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We study the Weihrauch degrees of closed choice for finite sets, closed choice for convex sets
and sorting infinite sequences over finite alphabets. Our main results are: One, that choice
for finite sets of cardinality i+ 1 is reducible to choice for convex sets in dimension j, which
in turn is reducible to sorting infinite sequences over an alphabet of size k+ 1, iff i ≤ j ≤ k.
Two, that convex choice in dimension two is not reducible to the product of convex choice
in dimension one with itself. Three, that sequential composition of one-dimensional convex
choice is not reducible to convex choice in any dimension. The latter solves an open question
raised at a Dagstuhl seminar on Weihrauch reducibility in 2015. Our proofs invoke Kleene’s
recursion theorem, and we describe in some detail how Kleene’s recursion theorem gives rise
to a technique for proving separations of Weihrauch degrees.

1 Introduction

The Weihrauch degrees are the degrees of non-computability for problems in computable anal-
ysis. In the wake of work by Brattka, Gherardi, Marcone and P. [17, 4, 3, 26] they have become
a very active research area in the past decade. A recent survey is found as [7].

We study the Weihrauch degrees of closed choice for finite sets, closed choice for convex sets
and sorting infinite sequences over finite alphabets. The closed choice operators have turned out
to be a useful scaffolding in that structure: We often classify interesting operations (for example
linked to existence theorems) as being equivalent to a choice operator, and then prove separations
for the choice operators, as they are particularly amenable for many proof techniques. Examples
of this are found in [3, 2, 12, 5, 9, 6, 11, 23, 18]. Convex choice in particular captures the degree
of non-computability of finding fixed points of non-expansive mappings via the Goehde-Browder-
Kirk fixed point theorem [23].

The present article is a continuation of [22] by Le Roux and P., which already obtained
some results on the connections between closed choice for convex sets and closed choice for finite
sets. We introduce new proof techniques and explore the connection to the degree of sorting
infinite sequences. Besides laying the foundations for future investigations of specific theorems,
we are also addressing a question on the complexity caused by dimension: Researchers have
often wondered whether there is a connection between the dimension of the ambient space and
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the complexity of certain choice principles. An initial candidate was to explore closed choice for
connected subsets, but it turned out that the degree is independent of the dimension, provided
this is at least 2 [11]. As already shown in [22], this works for convex choice. One reason for
this was already revealed in [22]: We need n dimensions in order to encode a set of cardinality
n + 1. We add another reason here: Each dimension requires a separate instance of sorting an
infinite binary sequence in order to find a point in a convex set.

Our Theorem 32 gives a negative answer to [22, Question 3.14], which was again raised as
an open problem at a Dagstuhl seminar on Weihrauch reducibility, c.f. [10].

An extended abstract lacking Sections 8 and 9 appeared as [21].

Structure of the paper Most of our results are summarized in Figure 1 on Page 4. Section 2
provides a brief introduction to Weihrauch reducibility. In Section 3 we provide formal definitions
of the principles under investigation, and give a bit more context. We proceed to introduce our
new technique to prove separations between Weihrauch degrees in Section 4; it is based on
Kleene’s recursion theorem. The degree of sorting an infinite binary sequence is studied in
Section 5, including a separation technique adapted specifically for this in Subsection 5.1, its
connection to convex choice in Subsection 5.2 and a digression on the task of finding connected
components of countable graphs in Subsection 5.3. Section 6 is constituted by Theorem 20 and
its proof, establishing the precise relationship between finite choice and sorting. In Section 7
we introduce a game characterizing reducibility between finite choice for varying cardinalities.
Section 8 develops a technique to prove that XC2 ≰W XC1 × XC1, and in Section 9 we show
XC1 ⋆ AoUC ̸≤W XCk for all k ∈ N.

2 Background on Weihrauch reducibility

Weihrauch reducibility is a quasiorder defined on multi-valued functions between represented
spaces. We only give the core definitions here, and refer to [27] for a more in-depth treatment.
Other sources for computable analysis are [31, 8].

Definition 1. A represented space X is a set X together with a partial surjection δX :⊆ NN →
X.

A partial function F :⊆ NN → NN is called a realizer of a function f :⊆ X → Y between
represented spaces, if f(δX(p)) = δY(F (p)) holds for all p ∈ dom(f ◦ δX). We denote F being
an realizer of f by F ⊢ f . We then call f :⊆ X → Y computable (respectively continuous), iff
it has a computable (respectively continuous) realizer.

Represented spaces can adequately model most spaces of interest in everyday mathematics.
For our purposes, we are primarily interested in the construction of the hyperspace of closed
subsets of a given space.

The category of represented spaces and continuous functions is cartesian-closed, by virtue
of the UTM-theorem. Thus, for any two represented spaces X, Y we have a represented spaces
C(X,Y) of continuous functions from X to Y. The expected operations involving C(X,Y)
(evaluation, composition, (un)currying) are all computable.

Using the Sierpiński space S with underlying set {⊤,⊥} and representation δS : NN → {⊤,⊥}
defined via δS(⊥)−1 = {0ω}, we can then define the represented space O(X) of open subsets of X
by identifying a subset of X with its (continuous) characteristic function into S. Since countable
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or and binary and on S are computable, so are countable union and binary intersection of open
sets.

The space A(X) of closed subsets is obtained by taking formal complements, i.e. the names
for A ∈ A(X) are the same as the names of X \ A ∈ O(X) (i.e. we are using the negative
information representation). Intuitively, this means that when reading a name for a closed
set, this can always shrink later on, but never grow. It is often very convenient that we can
alternatively view A ∈ A({0, 1}N) as being represented by some tree T via [T ] = A (here [T ]
denotes the set of infinite paths through T ).

We can now define Weihrauch reducibility. Again, we give a very brief treatment here, and
refer to [7] for more details and references.

Definition 2 (Weihrauch reducibility). Let f, g be multivalued functions on represented spaces.
Then f is said to be Weihrauch reducible to g, in symbols f ≤W g, if there are computable
functions K,H :⊆ NN → NN such that (p 7→ K⟨p,GH(p)⟩) ⊢ f for all G ⊢ g.

The Weihrauch degrees (i.e. equivalence classes of ≤W) form a distributive lattice, but we
will not need the lattice operations in this paper. Instead, we use two kinds of products. The
usual cartesian product induces an operation × on Weihrauch degrees. We write fk for the
k-fold cartesian product with itself. The compositional product f ⋆ g satisfies that

f ⋆ g ≡W max
≤W

{f1 ◦ g1 | f1 ≤W f ∧ g1 ≤W g}

and thus is the hardest problem that can be realized using first g, then something computable,
and finally f . The existence of the maximum is shown in [13] via an explicit construction, which
is relevant in some proofs. Both products as well as the lattice-join can be interpreted as logical
and, albeit with very different properties.

We’ll briefly mention a further unary operation on Weihrauch degrees, the finite paralleliza-
tion f∗. This has as input a finite tuple of instances to f and needs to solve all of them.

As mentioned in the introduction, the closed choice principles are valuable benchmark degrees
in the Weihrauch lattice:

Definition 3. For a represented space X, the closed choice principle CX :⊆ A(X) ⇒ X takes
as input a non-empty closed subset A of X and outputs some point x ∈ A.

3 The principles under investigation

We proceed to give formal definitions of the three problems our investigation is focused on.
These are finite choice, the task of selecting a point from a closed subset (of {0, 1}N or [0, 1]n)
which is guaranteed to have either exactly or no more than k elements; convex choice, the task
of selecting a point from a convex closed subset of [0, 1]k; and sorting an infinite sequence over
the alphabet {0, 1, . . . , k} in increasing order. Our main result is that each task forms a strictly
increasing chain in the parameter k, and these chains are perfectly aligned as depicted in Figure
1. For finite choice and convex choice, this was already established in [22]. Our Theorem 20
implies the main theorem from [22] with a very different proof technique.

Definition 4 ([22, Definition 7]). For a represented space X and 1 ≤ n ∈ N, let CX,♯=n :=
CX|{A∈A(X)||A|=n} and CX,♯≤n := CX|{A∈A(X)|1≤|A|≤n}.
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It was shown as [22, Corollary 10] that for every computably compact computably rich
computable metric space X we find CX,♯=n ≡W C{0,1}N,♯=n and CX,♯≤n ≡W C{0,1}N,♯≤n. This in

particular applies to X = [0, 1]d. We denote this Weihrauch degree by C♯=n respectively C♯≤n.

Definition 5 ([22, Definition 8]). By XCn we denote the restriction of C[0,1]n to convex sets.

Since for subsets of [0, 1] being an interval, being convex and being connected all coincide,
we find that XC1 is the same thing as one-dimensional connected choice CC1 as studied in [11]
and as interval choice CI as studied in [3].

