
De Groot duality for variants of represented spaces

Takayuki Kihara
Department of Mathematical Informatics

Nagoya University, Japan

kihara@i.nagoya-u.ac.jp

Arno Pauly
School of Mathematics & Computer Science

Swansea University, Swansea, United Kingdom

Arno.Pauly@cl.cam.ac.uk

We explore de Groot duality in the category of represented spaces, quasi-spaces (concrete
presheaves on the category of topological spaces), or spaces of similar types. The de Groot
dual of a space is the space of closures of its singletons, with the representation inherited
from the hyperspace of closed subsets. This yields an elegant duality, in particular between
Hausdorff spaces and compact T1-spaces. As some applications of the concept, we also study
the Weihrauch complexity of the unique closed choice on the second Kleene-Kreisel space,
and the point degree spectrum of the dual of Baire space.

Contents

1 Introduction 2

2 Preliminaries 4
2.1 Topology . 4
2.2 Category . 5
2.3 Dominance . 7

3 De Groot dual 12
3.1 De Groot duality for T1 spaces . 12
3.2 De Groot duality for non-T1 spaces . 13
3.3 Iterated dual . 15

4 Generalized represented space 16
4.1 Quotient space . 16
4.2 Requirements for B . 18
4.3 Basic properties . 19
4.4 Abstraction . 20

5 Duality for T1 represented spaces 20
5.1 Proofs of the basics. 21
5.2 The connection to unique closed choice. 22
5.3 More on Hausdorffness. 24
5.4 Proof of Theorem 5.1 . 26

6 Examples 27
6.1 The cofinite topology on N. 27
6.2 The cocylinder topology on Baire space. 27
6.3 The lower reals. 28
6.4 The dual of Q . 28

2 de Groot-like duality

7 Degree Theory 29
7.1 Computability theoretic background . 29
7.2 The strength of unique closed choice . 30
7.3 The Point Degree Spectrum of (NN)d . 33

1 Introduction

In this article, through the theory of represented spaces, higher type computability, synthetic
topology, synthetic domain theory, and so on, we give a unified treatment of the studies of
Π0

1 singletons in classical computability theory [21, Definition XII.2.13] and de Groot duality
in general topology [9, Section 9.1.2]. The former notion has been associated with implicit
definability in classical logic [21, Definition XII.2.13]; hence, this unified treatment gives de
Groot duality a new interpretation: the duality of “explicit” and “implicit”. Conversely, the
pure topological aspect of the latter also provides a renewed understanding of Π0

1 singletons. By
exploring these notions, in this article, we see an elegant duality between Hausdorff spaces and
compact T1-spaces.

We primarily have in mind the category of represented spaces and computable functions (see
Example 2.10 and 4.2), but we also work with a variety of similar categories, including some
full subcategories of the category of topological spaces and continuous maps. For every space X
under consideration in this article, we assume that one can construct the hyperspace A(X) of all
closed subsets of X. For example, for any represented space X, we obtain the represented space
A(X) of closed subsets by identifying a set with the characteristic function of its complement
into Sierpiński space. The exact same construction is possible for exponentiable topological
spaces (Section 2.1).

The de Groot dual of a T1-space X is introduced as the restriction of A(X) to the set of all
singletons. If a non-T1 space is also under consideration, it is the space of the closures of all
singletons. For example, the following definition is given for represented spaces.

Definition 1.1. For a represented space X, let Xd denote the space {{x} | x ∈ X} ⊆ A(X).
We call Xd the de Groot dual of X.

For a more precise description of the de Groot dual, see Section 3. For a T1-space X, if there
is no risk of confusion, a point {x} in the de Groot dual Xd is simply written as x, so we often
consider X and Xd have the same underlying set.

One of our main theorems states that, with respect to T1-spaces, the dual exhibits very
elegant properties, and in particular becomes a duality between Hausdorffness and compactness.
The following theorem lays out how the duality works.

Theorem 1.2. Let X be computably admissible and T1, and let X and Xd each contain two
computable points. Then:

1. id : X → Xdd is computable.

2. Xd ∼= Xddd.

3. The following are equivalent:

(a) X is computably Hausdorff.

(b) X is computably Hausdorff and X ∼= Xdd.

(c) Xdd is computably Hausdorff.

T. Kihara & A. Pauly 3

(d) Xd is computably compact.

(e) id : X → Xd is computable.

(f) id : Xdd → Xd is computable.

4. The following are equivalent:

(a) X is computably compact.

(b) Xdd is computably compact.

(c) Xd is computably Hausdorff.

(d) id : Xd → X is computable.

(e) id : Xd → Xdd is computable.

5. The following are equivalent:

(a) X is computably compact and computably Hausdorff.

(b) X ∼= Xd.

The notion of computability in the assertion here disappears later, so the reader who is
not familiar with computability theory will also be able to understand the whole picture. All
unexplained terms will be introduced in later sections. For now, it is sufficient to understand
somewhat that de Groot dual interchanges Hausdorff and compact. We here emphasize that
this “compact vs. Hausdorff” duality is not previously known in general topology. The reason
will be explained in Section 5.4.

This article is an extended version of the conference paper [18]. While in [18] the authors
focused only on the category of represented spaces and computable functions (as can be seen
from Theorem 1.2), this article extracts the essence of the previous proofs and extends main
theorems to more general categories. We also give complete proofs for some parts of the theorems
that were omitted in [18].

Note that the authors’ previous proof of Theorem 1.2 uses arguments specific to represented
spaces, so it is not at all clear whether Theorem 1.2 can be generalized to other settings (such
as the category of exponentiable topological spaces and continuous maps). The notion of repre-
sentation is of the essence, and its topological meaning must be understood. The key idea is to
consider a represented space as a subquotient of Cantor or Baire space. In this article, we show
that Theorem 1.2 holds for any cartesian closed category of “topological subquotient spaces”
(see Section 4 for the precise meaning).

In Section 2, we explain some background on general topology, and introduce (some fragments
of) synthetic topology and synthetic domain theory. In Section 3, we introduce the notion of de
Groot dual, and show that Xddd ≃ Xd holds in a fairly general setting (almost only cartesian
closedness is used!). In Section 4, we generalize the notion of represented space, based on our
analysis of the conditions under which Theorem 1.2 holds. In other words, it is a description
of our setting, a cartesian closed category of “topological subquotient spaces.” In Section 5,
we prove an analogue of Theorem 1.2 in this general setting. Section 6 discusses some specific
examples and counterexamples. In Section 7, the focus shifts to pure computability theory, and
we begin by explaining the true motivation for our work. Following this true motivation, we
present some new results on Weihrauch degrees of unique closed choice, and the point degree
spectrum of the space of singletons.

Warning: If the reader is a computability theorist, we recommend reading the conference
version [18], as it is more specialized and much shorter and clearer.

4 de Groot-like duality

2 Preliminaries

In Section 2.1, we introduce some background information on exponentiability in the context
of general topology. In Section 2.2, we describe our setup: It is a cartesian closed (concrete)
category with finite limit, where an equalizer is described as a restriction. In Section 2.3, we
extract the essence of the Sierpiński space and give proofs of the necessary lemmata.

2.1 Topology

For topological spaces X and Y , it is an important question whether there is a good topology
on the set C(X,Y) of continuous functions from X to Y . Of particular importance is what is
called an exponential topology (see e.g. [6]).

Definition 2.1. An exponential topology on C(X,Y) is one in which continuity of f : Z×X → Y
and that of its currying λf : Z → C(X,Y) are equivalent, where (λf)(z) : x 7→ f(z, x).

A topological space X is exponentiable if there exists an exponential topology on C(X,Y)
for any topological space Y . If C(X,Y) is endowed with such a topology, we simply write Y X .

We denote the Sierpiński space by S, which consists of a closed point ⊥ and an open point
⊤; that is, the open sets in S are ∅, {⊤} and {⊤,⊥}. The space S is non-Hausdorff (indeed,
non-T1), but is indispensable for treating various notions of topological space in a functional
way. One can easily see the following for any topological space X:

1. A subset A of X is open iff its characteristic map χA : X → S is continuous.

2. X is Hausdorff iff ̸=: X ×X → S is continuous.

3. X is T1 iff, for any x ∈ X, ̸=x : X → S is continuous, where ̸=x(y) is the truth value of
x ̸= y.

Here, ⊤ is interpreted as “true” and ⊥ as “false.” Roughly speaking, the first property (1)
means that the Sierpiński space is an “open subobject classifier”; see also Section 2.3. Identifying
a subset with its characteristic map, if X is exponentiable, the hyperspace O(X) of all open
subsets of X can be defined by the exponential SX . In a similar way, the hyperspace A(X) of
all closed sets can also be defined. Thereafter, by abuse of notation, we often write A(x) for
χA(x).

Observation 2.2. Let X and Y be exponentiable spaces. Then f : X → Y is continuous iff
f−1 : O(Y) → O(X) is continuous.

Proof. For the backward direction, if f−1 : O(Y) → O(X) is well-defined, then f must be
continuous. To show the forward direction, observe that f−1 = λU.U ◦ f . This is continuous
because it is the currying of the composition of id× f : (U, x) 7→ (U, f(x)) and eval : (U, f(x)) 7→
U(f(x)).

There is also a nontrivial characterization of compactness:

Fact 2.3 ([5, 6]). Let X be an exponentiable space. Then, a subset A of X is compact iff
∀A : O(X) → S is continuous, where ∀A(U) is the truth value of “A ⊆ U .”

This fact follows from the result that the exponential topology on O(X) coincides with the
Scott topology and the observation that A is compact iff {U ∈ O(X) : A ⊆ U} is Scott open [5,6].

T. Kihara & A. Pauly 5

If X is exponentable, the neighborhood filter ηX(x) = {U ∈ O(X) : x ∈ U} of a point x ∈ X
is just the evaluation map evalx = λU.U(x) : O(X) → S, which is continuous. If, moreover, O(X)
is exponentable, ηX : X → OO(X) is the currying λx.λU.U(x) of the evaluation map, which is
also continuous. A topological space X is T0 if two different points have different neighborhood
filters; that is, ηX is injective. Under the exponentiability assumption, one can recover any point
x ∈ X from its neighborhood filter ηX(x) in the following sense:

Observation 2.4. If O(X) is exponentable, then X is T0 iff ηX : X → OO(X) has a partial
continuous left inverse.

Proof. As mentioned above, X is T0 iff there exists a function η−X : ⊆ OO(X) → X such that
η−X(evalx) = x. It suffices to show that such an η−X must be continuous; that is, if U ⊆ X is
open, then (η−X)−1[U] ⊆ OO(X) is also open in the domain of η−X . One can identify (η−X)−1[U]
with U ◦ η−X : ⊆ OO(X) → S. Consider the evaluation map eval : OO(X)×O(X) → S. We have
eval(evalx, U) = U(x) = U ◦ η−X(evalx). Thus, U ◦ η−X is the restriction of the continuous map
λe.eval(e, U) : OO(X) → S to the domain of η−X .

A complete characterization of exponentiability is already known:

Fact 2.5 (see [6]). A topological space is exponentiable if and only if it is core compact.

Note that an exponential Y X of an exponentiable space X is not necessarily exponentiable.
In particular, the category of exponentiable spaces and continuous functions is not cartesian
closed. The idea to solve this problem is to “represent” a space by an exponentiable space,
which leads us to the notion of a core-compactly generated space. An important observation for
our purposes is that this notion can be characterized as follows:

Fact 2.6 ([7]). A topological space is core-compactly generated iff it is a quotient of an expo-
nentiable space.

