a set coding the second coordinate (y,)ne., which has a total degree. By
definition, we have f(n) = 2m iff y,, € I5,,41. This condition is c.e. in Y since Iy,,41 is a
computable set of isolated points (successor ordinals). We also note that f(n) € w and
f(n) >2miff 2m + 1 < z,, < w iff, |y,| > m, and, whenever y,, is a leaf, there is £ > m
such that y,(¢) > 0. It is equivalent to saying that we see that, for some o € O, with
|o| > m, the open set (00, 0]kp is a neighborhood of y,,. This shows that f is half-c.e.
To see that f is Y-computably dominated, we define g :C w — w as follows.

9(n) = 2yn(0) + 1.

Note that y,(0) = k iff y, € ((k — 1), (k)|]xs. Hence, one can recover y,(0) from
Y by a partial computable way. Obviously, f(n) € w if and only if y,(0) is defined.
This verifies that ¢ is Y-computable, and dom(g) = {n : f(n) € w}. One can see that
g(n) < 2k iff y, extends (j) for some j < k — 1. This implies that |y,| < k. Note that
o € I, for some ¢ > 2k implies that |o| > k. Hence, |y,| < k implies z,, < 2k, that is,
f(n) <2k — 1. Therefore, we have f(n) < g(n) whenever f(n) € w. Consequently, f is
Y -computably dominated.

For HalfGraph™ (f) <. Nbase(z), it is easy to see the following.

2(n, k) € HalfGraph™(f) <= =z, <2k +1
< (i <1)(3 < k)(Jo) (i,n,l,0) € Nbase(z),
2(n, k) + 1 € HalfGraph™ (f) <= =, >2k+1 <= (2,n,k) € Nbase(z).

To see that Y @Y <, Nbase(z), if x, < oo (that is, (i,n, £, o) is enumerated into
Nbase(z) for some i,n, ¢, o), then just follow the approximation of the second coordinate
Yn. If we see (2,n,k)Nbase(z), then we know that x, > 2k. As seen above, x, > 2k
implies |y,| > k, and thus y, € ((k),()]xp is ensured. Hence, in any cases, we can
recover a code Y @ Y€ of (y,)ne, from Nbase(z) in a uniform manner.
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For Nbase(z) <. S := Y & Y°® HalfGraph™ (f), by monitoring an enumeration of Y,
we can recover the second coordinate (y,)ne,- Then, one can see the following.

(0,n,k,0) € Nbase(z) <= vy, = o and (Vi < 2) 2(n, k) + i € HalfGraph™(f),
(1,n,k,0j) € Nbase(z) < y, € (¢J,0]xs
and (Vi < 2) 2(n, k) +i € HalfGraph™(f),
(2,n,k) € Nbase(z) <= 2(n, k) + 1 € HalfGraph™ (f).

Hence, we obtain S =, Nbase(z), and conclude that every QR“-degree is chained
co-d-CEA.

Now, given such S =Y @ Y@ HalfGraph™ (f), we define a point z € QR" such that
Nbase(z) =, S. We first define z9,,1 = (1,1) if n € Y; otherwise 29,1 = (1,0). It is
clear that Y @ Y€ is e-equivalent to the coded neighborhood basis of (z9,,11)ne, in the
Roy space QR".

We now describe how to define zy, = (z,,y,). Given n € w, we begin with y,[0] =
(). We wait until we see g(n) is defined, say g(n) = 2k — 1. In this case, we have
f(n) < 2k — 1. Then, we declare that y, € ((k — 1), (k)|ks, that is, y,(0) = k. If
we see 2(n,1) + 1 € HalfGraph(f), that is, f(n) > 2, at stage s1, then we declare
that v, € ((k,s1 — 1), (k, s1)]ks, that is, y,(1) = s;. Continue this procedure. Assume
that we have already seen f(n) > 2m, and thus y,[s,] = 0 = (k,s1,...,8m). If we
see f(n) > 2m + 2 at stage S,,41, then we declare y, € (07 (Sms1 — 1), 07 Sm11]kB,
that is, y,(m + 1) = spy1. If we see f(n) = 2m at some stage t,,, then we declare
Yn = 0" t,0...0 € Ot where we can assume that t,, > 0. If f(n) # 2m + 1 for
any m, then, since f(n) < 2k — 1, our construction ensures that |y,| < k, and hence
Yn € Oye. Note that this procedure gives us an O, w-name of y, in a Y-computable
manner. If y, is nonempty, let z,, be the unique x such that y,, € I,. If y,, is empty and
f(n) = Lo, define z,, = 0; otherwise put z,, = cc.

We claim that if f(n) € w, then z,, = f(n)+ 1. If f(n) = 2m, then we see f(n) = 2m
at some stage, and our construction ensures that y, is of the form 0°t,,70...0 € Ot
where |o| = m+ 1 and t,,, > 0. Hence, y,,(m+1) > 0 and y,,(k) = 0 for any k > m + 1.
This means that y,, € Iy,41, and hence x, =2m+1= f(n)+1. If f(n) =2m+1, then
we see f(n) > 2m at some stage, and neither f(n) > 2m + 2 nor f(n) = 2m happens.
Hence, our construction ensures that y, is a string of length m + 1. This means that
Yn € Iomio, and hence z,, = 2m + 2 = f(n) + 1.

We define 2y, = (24, yn) for each n € w. As mentioned above, the coded neighborhood
basis of the second coordinate of (yy)ne, in the product ordinal space (O, )* (that is,
the Y constructed from (x,,y,)new as in the second paragraph of this proof) is e-
reducible to Y @ Y¢. Moreover, the function f satisfy the equations mentioned in the

first paragraph in this proof (where 25, = (x,,y,)). Hence, the above argument shows
that S =, Nbase(z) as desired. O

5.4. Degrees of points: submetrizable topology.

5.4.1. Extension topology.

Proposition 5.16. The following are equivalent for a collection C of e-degrees:
(1) There is B computably extending A such that C = Dgwy,.
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(2) There is a countable collection I' of subsets of 2¥ such that
C={deD,:d is'-above}.

Proof. Assume that 5 computably extends . Then, define G = {{e,x) : = € 5.} and
I' = {G}. Define A = {n: (n,z) € G}, which is clearly I relative to z. Note that

ec A < (e,x) € G <= e € Nbaseg(z).

Thus, by the above equivalence and Observation 3.21, clearly z @ 2°® A =, Nbases(z),
and thus, Nbaseg(z) is I-above. Conversely, if d is I'-above, then there are x € 2¥ and
A € T such that x @ 2 ® A € d. Since I' = {G}, we must have A = {n: (n,x) € G}.
As in the previous argument, one can see that « @ 2¢ & A =, Nbaseg(x).

To show the converse direction, fix a countable collection I' = (G, )ee,,. Define 5 by
Bioey = Ae and Biieny = {(e,y) : (n,y) € G}. Clearly, 8 computably extends A. For
each x € (2¥)g, let e be the first entry of z, that is, z = (e, y). Define A, = {n: (n,y) €
G.}. Then, A, is I relative to y, and therefore y & y© & A, is I'-above. Note that

neA < (ny)eG. < (l,e,n) € Nbases((e,y)) = Nbaseg(x).

By the above equivalence and Observation 3.21, we have that x @2 ® A, <. Nbases(z).
Moreover, for any d # e and n € w, (1,d,n) ¢ Nbaseg(z), and the 0-th section of
Nbaseg(x) is obviously e-equivalent to x @ z°. Hence, x @ 2¢ @ A, =. Nbaseg(z). Since
@ x° P A, is clearly e-equivalent to y @ y© & A, this shows that Nbaseg(z) is I'-above.

Conversely, if d is ['-above, then there are y € 2¥ and A € I'Y such that y®y*d A € d.
Then there is e such that A = {n : (n,y) € G.}. Consider z = (e, y). As in the previous
argument, one can see that y @ y* @ A =, Nbaseg(x). O

Theorem 5.17. Fvery e-degree is an X-degree for some decidable, submetrizable, cby
space X, that 1s,

D. = U{DX : X is a decidable, submetrizable, cby space}.

Proof. Note that by Theorem 7.13, the enumeration degrees are not covered by count-
ably many 7}-spaces. Therefore, the above equivalence must be realized by an uncount-
able union. As a corollary, there are uncountably many decidable submetrizable spaces
in an essential sense, that is, for any countably many submetrizable (indeed T7) spaces
(X)icw, there is a decidable submetrizable space ) that cannot be embedded into X;
for any 7 € w.

To prove Theorem 5.17, given an enumeration degree d, we will construct an decidable
submetrizable space X4 and a point € X such that the enumeration degree of Nbase(x)
is exactly d. Moreover, if d is AY with n > 4, X4 can be strongly IT1%-named.

Construction. Given a topological space (X, 7x) and a set D C X let Xp be the exten-
sion topology of X plus D, that is, the topological space with the underlying set X and
the topology generated by 7x U {D}. If X is submetrizable, then so is the D-extension
Xp. However, the D-extension Xp is not necessarily metrizable even if X is.

Consider the w-power (Bp)“ of the D-extension of Baire space B := w“. Note that
an open subbasis of (Bp)“ is given by By, . = {z € (Bp)” : x(n) = o} and By, = {z:
x(n) € D}. Therefore, the coded neighborhood filter of x € (Bp)¥ is given as follows:

Nbase(z) = {(0,n,0) : 0 < z(n)} U{(1,n) : z(n) € D}.
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Observation 5.18. If D is dense and co-dense, then (Bp)“ is a decidable, submetriz-
able, cby space.

Proof. If D is dense and co-dense, given o,7 € w<“, we have that [¢] € D N [r], and
that [o] N (D N [r]) = 0 if and only if o L7. This gives a decidable basis of (Bp)~. O

We now describe how we extend a metric topology to code a given e-degree. Define
Q™ =Q\ {0v}. Given A C w, define

Dy={n"zecw’:necAandz¢Q ]or [n¢g Aandx ¢Q]}.

It is clear that D, is dense and co-dense. Note that QN Dy = {n"0¥ : n € A}. We
show that every e-degree is realized in the space of the form (Bp,)“.

Given D C w* and = € (Bp)Y, define X = {(k,m) : (k) = m}. Then, it is not hard
to see the following.

Nbase(z) =. X @ X @ {n € w: z(n) € D}.

Given an e-degree d, choose A € d. By Observation 5.18, (Bp,)“ is a decidable,
submetrizable, cbg space since Dy is dense and co-dense. Define z(n) = n~0¥. Then
clearly, z(n) € D, if and only if n € A. Moreover, since X and X¢ are c.e., we have the
following.

Nbase(z) = X @ X @ {ncw:x(n) € Da} = A.
Thus, by putting X4 = (Bp,)*, this verifies our claim. O
We now claim that, if d is A? with n > 4, X4 can be strongly I1Y-named.

Proposition 5.19. Let n > 4. Ifd is an e-degree of a AY set, then there is a decidable,
strongly T1° -named, submetrizable, cby space Xq such that d is an Xg-degree.

Proof. We introduce ad-hoc technical notions. A countable set £ C w* is (A,I')-
enumerable if there is a sequence (7¢)ce., of reals such that

EC{r.:ecw}, {(e,o):r. =0} €A, and {e:r. € E} €T

We also says that a countable set E C w¥ is strongly (AY  A%)-enumerable if it is
(A2, AY)-enumerable, and moreover it satisfies the following condition:

(VS Cw)[Sell) = {ncw:(3e)r. € Eand (e,n) € S]} € A?)].

Let Q@ C w® be the set of all infinite binary strings = such that z(n) = 0 for almost
all n. For instance, Q is (A9, X9)-enumerable, and strongly (AY, A9)-enumerable.

Lemma 5.20. For any k >4, if A € A) then w*\ Dy is strongly (A}, A?)-enumerable.
Proof. Define 1, . = n"o.~ 0%, where o, is the e-th finite string. We note that

W\ Dy =Q\{n"0¥:ne A},
and therefore, we have w” \ Dy C Q = {1, : n,e € w}. Moreover, we have that

Tne € Do <= n g Aor (Is <|oe|) oe(s) #0.
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This condition is A? and thus, w*” \ D4 is co-(A, A?)-enumerable. Moreover, given
a set S € 1Y,

(3e) [rne € Da and (e,n) € S| <= [n € A and (3e)[rp. € Q™ and (e,n) € 5]
and [n ¢ A and (Je)[r,. € Q and (e,n) € S]].
Clearly, this condition is A? since A € AY and &k > 4. O

Lemma 5.21. For any n > 4 and m < n — 2, if D is strongly (A%, A%)-enumerable,
then (Bp)®“ is strongly 112 -named.

Proof. Let (r¢)ec, witness that D¢ is strongly (A2 AY)-enumerable. We define the
predicate p € P as follows:

(Vn)(¥€)(Jo € w*) (0,n,0) € mg(p),
and (Vn) [(1,n) € rng(p) = (Je) r. € D and (Vo < r.) (0,n,0) € rng(p)].

The first line says that p extends the Baire name of a point x € B, and the second line
says that if p does not enumerate (1,n), then some of such x satisfies that z(n) & D.
To see that Sup((Bp)¥) C P, fix p € Sup((Bp)¥), that is, p extends a (Bp)“-name q.
We show that p satisfies the contrapositive of the second line in the definition of p € P.
Assume that any point z whose Baire name is extended by p satisfies x(n) € D. Then
the unique point z coded by ¢ must satisfy x(n) € D since p extends ¢ and therefore
extends the Baire name of . Then ¢ must enumerate (1,n), and so does p.
We next define the predicate p € N as follows:

(Vn)(Vo,7) [oL1 = (0,n,0) & rng(p) or (0,n,7) & rmg(p)],
and (Vn) [({(1,n) € rng(p) and (I3%0) (0,n,0) € rng(p))
— (Ve)[re ¢ D — (3o <r.)(37) 7Lo and (0,n,7) € rng(p)].

The first line says that p does not enumerate two incomparable strings for each coor-
dinate. Note that, in this case, p generates a sequence z? = (2P(n))pe, € w=*. The
second and third lines say that if p enumerates (1, n) and such zP(n) is an infinite string,
then 2P(n) € D. Note that every p € Sub((Bp)“) satisfies this condition. Otherwise, p
enumerates (1,n), 2(n) € w* is determined but z?(n) ¢ D. Thus, if ¢ is a (Bp)¥-name
extending p, we must have x%(n) ¢ D, and then ¢ never enumerates (1,n), which is
impossible. Hence, we get that Sub((Bp)¥) C N.

It is not hard to check that P € TI° since D°® is strongly (A% ~AY)-enumerable. It is
also straightforward to see that N € TI% since D¢ is (AY | AY)-enumerable. Finally, we
claim that P N N C Name((Bp)¥). The first lines in the definitions of P and N say
that p determines 27 = (2P (n))new € (W¥)¥. Then the second line of P ensures that if
p does not enumerate (1,n) then a?(n) ¢ D. Conversely, the second and third lines of
N ensures that if p enumerates (1,n) then 2P(n) € D. This verifies our claim. g

Given D C w* and = € (Bp)¥, define X = {(k,m) : (k) = m}. Then, it is not hard
to see the following.
Nbase(z) =. X ® X @ {n c w:z(n) € D}.

Let d be a AY-enumeration degree for n > 4, and choose A € d. By Lemma 5.20,
D is strongly co-(AY, A%)-enumerable. Therefore, by Lemma 5.21, (Bp,)* is strongly
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II%-named. Define z,, = n~0~. Then clearly, x, € D4 if and only if n € A. Moreover,

n"

since X and X°€ are c.e., we have the following.
Nbase(z) = X @ X @ {n cw:x(n) € Da} = A.

Thus, by putting X4 = (Bp,)¥, this verifies our claim. O

5.4.2. Gandy-Harrington topology.

Proposition 5.22. For every & € w*” and o < wi™",

Nbasey (2(%) <. Nbasegy () <. Nbase, (z),
where ') denotes the a-th Turing jump of x, and ™ denotes the hyperjump of x.

Proof. First it is easy to see Nbasegy(r) <. Nbasey(z'7) since the hyperjump of = de-
termines whether the e-th X! set contains - or not. To see Nbase, (z(®)) <, Nbaseq (),
given e, one can effectively find X} indices p. and n, of a 39, set {y € w* : y(®)(e) = 1}
and a I19, | set {y € w* : y@(e) = 0}. Then for each e either p. or n, is enumerated
into {e : x € GH.}. By waiting for either one to occur, one can make an enumeration
procedure witnessing Nbasey (z(®) <, Nbaseqy (). O

Theorem 5.23. No (w¥)gy-degree is continuous.

Proof. Suppose that Nbasey(z) <. Nbasegy(z) for z € H. Then there is a c.e. set
U such that (n,s,p) € Nbasey(z) if and only if (n,s,p, D) € ¥ for some finite set
D C Nbasegp(x). Let Ly be the set of all (n,t,p) such that ¢ > s and

(V(m,u,q, D) € ¥) [(m=mn and D C Nbasegy(z)) — |¢g—p| <27"+27".

In other words, the diameter of the ball B;, = {y € [0,1] : |y — p| < 27*} determined
by (n,t,p) is less than 27°, and the ball B;, must intersect with any ball enumerated
by WNbasecn () gt the n-th coordinate.

Note that Nbasegy () is a X}(z) subset of w. Therefore, L, is a II}(z) subset of w
uniformly in s, and clearly nonempty. We claim that 2(n) € By, for any (n,t,p) € Ls.
To see this, let V' be an arbitrary open neighborhood of z(n). Then, there is v > u
and ¢ such that z(n) € B,, C V. Since (n,v,q) € Nbasey/(z), UNPaseau(®) enumerates
(n,v,q), and then, as mentioned above, By, intersects with such B, ,. Therefore, B;,
intersects with any open neighborhood of z(n), that is, z(n) € B;,; hence z(n) € B;_1,.

Since L, is I1j(x) uniformly in s, by uniformization (see [49, Theorem I1.2.3]), there
is a I} (z) total function (n, s) — h(n,s) such that (n,s, h(n,s)) € Ls. By totality, h is
Ai(z). Thus, we obtain a Aj(x)-sequence (Bs_1 p(n,s))sew 0f open balls such that z(n) €
(s Bs—1,n(n,s) for all s. Indeed, we have {z(n)} = [, Bs—1,a(n,s) (that is, (h(n,s))scw
is a Cauchy sequence rapidly converging to z(n)) since the diameter of Bs_1n(s) is at
most 27°72. Hence, one can enumerate Nbasey(z) using h. Since h is Al(x), this
shows that Nbasey(z) <. Nbase,(z(®) for some o < w{™". However, this implies that
Nbasegn () L. Nbasey(z) by Proposition 5.22. O
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5.4.3. Irregular Lattice Topology.
Proposition 5.24. The (L;;)¥-degrees are exactly the co-d-CEA degrees.

Proof. Given (z,y) € (L;1)“, define X as the coded neighborhood filter of (z,y) in £*
(which is equivalent to Nbasegw(x) @ Nbasezw(y)). Note that X is total as mentioned
above. Then, define A and P as follows:

A=Ax):={new:x(n) = (c0,00)},
P=P(y):={necw:yn) ew}.
Clearly, A and P are c.e. relative to X. Since (£;1)* is finer than £, we can recover

the coded L£¥-neighborhood filter X of z from an enumeration of Nbase(,, (). One
can see that

ne€AUP <= (Ja,becw)(3ie{0,2}) (n,i,a,b) € Nbase(z,y).

Thus, X & X @ (AU P) is e-reducible to Nbase(,,, - (z,y).
Conversely, from X, we first decode Nbasew () and Nbasegw (). Then, it is easy to
see that for any ¢ < 2 and n,a,b € w,

(n,i,a,b) € Nbasez,,y«(z,y) <= (n,0,a) € Nbasegw(x) and (n,i,b) € Nbasegw(y).
Moreover, one can see that
(n,2,a,b) € Nbase(,,-(r,y) <= (n,1,a) € Nbaseg(x), (n,1,b) € Nbasezw(y)
andn e AUP.

The above two equality given us an e-reduction from Nbase(.,, «(z,y) to X & X @
(AU P). Consequently, every (L;r)“-degree is co-d-CEA.