Definition 6. Let Sortd : dω → dω be defined by Sortd(p) = 0c01c1 . . . k∞, where |{n | p(n) =
0}| = c0, |{n | p(n) = 1}| = c1, etc, and k is the least such that |{n | p(n) = k}| = ∞. We write
just Sort for Sort2.

Sort was introduced and studied in [24], and then generalized to Sortk in [9]. Note that
the principle just is about sorting a sequence in order without removing duplicates. In [28] it
is shown that Sortn+1 ≡W Sortn; it follows that Sort∗ ≡W Sort∗d ≡W

⨿
d∈N Sortd. The degree

Sort∗ was shown in [24] to capture the strength of the strongly analytic machines [14, 16], which
in turn are an extension of the BSS-machines [1]. Sort is equivalent to Thomae’s function;
and to the translation of the standard representation of the reals into the continued fraction
representation [30]. In [18], Sort is shown to be equivalent to certain projection operators.

CN Sort Sort2 Sortn Sort∗

XC1 XC2 XCn

C♯≤2 C♯≤3 C♯≤n+1

C♯=2 C♯=3 C♯=n+1 CN

1 ≡W C{0} C{0,1} C{0,1,2} C{0,...,n} XC1

Figure 1: Overview of our results; extending [22, Figure 1] by the top row. The diagram depicts
all Weihrauch reductions between the stated principles up to transitivity. Boxes mark degrees
appearing in two places in the diagram. Our additional results are provided as Theorems 18
and 20.

There are some additional Weihrauch problems we make passing reference to. All-or-unique
choice captures the idea of a problem either having a unique solution, or being completely
undetermined:
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Definition 7. Let AoUCX be the restriction of CX to {{x} | x ∈ X} ∪ {X}.

A prototypical example (which is equivalent to the full problem) is solving ax = b over [0, 1]
with 0 ≤ b ≤ a: Either there is the unique solution b

a , or b = a = 0, and any x ∈ [0, 1] will do.
The degree of AoUCX is the same for any computably compact computably rich computable
metric space, in particular for X = {0, 1}N or X = [0, 1]d. We just write AoUC for that degree.
This problem was studied in [25, 20] where it is shown that AoUC∗ is the degree of finding Nash
equilibria in bimatrix games and of executing Gaussian elimination.

4 Proving separations via the recursion theorem

A core technique we use to prove our separation results invokes Kleene’s recursion theorem in
order to let us prove a separation result by proving computability of a certain map (rather than
having to show that no computable maps can witness a reduction). We had already used this
technique in [20], but without describing it explicitly. Since the technique has proven very useful,
we formally state the argument here as Theorem 11 after introducing the necessary concepts to
formulate it.

Definition 8. A representation δ of X is precomplete, if every computable partial f :⊆ 2ω → X
extends to a computable total F : 2ω → X.

Proposition 9. For effectively countably-based X, the space O(X) (and hence A(X)) is pre-
complete.

Proof. It suffices to show this for O(N), where it just follows from the fact that we can delay
providing additional information about a set as long as we want; and will obtain a valid name
even if no additional information is forthcoming.

The preceding proposition is a special case of [29, Theorem 6.5], which shows that many
pointclasses have precomplete representations.

Proposition 10. The subspaces of A([0, 1]n) consisting of the connected respectively the convex
subsets are computable multi-valued retracts, and hence precomplete.

Proof. For the connected sets, this follows from [11, Proposition 3.4]; for convex subsets this
follows from computability of the convex hull operation on [0, 1]n, see e.g. [22, Proposition 1.5]
or [32].

By M(X,Y) we denote the represented space of strongly continuous multivalued functions
from X to Y studied in [13]. The precise definition of strong continuity is irrelevant for us, we
only need every partial continuous function on {0, 1}N induces a minimal strongly continuous
multivalued function that it is a realizer of; and conversely, every strongly continuous multivalued
function is given by a continuous partial realizer.

Theorem 11. Let X have a total precomplete representation. Let f : X ⇒ Y and g : U ⇒ V
be such that there exists a computable e : U × M(V,Y) ⇒ X such that if x ∈ e(u, k) and
v ∈ g(u), then k(v) ⊈ f(x). Then f ≰W g.
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Proof. Assume that f ≤W g via computable H, K. Let computable E be a realizer of e.
Let (ϕn :⊆ N → N)n∈N be a standard enumeration of the partial computable functions. By
assumption, we can consider each ϕn to denote some element in X. Let λ be a computable
function such that ϕλ(n) = E(H(ϕn), (v 7→ K(ϕn, v))). By Kleene’s fixed point theorem, there
is some n0 with ϕn0 = ϕλ(n0). Inputting ϕn0 to f fails the assumed reduction witnesses.

Theorem 11 says that, in order to show that f ≰W g, it suffices to describe a computable
strategy that, given a g-instance u and an outer reduction k, produces an f -instance x witnessing
that k fails to give a solution to f(x) from a solution to g(u).

As simple sample application for how to prove separations of Weihrauch degrees via the
recursion theorem, we shall point out that XC1 already cannot solve some simple products. For
contrast, however, note that C∗

2 ≤W XC1 was shown as [11, Proposition 9.2].

Theorem 12. C2 ×AoUC ≰W XC1.

Proof. Given a convex tree T ⊆ 2<ω and a partial continuous function ϕ :⊆ {0, 1}N → 2×{0, 1}N,
we compute set S ∈ A({0, 1}) and V ∈ A({0, 1}N) such that S ̸= ∅, and V = {0, 1}N or V = {p}
for some p ∈ {0, 1}N. Our construction ensures that ∃p ∈ [T ] ϕ(p) /∈ S × V .

Initially, S = {0, 1} and V = {0, 1}N.
We first search for s such that for any σ ∈ T of length s, the first value of ϕ(σ) is determined.

If we never find one, then S = {0, 1} and V = {0, 1}N work as desired.

Next, we search for some τ ∈ {0, 1}s such that Pτ := [T ] ∩
∪

j<2 ϕ
−1(j, [τ ]) is such that

any interval contained in Pτ is contained in some [σ] for σ ∈ {0, 1}s. Note that if (Ji)i∈I is a
collection of pairwise disjoint intervals in {0, 1}N such that every Ji intersects with at least two
cylinders [σ] and [σ′] for some strings σ ̸= σ′ of length s, then the size of I is at most 2s − 1.
Hence, if ϕ is defined on [T ], such a τ has to exist. Once we have found it, we set V = {τ0ω}.

Either we are already done (since we would have that ∃p ∈ [T ] ϕ(p) /∈ S×V ), or it holds that
[T ] ⊆ [σ] for some σ ∈ {0, 1}s. In that case, by choice of s we find that ∃j ∈ {0, 1} π0ϕ(p) = j
for all p ∈ [T ]. We can set S = {1 − j}, and have obtained the desired property that ∃p ∈
[T ] ϕ(p) /∈ S × V . By Theorem 11 with e : (T, ϕ) 7→ (S, V ), the claim follows.

5 Some observations on Sort

5.1 Displacement principle for Sortk

The basic phenomenon that the number of parallel copies of Sort being used corresponds to a
dimensional feature can already by a result similar in feature to the displacement principle from
[11]:

Proposition 13. C2 × f ≤W Sortk+1 implies f ≤W Sortk ×CN.

Proof. Let the reduction C2 × f ≤W Sortk+1 be witnessed by computable H, K1, K2. Assume,
for the sake of a contradiction, that for some input x to f and a name p for {0, 1} it holds that
H(p, x) contains infinitely many 0s. In that case, Sortk(H(p, x)) = 0ω, and hence K1 is defined
as either 0 or 1 on p, x, 0ω. But then there is some k ∈ N such that K1 already outputs the
answer on reading some prefix p≤k, x≤k, 0

k. Additionally, we can chose some k′ ≥ k such that
H writes at least k′ 0s upon reading the prefixes p≤k′ , x≤k′ . By changing p after k′ to be a name
of {1−K1(p, x, 0

ω)} shows the contradiction.
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Now we note that x 7→ H(p, x) andK2 witness a reduction from f to the restriction of Sortk+1

to inputs containing only finitely many 0s. But this restriction is reducible to Sortk ×CN: In
parallel, call Sortk on the sequence obtained by skipping 0s and decrementing every other digit
by 1, and using CN to determine the original number of 0s.

Corollary 14. Let f be a closed fractal. Then C2 × f ≤W Sortk+1 implies f ≤W Sortk.

Corollary 15. C2 × Cn
♯≤2 ≰W Sortn+1.