This notion complements several important objects that are left out of a notable convenient
category of topological spaces, the category of compactly generated spaces: Any compactly
generated space is core-compactly generated. A Hausdorff space is compactly generated iff core-
compactly generated. But for us, non-Hausdorff spaces, S,O(X),OO(X), etc., are an absolute
necessity.

Fact 2.7 ([7]). The category of core-compactly generated spaces and continuous functions is
cartesian closed.

However, core-compact spaces have poor behavior on subspaces, so it remains open whether
our results are applicable to this category. In technical terms, the category of core-compactly
generated spaces is the coreflective hull of the category of exponentiable spaces. There is also
the notion of a hereditarily coreflexive hull, which is better behaved with respect to subspaces,
but this is not what we are looking for. The condition we need is that a generator behaves well
with respect to subspaces; see Section 4.2.

2.2 Category

In the previous article [18], the authors have dealt with the category of represented sets and
computable functions. This article also attempts to deal with some subcategories of the category
of core-compactly generated spaces and continuous maps. Another category worth considering
is that of equilogical spaces and equivariant maps [2].

6 de Groot-like duality

First, all of these categories consist of structured sets and structure-preserving functions.
Namely, concrete categories. The most important common feature is that they are all cartesian
closed, and the forgetful functor to Set preserves a lot of structure.

C1. Every object is a (structured) set, and every morphism is a (structure-preserving) function.

C2. It has a finite product:

(a) X1 × · · · ×Xn is the set {⟨x1, . . . , xn⟩ : xi ∈ Xi for each i ≤ n}.
(b) Any projection πi : X1 × · · · ×Xn → Xi is a morphism.

(c) If fi : T → Xi is a morphism for each i < n, then so is t 7→ ⟨f0(t), f1(t) . . . , fn−1(t)⟩ : T →
X1 ×X2 × · · · ×Xn.

C3. It is cartesian closed:

(a) Y X is a set of (not necessarily all) functions from X to Y .

(b) f : Z ×X → Y is a morphism if and only if its currying λf : Z → Y X is a morphism,
where (λf)(z)(x) = f(z, x).

(c) The evaluation map eval : Y X ×X → Y is a morphism, where eval(f, x) = f(x).

Example 2.8. The category of core-compactly generated spaces and continuous functions sat-
isfies (C1)–(C3).

Example 2.9 (see [29]). A qcb0 space is a T0 topological space which is the quotient of a second
countable space. The category of qcb0 spaces and continuous functions satisfies (C1)–(C3).

Example 2.10 (see e.g. [23, 29]). A represented space is a set X equipped with a partial sur-
jection δX : ⊆ NN → X. If δX(p) = x then we say that p is a name of x. A point x ∈ X is
computable if it has a computable name. A function f : X → Y is computable if there exists a
computable function which, given a name of x ∈ X, returns a name of f(x) ∈ Y. The category
Rep of represented spaces and computable functions satisfies (C1)–(C3).

The Baire space NN in the definition of the representation above can be replaced with any
partial combinatory algebra [22]. The correspondence between the category of represented spaces
and that of partial equivalence relations is also well known.

Example 2.11 ([2]). An equilogical space is a T0 topological space X equipped with an
equivalence relation ≡X . For equilogical spaces X and Y, an equivariant map from X to Y is
the equivalence class of a continuous map f : X → Y preserving the equivalence relation; that
is, x ≡X x′ implies f(x) ≡Y f(x′). Moreover, f ≡X→Y g if x ≡X x′ implies f(x) ≡Y g(x′). This
category also satisfies (C1)–(C3).

Example 2.12 (see e.g. [5, Section 4.2]). A quasi-space is a concrete presheaf on Top, where
Top is the category of topological spaces and continuous functions. To be more explicit, a quasi-
space X is a pair of a set X and an assignment D 7→ X(D) such that, for any topological space
D, X(D) is a set of functions from D to X, where (i) X(D) contains all constant functions; and
(ii) x ∈ X(D) implies x ◦ t ∈ X(E) for any continuous map t : E → D. A morphism between
quasi-spaces f : X → Y is a function such that, for any topological space D, x ∈ X(D) implies
f ◦ x ∈ Y (D). This category satisfies (C1)–(C3); see [5, Lemma 4.2.7].

One may also consider some Grothendieck topologies; for instance, a quasi-topological space
is a concrete J-sheaf on Top, where J is a topology declaring finite jointly surjective families
of morphisms as covers. One may replace Top with some other nice categories; e.g., some of

T. Kihara & A. Pauly 7

its full subcategories, such as compact Hausdorff spaces or Stone spaces (i.e., profinite sets).
This version of quasi-topological space is a special case of so-called condensed sets. There is
another variant, a C-space [8], which has a computational meaning. However, changing to a full
subcategory may not retain the properties we require in the latter parts of this article.

Another notion we need is that of “substructure” or “subspace”; that is, if X = (X, τ) is a
structured set and A ⊆ X then one may often consider the substructure X ↾ A = (A, τ ↾ A).

S1. For any object X = (X, τ), and any subset A ⊆ X, there is an object X ↾ A of X whose
underlying set is A.

S2. If f : X → Y is a morphism then the restriction f |A : X ↾ A → Y ↾ B is also a morphism
whenever A ⊆ X, B ⊆ Y and f [A] ⊆ B.

Here, since f is just a (structure-preserving) function, the notion of restriction f |A is already
defined as the restriction of f to the domain A. In technical terms, (S2) merely states that the
restriction always gives a regular subobject (an equalizer). The other conditions required for
X ↾ A will be described later.

Example 2.13. For a represented space X and a subset A ⊆ X, the space X ↾ A is the set A
represented by the restriction of δX to δ−1

X [A]. This satisfies (S1)–(S2).

Example 2.14. For a qcb0 space X and a subset A ⊆ X, the space X ↾ A is the set A endowed
with the sequentialization of the subspace topology. This satisfies (S1)–(S2).

Example 2.15. For a quasi-space X and a subset A ⊆ X, let (X ↾ A)(D) be the set of all
functions x ∈ X(D) whose image is included in A. This assignment D 7→ (X ↾ A)(D) yields a
quasi-space X ↾ A. This satisfies (S1)–(S2).

Definition 2.16. A morphism f : X ↾ A → Y for some A ⊆ X is called a partial morphism
from X to Y, and written f : ⊆ X → Y.

As we work in a concrete category, one can take an element x ∈ X of an object X, but note
that it cannot necessarily be written as a morphism 1 → X from the terminal object. A (unique
value of) a morphism 1 → X is called a point or sometimes a computable point. For example, a
non-computable element x ∈ X in a represented space X is an element, but not a point in this
sense.

Remark (Technical comments). For the very same reason, the underlying set of an exponential
object YX is not necessarily the set of all morphisms from X to Y. For example, in Rep, YX

may contain non-computable continuously realizable functions. Nevertheless, most arguments
work even if one thinks of each f ∈ YX as a morphism from X to Y. Formally, for any
f , consider of := YX ↾ {f}. Then the restriction of the identity function, of → YX, is a
morphism by (S2), so consider its uncurrying of ×X → Y as if it were f : X → Y itself. We
often do this implicitly. One may think of of as an “oracle” that computes f . The reader who
does not want to be bothered by such complications should consider only those categories where
the underlying set of YX coincides with the set of all morphisms from X to Y.

2.3 Dominance

2.3.1 Synthetic topology

As we have already seen, the Sierpiński space S is essential when dealing with topological notions.
In order to extract which properties of S are essential, let us consider a slight abstraction of the

8 de Groot-like duality

Sierpiński space. From the topological point of view, the Sierpiński space is an “open subobject
classifier.” Similarly, from the viewpoint of computability theory, Sierpiński space is the space
of Σ0

1 truth values. A similar idea can be used to consider the space of Σ0
n truth values, etc.

Definition 2.17 ([20, 26]). A predominance is an object S with a distinguished point ⊤ ∈ S
such that, for any object X and any subset A ⊆ X, there are at most one morphism χA : X → S
such that x ∈ A iff χA(x) = ⊤ for any x ∈ X. Such a χA is called a characteristic morphism of
A. A subset A ⊆ X is effectively S-open if its characteristic morphism χA : X → S exists.

In other words, the notion of predominance is a generalization of subobject classifier, where
only some subobjects may be classified. As our category is cartesian closed, one can also deal
with O(X) := SX , OO(X), and so on. An element A ∈ O(X) is called S-open. Then, A ⊆ X is
(effectively) S-closed if it is the complement of an (effectively) S-open set. We may also define
the object A(X) for S-closed subsets, where any argument on closed sets is always reduced to
an argument on open sets via the bijection λA.X \A : O(X) ≃ A(X).

Example 2.18. The topological Sierpiński space S introduced in Section 2.1 with ⊤ ∈ S is a
predominance in any full subcategory of Top having S as an object. The (effectively) S-open
sets are exactly the open sets.

In the category Rep, we also use S to denote the represented Sierpiński space, which consists
of a point ⊥ (whose name is 000 . . .) and a point ⊤ (whose names are other sequences). This is
also a predominance in Rep.

Example 2.19. In the category QSp of quasi-spaces, let よ : Top → QSp be the Yoneda
embedding; that is, for any topological space D, the quasi-space よD is defined by setting
(よD)(E) as the set of all continuous function from E to D. Then よS is a predominance in
QSp.

Indeed, in our concrete setting, a predominance is always two-valued; that is, the underlying
set of S can be assumed to be either {⊤} or {⊤,⊥}.

Proposition 2.20. An object S is a predominance iff S consists only of at most two elements,
one of which is a point.

Proof. The backward direction is obvious since a morphism is a (structure-preserving) function
in our category. Conversely, suppose that S has at least two elements a, b that differ from ⊤.
Then (the restriction of) each projection, S × S ↾ {⟨a, b⟩} → S, is a morphism by (S2). As a
and b differ from ⊤, it is a characteristic morphism of the empty set ∅ ⊆ {⟨a, b⟩}. This means
that ∅ ⊆ {⟨a, b⟩} has two characteristic morphisms x 7→ a and x 7→ b. This contradicts the
uniqueness of a characteristic morphism.

Remark. Proposition 2.20 does not mean that there are only a few predominances. This
is because there are a huge number of “binary truth values.” Computability theorists and
(descriptive) set theorists should instantly come up with a myriad of predominances: Σ0

n truth
values, Π1

1 truth values, Fσ truth values, Borel truth values, projective truth values, and so on.

Some topological notions can be relativized to a given predominance.

Definition 2.21 (see also [5, 23]). Let X be an object in a cartesian closed concrete category
with a predominance S.

1. X is S-Hausdorff if ̸=: X×X → S is a morphism.

T. Kihara & A. Pauly 9

2. X is S-T1 if every singleton is S-closed; that is, {x} ∈ A(X) for any x ∈ X.

3. X is S-compact if ∀X : O(X) → S is a morphism.

4. X is S-T0 if ηX : X → OO(X) is a monomorphism.

5. X is S-admissible if ηX : X → OO(X) has a partial left inverse which is a morphism.

The item (3) reflects Fact 2.3. It is easy to see that X is S-compact iff IsEmpty : A(X) → S is
a morphism, where IsEmpty(A) is the truth value of “A = ∅.” Note that both of the conditions
(4) and (5) correspond to T0-ness as seen in Observation 2.4. An object satisfying (4) is also
called an S-space, and an object satisfying (5) is called an extensional S-space, e.g. in [13]. Some
notions essentially equivalent to the predominance versions of Hausdorff-ness and compactness
have been studied, for example, in [25].