Next, assume that a co-d-CEA set is given, i.e. sets X, A, P such that A° and P are
X-c.e. are given, and consider A U P. Without loss of generality, we can assume that
AN P = ( since replacing P with the new X-c.e. set P\ A does not affect on the set
AU P. Then, we construct (z,y) € (L) as follows. Fix X-computable enumerations
of A° and P. First we use (z(2n),y(2n))ew to code X. Then define z(2n + 1) and
y(2n + 1) as follows:

oo ifneA,
s if we see n € A° at stage s,

z(2n+1) = {

oo ifné&P,
t if we see n € P at stage t,

y2n+1) = {

Then, A and P are recovered from (z,y) as above, i.e., A = A(x) and P = P(y). The
above argument shows that for any (z,y) € (£1)*, Nbase(z,,y«(x,y) is e-equivalent to
X @& X @ (A(z) U P(y)). This concludes the proof. O

Proposition 5.25. The (L;,)¥-degrees (hence the co-d-CEA degrees) are exactly the
[*, 1V, T19]-separating-above e-degrees. In other words, a mnonempty set E C w is co-
d-CEA if and only if there are X, A, B C w such that B and AU B are X-co-c.e.,
ANB =1, and

Enum(E) =) {X} x Sep(A4, B).
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Proof. Fix X, A, B C w such that B and AU B are X-co-c.e., and A and B are disjoint.
Note that A= B U (AU B)“, that is, it is the union of an X-co-c.e. set and an X-c.e.
set, and thus, A€ is co-d-c.e. relative to X. We claim that Enum(X & X© @ A°) is
Medvedev equivalent to {X} x Sep(A, B).

We first show that there is a X-computable function that, given enumeration of A€,
returns a set C' separating A from B. Fix an enumeration of B relative to X. Then,
given an enumeration of A¢, wait until we see either n € A or n € B¢ (by using an
enumeration relative to X). Since A and B are disjoint, this happens at some stage. If
we see n € A (before seeing n € B€), we enumerate n into C°. If we see n € B¢ (before
seeing n € A), we enumerate n into C. Clearly, C' separates A from B.

Conversely, assume that a set C separating A from B is given. Then, note that
A® = C°U(AU B)®. Thus, wait until we see either n € C° or n € (AU B) (by using an
enumeration relative to X). If we see this, enumerate n into A°. This procedure gives
us a correct enumeration of A°.

Next, assume that a co-d-CEA set is given, that is, disjoint sets B, P C w such that
B is X-co-c.e. and P is X-c.e. are given. Define A = (BU P). Note that A and B are
disjoint, and that B and AU B = P¢ are X-co-c.e. Since BU P = A€, by the same
argument as above, we can show that Enum(X & X°@® (BU P)) is Medvedev equivalent
to {X} x Sep(A, B). O

Proposition 5.26. There is a doubled co-d-CEA e-degree which is not co-d-CEA.

Proof. We construct Z = (AUP)® (BUN). Let E, be the e-th co-d-c.e. set. Begin with
n € B. Wait until 2n+ 1 is enumerated into W o ®(Z;) with ®-use ¢4(n). If we see this,
remove n from B, and enumerate n into A. That is, define Z,1 = (Z;\{2n+1})U{2n}.
Restrain Zs.1 [ ps(n). Wait until 2n is enumerated into W o ®(Z;) with ®-use ¢i(n).
Restrain Z; | ¢4(n). Given S, we write S = (S'\ {2n}) U {2n + 1} and S' = (S'\
{2n 4+ 1}) U {2n}. For any stage u after ¢, either both 2n and 2n + 1 are enumerated
into W o ®(Z!) for some i < 2 or there is m < max{p,(n), v;(n)} such that m € ®(Z7),
but m ¢ ®(Z!~") by monotonicity of an enumeration operator. In the former case, put
Zyi1 = Z', and restrain the ®-use. In the latter case, search for such m, and choose
i such that the current guess of ®(Z;m) is unequal to the current approximation of
E.(m). Then put Z,,; = Z'. Note that, at some later stage v > u, we may see that
®(Zi;m) = E(m). In this case, we search for new m and i, and continue the similar
procedure. This procedure converges at some stage, and therefore, this is finite injury.
Combine the quasi-minimal strategy with this. U

5.5. Degrees of points: Gs-topology.
5.5.1. Closed networks and Gs-spaces.
Observation 5.27. A Ty space X is Ty if and only if X has a closed network.

Proof. It X is Ty, every point is closed. Thus, N' = {{z} : x € X} forms a closed
network. We show the converse direction. Fix x # y. Since X is T, there is an open
set U such that either x € U Z y or x ¢ U > y. Without loss of generality, we may
assume that z € U and y ¢ U. Since X has a closed network, there is a closed set F’
such that x € F C U. Then, V = X \ F is open, and we have = ¢ V and y € V. This
shows that X is T;. O
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Observation 5.28. A space is G5 if and only if G5 = II.

Proof. Clearly, if G5 = I3 in a space X, then X is a G5 space since every closed set
is constructible, and hence ITJ. To see the converse, note that the class of G sets is
closed under finite union and countable intersection. If X is a G space, then any open
or closed set is G5. Hence, every constructible set is G5, and therefore, any II set is

Gs. U

Proposition 5.29. A second-countable space X is a Gs-space if and only if X has a
countable closed network.

Proof. Let X be a T space with a countable basis (¢ )ccw- If X is a Gs-space, then every
open set is F,, and therefore, for any e € w, there is a countable collection (F¢),e, of
closed sets such that . = J,,c,, Fr- Since (8¢ )ecw is a basis, (F)enew forms a countable
closed network for X.

Conversely, if A is a countable closed network for X, for any open set U, consider
the F, set N(U) = U{N € N : N C U}. We claim that U = N(U). The inclusion
N(U) C U is clear. For the inclusion U C N(U), given z € U, since N is a network,
there is N € N such that x € N C U. This means that x € N(U), and therefore,
U= N(U), that is, U is F,. This concludes that X is a Gs-space. O

Observation 5.30. For a second-countable Ty space, we have the following implications:

X

G§ = Tj.

A

Proof. Let (B;)icw be a countable basis for X'. Assume that X is compact and 7;. For
each finite set D, let Np be the complement of | J,., B;. We claim that (Np)pcy,. forms
a countable closed network for X'. To see this, fix a point x € X and open neighborhood
U of x. Since X' is T}, the complement {x} is open, and thus it is written as (J,.; B;.
Since X \ {z} covers the closed subset X'\ U of the compact space X, there is a finite
set D C I such that X'\ U is covered by UieD B;, which means that Np C U. Moreover,
we have that (J,.p, B; € &\ {z}, and therefore x € Np. This shows that (Np)pcg,w
forms a countable closed network for X'. Thus, X is Gs by Proposition 5.29.

Next, if X' is metrizable, it is easy to see that every open ball is a countable union
of closed balls. Hence, every metrizable space is GGs. The implication from being G5 to
being T follows from Observation 5.27 and Proposition 5.29. O

compact and T

metrizable

Proposition 5.31. There exist a second-countable submetrizable space which is not Gs.
For instance, the indiscrete irrational extension of R is second-countable, submetrizable,
but not Gy.

Proof. To simplify our argument, we consider the indiscrete irrational extension of C =
2¢ rather than R. More formally, let J be the set of all infinite binary sequences
containing infinitely many 0’s, and then consider the J-extension C; of the Cantor
topology 7¢, i.e., the topology generated by e U {J}.

Suppose for the sake of contradiction that C; is Gs. Let (B;)ic, and (N;);e., be a
countable basis and a countable closed network for C; (by Proposition 5.29). Note that



58 TAKAYUKI KIHARA, KENG MENG NG, AND ARNO PAULY

every Nj is closed in C;, and therefore N; can be written as the complement of V;NJ or
V; for some 7¢-open set V;. Then, there is an oracle Z such that U; and V; are Z-c.e. open
for any i € w. Let x be a 1-generic real relative to Z. Clearly, x € J. Therefore, there
is @ such that x € B; C J. Then, since (N;);c is a closed network for Cj;, there is j
such that x € N; C B;. Since x € J, we have x ¢ V;. Note that the complement of B;
is dense, and thus V; is dense. However, since x is 1-generic relative to Z, and Vj is a
dense Z-c.e. open set, we must have x € V}, a contradiction. Il

5.5.2. Cototal enumeration degrees.

Observation 5.32. A% s a decidable cby space.

max

Proof. For finite sets D, E C w<¥, we claim that D C E if and only if A2 N [E] C
A N [D]. It suffices to show that D Z E implies A N [E] € A% N [D]. Choose
o € D\ E. Then, it is easy to construct a maximal antichain X C w<¥ such that
XNE =0 and ¢ € X. For instance, consider X = {o} U{r € w*: 0 £ 7} for a
sufficiently large ¢. Then, E C X€¢ but D ¢ X¢ This shows that X¢ € [E]\ [D];

therefore A N[E] Z A% N [D]. O

max max

Theorem 5.33. Let X = (X, 3) be a represented cby space. Then, X is computably Gs
if and only if there is a representation v = § of X such that (X,~) is uniformly cototal.

Proof. To prove Theorem 5.33, we will see that one can assume that, in a computably
(5 space, every open set can be written as a computable union of finitary closed sets,
where a set is finitary closed (w.r.t. ) if it is the complement of finitely many open sets
in the basis generated by . Be careful that the notion of being finitary closed depends
on the choice of the representation f; hence it is not a topological property.

Recall from Section 2.4.2 the notion of reducibility of representations; for instance,
by v = ¢ we mean that v is bi-reducible to ¢.

Observation 5.34. Let X = (X, 3) be a represented cby space which is computably Gs.
Then, there is a representation v = 3 of X such that, given e € w, one can effectively
find a computable sequence (QS)new of v-finitary closed sets with v. =, Q.

Proof. Let f be a computable function witnessing that X is computably Gy. Define
V2e = Be and Y2(en)+1 = X \ Pf(e,n) = U{ﬂd cd € Wf(e,n)}' Thena V2e = 56 =
U, Preeny = U, (X \ Y2(eny+1), which is a computable union of v-finitary closed sets.
Moreover, ¥(e,n)+1 is @ computable union of sets of the form 34, where 34 can be written
as a computable union of ~-finitary closed sets. This concludes the proof. U

Observation 5.35. Let (X, 3) be a represented cby space, and let v be a representation
of X such that B =+. Then, if (X, ) is a computably G5 space, so is (X,7).

Proof. Note that § <~ iff, given a $-code of an open set in X, one can effectively find
its v-code. Given a y-basic open set U, one can find its f-code since v < . Since (X, )
is computably G, one can find a S-computable sequence of closed sets whose union is
U. Since 3 < #, it is also computable w.r.t. 7. Hence, (X, ) is computably Gs. O

We now assume that X = (X, 3) is computably Gs. By Observation 5.34, there is
~v = § such that every basic open set can be written as a computable union of finitary
closed sets w.r.t. v in an effective manner. We will construct an enumeration operator
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U. Let W be a c.e. set such that v = U, pyew Np, where Np = &\ U;cp7;- Then
we claim that W witnesses uniform cototality of (X, ~), that is,

e € Nbase, (z) <= (3D) [D C Nbase,(z) and (e, D) € W].

To see the implication “«<", we first note that D C Nbase,(x)° if and only if x € Np
by definition of Np. Moreover, if (e, D) € W, then Np C ~., and therefore, the
right formula implies e € Nbase(z). For the implication “=", if e € Nbase(z), since
Yo = U<6’D>6W Np, there is a finite set D such that (e, D) € W and x € Np C .. Then
we have D C Nbase(x)%, and (e, D) € W as desired. Consequently, (X,) is uniformly
cototal.

Conversely, we assume that (X, ) is relatively cototal via an enumeration operator
V. Then for any finite set D, define Np = X'\ J,,cp Yn- We claim that v, = (J{Np :
(n,D) € ¥}. For the inclusion “C.” if x € ~,, then since W(Nbase(z)) = Nbase(z),
there is a finite set D C Nbase()" (i.e., z € U cp 7j, and therefore € Np) such that
(n, D) € V. For the inclusion “2,” we show that if (n, D) € ¥, then v, UU,cpv = X
(i.e., Np C 7,). Otherwise, there is y € X such that y & ~, U UjeD v;. However, we
then have D C Nbase(y), which implies n € W(Nbase(y)), while n & Nbase(y). Then,
we get W(Nbase(y)®) # Nbase(y), which contradicts our choice of W. This shows that
given n, one can effectively find a computable sequence (Np : (n, D) € ¥) of finitary
closed sets whose union is 7,, that is, (X,) is computably Gs. Hence, (X, ) is also
computably G5 by Observation 5.35. U

Theorem 5.36. There exists a decidable, computably G, cby space X = A such
that
Dy ={d €D, :d is cototal}.

Proof. As mentioned in Example 3.31, McCarthy [35] showed that the space AS  is
uniformly cototal, and moreover, the A -degrees are exactly the cototal e-degrees.
Hence, by Theorem 5.33, Af>  is computably Gs. Moreover, as seen in Observation

5.32, A is a decidable cby space. Consequently, A is a decidable Gs-space which

max max

captures the cototal e-degrees. U
5.6. Quasi-Polish topology.

Proposition 5.37. For any i € {0,1,2,2.5}, there is a quasi-Polish T; space which is
not T for any j > 1. Indeed,

“ is a quasi-Polish Ti-space which is not Ts.

(1) The telophase space (wrp)

(2) The double origin space (Ppo)® is a quasi-Polish Ty-space which is not Ty 5.

(3) The Arens space QA“ is a quasi-Polish Ty 5-space which is not submetrizable.

(4) The irregular lattice space (Lrr)* is a quasi-Polish submetrizable space which is
not metrizable.

(5) The quasi-completion R. = R. U {oco} of the lower real line is a quasi-Polish
Ty-space which is not T7.

Proof. Tt is easy to see that if X is II9-named, then so is X*. For (1), by Fact 1,
it suffices to show that wrp is an open continuous image of a Polish space. Define a
function 0 by §(j0"10¥) = n for each j < 2, §(0) = oo, and §(10¥) = oo,. It is clear
that the domain of 4 is a closed subset of 2; hence Polish. For continuity, the preimages
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of basic open sets {n}, [n,oc], and [n, co,] are the clopen sets [00"1] U [10"1], [00™], and
[10"]. For openness, the images of basic open sets [j0™"17], [00"], and [10"] are the open
sets {n}, [n,o0], and [n, co,]. Hence, 6 is open and continuous.

For (2), define a partial surjection  :C w* — Ppo as follows.

d(0n0™10%) = (n,m), 6(0n0™20%) = (n,m), §(0n0*) = (n, ),
5(10%) = 0,, §(20%) = 0,

5(10°1m0"10%) = (n + s,m + s), §(10°1m0*) = (co,m + s),
5(20°1m0™10%) = (n + s,m + s), 0(20°1m0*) = (0o, m + s).

It is clear that dom(d) is a closed subset of w®; hence Polish. For continuity, the
preimages of some basic open sets are:

5~V [(n,m)] = [0n0™2] U U [20°1(m — 5)0" ],

67 [[n, 0] x {m}] = U[mﬂ( $)0"*] U 6!
0 [{n} x [m,m]] = [on0™ U | ) o
57Y[([n, 0] x (x,m]) U{0}] = [20"] U U 5! x {m}].

These sets are open, and therefore, § is continuous. For openness, the images of
some basic open sets [0n0™], [0n0™27], [10°], [20°1m0"], [L0°1mO0™ 17| are the open sets
{n}x[m,m], {(n,m)}, ([s, 00] X[s,%))U{0,}, [n+s,00] x {m + s}, and {(n+s, m+s)}.
Consequently, ¢ is open and continuous.

For (3), we define a partial surjection ¢ :C w* — QA as follows.

6<0w) = <07w3)7 5(10w) = (67 W3)7

S(0071keT) = (£ +1,w? - j+w- (2k) + 20+ 1),
S(1071klr) = ({+ 1,0 j+w- 2k + 1)+ 20+ 1),
§(2k0%) = (0¢,w® - k + 1),
5(2k0%167) = ((—€ — 1)¢,w? - k4w - (27) + 20+ 2),
S(2k0F L) = (L + 1), w? k4w (25 +1) +2042),
§(3k00°) = (00, w? -k +w- (20 + 1)),
5(3k00%17) = (41,0 k4w - (20) +2j + 1),
S(3k00% 7)) = (=) — e, w® -k +w - (20) + 25 + 2),
§(4k00°) = (0, w* -k +w - (20 +2)),
§(4k00¥17) = (F+ 1, w?  k+w- (204 1) 4+ 2j + 1),

S(4kC0¥T) = (( + D, w® -k +w- (20+1) + 25 + 2).

where j, k,¢ € w, and 7 is an arbitrary finite string. It is not hard to check that ¢ is
open continuous.
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For (4), we define a partial surjection 6 :C w* — C as follows.

0(04) = (00,00),  d(0Wabr) = (j +a,j +b),
d(1n0¥) = (n,00), d(1n0?17) = (n,j).

It is clear that the domain of § is a closed subset of w®“. It is also easy to check that o
is open continuous. U

Proposition 5.38.

(1) (De Brecht) The Gandy-Harrington space (w*)gm is not quasi-Polish.
(2) The Golomb space Ny, (see Section 4.3) is not quasi-Polish.

(3) The mazimal antichain space A, is not quasi-Polish.

Proof. (1) Let A be a (light-face) strictly co-analytic subset of Baire space, and let A’
be the same subset inside (w”)gy. Then A’ is closed in (w*)gy, so if (w¥)eu were
quasi-Polish, then A" as a subspace of (w*)gy would be quasi-Polish, too. Thus, there
would exist a continuous function g : (w¥) — (w¥)eu such that g(w*) = A’. Note
that id : (w*)gg — (w¥) is trivially continuous, and that A = (id o g)(w*), i.e. A is a
continuous image of Baire space, hence analytic, which contradicts the choice of A as a
strictly co-analytic set.

(2) We use a theorem by de Brecht [11] showing that a II{-subspace of a quasi-Polish
space is either quasi-Polish or contains one of four canonical counterexamples as I19-
subspace (see Theorem 2.8). From its definition, it is easy to see that the canonic
embedding of Ny, into w* is as X3-subspace. Moreover, N, is Hausdorff, and the only
Hausdorff space amongst de Brecht’s four counterexamples is Q. We thus arrive at:
Either N,, is quasi-Polish or Q embeds as IT3-subspace into Ny,.

Thus, it suffices to show that Q embeds into N, as a II3-subspace. Inductively choose
n(s) as a number satisfying 1+, TTj<,@) Pr < Pn(s)- Then, given b = bobibs ... define

i k<n(i)
Claim. h is a computable embedding of the dyadic rationals into N,,.

For computability of h, to check whether h(b) = u mod v, let p;, be the largest prime
factor of v. Then there is s such that k& < n(s). Then, to compute the value of h(b)
mod v, we only need to check the first s terms of h(b).

For computability of A~!, given h(b), inductively assume that we have already com-
puted by, by, ...,bs_1. To compute by, let r; = Hkgn(z’) pr. We have already computed
h(b)[s] := 1+, , bir;. By our choice of n(s+1) we have h(b)[s]+7(s) < pn(s+1). Hence,
since py(s41) is prime, we have ged(h(b)[s], prn(s+1)) = 1, and ged(h(b)[s] +7(s), Pu(s+1)) =
1. Thus, to the relatively prime integer topology, we can ask whether h(b) = h(b)[s]
mod py(st1y, or h(b) = h(b)[s] + 7(s) mod py(s1). If the former holds, then b, = 0, and
if the latter holds, then b, = 1.

(3) By Theorem 2.8, it suffices to show that w..r embeds into the maximal antichain
space A . Given n € N, consider the complement of the set of all strings of length n.

max*

It is not hard to check that this gives a desired embedding. U
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6. CS-NETWORKS AND NON-SECOND-COUNTABILITY

In this section, we develop techniques which will be used in the next section. As
we mentioned repeatedly, one can develop computability theory on some non-second-
countable spaces (without using notions from higher computability theory such as a-
recursion, F-recursion, infinite time Turing machines, etc.) To explain this idea, con-
sider the following notion.

Definition 6.1. Let X be a topological space, and N be a collection of subsets of X.
We say that N is a network at a point x € X if for any open neighborhood U of z,
there is N € N such that x € N C U. Moreover, if N is a network at x, and if z € N
holds for all N € N, then we also say that N is a strict network at x.

We now consider a space X which has no countable basis, but has a countable network
N = (N,)eew- Recall that by the “degree of a point x” in a (represented) cby space, we
meant the degree of difficulty of enumerating a neighborhood basis of x. However, if a
space is non-second-countable, there may be no w-step enumeration of a neighborhood
basis of a point. Instead, we consider the degree of difficulty of enumerating a strict
subnetwork of N at x € X. That is, we consider the following representation:

p is a name of v <= {Np) : n € w} is a strict network at .

Now, the induced computability theory on X heavily depends on the choice of a
network N. Of course, the same was true for a basis representation. But the situation
regarding a network is worse than the case of a basis. On the one hand, one can always
recover the topology on X from a basis, and thus, any representations yield the same
computability natures relative to some oracle. On the other hand, a network does not
memorize information on topology, and thus, the computability structure induced from
a network can be almost arbitrary. In summary, the notion of a network is too weak,
and therefore, we need a more restrictive notion.

A number of variants of a network have been extensively studied in general topology
(see [22, 36, 33]). Schroder [52, 51| clarified that the following variant captures the
territory of computability theory.