Corollary 16. C2 ×XCn
1 ≰W Sortn+1

We also get an alternative proof of the following, which was previously shown in [24] using
the squashing principle from [15]:

Corollary 17. Sortk+1 ≰W Sortk

5.2 Sort and convex choice

The one-dimensional case of the following theorem was already proven as [9, Proposition 16]:

Theorem 18. XCn ≤W Sortn+1

Proof. Let (Hd
i )i∈N be an effective enumeration of the d-dimensional rational hyperplanes for

each d ≤ n − 1. Given A ∈ A([0, 1]n), we can recognize that A ∩ Hd
i = ∅ by compactness of

[0, 1]n. We proceed to compute an input p to Sortn+1 as follows:
We work in stages (ℓ0, . . . , ℓn−1). We simultaneously test whether A ∩ Hn−1

ℓ0
= ∅, whether

A ∩Hn−1
ℓ0

∩Hn−2
ℓ1

= ∅, . . ., and whether A ∩Hn−1
ℓ0

∩ . . . ∩H1
ℓn−1

= ∅.
If we find a confirmation for a query involving ℓk as the largest index, we write a k to p,

increment ℓk by 1, and reset any ℓi for i > k. All tests of smaller indices are continued (and
hence will eventually fire if true before a largest index test interferes). In addition, we write ns
to p all the time to ensure an infinite result.

Now consider the output Sortn+1(p). If this is 0ω, then A does not intersect any n − 1-
dimensional rational hyperplane at all. As a convex set, A has to be a singleton. Thus, as long
as we read 0s from Sortn+1(p), we can just wait until A shrinks sufficiently to produce the next
output approximation. If we ever read a 1 in Sortn+1(p) at position t, we have thus found a
n−1-dimensional hyperplane Hn−1

t intersecting A. We can compute A∩Hn−1
t ∈ A([0, 1]n), and

proceed to work with that set. By retracing the computation leading up to the observation that
A ∩ Hn−1

t−1 = ∅, we can find out how many larger-index tests were successful before that. We

disregard their impact on Sortn+1(p). Now as long as we keep reading 1s, we know that A∩Hn−1
t−1

is not intersecting n−2-dimensional rational hyperplanes (and hence could be singleton). Finding
a 2 means we have identified a n− 2-dimensional hyperplane Hn−2

t′ intersecting A ∩Hn−1
t−1 , and

we proceed to work with A∩Hn−1
t−1 ∩Hn−2

t′ . Continuing this process, we always find that either
our set has been collapsed to singleton (from which we can extract the point), or we will be able
to reduce its dimension further (which can happen only finitely many times).

5.3 A digression: Sort and finding connected components of a graph

On a side note, we explore how Sort relate to the problem FCC of finding a connected component
of a countable graph with only finitely many connected components. Here the graph (V,E) is
given via the characteristic functions of V ⊆ N and E ⊆ N × N, and the connected component
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is to be produced likewise as its characteristic function. In addition, we have available to us an
upper bound for the number of its connected components. In the reverse math context, this
problem was studied in [19] and shown to be equivalent to Σ0

2-induction.

Theorem 19. The following are equivalent:

1. FCC

2. Sort∗

Proof. FCC ≤W
⨿

k∈N Sortk

We are given n ∈ N and a graph with at most n connected components. For each 2 ≤ i ≤ n,
we pick some standard enumeration (V i

j )j∈N of the i-element subsets of N. As soon as we

learn that none of the V i
j with j ≤ l is an independent set, we write the l-th symbol i−2 on

the input to Sortn−1. We write an n− 1 occasionally to ensure that the output is actually
infinite.

Now assume we have access to the corresponding output q of Sortn−1. This will be 0ω iff
the graph had a single connectedness component, and of the form 0l1p else where V 2

l is
an independent pair. We can thus start computing the connectedness component of 0 by
searching in parallel whether q ̸= 0ω and searching for a path from 0 to the current number.
Either search will terminate. In the latter case, we can answer yes. In the former, we now
search for paths to the two vertices in the pair (and thus might be answer to correctly no).
Simultaneously we investigate the remnant p whether p = 1ω (and thus the graph has 2
connectedness components, and any vertex is linked to either member of V 2

l ), or find an
independent set of size 3, etc.

Sortk ≡W Sortk−1

This was shown in [28].

Sort ≤W FCC

We compute a graph with at most 2 connectedness components. The graph will be bi-
partite, with the odd and even numbers being separate components. All odd numbers are
connected to 0, and at any stage there will be some even number 2n not yet connected to
0, which represents some number i such that we have not yet read i times 0 in the input
p to Sort. If we read the i-th 0 in p at time t, we connect 2t+ 1 to both 0 and 2n. If we
read a 1 at time t, then 2t+ 1 gets connected to 0 and 2t.

If p contains infinitely many 0s, then we end up with a single connectedness component.
Otherwise we obtain either the connectedness component of 0, or equivalently, its comple-
ment. Once we see that e.g. 2 is in this connectedness component, then we can output 0.
Moreover, then 2 must be linked to 0 via some 2t + 1 (which we can exhaustively search
for), and whether 2t is in the connectedness component tells us whether the next bit of
the output is 1 (and then continuous as 1ω), or 0 again, in which case we need to search
for the next significant digit.

FCC× FCC ≤W FCC

Just use the product graph.
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6 Finite choice and sorting

Theorem 20. C#≤k+1 ̸≤W Sortk.

Proof. By Theorem 11, it suffices to describe an effective procedure which, given α ∈ kω and Φ,
constructs an instance C of C#≤k+1 such that there is a solution q to Sortk(α) such that Φ(q) is
not a solution to C. (Apply Theorem 11 to e : (α,Φ) 7→ C.)

For a finite tree T of height s, we say that σ ∈ T is extendible if there is a leaf ρ ∈ T of height
s which extends σ. Note that an instance of C#≤k+1 is generated by an increasing sequence
(Ts)s∈ω of finite binary trees satisfying the following conditions for every s.

(I) Ts is of height s, and Ts has at least one, and at most k + 1 extendible leaves.

(II) Every node σ ∈ Ts+1 \ Ts is of length s+ 1, and extends an extendible leaf of Ts.

More precisely, for such a sequence (Ts), the union T =
∪

s Ts forms a (Ts)-computable tree
which has at most k + 1 many infinite paths. Therefore, the set of all infinite paths C = [T ]
through T is an instance of C#≤k+1.

For η ∈ k<ω and u < k, let N [η, u] be the number of the occurrences of u’s in η, i.e.,
N [η, u] = #{i : η(i) = u}. We define the u-partial sort of η as the following string:

(η)sortu = 0N [η,0]1N [η,1]2N [η,2] . . . (u− 1)N [η,u−1].

Our description of an effective procedure which, given an instance α of Sortk, returns a
sequence (Ts)s∈ω of finite trees generating an instance of C#≤k+1 is subdivided into k many
strategies (Su)u<k. At stage s, the u-th strategy Su for u < k believes that u is the least
number occurring infinitely often in a given instance α of Sortk, and there is no i ≥ s such that
α(i) < u. In other words, the strategy Su believes that (α ↾ s)sortu

⌢uω, the u-partial sort of the
current approximation of α followed by the infinite constant sequence uω, is the right answer to
the instance α of Sortk. Then, the strategy Su waits for Φ((α ↾ s)sortu

⌢uω) being a sufficiently
long extendible node ρ of Ts, and then make a branch immediately after an extendible leaf
ρu ∈ Ts extending ρ, where this branch will be used for diagonalizing Φ((α ↾ s)sortu

⌢uω). This
action injures all lower priority strategies (Sv)u<v<k by initializing their states and letting ρv be
undefined.

More precisely, each strategy Su has a state, states(u) ∈ {0, 1, 2}, at each stage s, which
is initialized as state0(u) = 0. We also define a partial function u 7→ ρsu for each s, where ρsu
is extendible in Ts if it is defined. Roughly speaking, ρsu is the stage s approximation of the
diagonalize location for the u-th strategy as described above. We assume that ρ0u is undefined
for u > 0, for any s ∈ ω, ρs0 is defined as an empty string, and ρsu is a finite string whenever it
is defined.

At the beginning of stage s + 1, inductively assume that a finite tree Ts of height s and
a partial function u 7→ ρsu has already been defined. Moreover, we inductively assume that if
states(u) = 1 then ρsu is defined, and ρsu

⌢i is extendible in Ts for each i < 2. At substage u of
stage s+ 1, the strategy Su acts as follows:

1. If (α ↾ s+ 1)sortu ̸= (α ↾ s)sortu , then initialize the strategy, that is, put states+1(u) = 0,
and let ρs+1

u be undefined. Then go to the next substage u + 1 if u < k; otherwise go to
the next stage s+ 2.