Let us introduce an analogous notion of relative or induced topology.

Definition 2.22 (Relative topology). An S-subspace of an object X is an object A with A ⊆ X
such that U ⊆ A is S-open iff there exists an S-open set Û ⊆ X such that U = Û ∩A.

Observation 2.23. IfA is an S-subspace ofX, then every morphism f : A → S can be extended
to a total morphism f̂ : X → S.

2.3.2 Admissibility

This subsection is intended to illustrate the idea of the notion of admissibility. This is used, for
example, to link represented spaces with topological spaces (Corollary 4.8), but is not used in
the body of the proof, so it can be skipped.

Based on Observation 2.2, one can introduce the notion of continuity relative to a given
predominance:

Definition 2.24. A function f : X → Y is S-continuous if f−1 : O(Y) → O(X) is a morphism.

Observe that every morphism is S-continuous since f−1 = λU.U ◦ f . The converse does not
hold in general. The notion of continuity and morphism can be linked via the neighborhood
filter ηX : X → OO(X), where recall ηX(x) = evalx = λU.U(x). To see this, let us define
Xtop = OO(X) ↾ ηX [X]. In [18], this notion has been called the admissibilification of X. Note
that X is S-admissible (Definition 2.21) iff X ≃ Xtop via ηX .

Proposition 2.25. f : X → Y is S-continuous iff ηX ◦ f : X → Ytop is a morphism.

Proof. First observe ηX(f(x)) = evalf(x) = λU.U(f(x)) : O(X) → S. Therefore, ηX ◦ f =
λx.λU.U(f(x)) : X → OO(Y). One can easily see that this is a morphism iff f−1 = λU.U ◦
f : O(Y) → O(X) is a morphism. The latter means that f is S-continuous.

As a consequence, if Y is S-admissible, under the identification of Y and Ytop, a function
f : X → Y is S-continuous iff it is a morphism. Let us take a look at what kinds of objects are
S-admissible. The following results have already been shown in [23, Section 9] in the category
of represented spaces, and similar ideas are applicable to our setting.

Proposition 2.26. Any predominance S is S-admissible. If Y is S-admissible, then so is any
exponential YX.

10 de Groot-like duality

Proof. Indeed, ηS : S → OO(S) has a left-inverse λU.U(idS) : OO(S) → S, where note that
ηS(t)(idS) = idS(t) = t. For the latter claim, we first describe the process (evalf , x) 7→ evalf(x).

This is given by restricting the morphism H := λα.λx.λU.α(λg.U(g(x))) : OO(YX) → X →
O(Y) → S. This is because H(evalf)(x)(U) = evalf (λg.U(g(x))) = U(f(x)) = evalf(x)(U). This

yields a function of type (YX)top×X → Ytop, which is a morphism by (S2). By S-admissibility
of Y, we have a morphism evalf(x) 7→ f(x) : Ytop → Y. The rest is done through composition
and currying.

Proposition 2.27. If X is S-admissible, so is any restriction X ↾ A.

Proof. Put A = X ↾ A, and fix an inclusion morphism i : A ↪→ X. Let us first describe the
process ηA(x) 7→ ηX(x). This is given by the morphismH := λα.λU.α(U◦i) : OO(A) → OO(X).
This is becauseH(ηA(x))(U) = evalx(U◦i) = U◦i(x) = U(x) = ηX(x)(U). Let η−X : OO(X) → X
be a partial left inverse of ηX . Note that the image of η−X ◦H|Atop is included in A. Thus, by the
regularity requirement (S2), η−X ◦H|Atop can be viewed as a morphism Atop → A. Therefore, A
is S-admissible.

Corollary 2.28. Xtop is S-admissible, i.e., (Xtop)top ≃ Xtop.

Proof. By Proposition 2.26, OO(X) is always S-admissible. As Xtop is a restriction of OO(X),
by Proposition 2.27, Xtop is S-admissible.

One can also prove that this process preserves various topological properties. For example:

Observation 2.29. If X is computably Hausdorff, so is Xtop.

Proof. Currying ̸=: X×X → S yields a morphism λx.X \{x} : X → O(X). Thus, ⟨ηX(x), y⟩ 7→
(x ̸= y) : Xtop × X → S is a morphism since this is ⟨ηX(x), y⟩ 7→ ηX(x)(X \ {y}). This shows
that ηX(x) 7→ X \ {x} : Xtop → O(X) is a morphism. Thus, by the same argument as above,
we see that ̸=: Xtop ×Xtop → S is a morphism.

For further background on admissibility, see [23,29].

2.3.3 Lift

Although it would be difficult to apply the results of this article to a predominance other than
the Sierpiński space, we nevertheless deal with a predominance because it is deeply connected
to the notion of lift, which plays an essential role in our proof. The following are basic “lifting”
properties of a predominance (see [13] and also [20, Chapter 4]):

1. A predominance S always yields an S-partial map classifier Y⊥ whose underlying set is
Y⊥ = Y ∪ {⊥Y }; that is, any partial morphism f : ⊆ X → Y with an effective S-open
domain can be extended to a total morphism f⊥ : X → Y⊥ such that if x ∈ dom(f) then
f⊥(x) = f(x); otherwise f⊥(x) = ⊥Y .

2. It also yields a lifting functor; in particular, for any morphism f : X → Y we have a
morphism f⊥ : X⊥ → Y⊥ such that if x ∈ X then f⊥(x) = f(x); otherwise f⊥(x) = ⊥Y .

Often ⊥Y is abbreviated to ⊥ when there is no confusion. For readers who do not want to
be bothered with abstractions, it is sufficient to consider only standard examples in Example
2.18. It is quite obvious that the above lifting properties hold for these standard examples.

T. Kihara & A. Pauly 11

Definition 2.30 ([20,26]). A predominance S is a dominance if a retraction µ : S⊥ → S exists;
that is, µ is a morphism such that µ(x) = x for x ∈ S and µ(⊥S) = ⊥.

Lemma 2.31. If S is a dominance, then a retraction O(X)⊥ → O(X) exists.

Proof. As A is effectively S-open in A⊥, one can see that A × B is also effectively S-open in
A⊥ ×B, since χA ◦ π0 : A⊥ ×B → S is a characteristic morphism of A × B ⊆ A⊥ × B. Thus,
id : A×B → A×B is extended to id⊥ : A⊥×B → (A×B)⊥. Now, considerA = SX and B = X.
Compose id⊥ and the lift eval⊥ : (SX×X)⊥ → S⊥ of eval : SX×X → S. As S is a dominance, we
have an arrow µ : S⊥ → S, so we obtain the morphism e := µ ◦ eval⊥ ◦ id⊥ : (SX)⊥ ×X → S. By
currying, we get ẽ : (SX)⊥ → SX . Then we have ẽ(⊥) = λx.⊥, and f ̸= ⊥ implies ẽ(f) = f .

Given a morphism δ : D → O(X), by Lemma 2.31, we get a lift δ′ : D⊥ → O(X)⊥ → O(X);
that is, if p ̸= ⊥ then δ(p) = p; and if p = ⊥ then δ(p) = ∅, where note that λx.⊥ is identified
with the empty set ∅.

In the standard topological setting, ⊥ is the bottom element in the specialization order on
X⊥. We will show that the same fact holds in our general setting.

Definition 2.32. For an object X, given x, y ∈ X, we write x ≤X y if x ∈ U implies y ∈ U for
any S-open set U ⊆ X. This preorder ≤ is called the S-specialization preorder (or the intrinsic
preorder [13]) on X.

Observation 2.33. For any morphism f : X → Y, x ≤X y implies f(x) ≤Y f(y).

Proof. f(x) ∈ U implies x ∈ f−1[U], which implies y ∈ f−1[U] by the assumption x ≤X y; hence
f(y) ∈ U .

For the behavior of Sierpiński spaces in Top or Rep, one can easily see the following prop-
erties:

D1. S is a lattice with the top element ⊤ and the bottom element ⊥ under the S-specialization
order.

D2. ∨,∧ : S2 → S are morphisms.

The standard assumptions on synthetic domain theory guarantees these properties (see
e.g. [13]). Our Examples 2.18 and 2.19 also satisfy (D1)–(D2). Under the requirement (D2), the
union and intersection operations can be treated as morphisms:

Observation 2.34. For any object X, the operations ∪,∩ : O(X)2 → O(X) are morphisms.

Proof. Note that ∪ = λ⟨U, V ⟩.λx.U(x) ∨ V (x) and ∩ = λ⟨U, V ⟩.λx.U(x) ∧ V (x).

Under the requirements (D1) and (D2), the specialization order on the open sets coincides
with the inclusion relation:

Lemma 2.35. For any S-open sets U, V ∈ O(X), U ≤O(X) V iff U ⊆ V .

Proof. Assume U ≤O(X) V . We show that U(x) = ⊤ implies V (x) = ⊤. As λx.λU.U(x) : X →
OO(X) is a morphism, we have α := λU.U(x) ∈ OO(X). By our assumption U ≤O(X) V ,
α(U) = ⊤ implies α(V) = ⊤. This means that x ∈ U implies x ∈ V .

Assume U ⊆ V . Consider H := λ⟨s, t⟩.λu.s ∨ (t ∧ u) : S2 → SS. Then H(U(x), V (x)) =
λu.U(x)∨(V (x)∧u), soH(U(x), V (x))(⊥) = U(x) andH(U(x), V (x))(⊤) = U(x)∨V (x) = V (x)

12 de Groot-like duality

since U ⊆ V implies U(x) ≤S V (x). Then we get G := λt.λx.H(U(x), V (x))(t) : S → O(X).
Note that G(⊥) = U and G(⊤) = V . For any S-open α : O(X) → S, by Observation 2.33,
α ◦ G : S → S must be order preserving, which means that α(U) ≤S α(V). Thus, α(U) = ⊤
implies α(V) = ⊤.

One can see that ⊥ ∈ X⊥ is actually the bottom in the specialization order; that is, for any
S-open set U ⊆ X⊥, if ⊥ ∈ U then U = X⊥.

Lemma 2.36. For any object X, the bottom ⊥ is the least element in the S-specialization order
on X⊥. More generally, for any object Y, we have (⊥, y) ≤X⊥×Y (x, y) for any x ∈ X⊥ and
y ∈ Y .

Proof. Let U : X⊥ ×Y → S be a morphism. The restriction π̄ of the projection π : S×X → X
to {⊤} ×X is a morphism by (S2). As {⊤} ×X ⊆ S ×X is effectively S-open, π̄ is extended
to a morphism π̄⊥ : S × X → X⊥. For V := λ⟨x, y⟩.λt.U(π⊥(t, x), y) : X × Y → O(S), we see
V (x, y)(⊤) = U(π(⊤, x), y) = U(x, y) and V (x, y)(⊥) = U(⊥, y). As V (x, y) ∈ O(S), V (x, y) is
S-open in S. As ⊥ is the bottom element w.r.t. ≤S, ⊥ ∈ V (x, y) implies t ∈ V (x, y) for any t ∈ S.
If U(⊥, y) = ⊤, then ⊥ ∈ V (x, y), so ⊤ ∈ V (x, y), which means that U(x, y) = V (x, y)(⊤) =
⊤.

Note that this means that, for any morphism f : X⊥ ×Y → S, if f(⊥, y) = ⊤ then we must
have f(x, y) = ⊤ for any x ∈ X.