Definition 6.2 (Guthrie [24]). A cs-network N for a topological space X is a collection
of subsets of X such that, for any open set U C X, if a sequence (z,)new converges to
x € U, then there are N € N and ny € w such that

{z}U{z, :n>ne} C N CU.
Here, “cs” stands for “convergent sequence”. The following implications are clear:
basis = cs-network =— network.

For notational simplicity, in this article, we assume that a cs-network N always
contains the whole space, that is, X € N. Schroder [52, 51] showed that a topological
space X has an admissible representation if and only if X is a T space with a countable
cs-network. Since then, the notion of a countable cs-network have become a key notion
in the context of a convenient category of domains [18, 4, 5]*.

‘In [52, 51, 18, 5], a cs-network is called a pseudobase or a sequential pseudobase.
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More explicitly, if N' = (N,)cew is a countable cs-network for a Ty space X, recall
from Section 2.4.4 that the induced w®-representation of X’ from N is given as follows:

on(p) =2 <= {Npm) :n € w} is a strict network at z.

This map d always gives an admissible representation of X'. Note that the convention
X € N makes it possible for p to output no information at each stage. Recall from
Section 2.4.4 the definition of reducibility <t. By y: Y <t z: X we mean that there is
a partial computable function which, given an X-name of z, returns a )-name of y.

Observation 6.3. Let X = (X, 3) be a represented cby space, and Y = (Y,N) be a
topological space with a countable cs-network. Then y: Y <t x: X if and only if there
is J <. Nbasey(z) such that {N, : e € J} is a strict network at y.

Proof. The “if” direction is obvious. Assume that y: Y <g z: X. Then, there is a
computable function ® such that if p enumerates Nbasey(x), then ®(p) enumerates a
strict subnetwork of A at y. We define ¥ as follows:

(e,rng(7)) € ¥ <= (3In) &(7)(n) l=-c.

Clearly, W is c.e. Then, we define J = U(Nbasey(z)). We claim that {N, : e € J} is
a strict network at y. For any open neighborhood U of y, if p enumerates Nbasey(z),
then ®(p | s)(n) must output e such that y € N, C U for some e,n,s € w. Since
rmg(p | s) C Nbasex(x), we have e € J. Therefore, {N, : e € J} is a network at y.
For strictness, suppose that y € N, for some e € J. Then, there are 7,n such that
rmg(7) C Nbasey(z) and ®(7)(n) J= e. Clearly, 7 can be extended to an X'-name p
of z; however, we have y & Ng()mn), and thus ®(p) is not an enumeration of a strict
network at y, which is a contradiction. O

6.1. Regular-like networks and closure representation. For a topological space X
with a countable network N, we introduce a new represented space with the underlying
space X names of whose points are given by a sequence of closures of network elements
whose intersection captures the point. Formally, we define that p is a dy-name of z if
and only if

{Np@m) : n € w} is a network at =, and & € Ny, for all n € w.

Here, we do not require { Ny, : n € w} to be strict, that is, & Np,) can happen,
while we always have x € Np,). At first glance this definition may look very strange;
however, we will later see that this is a very useful technical notion. In this section, we
investigate how (X', dy) and (X, dy) are related, and we will show the following.

Theorem 6.4. Assume that X is a topological space with a countable cs-network.

(1) If X is reqular and Hausdorff, then X has a countable cs-network N such that
(X, 8x) is isomorphic to (X, 0x).

(2) There is a non-reqular Hausdorff space X which has a countable cs-network N
such that (X, 0x) is isomorphic to (X, Sx).

Before proving this theorem, we have to warn the reader that d, may be a multi-
representation in general (as studied e.g. by Weihrauch in [62]), that is, a single p can
be a name of many points. For instance, if A/ is an open network (i.e. basis) of (w*)eo,
then id : w — w is an dy-name of any point r € (w*)e. Then, when does p determine
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a single point 7 It is only if {(),, Ny} is a strict network at x. We first check that it
is always true if X’ is Hausdorff.

Observation 6.5. If a Hausdorff space X has a countable network N, then Sy is a
(single-valued) representation of X .

Proof. Note that X is Hausdorff if and only if every point in X can be written as the
intersection of all its closed neighborhoods. For a collection M of subsets of X', we write
M ={M: M € M}. Thus, {z} = O,, where O, is the set of all open neighborhoods
of z. Now, assume that p is a dy-name of zg,z; € X. Then, for each i < 2, N, =
{Npm) : 7 € w} forms a network at z;, and therefore x; € AN, C (N O,, = {x;}. Hence,
NN, = {zo} = {1}, which implies 7y = ;. O

We should be careful that, even if X is Hausdorff, { Np,) : n € w} is not necessarily a

network at z, that is, there may exist an open neighborhood U of = such that Ny,) € U

for all n € w, while we eventually have (1, Ny C U.

Now, it is clear that the identity map id : (X, dx) — (X, dx) is computable. Under
a certain assumption on a network, we also have computability of its inverse.

Observation 6.6. If a topological space X has a countable closed network N, then the
identity map id : (X, x) — (X, dn) is computable.

Proof. Assume that X has a countable closed cs-network N'. Let p be a dy-name of
a point # € X. Since N is closed, Npu) = Npm), and therefore, {N,) : n € w}
forms a strict network at x. Thus, p is also a Jy-name of x. Hence, the identity map
id : (X,0x) — (X, 0x) is computable. O

Recall that a topological space & is reqular if for any open neighborhood U of a point
r € X, there is an open neighborhood V of z such that x € V C V C U. It is equivalent
to saying that if M is a neighborhood basis at z, then so is M = {N : N € M}. We
say that a network N of X is regular-like if for any M C N and =z € X, if M is a
network at z, then so is M = {N : N € M}.

It is clear that every closed network is regular-like. The converse is not always true,
but it is easy to see that a space has a closed network of cardinality  iff it has a
regular-like network of cardinality . In particular, if a space has a countable regular-
like network, it is a Gs-space by Proposition 5.29. However, it is unclear if every space
with a regular-like cs-network always has a closed cs-network.

Observation 6.7. Every network of a regular space is regular-like.

Proof. Let N be a network for a regular space X, and let M C A be a network at
xr € X. Given an open neighborhood U of x, by regularity of X, there is an open
neighborhood V' of @ such that z € V and V C U. Since M is a network for X, there
is N € M such that z € N C V. Therefore, z € N C V C U. This shows that
M ={N : N € M} is a network at = as well. Consequently, A is regular-like. O

A regular space which has a countable network is known as a cosmic space, and a
regular space which has a countable cs-network is known as an Rg-space (see [39, 24]).
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Theorem 6.8. A topological space X has a countable reqular-like cs-network if and only
if X has a countable cs-network N such that the identity map id : (X,0n) — (X, 0n)
1S5 Continuous.

Proof. Assume that X’ has a countable regular-like cs-network N'. Then, M = N UN
is also a countable regular-like cs-network, and enumerate M = (M,)ce,,. Given a
dm-name p, let h(p) be an enumeration of all e € w such that M,;, C M, for some s.
Clearly, h is continuous. We claim that A realizes id : (X, 0p) — (X, ), that is, if p
is a 0,-name of a point # € X, then h(p) is a §,-name of the same point 2. For any n,
it is clear that & € Mjp)(n) since there is s such that My;s € Mypym), and x € My for
any s. It remains to show that {M},)m) : 7 € w} is a network at . Let U be an open
neighborhood of z. Since p is a dy-name of , {M,,) : n € w} C M is a network at z.
Since M is regular-like, {M,,) : n € w} is also a network at z. Therefore, there is n € w
such that = € m C U. Clearly, m € M, and in particular, m C M, CU for
some e. This means that h(p) enumerates such e at some stage, that is, Mypye € U
for some t. Hence, h(p) is a dp-name of x. This verifies the claim.

Conversely, assume that X has a countable cs-network A such that the identity map
id : (X,6y) — (X,0y) is continuous. Assume that M C AN is a strict network at
x € X. Then, any enumeration p of M is a Jy-name of a point © € X. Suppose for the
sake of contradiction that M = {N,}, : n € w} is not a network at z. Then, there is
an open neighborhood U of z such that N, € U for any n € w. Let h be a realizer of
id : (X,0x) — (X,0n). Then, h(p) is a dy-name of z. Therefore, there is s € w such
that Nys) € U. Choose any dn-name g of y € N,y \ U. Then, (p | s)"q is also a
ox-name of y. However, since y ¢ U D Niprs)» R((p [ 5)"q) cannot be a dp-name of y,
which is a contradiction. Hence, N is regular-like. O

In particular, if N is a countable cs-network of an Rp-space X, then the identity map
id : (X,0n) — (X, dpr) is continuous.

Remark 6.9. The proof of Theorem 6.8 actually shows that N is regular-like if and
only if the identity map id : (X, dx) — (X, 8, 77) is continuous. Here, NUN = (M.,).c,,
is defined by My, = N, and My 1 = N..

We now turn look to second-countable spaces. Recall that a basis can be thought
of as a cs-network, and thus every countable basis § also induces the representation
B := 5. Recall that the identity map id : (X, 3) — (X, ) is always computable. The
continuity of the inverse requires regularity (and thus, metrizability if the space is Tp,
since a second-countable T} space is regular if and only if it is metrizable).

Proposition 6.10. Let (X, 3) be a second-countable space. Then X is reqular if and
only if the identity map id: (X, ) — (X, B) is continuous.

Proof. Assume that X is regular. We construct h witnessing that id: (X, 8) — (X, 3)
is computable. Let p be a S-name of a point x € X. If p enumerates e, then h(p)
enumerates all d such that 8, C f;. We claim that h(p) is a S-name of z. Note
that @ € By(p)m) for any n. This is because h(p)(n) = d only if there are s € w such
that % C B, and moreover x € ) since p is a B-name of z. Now, to see that
{Brp)n) : 1 € w} is equal to Nbase(x), assume that x € f.. By regularity of X, there
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is d such that x € B3 € By C B.. Since p is a B-name of z, there is n such that
T € Bym) C Pa. Since Bpmy C Ba, by definition, h(p) enumerates e. This verifies the
claim.

Conversely, assume that the identity map id: (X, 5) — (X, ) is continuous. Then,
the proof of Theorem 6.8 shows that g is regular-like. However, one can easily check
that if a space has a regular-like basis, it is actually regular. O

It is worth noting that there is a non-reqular Hausdorff space which has a countable
regular-like cs-network.

Example 6.11. The Kleene-Kreisel space N is a non-regular Hausdorff space which
has a countable closed cs-network (hence, has a countable regular-like cs-network). Here,
the Kleene-Kreisel space consists of (total) continuous functions from Baire space w* to
the natural numbers w endowed with the quotient topology given by the following map:

5(6AZ):f — q)z:f7

where ®Z is the e-th partial z-computable function from w® to w, and the domain of ¢
is the set of all e~z such that ®Z is total, i.e., dom(®?) = w*.

Define N,,, = {f : (Vx > o) f(x) = n} for each ¢ € w< and n € w, and then
N = (N,,,) forms a countable cs-network for the Kleene-Kreisel space. We claim that
N, is closed. One can see that d(e”z) & N, ,, if and only if there are s, k, and 7 such
that ®2'*(7) = k # n, and 7 is comparable with o. Therefore, 6 *[N,,] is closed in
w®. Since the topology on NN is given by the quotient map o, we conclude that N,
is closed in K. That is, A is a closed network for K. Finally, Schroder [54] has shown
that the Kleene-Kreisel space NN is not regular.

Hence, by Theorem 6.8, id : (NNN,W) — (NNN,cSN) is continuous. Indeed, one can
easily see that it is actually computable.

6.2. Near quasi-minimality. We now start to study computability w.r.t. closure rep-
resentations.

Definition 6.12. Let X = (X, N) be a topological space X with a countable cs-network
N. We say that a point z € X is nearly computable if x: d5 is computable.

Clearly, every computable point is nearly computable. If X = [0,1]N or X = NNN,
then the converse is also true. By Observation 6.5, if X is Hausdorff, there are only
countably many nearly computable points. If id : (X, dy) — (X,dy) is computable,
then near computability and computability coincide. For instance, f € NV g nearly
computable if and only if f is computable.

Definition 6.13. Let X = (X, ) and Y = (Y, M) be topological spaces with count-
able cs-networks. Then, we say that a point x € X is nearly V-quasi-minimal if

Myel)|y: Y <t z: X = yis nearly computable].
If computability and near computability are equivalent in a space ), then so are )-
quasi-minimality and near Y-quasi-minimality. For instance, near [0, 1]N-quasi-minimality

is equivalent to quasi-minimality, and near NNN—quasi—minimality is equivalent to NN
quasi-minimality.
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6.3. Borel extension topology. Recall from Section 5.4.2 that the Gandy-Harrington
topology is generated by X1 sets. Then, it is natural to study topologies generated by
lightface Borel pointclasses. Indeed, the topology generated by %1 N Hg sets has played
a prominent role in the proof of Louveau’s separation theorem [34]. The topology
generated by IIY sets has also been used, for instance, by Miller [40] and Monin [42,
Section 3.1].

In this section, we discuss topologies generated by collections of X2 sets. Our first
motivation was, for instance, to understand the degree-theoretic behavior of 2* equipped
with the standard Cantor topology plus Martin-Lof conull sets. Here, we say that a set
A C 2¢ is Martin-Lof null if there is a computable sequence (U, )ne, of c.e. open sets
such that A C U,, and p(U,) < 27" for any n € w, and a set is Martin-Lof conull if its
complement is Martin-Lof null.

However, in contrast to the Gandy-Harrington topology, we will see that such a
space is uninteresting from the perspective of enumeration degrees because the degree
structure is exactly the same as the total degrees relative to some oracle. By Kihara-
Pauly [31], the latter property is equivalent to saying that such a space is o-metrizable,
that is, it is written as the union of countably many metrizable subspaces (see [23]). Note
that the Gandy-Harrington space (w“)gpg is not o-metrizable by relativizing Theorem
5.23 (see also Theorem 7.52) and by Kihara-Pauly [31].

By Proposition 6.10, we know that a represented cbq space (X, 5) is metrizable if and
only if the identity map is an isomorphism between (X, 3) and (X, 3). However, for
nonmetrizable (X, 3), this proposition does not ensure that (X, 3) and (X, ) are not
isomorphic. By using a Borel extension topology, we will see the following.

Proposition 6.14. There is a represented, submetrizable, o-metrizable, cby space (X, 3)
such that (X, 3) is not isomorphic to (X, f3).

A filter F on X is a nonempty collection of nonempty subsets of X such that A € F
and A C B implies B € F and that A, B € F implies AN B € F. A generator of F is
a subcollection G of F such that X € G and for every A € F there is B € G such that
B C A. If (X, 7) is a topological space, we say that a filter F on X is 7-consistent if
every A € F is 7-dense, and F is T-nontrivial if there is A € F whose complement is 7-
dense in some 7-open set. For instance, the collection of all Martin-Lof conull subsets of
2 forms a non-trivial filter, and the complements of Martin-Lof tests form a countable
generator of this filter.

Let G be a countable generator of a filter F on a second-countable space (X, 7). Then
consider the new topology 7 on X generated by the following set:

{ANU:AeGandU € 7}.

Note that the new topology 74 is second-countable since G is countable, and that 74
is finer than 7 since X € G. The latter implies that (X, 7¢) is submetrizable whenever
(X, 7) is submetrizable. If (X, 7) is represented by 5 and if G is enumerated as (G,)new,
then (X, 7¢) is represented by 8¢ = G, N B,.

Example 6.15. All of the following examples are countable generators of a 7-consistent
T-nontrivial filter on a separable metrizable space.

(1) The generator G = {Q, R} of a principal filter on the Euclidean line R yields
the so-called indiscrete rational extension of R (see [60, I1.66]). The generator
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G ={R\ Q,R} of a principal filter on the Euclidean line R yields the so-called
indiscrete irrational extension of R (see [60, I1.67]).

(2) Let MLR be the complements of (the union of) Martin-Lof tests on 2. Then,
MLR is a countable generator of the filter consisting of all measure 1 subsets
of 2. This yields the space Xuir := (29, Tmr) Where 7 is the usual Cantor
topology.

Lemma 6.16. Let G be a countable generator of a T-consistent filter on X. Then, the
identity map yields a homeomorphism between (X, 3Y) and (X, f3).

Proof. Let ANU and B NV be 7g-open sets. The assumption A, B € G implies
AN B e F, and therefore AN B is 7-dense since F is 7-nontrivial. Therefore, if AN U
and BNV are disjoint, then U and V must be disjoint. Consequently, the 74-closure
of ANU is exactly the 7-closure of U. O

Lemma 6.17. Let G be a countable generator of a T-nontrivial filter on X. Then,
(X, 7¢) is not metrizable.

Proof. 1t suffices to show that (X, 7¢) is not regular. Since F is 7-nontrivial, there are
D € F and T € 7 such that 7'\ D is 7-dense in 7. Then, there exists x € D N T since
D is T7-dense. We claim that there is no disjoint pair of open sets separating x and D°.
Suppose that x € ANU and D C BNV. As in the proof of Lemma 6.16, if ANU
and BNV are disjoint, so are U and V. Since T'\ D is 7-dense in T, V must include
T. However, x € T and therefore U NV # (). O

For a computable ordinal o, we say that a generator G is 3°-generated if every
element of G is X2 in 7, and the union of a 7g-open set and a X2-in-7 set is Tg-open.
For instance, the complements of Martin-Lof tests is ¥9-generated.

If (X, 1) is Polish, the topology 7, generated by X0 sets in 7 yields a zero-dimensional
metrizable topology whenever o« > 0. This is because the collection of all H%—Sets inT
for § < « forms a basis of the topology 7, and each H% set is T,-clopen. Therefore, 7,
has a basis consisting of clopen sets (C),)ne, and then the metric d, on (X, 7,) is given
by do(z,y) = 27" where n is the least index n such that C,, separates x and y.

Lemma 6.18. Let (X,7) be a Polish space. If G is ¥.0-generated, then (X,7g) is
o-metrizable.

Proof. We say that x is G-quasi-generic if x € A for any A € G. If x is G-quasi-generic,
x € ANU if and only if x € U. Therefore, (X | Rq, 7¢) is homeomorphic to (X | Rg, T)
where R is the set of all G-quasi-generic points.

If x is not G-quasi-generic, there is A € G such that © € A. Let S, be the set
of all x € X such that x ¢ A, where A, is the eth element of G. We claim that
(X | S, 7¢) is homeomorphic to (X [ S, 7,) for any e. It is clear that the identity map
id : (X, 7,) — (X,7¢) is continuous, since G is 3%-generated, which implies that 7, is
finer than 7¢. For any x € S, given X0 set S, z € A, if and only if x € A, U S. Since
G is X0-generated, we always have A, US € G and hence A, U S is 7g-open. Therefore,
the identity map (X | S.,7¢) — (X | Se, 7o) is also continuous. O

Proof of Proposition 6.1/. Let (X, T) be a separable metrizable space and G be a count-
able X.0-generated generator of a 7-consistent T-nontrivial filter on X. For instance, let
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(X, 7) be Cantor space, and G be the collection of complements of Martin-Lof tests.
Then, (X, 7¢) is submetrizable, and o-metrizable by Lemma 6.18. Given a representa-
tion of X, consider X = (X, ). Then (X, %) is isomorphic to (X, §) by Lemma 6.16,
and this is isomorphic to (X, 3) since § is metrizable. Then, since X is non-metrizable
by Lemma 6.17, we know that (X, 3%) is not isomorphic to (X, 5%). O

7. PROOFS FOR SECTION 4

7.1. Ty-degrees which are not 77. In this section we examine properties of the lower
topology and T}-quasi-minimality in this space.

7.1.1. Quasi-minimality.

Lemma 7.1. (see also Kihara-Pauly [31]) Let X be any represented cby space, x €
2 y € R, and z € X. If Nbasesw(z) <. Nbase.(y) ® Nbasex(z), then either
Nbasegw () <. Nbasey(z) or Nbase.(—y) <. Nbasex(z) holds.

Proof. Assume that Nbaseqw () <. Nbase(y) @ Nbasey(z). Then, there is a c.e. set
® Cw x2xQ xwsuch that for any n € w and 7 < 2,

z(n) =1 <= (Ip € Q)(Je € w) [p <y, e € Nbase(z), and (n,i,p,e) € P|.

Suppose that there is € > 0 such that for any p < y+¢ and e € Nbase(z), (p,e,n,i) €
® implies x(n) = 4. In this case, fix a rational ¢ € Q such that y < ¢ < y + . Then,

z(n) =i <= (Ip < ¢)(Je € w) [e € Nbase(z), and (n,i,q,¢) € D|.

This shows Nbaseg (2) <. Nbasey(z). Hereafter we assume that y is irrational; other-
wise y is computable and thus Nbase.(—y) <. Nbasey(z) trivially holds.