2. If (α ↾ s+ 1)sortu = (α ↾ s)sortu and states(u) = 0, then ask if Φ((α ↾ s)sortu
⌢uω)[s] is an

extendible node ρ ∈ Ts such that for any v < u, if ρsv is defined, then ρ ̸⪯ ρsv holds.
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(a) If yes, define ρs+1
u as the leftmost extendible leaf of Ts extending such a ρ, and put

states+1(u) = 1. Injure all lower priority strategies, that is, put states+1(v) = 0
and let ρs+1

v be undefined for any u < v < k. Then go to the next stage s+ 2.

(b) If no, go to the next substage u+ 1 if u < k; otherwise go to the next stage s+ 2.

3. If (α ↾ s+ 1)sortu = (α ↾ s)sortu and states(u) = 1, then ask if Φ((α ↾ s)sortu
⌢uω)[s] is an

extendible node ρ ∈ Ts which extends ρsu
⌢i for some i < 2.

(a) If yes, define ρs+1
u = ρsu

⌢(1− i) for such i, and put states+1(u) = 2. Injure all lower
priority strategies, that is, put states+1(v) = 0 and let ρs+1

v be undefined for any
u < v < k. Then go to the next stage s+ 2.

(b) If no, go to the next substage u+ 1 if u < k; otherwise go to the next stage s+ 2.

4. If not mentioned, set states+1(u) = states(u) and ρ
s+1
u = ρsu.

At the end of stage s + 1, we will define Ts+1. Consider the downward closure T ∗
s+1 of the

following set:
{ρs+1

u
⌢i : state(u) = 1 and i < 2} ∪ {ρs+1

u : state(u) = 2}.

Let T ∗,leaf
s+1 be the set of all leaves of T ∗

s+1. Note that every element of T ∗,leaf
s+1 is extendible

in Ts since ρs+1
u is extendible in Ts. For each leaf ρ ∈ T ∗,leaf

s+1 , if |ρ| = s + 1 then put ηρ = η;
otherwise choose an extendible leaf η ∈ Ts extending ρ, and define ηρ = η⌢0.

Let T0 be an empty tree. We define Ts+1 as follows:

Ts+1 = Ts ∪ {ηρ : ρ ∈ T ∗,leaf
s+1 }.

Note that the extendible nodes in Ts+1 are exactly the downward closure of {ηρ : ρ ∈ T ∗,leaf
s+1 },

and every element of T ∗
s+1 is extendible in Ts+1, that is,

• If states+1(u) = 1, then ρs+1
u

⌢i is extendible in Ts+1 for each i < 2.

• If states+1(u) = 2, then ρs+1
u is extendible in Ts+1.

Our definition of (Ts)s∈ω clearly satisfies the property (II) mentioned above. Concerning the
property (I), one can see the following:

Lemma 21. Ts+1 has at least one, and at most k + 1 extendible leaves.

Proof. The former assertion trivially holds since ρs0 is always defined as an empty string for any
s ∈ ωω. For the latter assertion, it suffices to show that any branching extendible node of Ts+1

is of the form ρs+1
u for some u < k. This is because Ts is binary, and then the above property

automatically ensures that Ts has at most k + 1 extendible leaves.
Let σ be a branching extendible node of Ts+1. If |σ| = s, since Ts is of height s, σ is of the

form ρs+1
u by our definition of Ts+1 . If |σ| < s, then it is also a branching extendible node of Ts

by the property (II) of our construction, and thus it is of the form ρsu by induction. If ρsu = ρs+1
u

for any u, then our Lemma clearly holds. If ρsu ̸= ρs+1
u , then it can happen at (2a) or (3a), and

thus, there is v ≤ u such that the v-th strategy has acted at stage s+ 1. We claim that for any
ρ ∈ T ∗

s+1 we have ρsu ̸≺ ρ. This claim implies that ρsu is not a branching extendible node in Ts+1,
which is a contradiction, and therefore we must have ρsu = ρs+1

u .
To show the claim, note that ρs+1

w is undefined for w > v. If w < u and ρsw is defined then
ρsu ̸⪯ ρsw by Su’s action at (2a). If w < v then ρs+1

w = ρsw. For w = v, if states+1(v) = 1 then
Sv reaches at (2a) at stage s+1 and ρsv ̸⪯ ρsu by Sv’s action. If states+1(v) = 2 then Sv reaches
at (3a) at stage s+ 1, and thus ρs+1

v is a successor of ρs+1
u and thus ρsu ̸≺ ρs+1

v . Hence, there is
no ρ ∈ T ∗

s+1 such that ρsu ≺ ρ as desired.
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Lemma 22. If states+1(u) = 2, then Φ((α ↾ s+ 1)sortu
⌢uω) is not extendible in Ts+1.

Proof. If states+1(u) = 2, then there is stage t ≤ s + 1 such that (α ↾ t)sortu = (α ↾ s+ 1)sortu

and the u-th strategy Su arrives at (2a) at stage s and (3a) at s + 1, and the u-th strategy is
not injured by any higher priority strategy during stages between t and s+1, and in particular,
ρtu = ρsu. By our action (3a), Φ((α ↾ s+ 1)sortu

⌢uω) extends the sister of ρs+1
u . If v > u then

ρs+1
v is undefined. If v < u and ρtv is undefined, then since no injury happens below u during

stages between t and s + 1, we have ρsu = ρtu ̸⪯ ρtv = ρs+1
v , which implies that ρs+1

v does not
extend the sister of ρs+1

u . Hence the sister of ρs+1
u does not extend to a leaf of T ∗

s+1. Therefore,
Φ((α ↾ s+ 1)sortu

⌢uω) is not extendible in Ts+1.

We now verify our construction. Put T =
∪

k Tk. By Lemma 21, since our construction
of (Ts)s∈ω satisfies the conditions (I) and (II), the set [T ] of all infinite paths through T is an
instance of C#≤k+1. Let α be an instance of Sortk.

Lemma 23. Φ(Sortk(α)) ̸∈ [T ].

Proof. By pigeonhole principle, there exists u such that α(i) = u for infinitely many i. Let u
be the least such number. Then there exists s such that (α)sort := (α ↾ s)sortu

⌢uω is the right
answer to the instance α of Sortk, that is, it is the result by sorting α. Then, for any v ≤ u, the
v-partial sort of α stabilizes after s, that is, (α ↾ t+ 1)sortv = (α ↾ t)sortv for all t ≥ s. After the
v-partial sort of α stabilizes, the v-th strategy Sv can injure lower priority strategies at most
two times, i.e., at (2a) and (3a). Therefore, there is stage s0 ≥ s such that the u-th strategy Su

is never injured by higher priority strategies after s0. Then, statet(u) converges to some value.

Case 1. limt statet(u) = 0. By our choice of s0, Su always goes to (2b), and never goes to
(2a) after s0. However, if Φ((α)

sort) is an infinite string, then the strategy must go to (2a) since
{ρsv : v < u} is finite. Hence, Φ((α)sort) cannot be an infinite path through T .

Case 2. limt statet(u) = 1. Let s1 ≥ s0 be the least stage such that Su reaches (2a) with some
ρ. We claim that if an extendible node in Tt extends ρ, then it also extends ρtu for any t > s1.
According to the condition of Su’s strategy (2), for any v < u, we have ρ ̸⪯ ρs1v = ρs0v . By injury
in (2a), ρs1v is undefined for any v > u. Therefore, any extendible node of Ts1+1 extends ρtv or
ρtv

⌢i for some v ≤ u and i < 2. Hence, if an extendible node in Ts1+1 extends ρ, then it also
extends ρs1+1

u = ρtu. By the property (II) of our construction, the claim follows. Now, by our
assumption, Su always goes to (3b), and never goes to (3a). This means that Φ((α ↾ t)sortu

⌢uω)
extends ρ, but does not extend ρtu for any t > s1. Therefore, Φ((α ↾ t)sortu

⌢uω) is not extendible
in Tt for any t > s1. Consequently, Φ((α)

sort) ̸∈ [T ].

Case 3. limt statet(u) = 2. Let s2 ≥ s0 be the least stage such that Su reaches (3a). Then
by Lemma 22, Φ((α ↾ s2)sortu

⌢uω) is not extendible in Ts2 . Since Su is not injured after s0, we
conclude Φ((α)sort) ̸∈ [T ].

By Theorem 11, this implies the desired assertion.

7 The comparison game for products of finite choice

In this section we consider the question when finite choice for some cardinality is reducible to
some finite product of finite choice operators. We do not obtain an explicit characterization,
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but rather an indirect one. We introduce a special reachability game (played on a finite graph),
and show that the winner of this game tells us whether the reduction holds. This in particular
gives us a decision procedure (which so far has not been implemented yet, though).