3 De Groot dual

3.1 De Groot duality for T1 spaces

Our main object of study in this article is the notion of de Groot dual. We begin with an
explanation of de Groot dual in general topology. If (X, τ) is a T1 space, the (topological) de
Groot dual is the set X endowed with the cocompact topology τd; that is, U ⊆ X is τd-open iff
X \U is compact. For further background on topological de Groot dual, see [12] and [9, Section
9.1.2].

This notion can also be derived from the compact-open topology of function spaces. Let
Cco(X,Y) be the space of continuous maps from X to Y endowed with the compact-open topol-
ogy. We write Aco(X) for the hyperspace of closed sets obtained by identifying f ∈ Cco(X, S)
with a closed set {x ∈ X : f(x) = ⊥}.
Observation 3.1. The de Groot dual of a T1 topological space X is homeomorphic to the
subspace of Aco(X) consisting of all singletons in X.

Proof. As χU [K] ⊆ {⊤} iff K ⊆ U , the topology on Oco(X) := Cco(X, S) is generated from
{U ∈ Oco(X) : K ⊆ U}, where K is compact. As K ⊆ X \ {x} iff x ̸∈ K, the topology
on co-singletons in Oco(X) is generated from {X \ {x} : x ̸∈ K}, where K is compact. The
map x 7→ X \ {x} gives a homeomorphism between the de Groot dual of X and the subspace
of Oco(X) consisting of co-singletons. The latter is clearly homeomorphic to the subspace of
Aco(X) consisting of singletons.

Recall that A(X) is the hyperspace of all closed sets in X equipped with the exponential
topology; that is, it is the space obtained via the indentification A(X) ≃ SX.

T. Kihara & A. Pauly 13

Corollary 3.2. If a topological space X is exponentiable, locally compact and T1, then its de
Groot dual is homeomophic to the subspace of A(X) consisting of all singletons in X.

Proof. If X is exponentiable, locally compact, then the exponential topology on C(X,S) coin-
cides with the compact-open topology; see [5, Section 8.5].

Based on this observation, our main idea is to define the de Groot dual of X as the restriction
of the exponential A(X) to the set of all singletons. Of course, A(X) and Aco(X) do not
necessarily coincide, so it may be possible that this definition may not match the topological de
Groot dual. But the difference, if any, between A(X) and Aco(X) is marginal. In later sections,
we will discuss the relationship between the two definitions in a setting that also includes non-T1

spaces.
Now, let us consider a cartesian closed concrete category C equipped with a predominance

S and a restriction ↾. Then we define the de Groot dual of a C-object as follows:
Definition 3.3. The de Groot dual of an S-T1 object X is defined as A(X) ↾ {{x} : x ∈ X}.

This definition is inspired by the notion of Π0
1 singleton in computability theory. See Section

7.1 for details.

Example 3.4. Computable points in (NN)d are exactly Π0
1 singletons in NN.

By Propositions 2.26 and 2.27, the de Groot dual Xd is always S-admissible. The conditions
on a category that make Theorem 1.2 on T1 de Groot duals valid are a bit complicated, so before
giving details, we prove a theorem that holds under looser conditions.

3.2 De Groot duality for non-T1 spaces

In the standard topological setting, one can define the de Groot dual of a non-T1-space [9, Section
9.1.2]: An open set in the de Groot dual Xd is the complement of a saturated compact set in
X, where a set A ⊆ X is saturated if it is an intersection of open sets.

One can also introduce the de Groot dual as a subspace of the hyperspace A(X) of closed
sets, following the form of Definition 3.3. However, in a non-T1-space, a singleton is no longer
a closed set, so it is necessary to take its closure. This process allows us to extend Observation
3.5 to non-T1 spaces.

Observation 3.5. The de Groot dual of a T0 topological space X is homeomorphic to the
subspace of Aco(X) consisting of all closures of singletons in X.

Proof. As X is T0, x 7→ {x} is bijective. A closed set A ⊆ X, if it does not intersect with
S ⊆ X, does not intersect with the saturation of S either. Note also that the saturation of a
compact set K is also compact since an open cover of K always covers its saturation. Thus, as
in Observation 3.5, one can easily see that x 7→ {x} is indeed a homeomorphism.

It is useful to introduce various topological notions in terms of specialization order. Note
that x ≤X y iff {x} ⊆ {y}. Thus, the closure {x} of a singleton corresponds to the downward
closure ↓x := {y ∈ X : y ≤X x}, while the saturation of a set A ⊆ X is the upward closure ↑A.

Based on this observation, one may attempt to introduce the de Groot dual as the restriction
of A(X) to the closure of points. A predominance yields a specialization order, so it seems
possible to treat the closure of a point as ↓x. However, in too general a setting, ↓x may not be
a closed set. Therefore, when dealing with de Groot duals for non-T1 spaces, we will have to
add the following ad hoc requirement.

14 de Groot-like duality

D3. For any x ∈ X, ↓x is S-closed, i.e., ↓x ∈ A(X).

Natural examples such as the category of represented spaces and computable functions (Ex-
ample 2.10) and the category of core-compactly generated spaces and continuous maps (Example
2.8) – indeed, any full subcategory of Top – obviously satisfies (D3) with respect to the standard
Sierpiński space S (Example 2.18), so it is best to keep those categories in mind.

Definition 3.6. The de Groot dual of an object X is defined as Xd = A(X) ↾ {↓x : x ∈ X}.
If X is S-T0, then the map x 7→ ↓x is bijective, so one can think of an underlying set of Xd

as X by identifying ↓x with x. Hereafter, we assume that an object X is always S-T0.
Even in natural examples, it is not obvious at first glance how much difference there is

between A(X) and Aco(X), and thus it is not clear how our definition connects to the topological
de Groot dual. In the case of represented spaces, we know a few things:

Example 3.7. By Schröder [28, Proposition 4.2.5 (4)], the standard exponential representation
is admissible with respect to the compact open topology on C(X,Y) wheneverX is sequential. In
particular, the standard representation of the hyperspace of closed sets is admissible with respect
to Aco(X). By restricting its domain, we get an admissible representation of the de Groot dual
Xd ≃ {{x} : x ∈ X} ⊆ Aco(X). By Schröder [28, Proposition 2.4.18 (4)], this implies that
the de Groot dual built as a represented space is homeomorphic to the sequentialization of the
topological de Groot dual.

It remains open as to whether the sequentialization is necessary.

Problem 3.8. For any qcb0 space X, is Xd built in the category of qcb0 spaces homeomorphic
to the topological de Groot dual of X?

To analyze this in a general setting, let us introduce an object K(X) consisting of saturated
compact subsets. A subset A ⊆ X is S-compact iff ∀A : O(X) → S is a morphism, where ∀A(U)
is the truth value of “A ⊆ U .” Therefore, it seems natural to identify a compact subset of X
with an element of OO(X). However, note that for S-compact subsets A,B ⊆ X, A and B have
the same S-saturation iff ∀A = ∀B. Here, the S-saturation of A ⊆ X is defined as the upward
closure ↑A w.r.t. the S-specialization order on X. Therefore, it is reasonable to regard ∀A as
the name of the saturation of A. By restricting OO(X) to the elements of the form ∀A, we can
introduce objects consisting of saturated compacts.

Definition 3.9. The object K(X) is defined as the restriction of OO(X) to the set of all ∀A
such that A ⊆ X is S-saturated and S-compact.

The following already shows that there is a genuine connection: The de Groot dual as we
defined it here is in fact the “least” representation such that saturated compacts of the original
space translate to complements of open subsets.

Proposition 3.10. id : K(X) → A(Xd) is well-defined and a morphism. Moreover, if X′ is
an object with the same underlying set X such that id : K(X) → A(X′) is well-defined and a
morphism, then id: X′ → Xd is a morphism.

Proof. For the first claim: Given A ∈ K(X) and ↓x ∈ Xd we can confirm x /∈ A by detecting
that A ⊆ X \ ↓x, i.e., ∀A(X \ ↓x) = ⊤. It is obvious that the condition suffices. To see that it
is necessary, assume y ∈ A ∩ ↓x. Note that y ∈ ↓x iff x ∈ ↑y. Since A is saturated, then y ∈ A
implies x ∈ ↑y ⊆ ↑A = A.

For the second claim, we start with x ∈ X′. Given any y ∈ X, since y ∈ U iff ↑y ⊆ U for
any open set U , the evaluation map ∈ : X × O(X) → S yields a name of the saturation of its

T. Kihara & A. Pauly 15

singleton ↑y ∈ K(X). By assumption, this lets us get ↑y ∈ A(X′). By composing the evaluation
map ̸∈ : X′ × A(X′) → S, we now get a morphism y 7→ (x ̸∈ ↑y) = (y ̸∈ ↓x) : X → S, which
realizes ↓x ∈ Xd.

Even in a full subcategory C of Top, the reason why Proposition 3.10 does not already
tell us that our definition of Xd yields the de Groot dual is two-fold: First, we do not merely
require that complements of saturated compacts are open, but we require that they are open
in a uniform way. Second, it only shows that Xd is minimal amongst the C-objects for this
property – we would need to separately ensure that the topological de Groot dual of a C-object
is indeed a C-object once more.

At any rate, it will not cause any major problems if we consider our de Groot dual to be the
“best approximation” of the topological de Groot dual within a given category C.

3.3 Iterated dual

For the topological de Groot dual, Kovár has shown that taking iterated duals will yield at
most four distinct topological spaces [19]. In our setting, based on the cartesian closedness
requirement for our category, we observe that the iterated dual will only yield at most three
distinct represented spaces, with an argument that is similar to but simpler than the one by
Kovár.

Theorem 3.11. Xddd ≃ Xd for any object X.

To prove this, we need some preparations. Topologically, the complement of ↓x = {x} is the
exterior ext({x}), so it is reasonable to consider this as an intuitionistic negation. That is, we
may write ¬x = X \ ↓x and use it instead of ↓x.

Definition 3.12. The de Groot dual of an object X is defined as Xd = O(X) ↾ {¬x : x ∈ X}.

The two de Groot duals (Definitions 3.6 and 3.12) are isomorphic, so we can use either one,
but we may gain a new perspective by viewing the de Groot dual as a kind of negation. For
example, we can first derive the following “contrapositive rule” A → B ≡ ¬B → ¬A for the
specialization order:

Proposition 3.13. For any x, y ∈ X, x ≤X y iff ¬y ≤Xd ¬x.

Proof. By definition, x ≤X y iff ¬y ⊆ ¬x. All that remains is to show that ¬y ≤Xd ¬x if and
only if ¬y ⊆ ¬x. For this, note that our proof of Lemma 2.35 can be applied to any restriction
of O(X) by (S2). Let us describe this carefully to illustrate the use of (S2).

For the forward direction, we restrict λU.λz.U(z) : O(X) → SX to get a morphism of type
Xd → SX by (S2). By uncurrying and currying, we get a morphism λz.λU.U(x) : X → O(Xd),
so we have α := λU.U(z) ∈ O(Xd). If ¬y ≤Xd ¬x, then α(¬y) = ⊤ implies α(¬x) = ⊤. This
means that z ∈ ¬y implies z ∈ ¬x.