Otherwise, for all e > 0, there are p < y+¢ and e € Nbase(z) such that (n,i,p,e) € @
but z(n) # i. We claim that y < p if and only if there are n, i, p, d, e such that

g<p & d,e € Nbase(z) & (n,1—1i,q,d) € ® & (n,i,p,e) € .

If y < p is not true, we have p < y since y is irrational, and then ¢ < p implies
q < p < y. Since Nbasesw(x) <. Nbase.(y) ® Nbasey(z), for any d,e € Nbase(z),
whenever (n, i, q,d) and (n, j, p, e) are enumerated into ®, we must have i = j. If y < p,
then by our assumption, there are p < p and e € Nbase(z) such that (n,i,p,e) € ®
but z(n) # i. By monotonicity, one can assume that p = p. Since Nbaseqw(z) <,
Nbase (y)®Nbasex(z), there also exist ¢ < y and d € Nbase(z) such that (n, j, ¢,d) € @
and z(n) = j, i.e., j = 1 — 4. This verifies the claim.

Now note that y < p if and only if —p € Nbase.(—y). Thus, by the above claim, we
conclude Nbase_ (—y) <. Nbase(z). d

Proposition 7.2. Let a be an R_-degree. Then, the following are equivalent.

(1) a is a total e-degree.

(2) a is a 11V e-degree.

(3) a is the e-degree of Nbase(x) of a left- or right-c.e. real x € R_.
(4) a is not quasi-minimal.
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Proof. Fix x € R.. If x is rational, then z satisfies all conditions (1)—(4). We now
assume that x is irrational. Clearly, the conditions (2) and (3) are equivalent. We
show the equivalence of (1) and (3). If z is right-c.e., Nbasegr_(—z) is c.e., and thus
Nbase (x) is c.e. Hence, Nbase () @ Nbase.(z)® =, Nbase.(z). Thus, Nbase () is
total. Conversely, if A ® A° =, Nbase.(z) for a set A C N, by Lemma 7.1, we have
A® A° is c.e. (thus Nbase(z) is c.e.) or Nbase.(—x) is c.e. In other words, x is either
left- or right-c.e. The equivalence of (3) and (4) follows from Lemma 7.1. O

Here, we review the definition of enumeration genericity. Fix a new symbol 1 ¢ w,
and assume that wU{L} is endowed with the discrete topology, that is, fix an effective
bijection between w and w U {L}. Then, (wU {L})¥ is effectively homeomorphic to
Baire space w®. Thus, the (w U {L})¥-degrees are the total degrees. Indeed, for any

g€ (wu{l})~,
Graph(g) =, {{n,m + 1) : g(n) = m} U {(n,0): g(n) = L}.

From g € (wU {L})¥ we get a partial function ¢ :C w — w by interpreting L as
“undefined”. Then,

Graph(g) = {(n,m) € w?: g(n) # L, and g(n) = m}.

Definition 7.3. We say that G C w is enumeration n-generic if it is of the form
Graph(g) for some n-generic point f in the Baire space (w U {L})¥.

The notion is equivalent to the standard definition of n-genericity in enumeration
degrees. Note that Graph(g) <. Graph(g) is always true, but Graph(g) <. Graph(g) is
not necessarily true.

Proposition 7.4. No R -degree computes an enumeration 2-generic. ILe. if x is a real
and G C w be an enumeration 2-generic, then G £. Nbase(z).

Proof. Suppose that Graph(g) <. Nbase(z) for a partial function § :C w — w. Then,
there is a c.e. set ® such that g(n) | if and only if p < z for some (n,p) € ®. For each
n we let f(n) = inf{qg € Q : (n,q) € ®}. There is an increasing sequence {ny }re, such
that {0(ng)}rew is @ monotonic sequence of reals. Note that the relation 6(n) < 6(m)
is TI9. Therefore, such a sequence {n}re, can be found computably in . Now it is
easy to check that g(ny) is either defined for finitely many or for co-finitely many k € w.
Consider SY = {f € (wWU{L})*: (Fk > 1) f(ng) = L} and S} = {f € (WU {L})*:
(3k > 0) f(ni) € w}. Note that g is not contained in S§ or S} for any sufficiently large
(. However, S{ and S} are dense ()”-open sets with respect to the Baire topology on
(wU{L})¥. Consequently, g is not enumeration 2-generic. O

Proposition 7.5. For every z € R, either Nbase(x) is c.e. or there is quasi-minimal
S C w such that S <. Nbase.(x).

Proof. To prove Proposition 7.5, we need the following lemma:

Lemma 7.6. Given non-computable c.e. sets A, B C w, there are left-c.e. reals z <p A
and y <r B such that y — z s neither left- nor right-c.e.

Proof. Given non-computable c.e. sets Ay, A; C w, we construct a c.e. reals 2! = F?i
with A;-use v;(n) = n. The (e, )-th strategy R, tries to diagonalize W, = Left(z'~" —
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%), where Left(z) = {q € Q: ¢ < z}. We describe the action of R, ; at stage s. If this is
the first action of R.; after its initialization, choose a large number n.; which is bigger
than all numbers +2 mentioned in previous stages < s. Then, put 21| = 2177 4 277,
Wait for Left(2'™" — 2%) | n.; + 1 C W,. Here, Left(z'~" — 2%) | n is defined as Left(z)
for a dyadic rational z = 0.(c | n)000..., where o is a unique binary string satisfying
217 — 20 = 0.0000... (note that such o exists since our strategy ensures that z* and
217% are dyadic rationals). If it happens, wait for the change of A; [ n.; + 1, choose a
fresh large number n; ;, injure all lower priority strategies, and go back to the first step
with n ;. If we see the change of A; [ ne; + 1 at stage t > s, the strategy R.; acts by
putting z;,, = z; + 27", and stop the action of R.;.

If Left(2'~" — 2%) | n.; + 1 C W, does not happen, then the requirement is clearly
fulfilled. If it happens with an infinite increasing sequence (nf,)pe, since 4; | nf, + 1
never changes for all £ € w, then A; is computable. It contradicts the choice of A;.
Hence, R.; acts with n}, for some k. If it is never injured after the action, then
the requirement is fulfilled sine the sum of weights added to 2'~* by all lower priority

strategies is less than 27", Consequently, 217¢ — z; is neither left- nor right-c.e. U

It suffices to show that if » € R_ is right-c.e., but not left-c.e., then r bounds a
quasi-minimal e-degree. As mentioned in the paragraph below Proposition 7.2, the R_-
degrees of right-c.e. reals are exactly the c.e. Turing degrees. Therefore, by Lemma 7.6,
for any right-c.e. real r € R if r is not left-c.e., we have right-c.e. reals y, z € R such that
y— z is neither left- nor right-c.e., and Nbase(y), Nbase(z) <. Nbase(r). Put x = y—z.
Then, Nbase(z) <. Nbase.(r). By Lemma 7.1, Nbase.(x) is quasi-minimal. O

7.1.2. Degree Structure.

Proposition 7.7. For any C >7 (' there is a semirecursive set A C w such that A is
quasi-minimal and EJ(A) =, C & C°.

Proof. 1t suffices to find a real z € R. such that Nbase.(z) is quasi-minimal and
Jx(x) =r C. First note that every c.e. open set in R is of the form oy {v 1 v > ¢}
for a c.e. set W, C Q. Clearly, r. = inf W, is right-c.e. Then, Jr_(z) ={e € w: 1. < z}.
Assume that z is not right-c.e. Then, either x < r, or x > 7, holds. Since r, <7 @
in 2¥, we have Jg_(z) =r = ® 0 (i.e., Nbasew (Jr_(z)) =, Nbaser(z) ® K @& K°).
Now, by the Friedberg jump inversion theorem in 2“, there is a 1-generic real z € R
such that 2/ =r 2 ® (' =7 C. By l-genericity, z is neither left-c.e. nor right-c.e.
By Lemma 7.1, Nbase.(z) is semirecursive and quasi-minimal. Moreover, we have
Jr_(2) =r 2@ =r C since z is not right-c.e. Note that Jg_(2) is e-equivalent to
EJ(Nbase.(z)) as mentioned above. Consequently, A = Nbase(z) satisfies the desired
property. U

Proposition 7.8. The structure Dg_ is not an upper semilattice.
Indeed, if x is not AY (as a point in R), then the pair Nbase.(x) and Nbase.(—x)
has no common upper bound in Dg_.

Proof. Assume that z is not A, and that Nbase.(z) @ Nbase.(—xz) <. Nbase(y).
Then y cannot be AY since x is not AY, either z or —x is non-X9. In particular, y is
neither left- nor right-c.e. Therefore, Nbase. (y) is quasi-minimal by Lemma 7.1. Hence,
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Nbase. (z) & Nbase. (—z) =. Nbase(y), which implies that Nbase.(x) is total. Then,
by Proposition 7.2, Nbase(x) cannot be quasi-minimal, which is a contradiction. [

Lemma 7.9. Let A, B C w be c.e. sets, andy € R.. Suppose that Nbase(y) <. Ad A°
and Nbase (y) <. B®B®. Then there exists a total function h € w* such that h <r A, B
and y 1is left-c.e. relative to h.

Proof. Suppose that Nbase_(y) <. A ® A° and Nbase_(y) <. B & B¢. Then, there
are computable functions W,V : 2¥ — Q% such that y = supW4 = supVB. Let
o, = sup WA4[s] and B, = sup VE[s], where W4[s] = (W (A[s])(n))p<s and VE[s] =
(V(B]s])(n))n<s. Define sy to be the least stage such that for every t > sy we have
oy > qo or By > qo, where gy = min{ay,, s, }. Similarly define s, 11 > s, and ¢, 41 > gn.
Let h(n) = s,. Clearly h is total. We claim that h is computable from both A and B.
For each stage u > s,, compute g[u] = min{«,, 5.}, and use A to compute stage v > u
such that oy > q[u] for all ¢ > v. Then, check whether 8, > g[u] for each ¢ such that
u <t < w. Clearly, for the least such u > s, with ¢[u] > ¢,, we have u = s,,;. By
the same argument, B can also compute h. Now given h we can recover the increasing
sequence ¢, with limit y = sup W4 = sup V5. Il

Proposition 7.10. The structure Dg_ ts not a lower semilattice.
Indeed, there are right-c.e. reals x,y € R such that the pair Nbase.(x) and Nbase.(Y)
has no greatest lower bound in Dg_.

Proof. Lachlan and Yates (see [58, Corollary 1X.3.3]) proved the existence of c.e. sets
A, B such that for any (not necessarily c.e.) set H <7 A, B there exists a c.e. set C
such that H <y C <r A, B. We claim that for z = Y _,. 27" andy = > 527",
Nbase.(z) and Nbase.(y) have no greatest lower bound in Dg_. Let z € R. be
any point such that Nbase.(z) <. Nbase.(z),Nbase-(y). Since A and B are c.e.,
Nbase(z) =, A ® A and Nbase.(y) =. B @ B¢. Thus, we can apply Lemma 7.9 to
obtain some total function h <r A, B such that Nbase.(z) <. Nbase,(h). Since A
and B have no greatest lower-bound in the c.e. Turing degrees R and h is total, there
is a c.e. set C' such that h <p C' <p A, B. Therefore, if we set w = Y 27", then
Nbase. (w) =, C' @ C<; hence,

Nbase-(z) <. Nbase.(w) <. Nbase(z), Nbase (y).

Consequently, there is no z such that Nbase.(z) can be a greatest lower bound of
Nbase.(x) and Nbase_ (y). d

Proposition 7.11. There is no R_-degree which is minimal among R_-degrees.

Proof. To show Proposition 7.11, we show that the nonzero e-degrees can be obtains
as the upper closure 1 (Dg_ \ {0}) of the nonzero R.-degrees. In other words, every
noncomputable point X € S¥ computes a noncomputable point y € R_.

Lemma 7.12. Given any X C w not c.e., there is some y € R_ such that y is not
left-c.e., and Nbase-(y) <. X.

Proof. If 0.X =3 _\ 27" is not left-c.e., consider the real y = 0.X. Otherwise assume
that 0.X is left-c.e. In this case, X is AJ. Furthermore we may fix an approximation
X, of X such that if n leaves X, then there is some m < n which is enumerated in X,
at the same time.
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Let (e)eew be an effective enumeration of all left-c.e. reals. We wish to construct a
some left c.e. real y relative to X € S¥ such that y # a, for all e € w. In other words,
we will construct a c.e. set ® of pairs of rationals and finite subsets of w such that
y=sup{q: (3D C X) (¢, D) € ®}. At stage s, the e-th strategy for e < s is eligible to
act with parameters Y. s, Mes, So gy Se,s and pes. Here, y_1 s =m_1,=1t_1, =0 for all
s.

At substage e < s, the e-th strategy acts as follows:

e,s?

(1) If this is the first action of the e-th strategy after its initialization, set

Me s+1 = Me—1,5+1 A 17

—Me,s—1
Ye,s+1 = Ye—1,5+1 + 27 e,

Put pest1 = Pe—1,5+1, and Se 511 = s + 1. Initialize all lower priority strategies,
and go to stage s + 1. Otherwise, go to step (2).
(2) If the e-th strategy is active, go to step (3). If the e-th strategy is inactive
because of the previous action in (3b), go to step (5).
(3) Check whether X, N [pe—1,s,Pes) C Xs.
(a) If yes, and go to step (4).
(b) If no with X,-. N [De—1.5,Pes — 1) € X, define y. .41 as the current value
of ®(X;) at stage s, and put s_ 1 = 87, Sest1 = Seis A Pe i1 = Pes
This strategy is shifted into the inactive state. Initialize all lower priority
strategies, and go to stage s + 1.

(c) Otherwise, define
Ye,s+1 = Ye,s + 2_m€75_17

and maintain the computation by enumerating (ve s41, Koeorr | Pe.s) into &.
Put s; 11 = Scs, Sest1 = s and pesi1 = Pes. Initialize all lower priority
strategies, and go to stage s + 1.

(4) Check whether v > yp s — 272,

(a) If yes, put pesi1 = pes +1, and
me,s+1 = me_178+1 + 2pe,s+1 + 1’
Ye,s41 = Ye,s T+ 9~ Me,s+1—1

Moreover, put Sestl = Sesy Sestl = S and pe s+1 = Pe,s+1. Then, enumerate
(Ye,s+1, Xso o1 | Pe,s1) into @. Initialize all lower priority strategies, and go
to stage s + 1.

b) If no, go to substrategy e 4+ 1 unless e = s. If e = s, then go to stage s + 1.

heck whether X, 1 N [pe—1.s,Pes) C Xs.

a) If yes, do the action described in (4b).

b) If no, check whether ®(X) < ys. If yes, the e-th strategy keeps on being in
the inactive state, and do the action described in (3b). If no, we must have
stage t < s such that X; C X, and the e-th strategy is active at stage t. We
recover the parameters for the last such stage t < s, and the e-th strategy
is shifted into the active state.

(
(5) C
(
(

Suppose that the e-th strategy is never injured after stage ¢. In this case, any
parameter for ¢/ < e never changes after stage t. If (4a) happens infinitely often,
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then (3b) never happens after t. Hence, we have a computable C-increasing sequence
(Xoz, N [Pe—1,5,Pe,s = 1))s>¢ converging to X N{n :n > pe_y,} since pe_1s = pe-1, for
all s > ¢, and moreover, s, ; and p. s are nondecreasing, and tend to infinity. Therefore,
X is c.e.; however, it is impossible by our assumption. Thus, (4a) never happens after
some stage t' > t. Then, p. s = per, Mes = Mey, Ses = Sou and o, < ye7s—2_m€’s_2 for
all s > t'. Suppose that (3b) never happens. First assume that X, N [pe—1.s,pes) € Xs.
If X, [ pe—1,s £ X, then a higher priority strategy acts with (5b), which is impossible
by our assumption. Thus, X, , [ p.s € X,. Hence, our computation is maintained,
that is, ®(X,, [ Pes) = Yes- I Xo. N Doy, Pe,s) € Xs, the e-th strategy maintains
the computation at (3c) since (3b) never happens. By monotonicity of our approxi-
mation of X, (3c) can happen only finitely often after stage ¢'. Fix stage t” > t' such
that (3c) never happens after stage t”. Then, y., = y.4» for all s > ¢”. Consequently,
(I)(X) Z (I)(Xseyt// rpe,t”) Z ye,t” > ye,t” - 2ime’w72 Z Ole.

If (3b) happens, X - N [pe1s,Pes — 1) € X, at some stage s > t. Let u > t be
the least such stage, and let ' < u be the last stage when (4a) happened. Then,
Qe > Yeur — 2 e’ "2 Note that s, < ' is the last stage when either (3¢) or (4a)
happens before u’. Thus, X - N [pe-1s,Pes) © X, for s;, < s < u' since neither
(3¢) nor (3c) happens between,s;u and u', and s., = s_, for such s. Moreover, since
Ses = Sy for all s with v’ < s < u, we have X, N [De—1.5,Pe.s — 1) € X, for such s by
our choice of u. Consequently, X, N [pe,l,s,pe,u/) Z X, for all s with s, < s <u. In
particular, if Sew <8 <uand e > e, then X [ persy1 € Xy since pes < pers < Per st1-
Now, note that every computation enumerated into ® at stage s > t is of the form
(Yers41, Xs [ Pers+1) for some e’ > e. Therefore, every computation enumerated into
® at stage s with s;, < s < u is destroyed at stage u. We also note that (y.) is
monotone in the sense that e < e’ implies y. s < yer s and that t < s < s’ < u implies
Yes < Y- Moreover, ye v + 27w 17 =y n iy < Yo, where v/ = S.u- Therefore,
Your+2 Mo +172 < q,. By the previous argument, the e-th strategy only enumerate the
value y.,» under the oracle X,, and therefore, the value enumerated by lower priority

is at most ye v + 27 ™ew"+172, Consequently, we have ®(X) < a.. O

If there is some nonzero minimal element Nbase(x) in Dg_, then we claim that
Nbase. (z) has minimal e-degree (which is a contradiction to Guttridge [25]). Clearly
Nbase. (z) is not c.e. If there is some non-c.e. set Y <, Nbase.(z) then by Lemma 7.12
we have some y where () <, Nbase.(y) <. Y <. Nbase(x), contradicting minimality
of Nbase.(z) in Dg_. O

7.1.3. Ti-quasi-minimal degrees.

Theorem 7.13. Let T be a countable collection of second-countable Ty spaces. Then,
there is a T -quasi-minimal semirecursive e-degree.

Proof. A lightface pointclass T" is a countable collection of subsets of w“ which is closed
under computable substitution, that is, if S € T', then ®~![S] € T for any computable
function ® : w* — w*. By I we denote the dual of I, that is, I' = {A: A° € T'}.

We say that a set A C w is I if there is a I" set S such that for any n € w, n € A if
and only if n0¥ € S. We say that areal x € Ris left-T'if {n € w: p, < z} isin T', where
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Pn 18 the n-th rational. Similarly, we say that a real x € R is right-I' if {n € w: x < p,}
is in I'. Then we say that z: R is A if it is both left-I" and right-T".

Lemma 7.14. Let I' be a lightface pointclass. For any x € R, if x: R is not A, then
x: Ro s quasi-minimal w.r.t. strongly I'-named T spaces.

Proof. We show a relativized version, which improves Lemma 7.1. For any r € w*, we
say that A C w® is I" relative to r, or simply I'(r) if there is a I" set G C w® such that
A={y: (r,y) € G}. Let X be any represented cby space. Given o € X, we say that
A C w¥ is ' relative to o, or simply I'(0), if A is I relative to any X-name of o in a
uniform manner, that is, there is a I' set G C w* such that A = {y : (r,y) € G} for any
X-name r of 0. Then, we define the notion of a A(0) real in a straightforward manner.

Let X be a represented cby space, and Z be a strongly I'-named T space. We will
show that for any z € R, 0o € X', and 2z € Z,

Nbasez(z) <. Nbase.(x) @ Nbasex(0) = Nbasez(z) <. Nbasex (o) or z: R is A(o).

Since the specialization order on R_ forms a chain while the specialization order on a
T, space forms an antichain, for any continuous function ® from X x R to a T} space
Z and any o € X, for @, : y — P®(0,y), the cardinality of rng(®,) is at most one. In
the context of an enumeration operator, this is because, for any enumeration operator
®, any point 0 € X, and any reals z,y € R,

r <y = O,(Nbase.(x)) C ®,(Nbase(y)),

where we define ®,(A) = ®(Nbasey(0)® A), and recall that if Z is T, for any 29, 21 € Z,
20 # z1 implies Nbasez(z;) € Nbasez(z1_;) for any ¢ < 2. Here, by symbols dom(®,)
and rng(®,) we mean the domain and the range of the function ®, from R. to a T}
space Z induced from the operator ®,, that is,

dom(®,) = {z € R : (3z € Z) &,(Nbase.(x)) = Nbasez(z)},
mg(®,) ={z € Z: (Ir € R.) ¢,(Nbase.(z)) = Nbasez(z)}.