Our game is parameterized by numbers k, and n0, n1, . . . , nℓ. We call the elements of∪
i≤ℓ{i} × ni colours, and the elements of Πi≤ℓni tokens. A token w has colour (i, c), if wi = c.
The current board consists of up to k boxes each of which contains some set of tokens,

with no token appearing in distinct boxes. If there ever is an empty box, then Player 1 wins.
If the game continues indefinitely without a box becoming empty, Player 2 wins. The initial
configuration is chosen by Player 1 selecting the number of boxes, and by Player 2 distributing
all tokens into these boxes.

The available actions are as follows:

Remove Player 1 taps a box b. Player 2 selects some colours C such that every token in b has
a colour from C. Then the box b and all tokens with a colour from C are removed.

Reintroduce colour Player 2 picks two ‘adjacent’ colours (i, c) and (i, d), such that no token
on the board has colour (i, d). For every box b, and every token w ∈ b having colour c, he
then adds a token w′ to b that is identical to w except for having colour (i, d) rather than
(i, c).

Split box If there are less than k boxes on the board, Player 1 can select a box b to be split
into two boxes b0 and b1. Player 2 can chose how to distribute the tokens from b between
b0 and b1. Moreover, Player 2 can do any number of Reintroduce colour moves before the
Split box -move takes effect.

Theorem 24. C♯≤k ≤W C♯≤n0 × . . .C♯≤nℓ
iff Player 2 wins the comparison game for parameters

k, n0, . . . , nℓ.

The proof proceeds via Lemmas 26, 27 below. We observe that the game is a reachability
game played on a finite graph. In particular, it is decidable who wins the game for a given
choice of parameters. An implementation of the decision procedure is in progress. We have only
considered the case ni = 2 so far, and know:

Proposition 25.

1. Player 2 wins for k + 1 ≤ ℓ.

2. Player 1 wins for k + 1 ≥ 2ℓ−1

Proof. The first claim follows from Theorem 24 in conjunction with [22, Proposition 3.9] stating
that C♯≤n+1 ≤W Cn

♯≤2. The second is immediate when analyzing the game.

Lemma 26. From a winning strategy of Player 2 in the comparison game we can extract
witnesses for the reduction C♯≤k ≤W C♯≤n0 × . . .C♯≤nℓ

.

Proof. We recall that the input to C♯≤k can be seen as an infinite binary tree having at most k
vertices on each level. We view this tree as specifying a strategy for Player 1 in the comparison
game: The boxes correspond to the paths existing up to the current level of the tree. If a path
dies out, Player 1 taps the corresponding box. If a path splits into two, Player 1 splits the
corresponding box.

Which tokens exist at a certain time tells us how the instances to C♯≤n0 , . . . ,C♯≤nℓ
are

built. The colour (i, j) refers to the j-path through the i-th tree at the current approximation.
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If a colour gets removed, this means that the corresponding path dies out. If a colour gets
reintroduced, we split the path corresponding to the duplicated colour into two.

It remains to see how the outer reduction witness maps infinite paths through these trees
back to an infinite path through the input tree. If we are currently looking at some finite
approximation of the input tree and the query trees, together with an infinite path through
each query tree, then the infinite paths indicates some token which never will be removed. That
means that any box containing that token never gets tapped, i.e. that certain prefixes indeed
can be continued to an infinite path.

Lemma 27. From a winning strategy of Player 1 in the comparison game we can extract a
witness for the non-reduction C♯≤k ≰W C♯≤n0 × . . .C♯≤nℓ

according to Theorem 11.

Proof. We need to describe a procedure that constructs an input for C♯≤k given inputs to
C♯≤n0 , . . . ,C♯≤nℓ

and an outer reduction witness. Inverting the procedure from Lemma 26, we
can view the given objects as describing a strategy of Player 2 in the game. We obtain the input
tree to C♯≤k by observing how the winning strategy of Player 1 acts against this. When Player
1 taps the i-th box, we let the i-th path through the tree die out. When Player 1 splits the
i-th box, we let both children of the i-th vertex present at the current layer be present at the
subsequent layer. Otherwise, we keep the left-most child of any vertex on the previous layer.

Since Player 1 is winning, we will eventually reach an empty box. At that point, we let all
other paths die out, and only keep the one corresponding to the empty box. This means that
any path selected by the outer reduction witness we obtained Player 2’s strategy from will fall
outside the tree, and thus satisfy the criterion of Theorem 11.

8 Rectangles versus Triangles

In this section, we shall show that the product of one-dimensional convex choice with itself is
strictly weaker than two-dimensional convex choice. We achieve this by comparing the strength
of certain restrictions of two-dimensional convex choice. Let T be the class of closed triangles
in [0, 1]2. We consider the degenerate cases of lines and single points to be included. The main
result of this section is:

Theorem 28. XC2|T ≰W XC1 ×XC1

Note that we can conceive of XC1×XC1 as choice for rectangles in [0, 1]2 with the restriction
that the rectangles are aligned to the boundaries of the unit square. Glossing over the alignment-
restriction, we could say that choice for triangles is not reducible to choice for rectangles. Again,
the degenerate cases of lines and points would be included.

Definition 29. A class A ⊆ A(X) has triple activable sites, if there are computable families

(An)n∈N ∈ A(X), (S
0
n, S

1
n, S

2
n)n∈N ∈ K(X) and (S0

n, S
1
n, S

2
n)n∈N ∈ O(X) such that

1. Whenever ∀n Ap(n+1) ⊆ Ap(n), then
∩

n∈NAp(n) ∈ A.

2. ∀n ∈ N ∀i ∈ {0, 1, 2} ∅ ̸= S
i
n ⊆ Si

n

3. ∀n ∈ N ∀i, j ∈ {0, 1, 2, } i ̸= j ⇒ Si
n ∩ Sj

n = ∅

4. ∀n ∈ N ∀i ∈ {0, 1, 2}Si
n ⊆ An
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5. There is a computable procedure (choosing a site) that given n ∈ N and i ∈ {0, 1, 2}
computes m ∈ N such that Am ⊆ S

i
n.

6. There is a computable procedure (killing a site) that given n ∈ N and i ∈ {0, 1, 2} computes
m ∈ N such that Am ⊆ An \ Si

n.

7. There is a computable procedure (activating one site) that given n ∈ N, i ∈ {0, 1, 2}
computes m0,m1 such that

(a) ∀ℓ ∈ {0, 1, 2} ∀k ∈ {0, 1} Amk
⊆ An ∧ Sℓ

mk
⊆ Sℓ

n ∧ Sℓ
mk

⊆ S
ℓ
n

(b) ∀a ∈ {0, 1} Si
ma

∩Am(1−a)
= ∅

8. There is a computable procedure (activating two sites) that given n ∈ N, i, j ∈ {0, 1, 2},
i ̸= j computes m00,m01,m10,m11 such that

(a) ∀ℓ ∈ {0, 1, 2} ∀k ∈ {00, 01, 10, 11} Amk
⊆ An ∧ Sℓ

mk
⊆ Sℓ

n ∧ Sℓ
mk

⊆ S
ℓ
n

(b) ∀a, b ∈ {0, 1} Si
mab

∩Am(1−a)b
= ∅ ∧ Sj

mab ∩Ama(1−b)
= ∅

9. There is a computable procedure (activating two sites) that given n ∈ N, computes
(mw)w∈{0,1}3 such that

(a) ∀ℓ ∈ {0, 1, 2} ∀k ∈ {0, 1}3 Amk
⊆ An ∧ Sℓ

mk
⊆ Sℓ

n ∧ Sℓ
mk

⊆ S
ℓ
n

(b) ∀a, b, c ∈ {0, 1} S0
mabc

∩Am(1−a)bc
= ∅ ∧ S1

mabc
∩Ama(1−b)c

= ∅ ∧ S2
mabc

∩Amab(1−c)
= ∅

The idea is that we can construct sets of type A by selecting three disjoint regions inside
them (the sites), in a way that we always later entirely remove one of those sites without leaving
A. Moreover, we can subdivide two sites simultaneously, and then later on move to a subset
belonging to A that realizes any combination of the subdivisions.

Lemma 30. T has triple activable sites.

Proof. We chose as sites the tips of the triangle. For subdivision, we split the chosen tips by
the corresponding median. We can find suitable smaller triangles avoiding half of a each tip but
intersecting the other as depicted in Figure 2.