For the backward direction, assume U ⊆ V . Consider H : S2 → SS in Lemma 2.35.
Then H(U(z), V (z))(⊥) = U(z) and H(U(z), V (z))(⊤) = V (z). If U, V ∈ Xd then we have
λz.H(U(z), V (z))(t) ∈ {U, V } ⊆ Xd for any t ∈ S. Thus, the range of the morphism G :=
λt.λz.H(U(z), V (z))(t) : S → O(X) is included in Xd, so the regularity requirement (S2) en-
ables us to think of the codomain of G as Xd. For any S-open α : Xd → S, by Observation 2.33,
α ◦ G : S → S must be order preserving, which means α(U) ≤S α(V). Thus, α(U) = ⊤ implies
α(V) = ⊤. This means U ≤Xd V . Finally, consider U = ¬y and V = ¬x.

16 de Groot-like duality

Observe that an object is S-T1 iff its specialization order has no nontrivial chain. The forward
direction is the same as in the standard topological argument. For the backward direction, the
latter condition implies ↓x = {x}, which is S-closed by (D3). Combining Proposition 3.13 with
this observation, we conclude that X is T1 iff Xd is T1. Thus, the sequences of iterated duals of
S-T1 and non-S-T1 objects never intersect.

Using Proposition 3.13, we can also derive the double negation rule A → ¬¬A:
Corollary 3.14. ¬¬ : X → Xdd is a morphism.

Proof. By Proposition 3.13, ¬¬x(¬y) = ⊤ iff ¬y ̸≤Xd ¬x iff x ̸≤X y iff ¬y(x) = ⊤. This means
¬¬x = λU.U(x). Therefore, ¬¬ = λx.λU.U(x).

Observation 3.15. For any morphism f : X → Y, if f : (X,≤X) → (Y,≤Y) is an order iso-
morphism, then f−1 : Yd → Xd is well-defined and a morphism.

Proof. For any y ∈ Y , by surjectivity, we have some x ∈ X such that f(x) = y. To see that
f−1 is well-defined, it suffices to check that f(x) = y implies f−1[¬y] = ¬x. Since f is an order
isomorphism, x′ ≤X x if and only if f(x′) ≤Y f(x) = y. This implies f−1[↓y] = ↓x, which also
means f−1[¬y] = ¬x. Thus, f−1 : Yd → Xd is well-defined. This can be viewed as a restriction
of f−1 = λU.U ◦ f : O(Y) → O(X), so it is a morphism by the regularity requirement (S2).

For de Groot duality, Xdd ∼= X does not necessarily hold. This may be viewed as the failure
of double negation elimination ¬¬A → A as in the intuitionistic logic. In contrast, we can derive
the triple negation rule ¬¬¬A → ¬A. This is also the same as in the intuitionistic logic.

Corollary 3.16. (¬¬)−1 : Xddd → Xd is a morphism.

Proof. By Corollary 3.14, ¬¬ : X → Xdd is a morphism. Moreover, it is an order isomorphism
since X and Xdd have the same specialization order by Proposition 3.13. Hence, we just need
to apply Observation 3.15 to ¬¬ : X → Xdd.

Now, Theorem 3.11 follows from Corollaries 3.14 and 3.16. Consequently, the iteration
sequence of the de Groot dual of any object terminates in at most three steps.

Example 3.17. In the category of core-compactly generated spaces and continuous maps, we
always have Xddd ≃ Xd.

This contrasts with the existence of a topological space whose iterated dual sequence does
not terminate in at three steps [19]. We will see later an example showing that X,Xd and Xdd

can indeed be three non-isomorphic represented spaces (Section 6).

4 Generalized represented space

4.1 Quotient space

Theorem 3.11 (i.e., Xddd ≃ Xd) has been proved under the rather loose assumption of a finitely
complete cartesian closed concrete category with a predominance (more precisely, (C1)–(C3),
(S1)–(S2) and (D1)–(D3)). Unfortunately, however, the requirements necessary to show Theo-
rem 1.2 are not this loose.

Now our declaration is as follows: To deal with topological notions, our category C is a
cartesian closed concrete category (C1)–(C3) equipped with a predominance S. Moreover, the

T. Kihara & A. Pauly 17

category C consists of (sub-)quotient spaces (w.r.t. the S-topology); that is, every C-object is the
S-topological (sub-)quotient of an object in some well-behaved full subcategory B of C (which
is not necessarily cartesian closed). In detail, first, the “S-topological quotient” formally means
the following:

Definition 4.1. Let B be a full subcategory of C. A quotient B-representation of a C-object X
is a surjection δ : D → X for some B-object D such that A ⊆ X is S-open in X if and only if
δ−1[A] ⊆ D is S-open in D.

In other words, f : X → S is a morphism iff there exists a morphism F : D → S such that
F = f ◦ δ. If δ(p) = x then we often say that p is a δ-name (or simply a name) of x.

Example 4.2 (Represented space). Let B be a concrete category. A B-represented space is a set
X equipped with a surjection δX : DX → X from some B-object DX . A function f : (X, δX) →
(Y, δY) is B-realizable if there exists a B-morphism F : DX → DY which, given a δX -name of
x ∈ X, returns a δY -name of f(x) ∈ Y . By RepB we denote the category of B-represented
spaces and B-realizable functions. One can represent each B-object by the identity function, so
one can think of B as a full subcategory of RepB.

Example 4.3. If B is the category of subsets of NN and computable functions, then RepB is
the category of represented spaces and computable functions.

If B is the category of T0 spaces and continuous maps, then RepB is equivalent to the
category of equilogical spaces and equivariant maps; see also [1].

Observation 4.4. Assume that RepB is equipped with a predominance S. Then every B-
representation δX : DX → X is indeed a quotient representation (DX , id) → (X, δX).

Proof. Assume that f : X → S is a RepB-morphism, which is equivalent to the existence of a
B-morphism F : DX → DS such that f ◦δX = δS◦F . Then one can see that δS◦F : (DX , id) → S
is a RepB-morphism (realized by F). Conversely, assume that there exists a RepB-morphism
g : (DX , id) → S such that f ◦ δX = g. Then there exists a B-morphism G : DX → DS such that
g = δS ◦G. Thus, we have f ◦ δX = δS ◦G, which means that f is a RepB-morphism.

Hereafter, for a B-object D, the represented space (D, id) is sometimes simply written as D.
Next, we present more topological examples of quotient representations.

Example 4.5 (Quotient space). Let B be a concrete category with a predominance S. For a
B-represented spaces (X, δX), we say that A ⊆ X is δX -open if δ−1

X [A] is S-open. This may be
viewed as a generalization of the Ershov topology in the theory of numberings.

For B-represented spaces X and Y, a function f : X → Y is S-continuous if, for any δY -
open set U ⊆ Y , the preimage f−1[U] ⊆ X is δX -open. By TopB we denote the category of
B-represented spaces and S-continuous functions.
Example 4.6. If B is the category of second-countable T0-spaces and continuous maps, where
the equipped predominance is the topological Sierpiński space, then TopB is exactly the category
of qcb0 spaces and continuous maps.

If B is the category of exponentiable spaces and continuous maps, where the equipped
predominance is the topological Sierpiński space, then TopB is exactly the category of core-
compactly generated spaces and continuous maps (Fact 2.6).

Observation 4.7. Every B-representation δX : DX → X is indeed a quotient representation
(DX , id) → (X, δX) in TopB.

18 de Groot-like duality

Proof. Recall that every predominance is at most two-valued by Proposition 2.20. Combining
with (D1), one can see that {⊤} is the unique nontrivial open set in S. Thus, f : X → S is
S-continuous iff f−1{⊤} ⊆ X is δX -open iff (f ◦ δX)−1[⊤] ⊆ DX is S-open iff f ◦ δX : DX → S
is a B-morphism iff f ◦ δX : (DX , id) → S is S-continuous.

Note that every realizable function between B-represented spaces is S-continuous. Obser-
vation 4.7 also means that f : X → S is realizable iff it is S-continuous. As in Observation
2.2, if C ∈ {RepB,TopB} is cartesian closed, one can see that f : X → Y is S-continuous iff
f−1 : O(Y) → O(X) is a C-morphism.

A more precise relationship between the categories RepB and TopB can be given via the
neighborhood filter ηX : X → OO(X). By Proposition 2.25, if RepB is cartesian closed and Y
is S-admissible, then f : X → Y is S-continuous iff it is realizable. Even if Y is not S-admissible,
under the assumption that RepB and TopB are both cartesian closed, ηX ◦ f : X → Ytop is
S-continuous iff it is realizable. Consequently, an S-continuous map can always be treated as a
realizable map in any category consisting of T0 quotient spaces within the scope of this article.

Corollary 4.8. Assume that every object in TopB is S-T0. Then, TopB is equivalent to the
full subcategory of RepB consisting of all S-admissible objects.

Proof. Restrict RepB to objects of the form Xtop. By Proposition 2.28, Xtop is S-admissible,
so by Proposition 2.25, every S-continuous map X → Y gives rise to a realizable map Xtop →
Ytop.

Although it may not be so obvious from the definition, quasi-spaces also have quotient
representations. By the Yoneda embedding, one may think of Top as a full subcategory of
QSp.

Observation 4.9. Every quasi-space has a quotient Top-representation.

Proof. Our idea is similar to [7, Lemma 3.2]. Below we simply write S forよS. For each X, let I
be the set of all non-S-open subsets of X. For any U ∈ I, the characteristic map χU : X → S is
not a morphism, so there is a topological space DU and xU ∈ X(DU) such that χU ◦xU ̸∈ S(DU),
which means that x−1

U [U] ⊆ DU is not open. Now take the topological sum D =
∑

U∈I DU and
the map δ = [xU]U∈I : D → X, where δ(U, d) = xU (d). Note that A ⊆ X is S-open in X iff
x−1
U [A] is open in DU for any U ∈ I iff δ−1[A] is open in D. By merging all constant functions

1 → X (which are in X(1)), one can correct δ to be a surjection.

4.2 Requirements for B

So far we have analyzed the idea of representing a category C by its subcategory B. Of course,
there is no merit in representing C using B unless B behaves better than C in some sense. As of
now, we have no specific requirements for B, so let us add a few objects to B to make it behave
better. We define a full subcategory B∗ of C by the following inductive clause:

1. Every B-object is a B∗-object.

2. If D and E are B∗-objects then D⊥ and D ×E are B∗-object.

Here, as in Section 2.3.3, where there is a predominance S, there is always D⊥. To describe
the requirement for B∗, recall that our category has the notion of restriction X ↾ A of an object
X to a subset A ⊆ X. Our key assumption is that this subcategory B∗ behaves very well with
respect to the restriction, which is essential to our proof.

T. Kihara & A. Pauly 19

S3. For any subset A of a B∗-object D, the restriction D ↾ A is an S-subspace of D.

Here, recall Definition 2.22 for the notion of S-subspace.

Example 4.10. The category of represented spaces and computable functions, the category of
qcb0 spaces and continuous maps, and the category of equilogical spaces and equivariant maps
are all cartesian closed categories satisfying (S3). Here, B and S are those chosen in Examples
4.3 and 4.5, and for a B∗-object D, the restriction D ↾ A is defined as the (topological) subspace
of D whose underlying set is A.

Example 4.11. The category QSp of quasi-spaces satisfies (S3). This is because the base
category Top is closed under × and (−)⊥, and if D is a topological space, D ↾ A is just a
subspace with the relative topology, so it is an S-subspace.

Requirement (S3) may seem a bit demanding, but one can always obtain a new category B+

by adding S-subspaces of B∗ to B if necessary, and by redefining the restriction ↾ on B+, one
can always assume (S3). For example, RepB+ or TopB+ automatically fulfills (S3).