Assume that rng(®,) is nonempty in a 77 space Z, that is, there are x € Rand z € Z
such that ®,(Nbase.(x)) = Nbasez(z). If dom(®,) is not a singleton, x,y € dom(®,)
with x < y say, it contains a non-degenerate interval [x,y], and therefore contains a
rational ¢ € [z,y] C dom(®P,). Thus, ®,(Nbase(q)) gives us a unique element z of
rng(P,), and then we must have Nbasez(z) <. Nbasey(0) since ¢ is computable.

Therefore, if rng(®,) contains a point z such that Nbasez(z) €. Nbasey(0), then
dom(®,) has to be a singleton {z}. Let P and N witness that Z is strongly I-named.
Let F be a computable realizer of ®, that is, given a, 8 € w®, if s is the first stage such
that we see D C rng(a) and E C rng(a [ s) and (k, D, E) € ® by stage s, then put
F(o,B)(s) = k. One can assume that F' is a total computable function on w* x w*
since it is generated from an enumeration operator. If we fix an X-name « of 0 € X,
then F(a, ) € Sub(Z) U Sup(Z2) for any 5 € Name(R.). Thus, we have the following:

F(a,p) ¢ P <= F(a,p) € Sub(Z) \ Name(Z),
F(a,B) ¢ N <= F(a,p) € Sup(Z) \ Name(Z).

By our assumption, both L = F~![P] and R = F~'[N¢] are T subsets of w*. If a be
an X-name of o, and § be an R_-name of z, one can see that (a, f) € L implies z < z,
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and similarly, (o, §) € R implies z > x. For each rational p,, choose an R_-name £, of
pn in an effective manner. One can ensure that g : (a,n0%) — («, §,) is computable.
Therefore, g7'[L] and g~'[R] are in I since T is closed under computable substitution.
If a is an X-name of o, we get that

P <x <= (a,B,) €L <= (a,n0¥) € g *[L],
r<p, = (a,B,) € R < (a,n0”) € g '[R)].

Thus, these give left- and right-I" approximations of x uniformly relative to any name
of 0. This concludes that z is A(0), which verifies our claim. If o = ) in 2, this means
that x is quasi-minimal w.r.t. strongly I'-named T} spaces. U

For any countable collection T of Tj-spaces, clearly there is a lightface pointclass I’
such that X is strongly I'-named for any X € 7. Thus, by Lemma 7.14, if z: R is not
A, then z: R_ is T-quasi-minimal. Recall that every R_-degree is semirecursive. This
concludes the proof. O

7.1.4. Products of lower topology.

Proposition 7.15. Let X be a represented cby space. For any v € X andy € R, if y
is neither left- nor right-c.e. in x, then (x,y): X x R. is a strong quasi-minimal cover
of x: X. In particular, we have the following.

(1) Every X x R_-degree is either an (X xR)-degree or a strong quasi-minimal cover
of an X -degree.

(2) For any X-degree d, there is an (X x R.)-degree which is a strong quasi-minimal
cover of d.

Proof. Clearly Nbasex(z) <. Nbasexxr_(z,y) =. Nbasex(x) @ Nbase(y) since y is
not left-c.e. in z. Moreover, if Nbasey (2) <. Nbasey(z) @ Nbase.(y) for some z € 2,
by Lemma 7.1, we have Nbasesw(2) <. Nbasex(x) since y is not right-c.e. in x, that
is, Nbase.(—y) €. Nbasex(x). Therefore, (z,y): X x R, is a strong quasi-minimal
cover of z: X. For (1), if y is left-c.e. in x, then Nbase(y) <. Nbase(x), and therefore,
Nbasey(z) =, Nbasex(z) & Nbase.(y). This means that Nbasexxgr_(z,y) has an X-
degree, and in particular, has an X xR-degree. If y is right-c.e. in x, then Nbase (—y) <.
Nbasex(x), and therefore, Nbasex(x) @& Nbase(y) =. Nbasey(z) @ Nbase_(y). This
means that Nbaseyyr_(z,y) has an X x R-degree. If y is neither left- nor right-c.e. in
x, then Nbasexyr_(z,y) is a strong quasi-minimal cover of x as shown above. For (2),
let d be an X-degree. Then given a point z € X of degree d, choose a real y which is
neither left- nor right-c.e. in z. Such a y must exist. Then Nbasexyr_(z,y) is a strong
quasi-minimal cover of x as shown above. Il

Proposition 7.16. Let X be a represented cby space, and let T be a countable collection
of second-countable Ty-spaces. For any x € X, there is y € R such that (z,y): X x R
is a strong T -quasi-minimal cover of x: X.

Proof. By using Lemma 7.14 instead of Lemma 7.1 in the above proof, one can also
show the following: Let X be a represented cbg space. For any z € X and y € R, if
y: R is not A(x), then (x,y): X x R. is a strong T} [I']-quasi-minimal cover of z: X,
where T3] is the collection of strongly T'-named, second-countable, T} spaces. O
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Proposition 7.17. Every 2-semirecursive e-degree is either total or quasi-minimal in

0.

Proof. Let x € R, and y, z € R.. By iterating Lemma 7.1, if Nbase(z) <. Nbase.(y) &
Nbase.(z), then either (1) Nbase(z) <. 0 (i.e., x <r 0), (2) Nbase(z) <. Nbase(z)
and Nbase_(—z) <. 0, or (3) Nbase.(—y) <. Nbase-(z). If (1) or (2) holds, then
x <p (. Thus, assume that (3) holds. We claim that either Nbase.(—y) <. 0 or
Nbase.(—z) <. Nbase(y) holds. Let ® be a witness of our assumption (3), that is,
for any rational p € Q, y < p if and only if there is ¢ < z such that (p,q) € ®. If
there is ¢ > 0 such that ¢ < z 4+ ¢ and (p,q) € ® implies y < p, then y is right-c.e.
Otherwise, for all € > 0, there are p,q € Q such that ¢ < z+ ¢, (p,q) € &, and
p < y. Now, by using a left-approximation of y, search ¢ such that (p,q) € ® and
p < y. Such a ¢ must satisfy ¢ < z by our choice of ®, and for any € > 0 there is
such ¢ < z + ¢ by our assumption. Therefore, by enumerating all such ¢’s, we obtain
a right-approximation of z. This shows that Nbase.(—z) <. Nbase.(y). Consequently,
Nbase (—y) & Nbase. (—z) <. Nbase.(y) ® Nbase(z), which implies that (y, z): R2 is
total. U

Theorem 7.18. Let T be a countable collection of second-countable Ty spaces. Then,
there is an (n + 1)-semirecursive e-degree which cannot be written as the join of an
n-semirecursive e-degree and a T -degree. That is,

D1 Z{c®d:ceDgr and (3X € T)d € Dx}.

Proof. One can assume that 7 = Ti[['], i.e. the strongly I'-named, second countable,
Ti-spaces, for some lightface pointclass I'. To prove Theorem 7.18, we need the notion
of an independent point. We say that a point (z;);<, € R%™ is independent if neither
Nbase(z;) nor Nbase(—=x;) is e-reducible to Nbase((z;);.;) for any ¢ < n. It is not
hard to see that if (x;);<, is 1-generic as a point in R"*! then (z;);<, is independent.
One can also see that if (z;);<, is a Martin-Lof random point in R"** (w.r.t. the product
measure), then (z;);<, is independent. Given a lightface pointclass I', we say that a
point (z;)i<n € R%™ is A-independent if it is independent, and if for any ¢ < n, neither
z;: Re nor —z;: Re is A in (), R2. If ()<, is sufficiently generic or random,
then (z;)i<, is A-independent. Therefore, the set of A-independent points is comeager
and conull in R**,

Lemma 7.19. If ¢ € R%" is independent, then Nbase(x) does not have an R x R™-
degree. If x € R™*! is A-independent, then Nbase(x) does not have an X x R™-degree
for any strongly I'-named T} -space X .

Proof. Suppose not. Then, there are an independent point © = (z;);<, € R%" and
points z € X and y = (y;);<n € RZ such that Nbase(z,y) =. Nbase(x). In particular,
Nbase(z) <. Nbase(x). If  is independent and X = 2, then @ is quasi-minimal by
iterating Lemma 7.1. If « is A-independent, then « is T} [I']-quasi-minimal by iterating
(the general claim in the proof of) Lemma 7.14. Therefore, Nbase(z) <. Nbase(x)
implies Nbase(z) <, (). Thus, we now have Nbase(y) =. Nbase(x). Let ® and ¥ be
enumeration operators witnessing this e-equivalence, that is,

®(Nbase(x)) = Nbase(y), and ¥(Nbase(y)) = Nbase(x).
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Here, the coded neighborhood basis is given as Nbase((z;)i<n) = {{i,p) : p < x;}. First
consider the case that there are k < n and € > 0 such that for any pr < yx + ¢,
(Vi <n)(Vqg € Q) [(i,q) € U(Nbase(yo, - - Yr—1,DPks Ykt 1y - Yn1)) = q < T;].

Then, we get that Nbase((z;)i<n) <. Nbase((y;);2k) as in the proof of Lemma 7.1. By
induction, we can ensure that it is impossible.
Thus, for any k£ < n and € > 0, there has to be g < yx + € such that

(Fir. <n)(3q € Q) [(ir, q) € V(Nbase(yo, - -, Ye—1, G Yrs15 - - - Yn—1)) and x5, < q].

By pigeon hole principle, one can assume that i, only depends on k, and does not
depend on . Without loss of generality, we may assume that n & {i; : k < n}. Now,
let gg : R%™ — R™ be the computable function induced from the enumeration operator
O, that is, ge(r) = s if and only if ®(Nbase(r)) = Nbase(s). Then, given p € Q, we
define 27 = (2}) <, as follows:
2" = ga(T0, .-, Tn-1,p),

It is easy to see that for any j < n, if p < x,, then zf <y, and if p > x,, then y; < zf.

If there is p > x,, such that zf = y; for any j < n, then clearly,
Nbase(y) = Nbase(z?) <. Nbase((z;)i<n) <e Nbase((z;);<n) = Nbase(x),

which contradicts our assumption. Therefore, for any p > x,,, there is k < n such that
yr < z;.. By pigeon hole principle, one can fix such a k. Let g, be a rational such that
Yk < qr < 2. Then,
Nbase(y(h oy Yk—1,4k, Y415 - - - ayn—l) - Nbase<zp>-
Hence, there is ¢ € Q such that (i, q) € ¥(Nbase(z?)) and z;, < ¢. By combining
these observations, we have
T, <p <= (3q € Q) [(ix,q) € V(Nbase(z?)) and z;, < q].

This gives us a right-approximation of z, from a left-approximation of zP and a
right-approximation of x;,. This concludes that

Nbase(—x,) <. Nbase(z”) & Nbase(—x;,) <. Nbase((z;);<n) ® Nbase(—x;,).

This contradicts our assumption on independence of . Consequently, we obtain that

Nbase(z,y) #. Nbase(x). O

By Lemma 7.19, if a is an e-degree of an independent point in R then a is not
the join of an RZ-degree ¢ and a T} [I']-degree d. O

Theorem 7.20. There are an n-semirecursive e-degree ¢ < 0" and a total e-degree
d < 0" such that the join ¢ ® d is not (n + 1)-semirecursive. In particular,

n+1
DRXRQ g R< .

Proof. For z € R, we say that a point (z;);<, € R is independent relative to z if neither
Nbase (x;) nor Nbase(—x;) is e-reducible to Nbase(z, (x;);»;) for any i < n. One can
easily see that (z,x) is 1-generic or Martin-Lof random as a point in R*!, then @ is
independent relative to z.
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Lemma 7.21. Ifx € R” is independent relative to z € R, and z L7 ', then Nbase(z, x)
is mot (n + 1)-semirecursive.

Proof. Let z € R and & € RZ be such that (z,z) is independent, and that Nbase(z) £,
K @ K¢. Suppose that there is y = (y;)j<, € RZT such that Nbase(y) =, Nbase(z, x).
Consider any permutation o on n 4 1. First assume that Nbase(z) <. Nbase(y,()).
Then, by Lemma 7.1, we have Nbase(z) <. () or Nbase(—yy0)) <. 0. The latter
inequality implies that Nbase(z) <. Nbase(y,)) <. K @ K¢, which is impossible by
our assumption.

Assume that for some k& < n, there is a permutation o on n+ 1 such that Nbase(z)
Nbase((yo(j))j<k), but there is no permutation 7 on k + 1 such that Nbase(z
Nbase((Yoor(j))j<k). By Lemma 7.1, the inequality Nbase(z) <. Nbase((yo(;))j<k) im-
plies that for any ¢ < k, either Nbase(z) <. Nbase((yo(;))j2ei<k) or Nbase(—=yy(p)) <c
Nbase((Yo(;))j£e5<k)- The former is impossible by our choice of k. Hence, we get that
Nbase((—¥yo(j))j<k) <e Nbase((yo(j))j<k)- Note that by induction, there must exist such
a k, and we have k > 1.

Eventually, we must have Nbase(y, —ys, —y;) =. Nbase(y) for some s # t < n.
Hence, one can identify y with an element of R x R%"!. However, by Lemma 7.19
relative to z and by independence of @ relative to z, it is impossible to have Nbase(y) =,
Nbase(z, x). O

<e
e

By choosing a 2-generic or a 2-random, it is easy to construct an independent sequence
(z,2) € R x R? of AJ reals such that z €7 (/. Let ¢ be the e-degree of Nbase(x), and
d be that of Nbase(z). Since these are A, we have ¢,d < 0”. By Lemma 7.21, the join
c @ d is not (n + 1)-semirecursive. O

Theorem 7.22. For any n € w, an n-semirecursive e-degree is either total or a strong
quasi-minimal cover of a total e-degree.

Proof. Fix & = (x;)i<, € RZ. Suppose that & bounds a total degree z € 2*. As in
the proof of Lemma 7.21, by iterating Lemma 7.1, for any permutation ¢ on n + 1,
either Nbase(z) <. ) or Nbase(—z,x)) <. Nbase((2,(;))i<x) holds for some k < n. We
assume Nbase(z) €. 0. Therefore, by induction, we can find a permutation o on n + 1
and a number k& < n such that Nbase(—2,()) Le Nbase((24(:))ice) for any k < € < n
and Nbase(—Zor(k)) <e Nbase((Zqor(i))i<k) for any permutation 7 on k4 1. The latter
condition implies that Nbase((2q(;), —Zs(i))i<k) =e Nbase((xo(;)i<k). This shows that
({Eg(i))igk has a total degree. We claim that (z,(;))i<x has the greatest total degree below
Nbase(x). Suppose that Y is a subset of w such that Y & Y <, Nbase(x). Note that
Nbase(x) =. Nbase((24(;))i<n). Therefore, by iterating Lemma 7.1, either Y @ Y <,
Nbase((2o(:))i<k) or Nbase(—z,)) <. Nbase((24(;))ice) holds for some k < ¢ < n.
However, the latter condition cannot hold by our choice of o and k. Consequently, x is
either total or a strong quasi-minimal cover of (T4 )i<k- O

7.1.5. Left- and right-totality. In Sections 3.2 and 7.1.3, we developed techniques con-
structing T}-quasi-minimal degrees. In contrast to non-7} cbg spaces, there are a number
of interesting T'-space, and therefore Ti-degrees, e.g. graph-cototal degrees, cylinder-
cototal degrees, telograph-cototal degrees, etc. We examine the behavior of T)-degrees
using quasi-minimality arguments.



80 TAKAYUKI KIHARA, KENG MENG NG, AND ARNO PAULY

Total-like properties. To prove Theorems 7.26 and 7.35, we introduce some variants of
totality, and show that every telograph-cototal e-degree is close to being total in this
sense.

The power set of w can be topologized as the countable product S¥ of the Sierpinski
space S = {0, 1}, where open sets in S are (), {1}, and S. Every element S € S¥ is
identified with S™'{1} C w. We consider the effective Borel hierarchy on S“. Here,
we note that Selivanov and his collaborators (see e.g. [10, 57]) have studied a modified
version of the Borel hierarchy. As seen in Observation 5.28, the underlying space is a
Gs-space if and only if the classical Borel hierarchy and the modified Borel hierarchy
coincide. In particular, a IT set is not necessarily G5 in the space S¥.

We say that P C S¥ is C-computably e-closed if there is a C-computable sequence
(Dp)new of finite subsets of w such that

AeP < (Vn) D, L A.

We also say that P C S¥ is C'-computably e-Gs if there is a C-computable sequence
(Dpi)n,icw of finite subsets of w such that

AeP «— (Vn)(3) D,; C A.

As mentioned above, a computably e-closed set is not necessarily computably e-Gj.
Therefore we avoid use of the terminology such as “e-I1y”. Note that every computably
e-closed set is downward closed, and every computably e-G; set is upward closed.

Definition 7.23. A set A C w is said to be Gs-left-total if there are a set C' C w, and
an computably e-Gy set P such that

CoC<.A and AeP,
VX)[XePand X CA = AgeX@C@_].

A set A C w is said to be jump-right-total if there are a set C C w, and a C'-
computably e-closed set N such that

CoC<.,A and AeN,
VX)[XeENandACX = A<, XoCaC].
Example 7.24. Every telograph-cototal e-degree is Gg-left-total and jump-right-total.

Proof. We first show that every telograph-cototal e-degree is Gs-left-total. Let A be
Nbase(z) for a point x in the product telophase space (wrp)“. Let C' be the total
part of z, that is, C' = {2(n,m) : x(n) = m} U {2(n,m) + 1 : x(n) = m}, and define
R={necw:xz(n) =00} and S = {n € w: x(n) = oco,}. The proof of Theorem 5.6
shows that A = Nbase(z) is Medvedev equivalent to {C'} x Sep(R,S). In particular
C @ C° <, A Define D,,; = {(n,j,m)}, where i = (j,m). This sequence generates a
computably e-Gs-set:
P ={X:(Yn)(J) D,; C X}.

Recall the definition of Nbase(x) in Example 3.14. Clearly, for any n, thereis ¢ = (j, o)
such that D,,; = {(n,j,0)} € A = Nbase(x). Fix X € P such that X C A. Then, for
any n, D,; C X for some 7,. Given an enumeration of X, one can find a sequence
(4n)new of such witnesses. The sequence (iy),en may depend on how to enumerate X.
As in the proof of Theorem 5.6, we can construct B C w according to (i, )ne. as follows.
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Define n ¢ B iff i, is of the form (2,m), that is, i,, is an index of the interval [m, co,].
We claim that B € Sep(R,S). If n € R, then x(n) = oo, and therefore, z(n) & [m, oo
for any m, and thus (n,2,m) ¢ A. Since X C A, we also have (n,2,m) ¢ A. Therefore,
n € B, that is, R C B. If n € S, then z(n) = oo, and thus, (n,j,m) € A implies
j = 2. Since A C X i, must be of the form (2,m). This implies that n ¢ B, that
is, BNS = (. Consequently, we have B € Sep(R,S). This procedure gives us an
enumeration operator ¥ (independent of X') such that U(X & C & C°) = A. Hence, A
is Gs-left-total.

We next show that every telograph-cototal e-degree is jump-right-total. Let A be
Nbase(x) for a point = in the product telophase space (wrp)¥. We define C', R, and S
as above. Consider the following C’-computably e-closed set:

N ={X:(Vne RUS)\Vi,j,s,t) [(nis),(njt)e X = i=j#0]}.

It is clear that A € M. Note that RUS is C-co-c.e., and in particular, C’-computable.
To see that N is C’-computably e-closed, let I be the set of all (n,i,7,s,t) such that
n € RUS and either i # j or i = 0. Define Dy = {(ng,ig, Sk), (N, jk, tx}, where
(g, ik, Jk, Sk, tg) is the k-th element of I. Clearly, (Dy)gew is a C’'-computable sequence
of finite sets. It is easy to see that X € N iff Dy, € X for all k € w.

Fix X € N such that A C X. Consider the procedure ¥ which enumerates all
(n,i,m) € X which agree with C, that is, ¥ enumerates (n,0,m) if (n,0,m) € X and
2(n,m) € C, and for i # 0, ¥ enumerates (n,i,m) if (n,i,m) and 2(n,s) +1 € C for
any s < m.