Figure 2: Activating sites in a triangle

Lemma 31. Let A ⊆ A(X) have triple activable sites. Then CX|A ≰W XC1 ×XC1.
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Proof. Assume for the sake of a contradiction that CX|A ≤W XC1 × XC1 via K, H. We apply
the reduction to input A0. Then K(A0, ·) : H(A0) → A0 is a continuous function. By uniform
continuity of that function, we can obtain a prefix w of A0 and rectangular grid covering H(A0)
such that for every cell and for every i ∈ {0, 1, 2} it holds that K(w, ·) maps the cell into Si

0 or

its image is disjoint from S
i
0, without the function needing to know more than w about its first

input. We assign colours {0, 1, 2,⊥} to cells in such a way that if a cell has colour i ∈ {0, 1, 2},
then it is mapped into Si

0, and if its image intersects S
i
0, then it has colour i. We call a cell

coloured, if its colour is {0, 1, 2, }, it is uncoloured otherwise.

We will in the process of the construction move from A0 as input to other An as chosen
by the activating two sites procedure. When doing that, we adjust our colour assignment to

work with the Si
n and S

i
n instead. We observe that the only change in colour this can cause

is to recolour a cell from i ∈ {0, 1, 2} to ⊥. Moreover, cells can disappear by falling outside
of H(A)n). Note that this means that the number of coloured cells is thus a non-increasing
property with a finite initial value. Should the situation arise where some colour i ∈ {0, 1, 2}
is not present as a colour of a cell at all, then choosing the corresponding site and moving the

input Am ⊆ S
i
n breaks the reduction, and provides the desired contradiction.

Generally, we will pick two cells C1, C2 and activate the sites corresponding to their colours.
We inspect the outer reduction witness further to see which parts of C1 are mapped into which
of Si

mab
and which parts of C2 into which of Sj

mab . If any of those is not present in of the two
cells, then moving on to the corresponding Amab as input next would force that cell to lose its
colour. Assume all choices are present in both cells. Moving into Amab

means that we need to

remove Si
m(1−a)b

and Sj
ma(1−b)

from H(Aaab), in particular from the cells C1 and C2. Moreover,

H(Aaab) has to be rectangular and aligned to the boundary. We can thus view activating two
sites as being followed by a choice of subregions within the corresponding cells (chosen by the
opponent), and there subsequently being vertical or horizontal cuts that remove the subregions
not selected by us.

We proceed to argue that in most configurations, these cuts will decrease the number of
coloured cells by removing some of them. We make a case distinction based on the arrangement
of coloured cells.

Case 1: There is a coloured cell C0 such that other coloured cells are in at least three
cardinal directions

We activate the colour corresponding to C0. As above, this corresponds to either a horizontal
or a vertical cut. By assumption, at least one side of the cut is such that moving into it removes
another coloured cell. This is illustrated in Figure 3.

Case 2: There are two different-coloured cells aligned horizontally or vertically, and another
coloured cell off that alignment.

If Case 1 does not apply, we have (up to symmetry) the configuration depicted in Figure
4. We can only cut away from the red cell from west and north, and from the blue cell only
from north and east – any other cut would remove an entire cell. We activate the two sites
corresponding to red and blue, and consider the subregions in the two cells which we would
remove by a cut from the north. We choose one that extends furthest south, and chose to
remove it, but not the other. This is impossible with the allowed cuts.

Case 3: There are three different-coloured cells aligned horizontally or vertically.

Up to symmetry, the configuration is depicted in Figure 5. We activate all three sites. In
the red box, there is at most one subregion which we can remove by cutting from the west, the
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Figure 3: The subcases of Case 1 in the proof of Lemma 31

Figure 4: Case 2 in the proof of Lemma 31

other one (called r) requires a north or south cut. Symmetrically, in the green box, there is also
one subregion (called g) which requires a north or south cut. W.l.o.g. ,assume that of these two
subregions, the red one r extends further south. In the blue box, the two subregions need to be
removed by cuts from north or south (call the northern one n and the southern one s). Now it
is impossible to remove the subregions r and n but not g with cuts that do not remove entire
coloured cells.

Figure 5: Case 3 in the proof of Lemma 31
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9 Convex choice and compositions

Our next theorem gives a negative answer to [22, Question 3.14], which was again raised as an
open problem at a Dagstuhl seminar on Weihrauch reducibility, c.f. [10]:

Theorem 32. XC1 ⋆ AoUC ̸≤W XCk for all k ∈ N.

Proof. We will need some geometric arguments involving convexity, measure and dimension.
If a convex set X ⊆ [0, 1]k is at most d-dimensional, then X is included in a d-dimensional
hyperplane L ⊆ [0, 1]k by convexity. It is easy to define the d-dimensional Lebesgue measure λd

on L which is consistent with the d-dimensional volume on d-parallelotopes in [0, 1]k.

Let (X[s])s∈ω be an upper approximation of a convex closed set X ⊆ [0, 1]k. Even if we
know that X is at most d-dimensional for some d < k, it is still possible that X[s] can always
be at least k-dimensional for all s ∈ ω. Fortunately, however, by compactness one can ensure
that for such X, say X ⊆ L for some d-hyperplane L by convexity, X[s] for sufficiently large s
is eventually covered by a thin k-parallelotope L̂ obtained by expanding d-hyperplane L. For
instance, if X ⊆ [0, 1]3 is included in the plane L = {1/2} × [0, 1]2, then for all t ∈ ω, there is
s ∈ ω such that X[s] ⊆ L̂(2−t) := [1/2− 2−t, 1/2 + 2−t]× [0, 1]2 by compactness. We call such
L̂(2−t) as the 2−t-thin expansion of L.

We give a formal definition of the 2−t-thin expansion of a subset Y of a hyperplane L. A
d-hyperplane L ⊆ [0, 1]k is named by a d-many linearly independent points in [0, 1]k. If (xi)i<d

is linearly independent, then this fact is witnessed at some finite stage. Therefore, there is a
computable enumeration (Ld

e)e∈ω of all rational d-hyperplanes. A rational closed subset of L is
the complement of the union of finitely many rational open balls in L. Given a pair (L, Y ) of
(an index of) a rational d-hyperplane L ⊆ [0, 1]k and a rational closed set Y ⊆ L, we define the
2−t-thin expansion of Y on L as follows: We calculate an orthonormal basis (e1, . . . , ek−d) of
the orthogonal complement of the vector space spanned by L− v where v ∈ L, and define

Ŷ (2−t) =

{
v +

k−d∑
i=1

aiei : v ∈ Y and − 2−t ≤ ai ≤ 2−t for any i ≤ k − d

}
,

Since Y is a rational closed set, we can compute the measure λd(Y ). Indeed, we can com-
pute the maximum value md(Y, t) of λd(Ŷ (2−t) ∩ L′) where L′ ranges over all d-dimensional
hyperplanes. For instance, if Y = [0, s] × {y}, it is easy to see that m1(Y, 2−t) is the length√
s2 + 2−2t+2 of the diagonal of the rectangle Ŷ (2−t) = [0, s]× [y − 2−t, y + 2−t].

Let us assume that we know that a convex set X ⊆ [0, 1]k is at most d-dimensional, and
moreover, a co-c.e. closed subset X̃ of X satisfies that λd(X̃) < r. What we will need is to find,
given ε > 0, stage s witnessing that λd(X̃) < r+ ε under this assumption. Of course, generally,
there is no stage s such that λd(X̃[s]) < r + ε holds since X̃[s] may not even be d-dimensional
for all s ∈ ω as discussed above. To overcome this obstacle, we again consider a thin expansion
of (a subset of) a hyperplane. Indeed, given t > 0, there must be a rational closed subset Y of
a d-dimensional rational hyperplane L such that Y is very close to X̃, and that X̃ is covered by
the 2−t-thin expansion Ŷ (2−t) of Y . That is, by compactness, it is not hard to see that given
ε > 0, one can effectively find s, Y, t such that

X̃[s] ⊆ Ŷ (2−t) and md(Y, t) < r + ε.
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In this way, if the inequality λd(X̃) < r holds for a co-c.e. closed subset X̃ of a d-dimensional
convex set X, then one can effectively confirm this fact.

We next consider some nice property of an admissible representation of [0, 1]k. It is well-
known that [0, 1]k has an admissible representation δ with an effectively compact domain [Tδ]
such that δ is an effectively open map (see [31]). In particular, δ−1[P ] is compact for any compact
subset P ⊆ [0, 1]k. Additionally, we can choose δ so that, given a finite subtree V ⊆ Tδ, one can
effectively find an index of the co-c.e. closed set cl(δ[V ]), and moreover, λd(L∩cl(δ[V ])\δ[V ]) = 0
for any d-dimensional hyperplane L ⊆ [0, 1]k for d ≤ k. For instance, consider a sequence of
2−n-covers (Cn

k )k<b(n) of [0, 1]
k consisting of rational open balls, and then each b-bounded string

σ codes a sequence of open balls (Cn
σ(n))n<|σ|. Then we may define Tδ as the tree consisting of all

b-bounded sequences that code strictly shrinking sequences of open balls, and δ(p) as a unique
point in the intersection of the sequence coded by p ∈ [Tδ]. It is not hard to verify that δ has
the above mentioned properties. Hereafter, we fix such a representation δ : [Tδ] → [0, 1]k.