Declaration: Our target category C is RepB or TopB or QSp equipped with a dominance S
and a restriction ↾. Here, we require (C1)–(C3) for C, (C1)–(C2) for B, (D1)–(D2) for S, and
(S1)–(S3) for ↾.

The reader may think that there are too many requirements to understand. But most
of them are obvious and few are essential. There are only two nontrivial requirements, the
subspace requirement (S3) for (B, ↾) and the cartesian closedness requirement (C3) for C, so in
a practical situation, it would be safe to assume that the other requirements do not exist (as
they are trivially met by natural examples). Furthermore, the former (S3) is made obvious by
considering RepB+ or TopB+ . In a nutshell, C is a cartesian closed concrete category consisting
of B-subquotient spaces w.r.t. the S-topology.

4.3 Basic properties

In practice, we usually define a restriction of an object as a restriction of its representation, as
in Example 2.13. That is, our quotient representations always satisfy the following property:

Definition 4.12. A hereditarily quotient representation δ : D → X is a quotient representation
of a C-object X such that, if A ⊆ X then δ|A is a quotient representation of X ↾ A, where
δ|A : D ↾ δ−1[A] → X ↾ A is the restriction of δ to δ−1[A].

Example 4.13. The representation obtained in Observation 4.9 can be modified to a hereditarily
quotient representation by considering all U ⊆ X which is not S-open in X ↾ A for some A ⊆ X.

As far as standard examples are concerned, any representation also behaves well with respect
to the product.

Observation 4.14. If B has binary product, then so is RepB. Indeed, (X × Y, δX × δY) ≃
(X, δX)× (Y, δY) in RepB.

In the case of TopB, it does not do as well, but it behaves well enough for our purposes.
To explain this, let us write X ×B Y for (X × Y, δX × δY). The above observation says that
(X×Y) ≃ (X×B Y) in RepB.

Proposition 4.15. If X and Y are S-T0, then (X×Y) ≃ (Xtop ×B Ytop) in TopB.

20 de Groot-like duality

Proof. LetX andY be B-represented spaces, and letX×Y be their binary product in TopB. By
Proposition 2.25 in RepB, the projection Xtop ×B Ytop → Xtop yields an S-continuous function
Xtop ×B Ytop → X, where such a function is well-defined since X is S-T0. By universality of the
binary product, we get an S-continuous function Xtop ×B Ytop → X×Y, which can be viewed
as the identity map. Conversely, consider the projection π0 : X×Y → X, which is S-continuous;
hence π0 : X × Y → Xtop is realizable by Proposition 2.25 in RepB. By universality of the
binary product, we get a realizable function X×Y → Xtop ×B Ytop, which can also be viewed
as the identity map.

Note that the second half of the proof does not use the T0 property. Thus, ηX×ηY : X×Y →
Xtop ×B Ytop is always a TopB-morphism. Note that in the case of quasi-spaces, the product of
presheaves is pointwise. This completes the list of properties that we will use in later proofs.

4.4 Abstraction

Next, as an option, we suggest the possibility of handling other categories than RepB+ , TopB+

and QSp. Those who are not interested in abstraction may skip this part, but our real purpose
is not so much to generalize as to extract in advance which properties of RepB+ ,TopB+ and
QSp are essential for the proofs. Based on the above observations, we make the following
requirements for our categories B and C.
Q1. Every C-object X is equipped with a hereditarily quotient B-representation δX .

Q2. B satisfies (C1)–(C2), and for any C-object X and Y, δX × δY is a hereditarily quotient
representation of some C-object X×B Y whose underlying set is X × Y .

Q3. ηX × ηY : X×Y → Xtop ×B Ytop is a morphism.

Of course, (Q2) and (Q3) correspond to Proposition 4.15. Note that both RepB, TopB
and QSp fulfill the requirements (Q1)–(Q3). The item (Q3) ensures that, if X and Y are
S-admissible, any morphism X×B Y → Z gives rise to a morphism X×Y → Z.

The above are all the requirements that (C,B, S, ↾) must satisfy. Importantly, our target is
divisible into two layers, the “extensional” level C and the “intentional” level B.

1. S is a dominance that satisfies a few mild requirements (included in the standard require-
ments in synthetic domain theory).

2. B is a concrete category that fulfills a few mild requirements (that most interesting exam-
ples satisfy) and the non-mild essential requirements (S3) and (Q3).

3. C is a concrete category consisting of B-quotient spaces, which fulfills some mild require-
ments and the non-mild essential requirement (C3) of being cartesian closed.

In most interesting cases, C is either RepB or TopB or QSp (or related categories of concrete
sheaves). This is our setup.

5 Duality for T1 represented spaces

Under the requirements described in Section 4.2 (or more generally, in Section 4.4), we finally
prove an analogue of Theorem 1.2.

Theorem 5.1. Let X be S-admissible and S-T1, and let X and Xd each contain two points.
Then:

T. Kihara & A. Pauly 21

1. id : X → Xdd is a morphism.

2. Xd ∼= Xddd.

3. The following are equivalent:

(a) X is S-Hausdorff.
(b) X is S-Hausdorff and X ∼= Xdd.

(c) Xdd is S-Hausdorff.
(d) Xd is S-compact.

(e) id : X → Xd is a morphism.

(f) id : Xdd → Xd is a morphism.

4. The following are equivalent:

(a) X is S-compact.

(b) Xdd is S-compact.

(c) Xd is S-Hausdorff.
(d) id : Xd → X is a morphism.

(e) id : Xd → Xdd is a morphism.

5. The following are equivalent:

(a) X is S-compact and S-Hausdorff.
(b) X ∼= Xd.

The proofs of its claims are spread throughout Subsection 5.1 below. The requirement for
the space and or its dual to contain one or two (computable) points are used only for a few
of the implications. We do not know whether these requirements are needed, but having some
computable points seems like a sufficiently innocent restriction.

While the situation of Hausdorffness and compactness are mostly symmetrical in our main
theorem, there is a notable absence: For computably compact X we cannot conclude that
X ∼= Xdd. An example for this is exhibited in Section 6.

Henceforth, to clarify the comparison with the discussion in the category of represented
spaces and computable functions [18], even in our general setting, we refer to a morphism as
a “computable function” and to S-T for each topological notion T as “computably T .” For
example, an S-Hausdorff object is called a computably Hausdorff space.

5.1 Proofs of the basics.

We proceed to prove the various components of Theorem 5.1. Most of the proofs are presented
by crystal-clear arguments based on higher type computability. These seem to fit well with
synthetic topology [5], with the exception of the proofs of Propositions 5.6 and 5.13 and Lemma
5.11. The essence of proving these three exceptions is the requirement (S3) introduced in Section
4.

Throughout this section, the space X is assumed to be S-T1 without this being necessarily
stated explicitly. If there is no risk of confusion, a point {x} in the de Groot dual Xd is simply
written as x.

Observation 5.2. The map ̸= : X×Xd → S is computable.

22 de Groot-like duality

Proof. As A(X) ≃ SX, the non-membership relation ̸∈ : X×A(X) → S is exactly the evaluation
map, so it is computable. For x, y ∈ X, note that x ̸∈ {y} iff x ̸= y. Thus, the non-membership
relation ̸∈ restricted to X ×Xd is exactly the non-equality relation ̸= via the identification of
{y} with y ∈ Xd. Therefore, ̸=: X×Xd → S is computable.

Corollary 5.3. 1. Xd is T1 (and thus Xdd is well-defined).

2. id : X → Xdd is computable.

Proof. For (1), currying the function ̸= in Observation 5.2 yields the function x 7→ X\{x} : X →
O(Xd). In particular, X \ {x} is open in Xd, which means that Xd is T1. For (2), as currying
preserves computability, the above function is computable, and an O(Xd)-name of X \ {x} is
exactly an Xdd-name of x.

The following is essentially just a rephrasing of the definition of being computably Hausdorff:

Observation 5.4. id : X → Xd is computable iff X is computably Hausdorff.

Proof. As in Corollary 5.3, one can see that id : X → Xd is computable iff ̸=: X × X → S is
computable, which means that X is computably Hausdorff.

5.2 The connection to unique closed choice.

More or less by the definition of admissibility, we find that id : Xd → X is computable for a
computably compact computably admissible space:

Observation 5.5.

1. If X is computably compact and computably admissible, then id: Xd → X is computable.

2. If X is computably compact, then Xd is computably Hausdorff.

Proof. (1) A name of a given x ∈ Xd is also a name of X \ {x} ∈ O(X). By computable
compactness and Observation 2.34, F := λV.λU.∀A(V ∪U) ∈ O(X) → O(X) → S is computable.
Given U ∈ O(X), note that (X \ {x}) ∪ U = X iff x ∈ U . Thus, F (X \ {x}) = ηX(x). By
computable admissibility, this yields an X-name of x.

(2) Names of x, y ∈ Xd are also names of X \ {x}, X \ {y} ∈ O(X). By computable
compactness and Observation 2.34, G := λ⟨V,U⟩.∀A(V ∪U) ∈ O(X)×O(X) → S is computable.
Note that (X \ {x})∪ (X \ {y}) = X iff x ̸= y; that is, G(X \ {x})∪ (X \ {y}) is the truth value
of “x ̸= y.” This shows that ̸=: Xd ×Xd → S is computable. Consequently, Xd is computably
Hausdorff.

Before proving the next Proposition, let us point out that the map id: Xd → X is just another
perspective on the principle of unique closed choice, studied in [3]. To be more precise, as Xd is
a restriction of A(X), one may think of id : Xd → X as a partial morphism UCX : ⊆ A(X) → X,
whose domain is the set of all closed singletons, and UCX({a}) = a for any a ∈ X.

Proposition 5.6. Let X contain a computable point. If id : Xd → X is computable, then X is
computably compact.

T. Kihara & A. Pauly 23

Proof. To prove that X is computably compact, it suffices to show that IsEmpty : A(X) → S
is computable. Fix a quotient representation δ : D → A(X). As in the comment immediately
after Lemma 2.31, consider the lift δ′ : D⊥ → A(X). By Observation 2.34, the function δ′′ =
∩ ◦ (δ × δ′) : D × D⊥ → A(X) is computable. Here, if q = ⊥ then δ′′(p, q) = δ(p); otherwise
δ′′(p, q) = δ(p)∩δ(q). As mentioned above, one may think of id : Xd → X as a partial morphism
UCX : ⊆ A(X) → X. Then the partial function f := λ⟨A,B⟩.A(UCX(A ∪ B)) : ⊆ A(X)2 → S
is computable. By Observation 2.23 together with (S3), f ◦ (δ′′ × δ′′) : ⊆ (D ×D⊥)

2 → S has a
total extension F : (D ×D⊥)

2 → S since (D ×D⊥)
2 is a B∗-object.

We claim that, for any p, q ∈ D, if p is a δ-name of a nonempty closed set P , then we
must have F (⟨p,⊥⟩, ⟨q,⊥⟩) = ⊥. To see this, let x be an element of P . Note that {x} is
a closed set as X is T1. Let ẋ and o be δ-names of the closed sets {x} and ∅, respectively;
so we now have p, ẋ, o ∈ D such that δ(p) = P , δ(ẋ) = {x} and δ(o) = ∅. Then we have
δ′′(⟨p, ẋ⟩) = P ∩ {x} = {x} and δ′′(⟨q, o⟩) = ∅. Observe that UCX({x} ∪ ∅) = x and x ∈ {x},
so we have f({x}, ∅) = ⊥. Hence, we get F (⟨p, ẋ⟩, ⟨q, o⟩) = ⊥. By Lemma 2.36, we obtain
F (⟨p,⊥⟩, ⟨q,⊥⟩) = ⊥. This verifies the claim.