We claim that this procedure ¥ (X @ C @ C¢) precisely enumerates A. To see this, for
n,m € w, first note that x(n) = m (that is, (n,0,m) € A) if and only if 2(n,m) € C.
Thus, z(n) = m if and only if ¥ enumerates since (n,0,m) € A C X. Next, z(n) > m if
and only if 2(n, s)+1 € C for any s < m. If z(n) € w, then for each i # 0 and m < z(n),
we have (n,i,m) € A C X, and therefore ¥ enumerates (n,i,m). If z(n) € w, then this
means that n € RU S. Assume that x(n) = co. Then (n,1,m) € A for any m. Since
AC X eN, (nyi,m) € X if and only if i = 1. Thus, ¥ enumerates (n,i,m) € X if
and only if ¢ = 1. Similarly, when z(n) = oo,, ¥ enumerates (n,i,m) € X if and only
if 1 = 2. Consequently, we have V(X & C @ C°) = A. Hence, A is jump-right-total. O

7.1.6. Quasi-minimality w.r.t. left-/right-totality. We now describe how to use these
total-like properties to show some results on quasi-minimality.

Lemma 7.25. Let x be a real. If x is not left-c.e. in ', then Nbase_(x) is quasi-minimal
w.r.t. Gs-left-total degrees. If x is not right-c.e. in (', then Nbase(x) is quasi-minimal
w.r.t. Jump-right-total degrees.

Proof. Let = be a real which is not left-c.e. in (. For the first assertion, let A be a
Gs-left-total set, witnessed by (D, ;)nicw, and C. That is, let P be the computable
e-Gs set defined by X € P iff for each n, there is ¢ such that D, ; C X. Suppose
that ®(Nbase.(z)) = A € P. By Lemma 7.1, if z is neither left- nor right-c.e., then
Nbase (z) is quasi-minimal, and therefore C' is computable since C' @ C°¢ <, A <,
Nbase.(z). Hence, (D, ;)n.icw 18 a computable sequence.

As mentioned above, P is upward closed, and so is ®![P] by monotonicity of the
enumeration operator ®. We define ®*[P] = {z € R : &(Nbase-(z)) € P}, which is
upward closed w.r.t. the standard ordering on R. Consider ¢ = inf ®*[P]. Then, ¢ < z
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since x € ®*[P]. Note that ¢ < p iff p+ e € ®*[P] for any £ > 0, and therefore, for any
rational p,

p<q < —(Ve >0)(Vn)(3i) D,; € ®(Nbase(p+ ¢)).

This shows that Nbase.(q) is X9, and thus, ¢ is left-c.e. in (. Since z is not @'
left-c.e., we have ¢ < x. Therefore, there is a rational p such that ¢ < p < =x.
Since Nbase.(p) € Nbase.(z), by monotonicity of an enumeration operator, we have
®(Nbase-(p)) € ®(Nbase-(z)) = A. Moreover, we have p € ®*[P], and therefore,
®(Nbase(p)) € P. Since p is rational, C' is computable, and A is Gs-left-total (via
P), we have A <, ®(Nbase.(p)) <. 0. Consequently, Nbase.(z) is quasi-minimal
w.r.t. Gs-left-total degrees.

For the second assertion, let A be a jump-right-total set, witnessed by (D, )ne., and C.
That is, (D, )new is a C’-computable sequence, and let A/ be the C’-computable closed
set defined by X € NV iff for all n € w, D,, € X. Suppose that ®(Nbase.(z)) = A € N.
By the same argument as before, C' has to be computable, and thus (D,,)new, is a /-
computable sequence.

As mentioned above, A is downward closed, and so is ®~*[N] by monotonicity of
the enumeration operator ®. We define ®*[N] = {z € R : &(Nbase-(z)) € N}, which
is downward closed w.r.t. the standard ordering on R. Consider ¢ = sup ®*[N]. Then,
x < g since z € ®*[N]. Moreover, by a similar argument as above, for any rational p,

qg<p <= (Ve >0)(Vn) D, £ ®(Nbase(p + ¢)).

This shows that Nbase.(—q) is 39, and thus, ¢ is right-c.e. in (/. Therefore, by our
assumption on x, we have x < q. Thus, there is a rational p such that r < p < q.
Since Nbase.(z) C Nbase.(p), by monotonicity of an enumeration operator, we have
A = ®(Nbase.(z)) € ®(Nbase-(p)). Moreover, we have p € ®*[N], and therefore,
®(Nbase(p)) € N. Since p is rational, C' is computable, and A is jump-right-total
(via V), we have A <, ®(Nbase-(p)) <. 0. Consequently, Nbase.(z) is quasi-minimal
w.r.t. jump-right-total degrees. O

Theorem 7.26. Every semirecursive, non-AY e-degree is quasi-minimal w.r.t. telograph-
cototal e-degrees.

Proof. Let d be a semirecursive, non-AY e-degree. As mentioned in Section 3.2, the
semirecursive degrees are characterized as the R_-degrees. Hence, there is a real x such
that Nbase.(z) € d and Nbase(x) is not AY. In particular, z is not (-left-c.e. or
x is not (-right-c.e. As seen in Example 7.24, every telograph-cototal e-degree is G-
left-total and jump-right-total. Therefore, by Lemma 7.25, Nbase.(x) is quasi-minimal
w.r.t. telograph-cototal e-degree. O

Lemma 7.27. There is a AY real x such that x is neither left- nor right-c.e., but
Nbase_ (z) is not quasi-minimal w.r.t. telograph-cototal e-degrees.

Proof. We construct a A real x and a computably inseparable pair (A, B) such that =
is not right-c.e., AU B is co-c.e., and that any enumeration of Nbase_(z) computes a
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separator of (A, B). Let 7. be the e-th right-c.e. real. Consider the following require-
ments:

P.: &, is total = &, & Sep(A, B),
N.: Nbase. () # 7,
G: (3')(Vp) rng(p) = Nbase(x) = I? € Sep(A, B).

Begin with g = 0, Ay = ), By = w, and I'g = (). The global strategy G constructs I',
as follows: The operator Ty is a collection of tuples of the form (n, 4, p), which indicates
that ['(Nbase-(x))(n) =1 for any > p. For any s, we ensure that only finitely many
tuples of the form (n,i,p) is enumerated into [';. At the beginning of each stage s, the
global strategy tries to recover the destroyed computations as follows. Given n < s, the
G-strategy check if there is a rational p < x4 such that (n,i,p) is enumerated into I'y
for some i < 2. If there is no such p, enumerate (n,i,z, — 272") into I'y;, where i = 1
iff n € A;.

A priority ordering is given by P, < N, < P.,1, where S < T means that S is a
higher priority strategy than 7. The P.-action may decrease the value of x4, and the
N.-action may increase the value of x,. At stage s, a P.-strategy acts as follows:

(P1) Choose a large n. € B;.
(P2) Wait for @, 4(n.) {=0.

(P3) Move n, from B to A, that is, define By = Bs \ {n.} and A;1 = A; U {n.}.
(P4) Try to destroy the computation of I'*(n.) by putting z,,; = zs — 272"+,
(P5) Injure all lower priority strategies by resetting all parameters.

An N.-strategy acts as follows:

(N1) Choose a large m..

(N2) Wait for z, < r., < s+ 2727,

(N3) Put 2441 = x4 +272" and for a sufficiently large u such that r., < x4 —272%,
we hereafter require that a large number should be bigger than wu.

(N4) The above action may cause inconsistent computations on I'*(n), that is, it is
possible to have p < ¢ < 4,1 such that both (n,i,p) and (n,1—1, ¢) is contained
in ['y;. For all such n, remove n from AU B.

(N5) Injure all lower priority strategies by resetting all parameters.

If a strategy reaches (P5) or (N5), then the strategy never acts unless it is later
initialized. Thus, every strategy acts once with the same n. or m.. The P-requirements
can only be injured by (N3), and the N-requirements can only be injured by (P4).

Claim. The action (P4) always forces I's;1(2s11;n) to be undefined, that is, there is
no p < xsy1 and ¢ such that (n.,i,p) € I'yyq.

Proof. An action of a higher priority strategy injures P, at some stage ¢t < s, which
forces P, to redefine n, as a large number > t. At some stage v, (n.,i,z, — 22"%) is
enumerated into I',. The G-strategy ensures v > n, > t. After n, is settled after
stage t, only a lower priority strategy can act. Only N-strategies can increase the value
of x. Therefore, for m = Y ,.. 272" and we have x; < x, + m. One can see that
m < 272%~1 and hence

Tsi1 = Tg — o metl g b — 27t g 3272l g 920
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This forces I's ;1 (Nbase (z541); ne) to be undefined. O

Thus, the G-strategy can recover the correct value for a separating set. We would like
to make sure that I'* is total. Of course, enumerating inconsistent computations makes
['* be partial. Hence, instead of dealing with ['*, we consider I'? for any enumeration
p of Nbase(x). The computation I'? is given as follows. Let p be an enumeration of
Nbase. (z). For each n, wait for s such that ¢ < p(s) and ((n, i), q) € I's for some i < 2,
and then for the first such, we define I'’(n) = i. By the action of the G-strategy, I'”
becomes total.

Claim. The G-requirement is fulfilled.
Proof. Straightforward. U

Claim. The action (N3) only cause inconsistent I'*(n) for n > m,.. Hence, if the
P.-strategy acts, and is never injured, then P, is fulfilled.

Proof. Otherwise, (n,1,p) is already enumerated. In this case, we must have ng = n
for some d. Assume that P acts with ngy < m. at some stage ¢t < s. As in the above
argument, at some stage v, (ng,i,z, — 22"¢) is enumerated into T',. As seen above,
Tip1 < T, — 3 - 272"~ Thus, to make I'*(ng) inconsistent, we need to increase x by
272na=1 " Ag before, we have m < 27271, O

Claim. If the N.-strategy acts, and is never injured, then the property r. < x is
preserved forever.

Proof. To see this, note that the P.-action (P3) at stage s only injure lower priority
strategies. This is because, for d < e, if Ny has already acted at some stage t < s,
and not injured until s, then n. must be bigger than u chosen by N,;. Therefore,
Te < Teyt < Xg1 — 27 < Ts. O

These claims conclude the proof. O

Theorem 7.28. There is a semirecursive set A C w which is quasi-minimal, but not
quast-minimal w.r.t. telograph-cototal e-degrees.

Proof. By Lemma 7.27. U

7.2. Ti-degrees which are not 7,. We say that a function f : w — w is computably
dominated if there is a computable function h : w — w such that f(n) < h(n) for almost
all n € w. We also say that a function f : w — w is computably dominating if for any
computable function h : w — w, h(n) < f(n) for almost all n € w.

Observation 7.29.

(1) For any f : w — w, Nbase(w)., (f) <e Nbasey(f).

(2) If f : w — w is computably dominated, then Nbasew)., (f) =. Nbasey.(f).
Hence, Nbase )., (f) has a total degree.

(3) There is a computably dominating function f such that Nbase(w)., (f) is c.e.

co

Proof. For (1), if we see 0 € Nbase,(f) (that is, o < f), we know that 7 A f whenever
7 is incomparable with o, and therefore enumerate all such 7 into Nbase(ey, (f). For
(2), it suffices to show that Nbase,«(f) <. Nbase(w)., (f). Assume that f is bounded
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by a computable function g. Then, for any ¢, there are only finitely many strings o of
length ¢ such that o(n) < g(n) for any n < £. Let I(g,¥) be the set of all such strings.
Then, all but one string in I(g,¢) is enumerated into Nbase(w) . (f). By finiteness of
I(g,?), all such strings are enumerated by some finite stage, and then one can know what
the unique string o € I(g,¢) \ Nbase(w)., (f) is. Then, enumerate o into Nbase, (f).
This procedure clearly witnesses that Nbase . (f) <. Nbase(w).(f). For (3), let f(n)
be the least stage s such that for each e < n, if ®.(e) halts then ®.(e) halts by stage
s. Clearly f is computably dominating. Moreover, o < f iff for every n < |o| and
e < n, ®.(e) does not halt or ®.(e) halts by stage o(n). Clearly, this condition is II{.
Therefore, Nbase(,w)., (f) is c.e. O

Lemma 7.30. Suppose that f : w — w is a function which is not (-computably
dominated. For every computable sequence (Ds)se., of finite sets of finite strings, if
[ € (N,[Ds) then there is { € w such that [f | ] C (,[Ds], i.e., for any s there is
o = f ¥ such that o € D;.

Proof. For a given computable sequence (Dy),e,, we will define a finite-branching c.e.
subtree T of w<*. Let Ty be the tree only having the root, that is, 7o = {()}. Given
T,, if 0 is a leaf of T, and there is no 7 < o such that 7 € D, then enumerate all
strings o such that ¢ < a < 7 for some 7 € Dy into Ty;;. Define T' = |, T,. Note that
T is finite-branching. This is because we only enumerate finitely many elements into
Ts.1 extending a leaf o € T} since Dy is finite, and then o never become a leaf of T}
for any ¢ > s. Since T is a finite-branching c.e. tree, there is a (//-computable function
dominating all infinite paths through T

If feN[Ds but [f €] € ,[Ds for all £ € w, then we claim that f is an infinite
path through 7. Assume that f [ n is a leaf of T;. Then there is ¢ > s such that
f I m¢& D, for any m < n since [f [ n] € [),[Ds]. Let t be the first such stage.
Since f € (,[Ds], there is k > n such that f [ kK € D,. By our construction, all initial
segments of f [ k are enumerated into Ty, 1. Consequently, f is an infinite path through
T'; however this implies that f is (’-computably dominated. Il

By using the above lemma, we will show that if f is not (/-computably dominated
then Nbase(,w),(f) is quasi-minimal. Indeed, the following abstract lemma implies
more concrete results. Let N = (V,)ee, be a network. Then, define we define the
disjointness diagram of N as Disj,, = {(d,e) : NyN N, = 0}.

Lemma 7.31. Let f: w — w be a function which is not C'-computably dominated. For
any cs-second-countable space Z = (Z,N') with a C-c.e. disjointness diagram, [: (w*)eco
s nearly Z-quasi-minimal.

Proof. Now suppose that z: Z <t y: (w*)c holds where Z is a given space with a count-
able cs-network N = (N,)eew. By Observation 6.3, there is J <. Nbase(., (f) such
that {\N. : e € J} forms a strict network at z. Let ¥ witness that J <. Nbase), (f).
We first note that if there are d,e such that (d, D) and (e, E) are enumerated in ¥
while Ny and N, are disjoint, then we must have DU E Z Nbase (), (f), that is, there
is 0 € DU E such that ¢ < f. Enumerate all such tuples (ds, e, Dy, Fy)se,- Such a
C-computable enumeration exists since the disjointness diagram of N is C-c.e.

Then, either this gives a finite sequence, or else (Ds U Fy)se, is a C-computable
sequence such that f € (,[Ds U E,]. In any case, by relativizing Lemma 7.30, there is
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p such that [f [ p] C (,[Ds U E;], that is, for every s there is 0 € Dy U E; such that
o = f I p. We then consider

L={ecw:(3E)[(e,E)eVand Vo€ E)o A f]p]}

Clearly, J C L, and therefore, {N, : e € L} forms a network at z. We claim that
z € N, for any e € L. By our choice of p, if e € L, then there is no (d, D) € ¥ such
that d € L and N;N N, = (. If z & N,, there is an open neighborhood U of z such that
UN N, = 0. Then, there is d € L such that 2 € Ny C U. In particular, Ny N N, = 0,
which implies a contradiction. Consequently, any enumeration of L gives a dy-name of
2. Since L is c.e., we conclude that z is dy-computable. O

Theorem 7.32. For any represented Hausdorff space X, there is a cylinder-cototal
e-degree which is not an X -degree, that is,

D(ww)co g DX

Proof. Let X be a topological space with a countable cs-network A. Let C be an oracle
such that the disjointness diagram of N is C-c.e. By relativizing Lemma 7.31, if f
is not C’-computably dominated, then f: (w*) is nearly X-quasi-minimal, that is,
if x: X <t f: (w¥)e then x: X is nearly C-computable. If X is a Hausdorff space,
then only countably many points in X can be nearly C-computable by Observation 6.5.
However, there are uncountably many functions which is not C’-computably dominated.
Thus, one can choose such a function which is not T-equivalent to any nearly computable
points in X. Il

Theorem 7.33. There is a cylinder-cototal e-degree which is NNN—quasi—mmimal.

Proof. The canonical network N of N™' has a computable disjointness diagram. More-
over, id: (NN 5y) — (NV' 8y) is computable as seen in Example 6.11. Therefore,
near NNN—quasi—minimality is equivalent to NNN—quasi—minimality by definition. Now, by
Lemma 7.31, if f is not (~computably dominated, then f: (W), is NY'_quasi-minimal.

0

Applying the above lemmas, we eventually show the following:
Proposition 7.34. There is a co-d-CEA set A C w such that A is not cylinder-cototal.

Proof. Let A be a co-d-c.e. set relative to K = () such that Kéd K¢ <1 A and the e-degree
of A is non-total. Suppose that A =, Nbase() (f) for any f. If f is (/-computably
dominated, then by Observation 7.29 relative to (', we have that Nbase ()., (f) @ K @
K¢ is total. Since K @ K¢ <. Nbase(w).,(f) by our assumption, Nbasew). (f) =
Nbase(w)., (f) & K @ K€ is total, which is impossible since A is nontotal. If f is not
('-computably dominated, then by Lemma 7.31, Nbase(),, (f) is quasi-minimal, which

is impossible since A is not quasi-minimal. O

7.2.1. Cocylinder topology and left-/right-totality. We next see that the property of
jump-right-totality is not shared by (strongly arithmetically named) decidable T7 cby
spaces. Indeed, the cocylinder space (w*)c, (see Section 5.1.1), one of the simplest
decidable T7 cbg space, is not jump-right-total. By using a similar idea as in Section
7.1.5, we will show the following:
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Theorem 7.35. There is a cylinder-cototal e-degree which is quasi-minimal w.r.t.
telograph-cototal e-degrees.

Proof. For an oracle C', we say that © € w* is C-computably dominated if there is a
C-computable y € w* such that z(n) < y(n) for all n € w.

Lemma 7.36. If x € w® is not ("-computably dominated, then Nbase.(x) is quasi-
minimal w.r.t. jump-right-total e-degrees.

Proof. Assume that z € w* is not ()"-computably dominated. By Lemma 7.31, such z is
quasi-minimal. Let A be a jump-right-total set, witnessed by C and (D,,)ne., (generating
N), and assume that A <, Nbase.,(x) via an enumeration operator ¥. Note that, by
quasi-minimality of z, the total part C' has to be computable. Thus, (D,)ne, is a
(/-computable sequence.

Let (E;) be a (-computable enumeration of finite sets E such that D,, C U(FE) for
some n. Then, A € N implies that W(E,) € A for any s. Since W(Nbase(z)) = A4,
we have E; € Nbaseq(x), that is, there is ¢ < z such that o € E,. Since x is not
()"-computably dominated, by Lemma 7.30 (relative to ('), there is ¢ such that for any
s, there is 7 < x [ £ such that 7 € E,. Consider the following c.e. set:

L={n:(3H)[(n,H) € Vand (Vo <x [ () o & H|}.

It is easy to see that A C L since W(Nbase,(z)) € L. We claim that L € N.
Otherwise, there is n such that D, C L. For each m € D,, there is H,, such that
(m,H,,) € Vand o0 ¢ Hy, for all 0 < x [ ¢. Thus, for £ = U,,cp Hmn we have
D,, C U(F), and hence, £ = E; for some s € w. By our choice of ¢, thereis 0 < x [ ¢
such that ¢ € E = FE,, that is, 0 € H,, for some m € D,,. This contradicts our choice
of H,,.

We thus obtain A C L € N. Since A is jump-right-total, C' = (), and L is c.e., we
conclude that A <., L <, 0. O

Choose = € w* which is not ()”-computably dominated. Then, Nbase(x) is cylinder-
cototal as seen in Section 5.1.1, and quasi-minimal w.r.t. jump-right-total e-degrees by
Lemma 7.36. In particular, Nbase.,(z) is quasi-minimal w.r.t. telograph-cototal e-degree
since every telograph-cototal e-degree is jump-right-total as seen in Example 7.24. [J

7.2.2. Ti-degrees which are Ts-quasi-minimal.

Theorem 7.37. Given any countable collection {S;}ic., of effective Ty spaces, there is
a telograph-cototal e-degree which is S;-quasi-minimal for any i € w.

Proof. By Theorem 5.6, it suffices to construct sets A, B C w such that AU B is co-c.e.
and Sep(A, B) is quasi-minimal with respect to {S;}icw.

The requirements. We construct disjoint sets A, B C w and a c.e. set X such that
AUB =w— X, (A, B) are computably inseparable, and we have to satisfy the following
requirements:

R.: VDy, Dy €Sep(A, B) WP = WP and WP° = Nbase(y)
for some point y € S, => I c.e. set V = Wr°.
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Here WX is the e c.e. set relative to X @ (w — X). We will construct a path Y €
{a,b,0}*. Given any path Z € {a,b,0}* we define Z*,Z~ € 2 by ZT(n) = 1 iff
Z(n) = a, and Z~(n) = 1 iff Z(n) = b. Clearly Z* and Z~ are the characteristic
functions of disjoint sets. (At the end we will take A=Y " and B=Y").