Now we are ready to prove the assertion. Let ITV[0,1] denote the subspace of A([0, 1])
consisting of nonempty closed intervals in [0, 1]. Consider the following two partial multi-valued
functions:

Z0 := AoUC× id : dom(AoUC)× C(2N, ITV[0,1]) ⇒ 2N × C(2N, ITV[0,1]),

Z0(T, J) = AoUC(T )× {J},
Z1 := (id ◦ π0,XC1 ◦ eval) : 2N × C(2N, ITV[0,1]) ⇒ 2N × [0, 1],

Z1(x, J) = {x} × XC1(J(x)).

Clearly, Z0 ≤W AoUC and Z1 ≤W XC1. We will show that Z1 ◦ Z0 ̸≤W XCk.
We will apply Theorem 11. Let {(Pe, φe, ψe)}e∈N be an effective enumeration of all co-

c.e. closed subsets of [0, 1]k, partial computable functions φe :⊆ NN → 2N and ψe :⊆ NN →
[0, 1]. Intuitively, (Pe, φe, ψe) is a triple constructed by the opponent Opp, who tries to show
Z1 ◦ Z0 ≤W XCk for some k. The game proceeds as follows: We first give an instance (Tr, Jr)
of Z1 ◦ Z0. Then, Opp reacts with an instance Pr of XCk, that is, a convex set Pr ⊆ [0, 1]k,
and ensure that whenever z is a name of a solution of Pr, φr(z) = x is a path through Tr and
ψr(z) chooses an element of the interval Jr(x), where Opp can use information on (names of)
Tr and Jr to construct φr and ψr. By Theorem 11, to show the desired assertion, we only need
to prevent Opp’s strategy.

Hereafter, Pe[s] denotes the stage s upper approximation of Pe. We identify a computable
function φe (ψe, resp.) with a c.e. collection Φe of pairs (σ, τ) of strings σ ∈ N<N and τ ∈ 2<N

(Ψe of pairs (σ,D) of strings σ ∈ N<N and rational open intervals in [0, 1], resp.) indicating that
φe(x) ≻ τ for all x ≻ σ (ψe(x) ∈ D for all x ≻ σ, resp.) We use the following notations:

Φq
e[s] = {(σ, τ) ∈ Φe[s] : |τ | ≥ q},

Ψt
e[s] = {(σ,D) ∈ Ψe[s] : diam(D) < 3−t}.

For a relation Θ ⊆ X × Y , we write DomΘ for the set {x ∈ X : (∃y ∈ Y ) (x, y) ∈ Θ}. We
also use the following notations:

(Φe[s])
−1[ρ] =

∪
{σ ∈ DomΦ|ρ|

e [s] : τ ⪰ ρ},

(Ψe[s])
−1
t [I] =

∪
{σ : (∃D) (σ,D) ∈ Ψt

e[s], diam(D) < 3−t and D ∩ I ̸= ∅},
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Given e, we will construct a computable a.o.u. tree Te and a computable function Je : 2
N →

ITV[0,1] in a computable way uniformly in e. These will prevent Opp’s strategy, that is, there
is a name z of a solution of Pe such that if φe(z) = x chooses a path through Te then ψe(z)
cannot be an element of the interval Je(x). We will also define state(e, q, s) ∈ N ∪ {end}. The
value state(e, q, s) = t(q) indicates that at stage s, the q-th substrategy of the e-th strategy
executes the action forcing the measure λk−q(P̃e) of a nonempty open subset P̃e of Pe to be less

than or equal to 2q−t(q) · εt(q) with εt(q) :=
∑t(q)+1

j=0 2−j < 2. Therefore, if state(e, q, s) tends
to infinity as s → ∞, then the q-th substrategy eventually forces Pe to be at most (k − q − 1)-
dimensional under the assumption that Pe is convex. First define state(e, q, 0) = 0, and we
declare that the q-th substrategy is sleeping (i.e., not active) at the beginning of stage 0. At
stage s, we inductively assume that Te ∩ 2s−1 and state(e, q, s− 1) have already been defined,
say state(e, q, s− 1) = t(q), and if state(e, q, 0) ̸= end then Te ∩ 2s−1 = 2s−1.

Our strategy is as follows:

1. At the beginning of stage s, we start to monitor the first substrategy p which is still asleep.
That is, we calculate the least p < k such that state(e, p, s − 1) = 0. If there is no such
p ≤ k, then go to (3). Otherwise, go to (2) with such p ≤ k.

2. Ask whether φe(z) already computes a node of length at least p+ 1 for any name z of an
element of Pe. In other words, ask whether δ−1[Pe] ⊆ [DomΦp+1

e [s]] is witnessed by stage
s. By compactness, if this inclusion holds, then it holds at some stage.

(a) If no, go to substage 0 in the item (4) after setting state(e, p, s) = 0.

(b) If yes, the substrategy p now starts to act (we declare that the substrategy q is active
at any stage after s), and go to (3).

3. For each substrategy q which is active at stage s, ask whether there is some τ ∈ 2q+1 such
that any point in Pe has a name z such that φe(z) does not extend τ . In other words, ask
whether

(∃τ ∈ 2q+1) Pe ⊆
∪

{δ[φ−1
e [ρ]] : ρ ∈ 2q+1 and ρ ̸= τ}

is witnessed by stage s. Note that δ[φ−1
e [ρ]] is c.e. open since it is the image of a c.e. open

set under an effective open map. Therefore, by compactness, if the above inclusion holds,
then it holds at some stage.

(a) If no for all such q, go to substage 0 in the item (4).

(b) If yes with some q and τ , we finish the construction by setting state(e, 0, s) = end

after defining Te as a tree having a unique infinite path τ⌢0ω. This construction
witnesses that any point of Pe has a name z such that φe(z) ̸∈ [Te] and hence, Opp’s
strategy fails.

4. Now we describe our action at substage q of stage s. If q ≥ k or q is not active at stage s,
go to (1) at the next stage s+ 1 after setting Te ∩ 2s = 2s. Otherwise, go to (5).

5. Ask whether for any name z of a point of Pe, whenever φe(z) extends 0q1, the value of
ψe(z) is already approximated with precision 3−t(q)−2. In other words, ask whether

δ−1[Pe] ∩ φ−1
e [0q1] ⊆ [DomΨt(q)+2

e [s]]

is witnessed by stage s. Again, by compactness, this is witnessed at some finite stage.

(a) If no, go to substage q + 1 after setting state(e, q, s) = t(q).
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(b) If yes, go to (6).

Before describing the action (6), we need to prepare several notations. We first note that
δ−1[Pe] ∩ φ−1

e [0q1] is compact, and therefore, there is a tree V q ⊆ Tδ (where dom(δ) = [Tδ])
such that [V q] = δ−1[Pe] ∩ φ−1

e [0q1]. Moreover, since we answered in the affirmative in the
item (5), by compactness, there is a sufficiently large height l such that every σ ∈ V q of length

l has an initial segment σ′ ⪯ σ such that (σ′, Dσ) ∈ Ψ
t(q)+2
e for some interval Dσ ⊆ [0, 1]

with diam(Dσ) < 3−t(q)−2. Given σ ∈ V q of length l, one can effectively choose such Dσ.
We will define pairwise disjoint intervals I0 and I1 which are sufficiently separated so that if
diam(D) < 3−t(q)−2 then D can only intersects with one of them. Then for every σ ∈ V q of
length l, we define ht(q)(σ) = i if Dσ ∩ Ii ̸= ∅ for some i < 2, otherwise put ht(q)(σ) = 2.

Now we inductively assume that Je(0
q1)[s−1] is a closed interval of the form [3−t(q) ·k, 3−t(q) ·

(k + 1)] for some k ∈ N. Then, define Ii = [3−t(q)−1 · (3k + 2i), 3−t(q)−1 · (3k + 2i+ 1)] for each
i < 2. Note that I0 and I1 be pairwise disjoint closed subintervals of Je(0

q1)[s − 1]. Moreover,
I0 and I1 satisfy the above mentioned property since the distance between I0 and I1 is 3−t(q)−1.
Therefore, h is well-defined on V q ∩ ωl.