Next, let us consider the case where p is a δ-name of the empty set. By our assumption, we
are given a name z of a computable point z ∈ Xd. As Xd is a restriction of A(X), by (Q1),
one may ensure that the name z is also a name of the closed set {z} ∈ A(X). Observe that
UCX(∅ ∪ {z}) = z and z ̸∈ ∅, so we have f(∅, {z}) = ⊤. Hence, we get F (⟨p,⊥⟩, ⟨z,⊥⟩) =
⊤. Combined with the above claim, for any p ∈ D, we now conclude that p is a δ-name of
the empty set iff F (⟨p,⊥⟩, ⟨z,⊥⟩) = ⊤. This means that for the computable function E :=
λp.F (⟨p,⊥⟩, ⟨z,⊥⟩) : D → S we have E(p) = IsEmpty(δ(p)). As δ is a quotient representation,
this shows that IsEmpty : A(X) → S is computable.

Corollary 5.7. Let X contain a computable point. Then the following are equivalent:

1. id : X → Xd and id: Xd → X are both computable.

2. X is computably admissible, computably compact and computably Hausdorff.

Proof. The direction from (2) to (1) follows from Observations 5.4 and 5.5 (1). For the direction
from (1) to (2), Observation 5.4 and Proposition 5.6 show that X is computably compact and
computably Hausdorff. It remains to show that X is computably admissible. Let evalx : O(X) →
S defined by evalx(U) = (x ∈ U) be given. As y 7→ X \ {y} : Xd → O(X) is a computable
embedding, the function y 7→ evalx(X \ {y}) : Xd → S is also computable. Note that evalx(X \
{y}) = ⊤ iff x ̸= y, so this yields a name of X \ {x} ∈ O(Xd), which is exactly an Xdd-
name of x. This shows that evalx 7→ x : ⊆ OO(X) → Xdd is always computable. By using
our assumption (1) twice, we see that id : Xdd → X is computable, so we conclude that X is
computably admissible.

Remark (Computability theory). Observation 5.5 (1) generalizes the classical observation that
a Π0

1 singleton in Cantor space is computable [21, Exercise XII.2.15 (c)] (whose uniform version
is given in [3, Corollary 6.4] in the context of a unique closed choice). Proposition 5.6 gives a
topological interpretation of the classical observation that a Π0

1 singleton in Baire space (which
is non-compact) is not necessarily computable [21, Exercise XII.2.15 (d)].

24 de Groot-like duality

5.3 More on Hausdorffness.

Proposition 5.8. If X is computably Hausdorff, then id: Xdd → Xd is computable.

Proof. By Observation 5.2, ̸=: Xd×Xdd → S is computable. Since X is computably Hausdorff,
by Observation 5.4, id : X → Xd is computable, so ̸=: X×Xdd → S is computable. By currying,
the function x 7→ X \ {x} : Xdd → O(X) is computable, which means that id : Xdd → Xd is
computable.

Corollary 5.9. Let X be computably Hausdorff and contain a computable point. Then Xd is
computably compact.

Proof. By Proposition 5.8 and Proposition 5.6 (applied to Xd rather than X). Note that by
Corollary 5.3 (2), we obtain a computable point in Xdd from the one we have in X.

Corollary 5.10. If Xd is computably compact, then X is computably Hausdorff.

Proof. By Observation 5.5 (2), if Xd is computably compact, then Xdd is computably Hausdorff.
By Corollary 5.3, id : X → Xdd is computable, so X admits a computable injection into a
computable Hausdorff space, and is thus itself computably Hausdorff.

If objects X and Y have the same underlying set, then define X ∧ Y as the restriction of
X×Y to the diagonal {(x, x) : x ∈ X}.
Lemma 5.11. Let Xd contain two computable points and let X be computably admissible.
Then id: (Xd ∧Xdd) → X is computable.

In order to verify the assertion, we also consider X ∧B Y, which is defined as the restriction
of X×B Y to the diagonal. By (S2), (Q3), and admissibility of X, note that id : (Xd ∧Xdd) →
(Xd ∧B Xdd) is computable.

Proof. As our spaceX is computably admissible, it suffices to show that x 7→ ηX(x) : Xd∧Xdd →
OO(X) is computable. Fix quotient representations δ : D → A(X) and ρ : E → Xdd. As in the
comment immediately after Lemma 2.31, consider the lift δ′ : D⊥ → A(X). Moreover, with a
slight modification of the construction in Proposition 5.6, one may construct δ′′′ : D3 ×D⊥ →
A(X)3 by setting δ′′′(p, q, r, s) = ⟨δ′′(p, s), δ′′(q, s), δ′′(r, s)⟩. That is, if a, b, c, s ∈ D are δ-names
of A,B,C, S, respectively, we have δ′′′(a, b, c, s) = ⟨A ∩ S,B ∩ S,C ∩ S⟩, and δ′′′(a, b, c,⊥) =
⟨A,B,C⟩.

By Observation 5.2, the non-equality ̸=: Xdd×Xd → S is computable. As Xd is a restriction
of A(X), one can think of ̸= as a partial morphism ν : ⊆ Xdd ×A(X) → S. Here, ν(x, {y}) = ⊤
iff x ̸= y. Let us now think the computable function h : A(X)3 → A(X) defined by h(A,B,C) =
A ∪ (B ∩ C); then g := λ⟨x,A,B,C⟩.ν(x, h(A,B,C)) : ⊆ Xdd × A(X)3 → S is computable.
By Observation 2.23 together with (S3), g ◦ (ρ × δ′′′) : ⊆ E × D3 × D⊥ → S is extended to
G : E ×D3 ×D⊥ → S, since E ×D3 ×D⊥ is a B∗-object.

Observe that if h(A,B,C) is a singleton, then x ∈ h(A,B,C) implies g(x,A,B,C) = ⊥.
Even if h(A,B,C) is not a singleton, let us show that the same property holds at the intentional
level. To be more precise, for any ρ-name x̃ ∈ E of x ∈ Xdd and δ-names a, b, c ∈ D of A,B,C,
respectively, we claim that x ∈ h(A,B,C) implies G(x̃, a, b, c,⊥) = ⊥.

This is because, as X is T1, there exists a δ-name ẋ ∈ D of {x} ∈ A(X). Then we have
δ′′′(a, b, c, ẋ) = ⟨A∩{x}, B ∩{x}, C ∩{x}⟩, and note that x ∈ h(A,B,C) implies h(A∩{x}, B ∩

T. Kihara & A. Pauly 25

{x}, C ∩ {x}) = {x}. By definition, we have ν(x, {x}) = ⊥, so we get G(x̃, a, b, c, ẋ) = ⊥. By
Lemma 2.36, we must have G(x̃, a, b, c,⊥) = ⊥. This verifies the claim.

Next, given x, y, z ∈ Xd and U ∈ O(X) one can construct the following closed sets Py, Pz ∈
A(X):

Py =

{
{y} if x ∈ U

{x, y} if x ̸∈ U
Pz =

{
{z} if x ∈ U

{x, z} if x ̸∈ U

Indeed, we have Py = h({y}, {x}, X \ U) and Pz = h({z}, {x}, X \ U). Now we fix two
computable points y, z ∈ Xd.

The next step is to find a procedure to track the function λ⟨x, x, U⟩.U(x) : (Xd ∧ Xdd) ×
O(X) → S. Let ⟨ẋ, x̃⟩ ∈ D × E be a name of ⟨x, x⟩ ∈ Xd ∧ Xdd, and ū ∈ D be a name of
X \ U ∈ A(X). For each t ∈ {y, z}, note that h({t}, {x}, X \ U) = Pt. As seen above, if
x ∈ U then Pt = {t} and if x ̸∈ U then Pt = {x, t}. Now, let ẏ, ż ∈ D be names of y, z ∈ Xd,
respectively. If x ̸∈ U then x ∈ h({t}, {x}, X \ U), so by the above claim, G(x̃, ṫ, ẋ, ū,⊥) = ⊥
must hold for each ṫ ∈ {ẏ, ż}. If x ∈ U then Pt is a singleton, so ν(x, Pt) = ⊤ iff t ̸= x. As either
y ̸= x or z ̸= x holds, we have ν(x, Pt) = ⊤ for some t ∈ {y, z}, so g(x, {t}, {x}, X \ U) = ⊤.
Hence, we get G(x̃, ṫ, ẋ, ū,⊥) = ⊤ for some ṫ ∈ {ẏ, ż}.

Thus, let us consider the computable function H := λ⟨ẋ, x̃, ū⟩.G(x̃, ẏ, ẋ, ū,⊥)∨G(x̃, ż, ẋ, ū,⊥).
The output of H is determined by the truth value of x ∈ U , so the function H tracks the function
λ⟨x, x, U⟩.U(x) : (Xd ∧B Xdd)×B O(X) → S. Let R ⊆ D×E be the set of all names of elements
of Xd ∧Xdd. Then the restriction of δ × ρ to R gives a quotient representation of Xd ∧B Xdd.
Hence, computability ofH : R×D → S implies computability of λ⟨x, x, U⟩.U(x) : (Xd∧BX

dd)×B
O(X) → S. By the argument as above, this gives rise to (Xd ∧Xdd) × O(X) → S, where note
that O(X) is also admissible by Proposition 2.26. Its currying (Xd ∧Xdd) → OO(X) gives the
desired function.

Corollary 5.12. Let X be computably Hausdorff, computably admissible and contain two
computable points. Then X ∼= Xdd.

Proof. Computability of id : X → Xdd is available without assumptions (Corollary 5.3). For
the converse direction, note that given x ∈ Xdd we can first invoke Proposition 5.8 (since X
is assumed to be computably Hausdorff) to obtain x ∈ Xd. We then use Lemma 5.11 to get
x ∈ X. Note that since X is computably Hausdorff, having two computable points in X yields
two computable points in Xd by Observation 5.4.

Note that combining Observation 5.4, Proposition 5.6 and Corollary 5.12 yields the effec-
tivization of [19, Example 4.2].

Proposition 5.13. If Xd contains two computable points and is computably Hausdorff, then
X is computably compact.

Proof. To prove that X is computably compact, it suffices to show that IsEmpty : A(X) → S
is computable. Fix a quotient representation δ : D → A(X) of A(X). As in the comment
immediately after Lemma 2.31, consider the lift δ′ : D⊥ → A(X). Now the function δ′′ =
∩ ◦ (δ × δ′) : D × D⊥ → A(X) is computable. Here, if q = ⊥ then δ′′(p, q) = δ(p); otherwise
δ′′(p, q) = δ(p) ∩ δ(q). By our assumption that Xd is computably Hausdorff, the non-equality
̸=: Xd ×Xd → S is computable. As Xd is a restriction of A(X), one can think of ̸= as a partial

26 de Groot-like duality

morphism ν : ⊆ A(X)×A(X) → S. Then the partial function f = λ⟨A,B,C⟩.ν(A∪B,A∪C) : ⊆
A(X)3 → S is computable. By Observation 2.23 together with (S3), f ◦ (δ′′ × δ′′ × δ′′) : ⊆
(D ×D⊥)

3 → S has a total extension F : (D ×D⊥)
3 → S since (D ×D⊥)

3 is a B∗-object.