We also assume that all approximations of a I1{-class @ are slowed down such that
for every s, the complement of (), is presented by a finite set of strings of length < s.

The definition of X. We first describe how to construct the c.e. set X. We consider
requirements S, , indexed by e € w and o € {a,b,0}<, and arrange the requirements in
some order of priority. The c.e. set X is constructed by a straightforward finite injury
construction, and whenever a requirement S, performs any action, all lower priority
requirements are initialized and starts afresh with a value of m much larger than before.

The basic activity of requirement S, is as follows. First pick a very large number
Me o, and for each node 7 € {a,b,0}™ do the following. Search for a pair 79,71 D T

and some %, j € w such that BZS N BJS =@ and i € Weng, J € Wgﬁ. For the first pair
no,m found at some stage s, where ||, |n1| < s, enumerate the interval {m.,,--- ,s}
into X¢;1. Note that S, , will change X up to 3™ many times (until it is initialized).

It is easy to see that X is c.e. and co-infinite. Now define the closed set C' C {a, b, 0}*
to consist of precisely the paths Z € {a,b,0}* such that Z+ U Z~ = N — X. Also for
cach s define Cs to be the set of paths Z such that (ZtUZ7) | s = (N— X{) | s.
Note that C' is a I19-class relative to (/ and each C; is a I19-class. However, {C,} is
not monotone. This non-computability feature of C will cause various difficulties in our
construction. First, clearly we will need to take Y € C, and second we will need to
enumerate V' without oracles; however, C are guesses about the true C' which will help
us in the construction.

Given a string Z € {a,b,0}* and n,s € w, we say that Z(n) is compatible with Ci
if n € Xy < Z(n) = 0. Similarly we say that Z(n) is compatible with C' if n € X <
Z(n) = 0. Thus the set of all Z such that Z(n) is compatible with Cs for all n < s is
the set O itself.

The class Ex(Q, p). Our construction will define a sequence of approximations to Py 2
PO P D of H‘l]—classes and a sequence of nodes pg C p; C --- with a unique Y
such that {Y'} = (., Pr- In fact, we will ensure a little more. Given any s and a node
p € {a,b,0}= we define pHC to contain all strings Z € {a, b, 0}* such that Z D p and
for every n > |p|, Z(n) is compatible with Cs. We also define for each (approximation
to) @ and p, the class Ex(Q, p) by the following.

We define the c.e. set of strings ' = UsFE; by the following. First enumerate into Ej
all o incompatible with p. Then at stage s + 1, enumerate all strings o, where |o| < s
and o D pinto Bz if (0 BCytq1) C EsU ({a,b, 0} — Q[s]).

Now take Ex(Q, p) = {a,b,0}* — [E]. Clearly Ex(Q, p) C Q is still a II%-class. Note
that Ex(Q, p) depends on the approximation {Q[s|} of Q; different approximations of @
may give rise to different versions of Ex(Q, p). Our aim in the construction is to define
approximations to Py, and ensure that {Y'} = (.o, P = (peo, Ex(Pr, pr) N C. For con-
venience, we will denote [Es] by Ex®(Q, p)[s] and Ex(Q, p)[s] = {a, b, 0}* — Ex*(Q, p)]s].

We now fix some conventions about the approximations to II%-classes. Given an
approximation Q[s] of @ and a string «, define the natural approximation (¢ N [«a])[s]



ENUMERATION DEGREES AND NON-METRIZABLE TOPOLOGY 89

of QN [a] by taking {a,b,0}* — (Q N [a])[s] = ({a,b,0}* — Q[s]) U ({a,b,0}* — [a]) for
all s. If P[s| and Q[s]| are approximations to P and @), then the natural approximation
to PNQ is given by {a,b,0}¥ — (PN Q)[s] = ({a,b,0} — P[s]) U ({a,b,0}* — Q[s]) for
all s.

The initial condition Py, py. It is easy to see that there is a [19-class Py C {a,b,0}*
such that for every Z € ByNC, Z* and Z~ are computably inseparable. P, can
be constructed from an effective approximation to X and the knowledge that X is
coinfinite. For each s, let zo s < z15 < --- be the elements of w — X listed in increasing
order. Notice that as X is constructed by dumping an entire interval into X at each
stage, the approximation above has the property that if x; ;41 # ;s then z; .41 > s.

Now at stage s, for each i < s such that ¢;(z;s) = j, enumerate [o*a] into {a,b,0}* —
Py if j = 1 and enumerate [0 * b] into {a,b,0}* — Py if j = 0 for each o € 3%=. It is
easy to see that the definition of Py above ensures that for any Z € Py N C, there is no
computable set R such that Z+ C R and RN Z~ = (). Furthermore, by the observation
above that if x; .41 # x; s then z; 11 > s, we see that each level only has nodes removed
from P, at most once. Therefore PyNC and FyNC, are nonempty for any s. Note that
Py and C, are both homogeneous, that is, given any string a which is extendible to an
infinite path in Py, and any s, there is always an infinite extension a %Y of o such that
axY € PByN(aBCy).

We now check that Ex(Fp, ()) = Py: Suppose there is some Z € Py N Ex(Fy, ().
Let s be the least stage such that there is some Z € Py N Ex‘(Py,())[s]. Suppose
Z | k € Ex*(Po, ())[s] (here we make the obvious identification between finite strings
and the open sets they generate). Now apply homogeneity of Py above to a = Z [ k,
and we get a contradiction to the fact that Z [ k € Ex*(Fp, ())[s] (and the minimality
of s). This shows that Ex(FP, ()) = Fp, and in particular,

Ex(Py, ()) NC # 0.
Obviously we shall take py = ().

Forcing R, and the condition P.,p.. Now assume that at step e we are given (approxi-
mations to) a sequence Py D P, D -+ D P._; of [I%-classes such that Ex(P;, p;) NC # 0,
and a sequence py C p; C -+ C pe_1 such that for every i < e, we have P; C [p;]. We
assume P; C {a,b,0}* and p; € {a,b,0}=* for every i < e. Our aim is to define P, and
pe such that the following condition (%) holds:
(x) P.[s] C P._4[s] for every s, Ex(P., p.) N C # 0,
Ex(P._1, pe_1) N[pe] # 0, and p. D pe_1. Furthermore
if Z € Ex(P., p.) N C then R, is satisfied along Z.

We begin with a technical lemma.

Lemma 7.38. Let Qy and @y be 11%-classes with approzimations such that Qo[s]N[ay] C
Q1[s] N ] for every s, and where ag C ay. Then

Ex(Qo, o) N [a1] € Ex(Q1, a1).
Proof. We prove by induction on s that
Ex“(Q1, a1)[s] € Ex*(Qo, ao)[s] U ({a, b, 0} — [eu]) .



90 TAKAYUKI KIHARA, KENG MENG NG, AND ARNO PAULY

For s = 0, this is obviously true. Now suppose that o is enumerated in Ex®(Q1, a1)[s+1]
at that stage. This means that o O a4, and

(0 8 Cos1) € Ex(Qr, on)[s] U ({a,b,0}* — Qu[s])
€ Ex(Qo, 0)[s] U ({a, 0,0} — Qo[s]) U ({a, b,0}* — [an]).

As 0 O aq, this implies that

(08 Cst1) € Ex(Qo, a0)[s] U ({a, b, 0} — Qols]) -
Thus o € Ex(Qo, ap)[s + 1]. O

Let 7 be the final parameter used by S, , during the construction of the c.e.
set X. Since Ex(P._1,p._1) N C # (), there must be some 7 € {a,b,0}"™ such that
Ex(P._1, pe—1)NCN[7] # 0 and 7 D p._1. Fix any such 7. We will now meet requirement
R, in this cone. For each n € w define

T, = {Ze {a,b,omngwf}.

Then T, is a [I{-class for each n € w, and we fix an approximation T,[s] of T;,. There
are two cases.

Case 1: Assume that there exists some n € w such that Ex(T,,NP._1N[7],7)NC # 0,
and there ezists some o O 7 such that (o] N'T, = 0 and Ex(P._1, pe—1) N [a] N C # 0.
Fix n and « as in the case assumption. There are now three subcases.

Subcase 1.1: For every Z € Ex([a]NP._1,a)NC, WZ" # Nbase(y) for any point
y € S.. In this case we take P. = [a] N P._; and p. = a. Now note that by
Lemma 7.38, we have () # Ex(P._1, pe—1) N[a] N C CEx([a] N P._y,a) N C.

Then we clearly have condition () holds. Note that we have ZT € Sep(Z*, Z7).

Subcase 1.2: For every Z € Ex(T, N P,_; N [1],7) N C, WZ" # Nbase(y) for any
point y € S.. In this case we take P, = T,, N P._; N [7] and take p. = 7. Then
we clearly also have (x). Note that in this case Ex(P,_1, p._1) N [7] # 0 by the
choice of 7.

Subcase 1.3: Otherwise. This means that there exists Z; € [a] and Zy € T,, N [7]

+ +
such that W' = Nbase(y;) and w7 = Nbase(ys) for some points y;, ys in Se.

+ +
Since n € I/VeZ1 — VVeZ2 , hence y; # y5. Since S, is a Ty space, this means that

there are disjoint balls B and B; such that k € W2 and | € W/ |

This means that during the construction of X, the requirement S, , must
have found a pair 79, 7; D 7 successfully where 1y and 7; enumerate disjoint
Se-balls. Hence we must have the entire interval {m, - max{|no|, |m|}} C X.
Note that the pair 79, n; found in the construction for X might not be along 7
and Z,, and in fact, they might not even be extendible in P, ; or C, but this
will not matter, as we will soon explain.

In this subcase we take P, = P,_1N[7] and p. = 7. Note that as Ex(P,_1, pe_1)N
C N r] # 0 by the choice of 7 and by Lemma 7.38, Ex(P._1,pe—1) N [1] C
Ex(P._1 N[7],7), we have that Ex(P., p.) N C # 0.
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Take any Z € Ex(P._1 N [r],7) N C. Since Z O 7 and Z € C, this means that
o * Z7(Imol)Z™ (Inol + 1) Z 7 (|mo| +2) -+ € Sep(Z7, Z7) and
nx Z5(mNZ (Iml+ D Z7(Iml +2) -~ € Sep(Z27, Z7),

which means that R, is met along any such Z. Hence condition () holds.

Case 2: No such n in Case 1 exists. This means that for every n € w, one of the
following holds:
(D): Ex(T, N P._iN[r],7)NnC =0, or
(IT): For every o 2 7 such that [o]NT,, = (), we have Ex(P._1, p._1) N[a]NC = 0.
In this case we take P, = P,_1N[r]| and p. = 7. Again by Lemma 7.38, Ex(P,, p.)NC # ().
It only remains to check that R, is met along all Z € Ex(P., p.) N C.
Define the c.e. set V' as follows:

V={new:(3s)Ex(T,, N P._1N[7],7)[s] = 0}.
We may assume that at stage s, X [ |7] = X [ |7].
Lemma 7.39. For each n, if (1) holds, then n € V.

Proof. Fix n such that Ex(T,,NP,_1N[7],7)NC = (. By compactness, fix [ > |7| such that
Ex(T,NP._iN[7],7)[l —1]NC, = 0. We want to verify that Ex(7,, N P._1N[7],7)[l] = 0.
Suppose for a contradiction that there is some Z € Ex(T,, N P._y N [7],7)[l].

We have Z ¢ C, and we let k be the least number such that Z(k) is not compatible
with C;. We know that £ < [ since the complement of C; can be presented by strings
of length less than [. Furthermore we also know that k& > |7|: Since Z € Ex(T,,N P._1 N
[7],7)[l], we have Z D 7, but since 7 is compatible with C' (as [r] N C # )) and we can
assume [ is large enough so that X; | |7| = X | |7], we have k& > |7].

Now applying the definition of Z € Ex(7T,, N P._y N 7], 7)[l], we get that

( (Z 1 kBC)NT,, NPy N [T]) CEx(T, NPy N [7], 7 — 1] # 0.

Fix Z in the set above. By the definition of k, we know that Z € C,. At the same
time, Z ¢ Ex(T,, N P._1 N [7],7)[l — 1]. This is a contradiction to the assumption that
Ex(T, N P._yNr], 7))l =1 NnC, =0. O

Now fix Z € Ex(P._; N [7],7) N C, and we want to argue that requirement R, is met
along Z. Obviously we begin by assuming that VDy, D; € Sep(Z*,Z~), WPo = Wh
and W0 = Nbase(y) for some point y € S,. We wish to now verify that V = WZ".

Lemma 7.40. V C WZ".

Proof. Suppose that n € V. This means that there is a stage s such that Ex(7,, N P,_1 N
[7],7)[s] = 0, and so Z & Ex(T,, N P._y N [7],7)[s]. This means there is a k > |7| and
some t < s such that Z [ k is enumerated in Ex°(7,, N P._y N [7], 7)[t] at stage t. We fix
t to be the smallest stage which enumerates some initial segment of Z this way.

Let x,, = min(X — X;) | t. First of all, if x,, does not exist then X [t = X, | ¢, and
so Z(l) is compatible with C; for all [ < t. This means that [Z [ t{|N T, ;N Py, N [T] N
Ex(T, N P._1N[7],7)[t — 1] = 0 and we apply the fact that [Z [ t] N P._1; # 0 and the
minimality of ¢ to conclude that [Z | t] N1, ; = 0. Thus, Z &€ T,, and hence n € W7 i
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So we will assume that z,, < t exists. By the construction of X, since z,, is enu-
merated after stage ¢ + 1, we observe that {z,,--- ,t} C X. Since Z(l) is compatible
with C; for all [ < x,,, we may assume that & > x,,, because otherwise we have
Z | x,BC, C Z | kHC, and we can use z,, in place of k. So we assume the order
T < k < t.

Now suppose that there is some a € {a, b, 0}=* such that [(Z | k) * o]NT;, = (). Take

+
D = (Z [k*a*Z(t)Z(t—i—l)Z(t—i—Q)-«-) ,and as x, < k <tand {z,,...,t} CX,

we see that D € Sep(Z*,Z7). Son € WP = WZ". So we suppose that no such a
exists.

Now we prove by induction on v < ¢ that for every o enumerated into Ex¢(T,, N
P._1N[7],7)[v] such that 0 O Z | k, we have that ¢ is also enumerated into Ex¢(P._; N
[7],7)[v]. At v = 0 this is trivially true. Now suppose that ¢ is enumerated into
Ex‘(T, N P._y N [7],7)[v] at stage v, and that ¢ O Z [ k. This means that o B C, is
covered by Ex°(T,, N P._y N [7],7)[v — 1] and the complements of 7T},, and P,_;,. But
since a above is assumed not to exist, and v < ¢, this means that ¢ H C,, is covered by
Ex‘(T, N P._y N [7],7)[v — 1] and the complement of P,_;,. But any ¢’ enumerated in
Ex‘(T, N P._y N [1],7)[v — 1] cannot have ¢’ C Z | k by the minimality of ¢. Thus by
induction hypothesis, we see that o B C, is in fact covered by Ex®(P._y N [7],7)[v — 1]
and the complement of P,_y,. Thus, ¢ is in Ex®(P._; N [7],7)[v]. This concludes the
induction.

By our choice of t and k, we have that Z | k is enumerated in Ex*(T,,N P._yN[7], 7)[t].
By our induction above, we see that Z [ k is also enumerated in Ex°(P,_1 N 7], 7)[t].
However, recall that we had assumed that Z € Ex(P._; N [7],7), and thus we have a
contradiction. 0

Lemma 7.41. Let Qg and Q; be 119-classes with approximations such that Qg[s] C Q1[s]
for every s, and ag D oy such that o] NEx(Q1, 1) # 0. Then

EX(Qo, Oéo) g EX(Ql, Ckl).

Proof. We proceed by induction on s, the statement

EXC(QD 041)[8] C EXC(Q07 040)[8].
For s = 0 it is surely trivial as ay C «q. At stage s + 1, suppose that o is enumerated
in Ex¢(Q1,1)[s + 1]. If 0 O «ap then we apply the induction hypothesis to get o €
Ex‘(Qo, ap)[s + 1]. If o is incomparable with g then [o] C Ex®(Qq, ap)[0]. If o C
then we get [a] NEx(Q1, 1) = 0, contrary to the assumption. O

Finally we check that W6Z+ C V. Fix any n and suppose that (II) holds for n. If
n € W7 ie., Z &T,, then by taking o = Z | k for some appropriate k in (II), we see
that Ex(P._1,pe_1) N[Z [ kK] N C = . By Lemma 7.41 we see that
EX(Pe—l N [T], T) g EX(Pe—la pe—1>-

As Z € Ex(P._y N [r],7) N C, we conclude that Z € Ex(P._1,p.—1) N[Z | k] N C, a
contradiction.

Thus if n € WZ" then (II) does not hold for n, which means that (I) has to hold,
and by Lemma 7.39 we see that n € V. Thus WEZ+ C V. This shows that once again
condition (x) is met in Case 2.
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We produce a sequence Py O P, O Py, D --- of II{-classes and a sequence of nodes
po C p1 C ---. At the end we take Y = |, pr, and A =Y and B = Y. By condition
(%) and Lemma 7.41 we have Ex(Py, pr) 2 Ex(Pyy1, pr+1) for every k. We also see that
Y € Ex(Py, pr) N C for every k. Thus requirement Ry is met along Y for every k. [

7.2.3. Continuous degrees.

Proposition 7.42. There is a continuous degree which is neither telograph-cototal nor
cylinder-cototal.

Proof. The cospectrum of a point x € X is the set of all z € 2% such that z <t = (cf.
Kihara-Pauly [31]). Equivalently, the cospectrum of z € X is the following set:

{Z Cw:Z®Z° <. Nbasex(z)}.
If the cospectrum is closed under the Turing jump, it is called a jump ideal.
Lemma 7.43. There is no telograph-cototal e-degree whose cospectrum is a jump ideal.

Proof. Given z € (&rp)“, let c(x) € @* be its total information, that is, c¢(x)(n) =
z(n) if x(n) € w; otherwise ¢(z)(n) = co. Since ¢(z) is an element of the one-point
compactification of w, by Observation 3.22, c¢(x) is total. It is clear that c¢(z) <t .
Given X, let X; denote the space whose underlying space is the same as X, but its
topology is endowed by the discrete topology. By asking to the jump of c¢(z), for
each n, whether ¢(x)(n) converges to co or not, one can easily see that ¢(z)" computes
c(z): (©qg)“. Then it is not hard to see that the pair (z,c(z)): (Orp)¥ X (wg)” computes
x: ((Orp)q)¥, which is total.

If = is total, then its cospectrum must be a principal Turing ideal, and thus it cannot
be a jump ideal. If z is not total, then the above observation shows that c¢(x) < z
but ¢(x) L7 x. This implies that the cospectrum of z is not closed under the Turing
jump. U

Lemma 7.44. There is no cylinder-cototal e-degree whose cospectrum is a jump ideal.

Proof. Let f € w¥ be given. If f is not ('-computably dominated, then by Lemma
7.31, f is quasi-minimal (see also the proof of Theorem 7.33). If f is ('~-dominated, by
relativizing Observation 7.29, f @ (/' computes f: w*”. Hence, either f is total or the
cospectrum of f does not contains (. In any case, the cospectrum of f cannot be a
jump ideal. O

Miller [41] showed that every countable Scott ideal is realized as a cospectrum of a
point in the Hilbert cube. Thus, take a countable jump ideal Z, and choose z € [0, 1]¥
whose cospectrum is Z. Then, by Lemmas 7.43 and 7.44, the e-degree of Nbase(x) is
continuous, but neither telograph-cototal nor cylinder-cototal. O

7.3. Th-degrees which are not 7,5. To prove Theorems 7.49 and 7.50, we need a
special property of the relatively prime integer topology. We say that a space X is
nowhere Ty 5 if for any open sets U,V C X, U NV is nonempty.

Fact 2 (see Steen-Seebach [60, I1.60]). bZ C a + bZ, and therefore lem(b,d)Z C a + bZN
¢ + dZ in the relatively prime integer topology. In particular, the relatively prime integer
topology is nowhere Ty 5.
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Instead of dealing with N,,, we consider any countable, second-countable, nowhere
T, 5 space H, and conclude that Theorems 7.49 and 7.50 hold true for H*“ relative to
some oracle. Combining the argument in [31], this, in particular, implies that the w-
power H“ of a countable, second-countable, nowhere T5 5 space cannot be written as a
countable union of 15 5 subspaces.

Now we modify the closure representation argument. Given a network N of a space
X, we consider the following representation d, defined as follows. We say that p is a
dn-name of z if and only if

{Np@m) : n € w} is a network at z, and (¥m, n) Nygmy N Ny) # 0.
Here recall that an element of a network at x does not need to contain z.