We consider cl(δ[V q]) = Pe∩cl(δ[φ−1[0q1]]). By the property of δ, the set P q
e is co-c.e. closed,

and λk−q(cl(δ[V q]) \ δ[V q]) = 0 whenever Pe is at most (k − q)-dimensional. Then, define Q
t(q)
i

for each i < 2 as the set of all points in cl(δ[V q]) all of whose names are still possible to have

ψe-values in Ii. More formally, define Q
t(q)
i as follows:

V
t(q)
i = V q ∩ 2l ∩

(
h−1
t(q){1− i} ∪ h−1

t(q){2}
)
,

Q
t(q)
i = cl(δ[V q]) \ δ[V t(q)

i ].

Obviously, V
t(q)
0 ∪ V t(q)

1 = V q ∩ 2l, and Q
t(q)
i is effectively compact since V

t(q)
i generates a

clopen set for each i < 2. Moreover, we have that λk−q(Q
t(q)
0 ∩Qt(q)

1 ) = 0 whenever Pe is at most

(k − q)-dimensional since Q
t(q)
0 ∩Qt(q)

1 ⊆ cl(δ[V q]) \ δ[V q] and λk−q(cl(δ[V q]) \ δ[V q]) = 0. Now,
the q-th substrategy believes that we have already forced λk−q(δ[V q]) ≤ 2q−t(q)+1 · εt(q)−1 and

therefore, λk−q(Q
t(q)
i ) ≤ 2q−t(q) ·εt(q)−1 for some i < 2 since λk−q(Q

t(q)
0 ∩Qt(q)

1 ) = 0 as mentioned
above. Here recall that we have 1 ≤ εt(q)−1 < εt(q) < 2. Now, we state the action (6):

(6) Ask whether by stage s one can find a witness for the condition that λk−q(Q
t(q)
i ) ≤ 2q−t(q) ·

εt(q)−1 for some i < 2. That is, ask whether one can find Y, t, i by stage s such that

Q
t(q)
i [s] ⊆ Ŷ (2−t) and mk−q(Y, t) < 2q−t(q) · εt(q).

(a) If no, go to substage q + 1 after setting state(e, q, s) = t(q).

(b) If yes, define Je(0
q1)[s] = Ii, and go to substage q + 1 after setting state(e, q, s) =

t(q) + 1.

Eventually, Te is constructed as an a.o.u. tree, and Je(x) is an nonempty interval for any x.
We now show that if Opp’s reaction to our instance (Te, Je) is (Pe, φe, ψe), then Opp loses the
game.

Claim. Suppose that Pe is a nonempty convex subset of [0, 1]k. Then, there is a realizer G
of XCk such that (φe ◦ G(δ−1[Pe]), ψe ◦ G(δ−1[Pe]) is not a solution to Z1 ◦ Z0(Te, Je), that is,
φe ◦G(δ−1[Pe]) ̸∈ [Te] or otherwise ψe ◦G(δ−1[Pe]) ̸∈ Je ◦ φe ◦G(δ−1[Pe]).
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Proof. Suppose not, that is, Opp wins the game with (Pe, φe, ψe) as a witness. We first assume
that Pe is at most (k−q)-dimensional. By our assumption, φe is defined on all points in δ−1[Pe].
By compactness of δ−1[Pe], there is stage s satisfying (2).

Suppose that there is τ ∈ 2q+1 such that Pe[s] ⊆
∪
{δ[φ−1

e [ρ]] : ρ ∈ 2p+1 and ρ ̸= τ}. This
means that any point x ∈ Pe[s] has a name αx ∈ δ−1{x} such that φe(αx) ̸≻ τ . Since Pe ̸= ∅, if
a realizer G chooses such a name αx of a point x ∈ Pe, then φe ◦ G(δ−1[Pe]) ̸∈ [Te] = {τ⌢0ω},
that is, Opp fails to find a path of Te, which contradicts our assumption.

Thus, δ−1[Pe]∩φ−1
e [0q1] is nonempty. Since this is compact and ψe, for any t, there is stage

s satisfying (5) with t(q) = t. We can always assume that λk−q(Pe) < 2q+1 since Pe is an at
most (k − q)-dimensional convex set, Pe is included in a (k − q)-dimensional hyperplane, and
the (k − q)-dimensional Lebesgue measure of any (k − q)-dimensional hyperplane in [0, 1]k is at
most

√
q + 1 < 2q+1. Thus, if t(q) = 0 then λ(δ[V q]) ≤ 2q−t(q)+1 · εt(q)−1 holds since δ[V q] ⊆ Pe

and ε−1 = 1.

If λ(δ[V q]) ≤ 2q−t(q)+1 · εt(q)−1, then λ(Q
t(q)
i ) ≤ 2q−t(q) · εt(q)−1 for some i < 2 as discussed

above. Therefore, by the argument discussed above, at some stage s, one can find a rational
closed subset Y of a (k− q)-dimensional hyperplane, t ∈ N, and i < 2 satisfying the condition in
the item (6). At this stage, the q-th substrategy executes the t(q)-th action, that is, this defines

Je(0
q1)[s] = Ii. Therefore, if Opp wins, Pe has no intersection with δ[V

t(q)
i ]. This is because for

any x ∈ δ[V
t(q)
i ] has a name z ∈ V

t(q)
i , and therefore, φe(z) extends 0

q1 and ψe(z) ̸∈ Ii = Je(0
q1).

Consequently, we have δ[V q] ⊆ Q
t(q)
i , which forces that λk−q(δ[V q]) ≤ 2q−t(q) · εt(q) ≤

2q−t(q)+1. Eventually, we have λk−q(δ[V q]) = 0 as t(q) tends to infinity. Since δ[V q] is a
nonempty open subset of the convex set Pe, the condition λk−q(δ[V q]) = 0 implies that Pe is at
most (k − q − 1)-dimensional. Eventually, this construction forces that Pe is zero-dimensional;
hence, by convexity, Pe has only one point. Then, however, it must satisfy Pe ⊆

∪
{δ[φ−1

e [ρ]] :
ρ ∈ 2p+1 and ρ ̸= τ} for some τ . Therefore, by compactness, this is witnessed at stage s, and
then we answer yes to the question in (3). This witnesses the failure of Opp’s strategy as before,
which contradicts our assumption.

Suppose that Z0 ◦ Z1 ≤W XCk via H and K = ⟨K0,K1⟩, that is, given a pair (T, J) of an
a.o.u. tree T and a nonempty interval J , for any point x of an at most k-dimensional convex
closed set H(T, J), we have K0(x, T, J) = p ∈ [T ] and K1(x, T, J) ∈ J(p). Then there is a
computable function N → N such that Pf(e) = H(Te, Je), φf(e) = λx.K0(x, Te, Je) and ψf(e) =
λx.K1(x, Te, Je). By Kleene’s recursion theorem, there is r ∈ N such that (Pf(r), φf(r), ψf(r)) =
(Pr, φr, ψr). However, by the above claim, (Tr, Jr) witnesses that Opp’s strategy with (Pr, φr, ψr)
fails, which contradicts our assumption.
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We are grateful to Stéphane Le Roux for a fruitful discussion leading up to Theorems 12 and
18.

References

[1] Lenore Blum, Felipe Cucker, Michael Shub & Steve Smale (1998): Complexity and Real Computation.
Springer.



22 Convex choice, finite choice and sorting

[2] Vasco Brattka, Matthew de Brecht & Arno Pauly (2012): Closed Choice and a Uniform Low Basis
Theorem. Annals of Pure and Applied Logic 163(8), pp. 968–1008.

[3] Vasco Brattka & Guido Gherardi (2011): Effective Choice and Boundedness Principles in Com-
putable Analysis. Bulletin of Symbolic Logic 17, pp. 73 – 117. ArXiv:0905.4685.

[4] Vasco Brattka & Guido Gherardi (2011): Weihrauch Degrees, Omniscience Principles and Weak
Computability. Journal of Symbolic Logic 76, pp. 143 – 176. ArXiv:0905.4679.

[5] Vasco Brattka, Guido Gherardi & Rupert Hölzl (2015): Probabilistic computability and choice. In-
formation and Computation 242, pp. 249 – 286. Available at http://arxiv.org/abs/1312.7305.

[6] Vasco Brattka, Guido Gherardi, Rupert Hölzl & Arno Pauly (2017): The Vitali Covering Theorem
in the Weihrauch Lattice, pp. 188–200. Springer International Publishing, Cham. Available at
http://dx.doi.org/10.1007/978-3-319-50062-1_14.

[7] Vasco Brattka, Guido Gherardi & Arno Pauly (2017). Weihrauch Complexity in Computable Anal-
ysis. arXiv 1707.03202.

[8] Vasco Brattka, Peter Hertling & Klaus Weihrauch (2008): A tutorial on computable analysis. In:
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