Observation 7.45. Let N be a network of X.
(1) The identity map id : (X,0x) — (X, (/5;\//) is always computable.
(2) If N is a regular-like network, then id : (X,dy) — (X, 6x) is computable.
(3) If X is Ty5, then Oy is single-valued.
(4) If X is Hausdorff, and N is reqular-like, then O, is single-valued.

Proof. For (2),let pis a gxf—name of . We show that p is also a dy-name of z. Suppose
for the sake of contradiction that x ¢ N y for some k € w. Since p is a Sn w-name of x,
N, intersects with N, for all n. Moreover since A is regular-like, {N,,) : n € w}
is a network at x. Therefore, N, p(k) must intersect with all open nelghborhoods of x.

However, X'\ Ny is an open neighborhood of x since x & N). Hence, pis a Op-name
of z.

For (3), assume that X is Ty 5, and p is a ony-name of x and y. If x 7é y, there are
open sets U,V C X such that t € U, y € V, and U NV = (. Since {Npn) : n € w} is
a network at x and y, there are d,e € w such that x € Ny € U and y E Npey C V.
However, this implies that N,g) p(d) N N = (). Then, p cannot be a On N-hame.

For (4), assume that X is Hausdorff and regular-like, and p is a Sx-name of  and
y. If z # y, there are open sets U,V C X such that x € U,y € V, and UNV = 0.
Since N is regular-like, and {Np) : n € w} is a network at = and y, {Npm) : n € w}

is also a network at x and y. Therefore, there are d,e € w such that x E N y C U
and y € Ny »e) © V. However, this implies that N @ N Np(e = (). Then, p cannot be a

0 p-name. O

By Observation 7.45, if either X" is Ty 5 or X is Hausdorft and N is regular-like, then
there are only countably many points x such that x: d, is computable.

Definition 7.46. We say that a point x € & is :k'-nearlgivcomputable if x is 5/\\:1—
computable, that is, there is a computable p € w* such that d(p) = x.

Definition 7.47. Let X = (X, N) and Y = (Y, M) be topological spaces with count-
able cs-networks. Then, we say that a point z € X is *-nearly Y -quasi-minimal if

Myed)|ly: Y <t x: X = y is *nearly computable].
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Every nearly computable point is *-nearly computable. Similarly, if a point is nearly
Z-quasi-minimal, then it is *-nearly Z-quasi-minimal. Let H = (w, (He)eew) be a
represented second-countable space. A witness for being nowhere Ty is a set A C w?
such that for any d, e € w, if both H; and H,. are nonempty, then Ay, = {n: (d,e,n) €
A} is nonempty, and Ay, C H, N H,. For instance, Fact 2 shows that N;, has a
computable witness for being nowhere Ty 5, that is, Ag. = lem(b, d)Z. For a network
N, we define the strong disjointness diagram as Disjy; = Disjy @ {(d,e) : NyN N, = 0}.

Recall that z € w* is 1-generic if it meets or avoids every c.e. open set. For an oracle
C, a point z € w¥ is 1-C-generic if it meets or avoids every C-c.e. open set.

Lemma 7.48. Let H be a represented, countable, second-countable space with a C-c.e.
witness for being nowhere Ty 5, and let x € w* be 1-C-generic. For any topological
space Y with a cs-network with a C-c.e. strong disjointness diagram, x: H* is *-nearly
Y-quasi-minimal.

Proof. Since H is countable, we can assume that # is of the form (w, (H.)ecw), where
(H¢)eew is an enumeration of countable basis of the space H. We code a basic open set
in ‘H¥ by a finite sequence «, that is, a codes the open set

Uy ={r € H": (Vn < |a|) z(n) € Hym}-
Note that (U,)a<w<w forms a basis of H*. Hereafter we use Nbase(z) to denote {« :
x € U,}.

Now, assume that y: YV <t x: H*. We will show that y: ) is *-nearly computable.
By Observation 6.3, there is J <. Nbase(z) such that {N, : e € J} forms a strict
network at y. Let W witness that J <. Nbase(z). Since (U,) forms a basis, one can
assume that W is a c.e. set of pairs of indices and singletons, that is,

e € J < (Ja) o € Nbase(x) and (e, ) € V.
Consider the following three cases:
Case 1. There is ¢ € w such that for any d, e, o, and (3,
UsN[z [0 #0, Usnz | £ # 0, and (d,a), (e, ) € ¥ = NyN N, # 0.

Then let p be a computable sequence such that p(n) = e + 1 for some n if and only
if there is « such that (e,) € W and U, N[z [ ] # 0. Then, it is easy to check that p

is a dp-name of y.
Case 2. For any ¢ € w, there are d, e, a, and [ such that
UsNUsN [z [ €] #0, (d,a), (e, ) € ¥, and NgN N, = 0.
In this case, inconsistent W-computations are dense along z, that is, consider
E = {{,8) : (3d,€) [{d, a), (e, B) € ¥, and Ny N, = 0},

and then define Vi = | J{U, N Uz : (o, ) € E}. Then, VU is undefined on Vg, that is,
for any z € Vg, U(Nbase(z)) is undefined. Note that each U, is clopen with respect to
the standard Baire topology on w®. Therefore, since the disjointness diagram of N is
C-c.e., Vg is C-c.e. open and dense along x with respect to the standard Baire topology
on w*. Since z is 1-C-generic, we have x € V. Therefore, ¥(Nbase(z)) is undefined.
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Case 3. Otherwise, let ¢ be a witness of the failure of Case 2. Then, since Case 1 fails,
there are d, e, o, and 3 such that

Ua Nz [0 #0, UsN [z [ €] #0, {d,a), (e, B) € ¥, and NgN N, = ().
That is, there are splitting W-computations above z [ £ in a strong sense. Consider
D = {{a, ) : (3d,e) [{d,a), (e, 3) € ¥, and NgN N, = ()]}

Then, the set D is C-c.e., since the strong disjointness diagram is C-c.e. by our
assumption. Let A be a C-c.e. witness for being nowhere 75 5. Consider the following
w“-clopen set:

Qap ={z€w”: (o < 2) L <o <max{(,|al, 8]}, UaNlo] #0, Us o] # 0,
and (Vn)[|o| <n < max{lal,[B[}) 2(n) € Aam).pm)}

where let H,(,) be an index of the whole space w whenever a(n) is undefined. Note
that Qa5 C U N Ug since Aoy gn) S Ham) N Hpmy- Define Qp = U{Qas : (o, B) €
D}. Then, Qp is C-c.e. open and dense along x Wlth respect to the standard Baire
topology on w“. To see this, for any m, since Case 1 fails, there is (o, 8) € D such
that U, N [z | m] # 0 and Ug N [z [ m] # (. By our assumption, we can always choose
2(k) € Huw ﬂ Hpgqy for any k > m, and thus we can get some z € @, p extending
x | m. Therefore, by 1-C-genericity of x, we have x € Qp.

We claim that U is undefined on Qp N [z [ ¢]. Otherwise, ¥(Nbase(z)) is defined
for some z € Qp N [x | ¢]. Since z € Qp N [x | ¢], there is (a, B) € D such that
2 € Qup C U,NUg. Let (d,e) be a pair witnessing (o, ) € D, that is, (d, a), (e, 8) € ¥,
and Ny N N, = . Clearly ¥(Nbase(z)) € Y\ Ny or ¥(Nbase(z)) € Y\ N.. Without
loss of generality, we may assume that W(Nbase(z)) € Y\ Ng. Then, there is (c,7) € ¥
such that

z € U,, and ¥(Nbase(z)) € N, C Y\ Ny.

In particular, we have N.N N, = ). Since U, N[z [ {] is an open neighborhood of z and
2 € U,, Uy NU, N[z | €] is nonempty. Since z | £ = z | ¢, we conclude that

UsNU, N[z [ #0, (da),{c,vy) €T, and NyN N, = 0.
This contradicts our choice of ¢. Consequently, ¥(Nbase(x)) is undefined. O

Theorem 7.49. For any represented Th 5-space X, there is an (N,)“-degree which is
not an X -degree, that is,

D(Nrp)w Z DX .

Proof. Let X be a topological space with a countable cs-network A/. Let C be an oracle
such that the strong disjointness diagram is C-c.e. By Lemma 7.48, for any 1-C-generic
point € w*, x: (Nyp)¥ is *nearly X-quasi-minimal, that is, if z: X <t f: (w*)co
then z: X is *-nearly computable. By Observation 7.45, if X is a Ty s-space, then
only countably many points in X can be *-nearly computable. However, there are
uncountably many points which are 1-C-generic. Thus, one can choose such a point
which is not =p-equivalent to any *-nearly computable points in X, O

Theorem 7.50. There is an (Nyp)“-degree which is N -quasi-minimal.
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Proof. The canonical network N of N¥' has a computable strong disjointness dia-
gram. Since N is regular-like (see Example 6.11), by Observation 7.45, id: (NNN, EX/) —
(NNN,W) is computable. Moreover, as seen in Example 6.11, id: (NNN,@) — (NNN, In)
is computable, and so is id: (NN 5;/) — (NN, 6, is computable. Hence, ¥-near NV -
quasi-minimality is equivalent to NNN-quasi—minimality by definition. Therefore, by
Lemma 7.48, for any 1-C-generic point =, x: (N,,) is NY'_quasi-minimal. O

7.4. T, 5-degrees which are not 753. We will show that if an admissibly represented
space X = (X,N) has an computably equivalent regular-like cs-network, then the
Gandy-Harrington space has no point of X-degree. To prove Theorems 7.52 and 7.53,
we need the following lemma.

Lemma 7.51. Let X be a topological space with a countable cs-network N'. If N has a
Y1 disjointness diagram, then for any v € (W*)gg and 2z € X,

2: 0y <p i (W)ar = 2 (W) Lt 2: 0N

Proof. For x € w*, consider G, := Nbasegy(z) = {e : © € GH.}, where recall that
GH, is the e-th ¥ set in w¥. Clearly, G, is a 3i(x) subset of w. Suppose that
z2:0n <p x: (w)gn for z € X, and N is a countable cs-network for X’ such that Disj,,
is ¥{. By Observation 6.3, there is J <. G, such that {N, : e € J} forms a strict
network at z. Let ¥ witness J <, G, that is, e € J iff there is a finite set D C G, such
that (e, D) € ¥. Then consider

L={new:¥Y(m,D)e¥)DCG, — N,NN,#0}.

Note that L is a ITj(z) subset of w since Disj,, is 1. One can also see that J C L,
since n € J implies that z € N,,, and moreover, if (m, D) € ¥ and D C G,, then m € J,
and therefore, z € N,,, N N,,. This implies that {N, : e € L} forms a network at z. We
claim that z € N,, for any n € L. This is because, if z € N,, then there is an open set
U C X such that z € U and U N N,, = (). By our choice of ¥, there is (e, D) € ¥ such
that D C G, and z € N, C U. Since N, N N,, = 0, we have n ¢ L. This verifies the
claim, and in particular, every enumeration of L gives an dy-name of 2.

Suppose that z: (w)ey <1 2: Ox. Then, in particular, G, is enumeration reducible
to L, that is, there is a c.e. set I' such that

e€ G, <= (3D finite) [(e,D) €T and D C L].

Since L is IT}(z), this gives a I} (x) definition of G,.. However, G, is clearly a complete

Y1(z) subset of w, which implies a contradiction. Consequently, x: (w*)gy €1 2: On-
U

Theorem 7.52. Let X = (X,N) be a regular Hausdorff space with a countable cs-
network. Then there is an (wW*)gp-degree which is not an X-degree, that is,

D(WW)GH Z DX

Proof. Let X = (X, /N) be a regular Hausdorff space with a countable cs-network. By
Observation 6.7, NV is regular-like. By Theorem 6.8, X’ has a countable cs-network M
such that id : (X,d0) — (&X,60¢) is continuous; hence, computable relative to some
oracle Cy. As mentioned in Section 2.4.4, cs-networks induce admissible representations,
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that is, ¢ and dn are both <-maximal among continuous representations of X, and
thus M and N are equivalent; hence, computably equivalent relative to some oracle C;.
Moreover, Disj,, is X7 relative to some oracle Cy. We now put C' = Cy @& C; & Cs.

Choose x € w” such that C' <r x. Then, we have C': 2 <t z: (w*)gy by Proposition
5.22. Thus, the condition z: oy < z: (w”)ey is equivalent to saying that z: jp <t
x: (w¥)ey since Cy <p C. By relativizing the proof of Lemma 7.51, since Cy <7 C' and
we now have X1(z @& C) = Xi(z) and 11} (z & C) = I} (z), we get the following.

z2: 0y <o w: (W)ar = z: (W) L1 (2: m) @ C.

We now assume that z: oy <t z: (w)gy. Since Cy <p C, we have z: oy <t
(2: 5p) @ C. Combining this with the above implication, we get x: (W*)qgny %Lt
(z: 0p) @ C. Since Cy <r C, we have z: dpr <7 (2: Ip) & C, and thus z: (w)gy LT
z: dp. Hence, there is no z € X such that z: (w¥)ey =n 2: In- O

Theorem 7.53. The Gandy-Harrington space has no point of NNN-degree, that s,
D(ww)cH N DNNN = 0.

Proof. The canonical network A of NN has a computable disjointness diagram. More-
over, as seen in Example 6.11, id: (NY', 67) — (NN §,5) is computable. Therefore, by
Lemma 7.51, for any z € (w¥)qy and z € NV,

Z: NNN <t x: (w“’)GH — I: (w“)GH ﬁT Z: NNN.

This shows that there are no = € (w*)gy and z € NV such that z: (w*)ey =u
z: N¥'. Hence, the Gandy-Harrington degrees and the NNN—degrees have no common
element. 0

For an w-parametrized pointclass I', the I'-Gandy-Harrington topology is the topology
7 on w* generated by the subbasis consisting of all I' subsets of w”. By (w*”)arm), we
denote w* endowed with the ¥!-Gandy-Harrington topology. We show that there is a
hierarchy of degree structures of Gandy-Harrington topologies.

Theorem 7.54. For any distinct numbers n,m € w, there is no e-degree which is both
an (w*)aum)-degree and an (W) um)-degree, that is,

n#m = Dwe)onm N Peonmm = 0-

GH (n)

Proof. Tt is easy to see that the disjointness diagram Disjg ) = {(d,e) : ST N Sj = 0}
is TI,, where S} is the e-th ¥ set in w*, since (d, e) € Disjgyy, iff # ¢ SI' N S} for all
r € w”. Assume that z: GH(n) <t z: GH(n + 1), or equivalently G" <., G"*! where
Gy = Nbasegr(m)(y) = {e € w:y € S'}. Then we define L as in the proof of Lemma
7.51. Then L is a X} () subset of w.

Note that z € clg(S!) for any e € L, where (3 is the standard Baire topology on w®.
Otherwise, there is an open set ; such that z € 3; and 5;NS? = (). Since f; is also open
in the 3!-Gandy-Harrington topology, there is k& such that Sp = (.. Hence k € G7,
and thus there is D C G"™! such that (k, D) € ¥. Since S” N SP = (), we have k & L.
Let V., ={d € w: S"N By = 0}, where By is the d-th basic open set w.r.t. the standard
Baire topology on w*”. Then V, is a I} subset of w. Note that clg(S?) = w® \ Uaev, Ba-
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As in the proof of Lemma 7.51, one can see that G? C L, and hence {z} =)
since w* is Hausdorff. Note that {z} = w* \|J{Bs:e€ L and d € V_}.
This shows that {z} is a II? singleton relative to the X! (L)-complete set, G" say.
Therefore, z is hyperarithmetic relative to G? (see Sacks [49, Theorem 1.1.6]), and thus,
G is X}, relative to G7. In particular, G is A}, ; relative to x since A}, |-reducibility is
transitive (see Rogers [48, Theorem 16.XXXIV]). Consequently, we obtain G**! £, G"

since G2 is a complete X, set relative to x. g

clg(S¢)

ecL

8. OPEN QUESTIONS
Here we list the current open problems.

Major Questions. We have shown that, in a certain sense, there are a T;-quasi-minimal
e-degree (Theorem 7.13), and a Ty-quasi-minimal 7j-degree (Theorem 7.37). Thus,
whether there exist a 75 s-quasi-minimal T>-degree is the one of the most important
open problems:

Question 1. Does there exist a represented Hausdorff space X such that given Ty 5
space Y, there is v € X which is Y-quasi-minimal?

Currently we do not know if we can separate Ts 5 degrees and submetrizable degrees.
Hence, the following problem is also important:

Question 2. Does there exist a represented Ts 5-space X such that, given a submetrizable
space Y, there is x € X which is not of V-degree?

We are also interested in whether we can show separation results in the category
of effective quasi-Polish spaces. For instance, co-d-CEA, chained (Arens) co-d-CEA,
doubled co-d-CEA, telophase, and semirecursive e-degrees are realized as the degrees of
points in effective quasi-Polish spaces.

Question 3. Given a submetrizable space Y, does there exist a Arens co-d-CEA (or
Roy halfgraph-above) degree which is not a Y-degree?

Note that the affirmative answer to the above question gives a quasi-Polish solution
to Question 2. Similarly, we have found a non-7;5-degree in a T-space, namely, the
product Golomb space Nj (Theorem 7.49); however this space is not quasi-Polish. We
know that there is a quasi-Polish space Hausdorff space which is not 715 5, e.g. the double
origin space. Therefore, one can ask the following:

Question 4. Given a Ty5 space ), does there exist a doubled co-d-CEA degree which
is not a )-degree?

Another big open problem is concerning graph-cototal degrees was raised by Joseph
Miller:

Question 5. Does there exist a continuous degree which is not graph-cototal?

With our framework, this is equivalent to asking whether there is a g-embedding of
the Hilbert cube [0, 1] into the product cofinite space (weo)*. Note that the continuous
functions into we.s correspond to countable partitions into closed sets. A classic result by
Sierpinski shows that connected compact Polish space do not admit non-trivial countable
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partitions into closed sets (cf [17, Theorem 6.1.27]. In particular, there is not embedding
of [0,1]“ into (weo)”. There exist, however, infinite dimensional spaces without any
connected compact Polish subspaces (these are called punctiform), so an answer to the
question is not immediate.

To solve a question, one may examine the behavior of the co-spectrum of a space.
For instance, by an argument using the notion of co-spectrum, we have shown that
there is a continuous degree which is neither telograph-cototal nor cylinder-cototal (by
Proposition 7.42). However, we do not know even the following:

Question 6. Does there exist a continuous degree which is not 2-cylinder-cototal?

In general, we are also interested in analyzing the behavior of the cospectrum of a
given space. For instance, it is important to ask the following:

Question 7. Is every countable Turing ideal realized as the cospectrum of a graph-cototal
e-degree?

We next consider cototal e-degrees. Recall from Proposition 5.33 that a space is
cototal if and only if it is computably Gs. Since every computably Gy space is effectively
T, by Observation 5.30, in particular, every point in a cototal space has a Ti-degree.
Then, can we separate cototal degrees and T)-degrees?

Question 8. Does there exist a point in an effective quasi-Polish Ti-space which has
no cototal e-degree?

Recall that our universal (in the degree-theoretic sense) computably G4 space A
the maximal antichain space, is not quasi-Polish (Proposition 5.38). One of the most
important questions on cototal degrees is whether a universal computably Gs quasi-

Polish space exists:

Question 9. Does there exist a computably Gs, quasi-Polish, space which contains all
cototal e-degrees?

In this article, we have also discussed NNN—quasi—minimality. However, currently we
do not know whether quasi-minimality is different from NNN—quaSi—minimality.

Question 10. Does there exist a quasi-minimal e-degree which is not NNN—quasi—mimmal 7

Minor Questions. We also list some minor questions. Recall that every telograph-
cototal (double-origin) e-degree is graph-cototal (Propositions 5.5 and 5.8). There is a
graph-cototal (indeed cylinder-cototal) e-degree which is neither telograph-cototal nor
doubled co-d-CEA (by Theorem 7.35). Can every telograph-cototal (doubled co-d-CEA)
e-degree be embedded into some level of the hierarchy of graph-cototal e-degrees?

Question 11. Is every telograph-cototal e-degree n-cylinder-cototal for some n € w?

Recall from Proposition 7.34 that there is a co-d-CEA e-degree which is not cylinder-
cototal. The following question is also open.

Question 12. Does there exist a co-d-CEA e-degree which is not 2-cylinder-cototal?

We also do not know the relationship among variations of co-d-CEA degrees.
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Question 13. What is the relationship among doubled co-d-CEA degrees, Arens co-d-
CFEA degrees, and Roy halfgraph-above degrees?

Recall that every 3-c.e. e-degree is telograph-cototal while there is a 39 e-degree which
is not telograph-cototal (by Theorem 7.26).

Question 14. For any n, is every n-c.e. e-degree telograph-cototal?
There is also a problem related to left-totality.
Question 15. Is there a cylinder-cototal e-degree which is not Gs-left-total?
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