Observe that if A ̸= ∅ and A ∪B,A ∪ C are singletons we have f(A ∪B,A ∪ C) = ⊥. Even
if A ∪ B,A ∪ C are not singletons, let us show that the same property holds at the intentional
level. To be more precise, if a, b, c ∈ D are δ-names of A,B,C ∈ A(X), respectively, we claim
that if A ̸= ∅, then we must have F (⟨a,⊥⟩, ⟨b,⊥⟩, ⟨c,⊥⟩) = ⊥.

To see this, let x be an element of A. Note that {x} is a closed set as X is T1. Let ẋ

and o be δ-names of the closed sets {x} and ∅, respectively; so we now have a, ẋ, o ∈ D such
that δ(a) = A, δ(ẋ) = {x} and δ(o) = ∅. Then we have δ′′(⟨a, ẋ⟩) = A ∩ {x} = {x} and
δ′′(⟨q, o⟩) = ∅ for any q ∈ D. Observe that ν({x}, {x}) = ⊥, so we have f({x}, ∅, ∅) = ⊥. Hence,
we get F (⟨a, ẋ⟩, ⟨b, o⟩, ⟨c, o⟩) = ⊥. By Lemma 2.36, we obtain F (⟨a,⊥⟩, ⟨b,⊥⟩, ⟨c,⊥⟩) = ⊥.
This verifies the claim.

Next, let us consider the case where a is a δ-name of the empty set. By our assumption, we are
given names y, z of two computable points y, z ∈ Xd. As Xd is a restriction of A(X), the names
y, z are also names of {y}, {z} ∈ A(X). As y ̸= z, observe that ν({y}, {z}) = ⊤, so we have
f(∅, {y}, {z}) = ⊤. Hence, we get F (⟨a,⊥⟩, ⟨y,⊥⟩, ⟨z,⊥⟩) = ⊤. Combined with the above claim,
for any a ∈ D, we now conclude that a is a δ-name of the empty set iff F (⟨a,⊥⟩, ⟨y,⊥⟩, ⟨z,⊥⟩) =
⊤. This means that for the computable function E := λa.F (⟨a,⊥⟩, ⟨y,⊥⟩, ⟨z,⊥⟩) : D → S we
have E(a) = IsEmpty(δ(a)). As δ is a quotient representation, this shows that IsEmpty : A(X) →
S is computable.

Corollary 5.14. Let X contain two computable points. Then Xdd is computably Hausdorff iff
X is.

Proof. If X is computably Hausdorff, so is Xtop by Observation 2.29. Moreover, they have the
same dual. To see this, first note that η−1

X : (Xtop)d → Xd is computable by Observation 3.15. For
Xd → (Xtop)d, consider a restriction of the evaluation map ⟨ηX(y), X \ {x}⟩ 7→ ηY (y)(X \ {x}),
which is the truth value of “x ̸= y.” This yields ⟨ηX(y), x⟩ 7→ (x ̸= y) : Xtop × Xd → S. By
currying, we get x 7→ {ηX(y) : y ̸= x} : Xd → O(Xtop), where the latter set is Xtop \ {ηX(y)}.
Thus, ηX : Xd → (Xtop)d is computable; hence Xd ≃ (Xtop)d. Corollary 5.12 then yields
Xtop ∼= Xdd, so the latter is computably Hausdorff.

Conversely, if Xdd is computably Hausdorff, then by Corollary 5.9, Xddd is computably
compact (we can lift a computable point from X to Xdd by Corollary 5.3). Since Xd ∼= Xddd by
Corollary 3.11, Xd is computably compact. Then Corollary 5.10 shows that X is computably
Hausdorff.

5.4 Proof of Theorem 5.1

Let us confirm that the above completes the proof of Theorem 5.1. The item (1) follows from
Corollary 5.3 (2). The item (2) follows from Corollary 3.11. For the item (3), (a)→(b): Corollary
5.12. (b)→(c): trivial. (a)↔(c): Corollary 5.14. (a)↔(d): Corollaries 5.9 and 5.10. (a)↔(e):
Observation 5.4. (a)→(f): Proposition 5.8. (f)→(e): Theorem 5.1 (1). For the item (4), (a)↔(c):
Observation 5.5 (2) and Proposition 5.13. (b)↔(c)↔(e): Apply Theorem 5.1 (3) (d)↔(a)↔(e)
to Xd. (a)↔(d): Observation 5.5 (1) and Proposition 5.6. The item (5) follows from Corollary
5.7.

T. Kihara & A. Pauly 27

Remark. De Groot [11] has already described his notion as follows: “One sacrifices the Haus-
dorff property but gains e.g. compactness.” It should be noted that de Groot only comments
on one obvious direction, but this seems to suggest the possibility of “compact vs. Hausdorff”
duality, and it would seem that subsequent studies should have eventually pinned it down.

Nevertheless, concerning Theorem 1.2, we shall note the result that the T1 de Groot dual
interchanges “compact” and “Hausdorff” is not previously known in general topology. Why?
There is an obvious reason for this: this “compact vs. Hausdorff” duality is false in the category
of T1 topological spaces.

If the topological version of Theorem 1.2 also holds, then Xdd ≃ Xd implies that Xd is
compact Hausdorff by the item (5), which implies that X is also compact Hausdorff by (3) and
(4); hence Xd ≃ X by (5) again. However, it is known that there exists a T1 topological space
X such that Xdd ≃ Xd but Xd ̸≃ X (see [12, Example 10] or [19, Example 4.3]).

The notion that plays an essential role in our proof is cartesian closedness, and unfortunately
the category Top of topological spaces is not cartesian closed. Instead, Theorem 5.1 gives an
analogue of Theorem 1.2 in some natural cartesian closed full subcategories of Top.

6 Examples

6.1 The cofinite topology on N.

An important example to illustrate the duality between Hausdorff spaces and compact T1-spaces
is the observation that Nd = Ncof , where Ncof are the natural numbers equipped with the cofinite
topology. We then also have that (Ncof)

d = N.

6.2 The cocylinder topology on Baire space.

As announced in Section 5, we give an example where X ≃ Xdd is not necessarily true even if
X is computably compact and T1.

Definition 6.1. The cocylinder topology τc on NN is generated by co-cylinders {X : X ̸≻ σ}
where σ ranges over finite strings. We write NN

c = (NN, τc).

The space NN
c is second-countable, computably compact and T1. It is neither Hausdorff nor

sober (and thus not stably compact). We see below that (NN
c)

d ≃ NN and thus (NN
c)

dd ≃ (NN)d,
but (NN)d is not second-countable (see Section 7.3), so (NN

c)
dd ̸≃ NN

c .

Proposition 6.2. (NN
c)

d ≃ NN

Proof. First note that a name of x ∈ NN
c is an enumeration (σn)n∈N of all non-prefixes of x.

And, a name of a closed set A ∈ A(NN
c) is a sequence D = (Dn)n∈N of finite sets Dn of strings

such that x ∈ A iff, for any n ∈ N, Dn contains a prefix of x. Thus, given an NN-name of x, by
putting Dn to be the singleton {x ↾ n}, where x ↾ n is the prefix of x of length n, we get a name
of {x} ∈ A(NN

c). This shows that id : NN → (NN
c)

d is computable.
Conversely, assume that a name D of a closed set A ∈ A(NN

c) is given. From such a sequence
D, one may construct a finite-branching tree whose infinite paths correspond to the elements
of A. To see this, we inductively construct a sequence E = (En)n∈N of finite sets of strings as
follows: Let E0 be the singleton consisting of the empty string. Assume that En has already
been constructed. For each σ ∈ En, and each τ ∈ Dn which is comparable with σ, put the longer
of σ and τ into En+1. By leaving only shorter strings in En+1, we may assume that elements

28 de Groot-like duality

of En+1 are pairwise incomparable. Note that En+1 is contained in the upward closure of En

(w.r.t. the prefix order). We claim that x ∈ A iff En has a prefix of x for any n ∈ N. For
the backward direction, note that if En+1 has a prefix of x then so does Dn. For the forward
direction, if x ∈ A, one can inductively ensure that En contains a prefix of x. By the assumption
x ∈ A, Dn also contains a prefix of x, so a prefix of x survives in En+1.

Now, the downward closure of
∪

n∈NEn yields a finite-branching tree TE . If A is a singleton
{x}, by the above arguments, one can see that TE has a unique infinite path x. However, we
only have an enumeration of the tree TE which is not pruned, so it is not straightforward to
compute an NN-name of the unique path x. To overcome this difficulty, note that only one of
the elements of En is a prefix of x. If σ ∈ En is not a prefix of x, we claim that there exists
m > n such that Em fails to have an extension of σ. Otherwise, for any m > n, Em has an
extension τm of σ. If (τm)m>n is eventually constant, say τ , then almost all Dm contain an
initial segment of τ , so any infinite string extending τ must be a path through TE , which is
impossible. Hence, (τm)m∈N contains infinitely many different strings in TE extending σ. Since
TE is finite-branching, König’s lemma implies that TE has an infinite path extending σ, which is
again impossible by our assumption. This verifies the claim, which shows that σ ∈ En not being
a prefix of x is semidecidable. Wait for all but one string in En to turn out not to be a prefix
of x. Then the last remaining one turns out to be a prefix of x. In this way, we can compute a
NN-name of the unique path x, which shows that id : (NN

c)
d → NN is computable.

6.3 The lower reals.

The following example shows that we need to distinguish a space being isomorphic to its dual
and being equal to its dual: The lower reals and the upper reals are isomorphic (with x 7→ −x
being a computable isomorphism), but not equal (as id : R< → R> is not computable).

Proposition 6.3. Rd
< = R>

The following shows that Observation 3.15 (about being able to reverse the direction of a
computable bijection by taking the dual) does not hold once the assumption of being an order
isomorphism is excluded:

Example 6.4. id : R → R< is a computable bijection, yet id : Rd
< → Rd is not computable.

Proof. By Proposition 6.3, we have that Rd
< = R>. As explained in Subsubsection 5.2, id : Rd →

R is unique closed choice on R, which was shown to be Weihrauch equivalent to CN in [3]. Thus,
if id : Rd

< → Rd were computable, then (id : R> → R) ≤W CN. But (id : R> → R) ≡W lim and
CN <W lim are well-known results, leading to a contradiction.

6.4 The dual of Q

Proposition 6.5. Qd is computably compact, T1 and not countably-based.

Proof. The first two claims are consequences of Theorem 1.2, as Q is computably Hausdorff.
By Proposition 3.10, id : K(Q) → A(Qd) is computable. For a Hausdorff space, this is almost

a surjection (with the exception of X itself)1. Based on this we can verify that the non-empty
sets in O(Qd) are all co-scattered, and thus have a countable ordinal attached to them via the
Cantor-Bendixson rank of their complement. Each countable successor ordinal can be embedded

1Unpublished

T. Kihara & A. Pauly 29

into Q as a compact set, i.e. the ranks of elements in O(Qd) is unbounded. As U ⊆ V implies
rank(V) ≤ U, we find that any countable family of open sets from O(Qd) can only generate
open sets with bounded rank, hence not the entire topology.

7 Degree Theory

7.1 Computability theoretic background

Now, let us talk about what this research was really about. Our original motivation for studying
de Groot dual was not in general topology, but in the study of Π0

1 singletons (implicit definability)
in computability theory. The connection with topological de Groot dual was only an accidental
discovery.

Recall that an object is implicitly definable (in arithmetic) if it is a unique solution of
an (arithmetical) predicate; see e.g. Odifreddi [21, Definition XII.2.13]. One of the triggers
that made this notion worth studying in logic was, for example, the following observation:
Tarski’s truth undefinability theorem tells us that arithmetical truth is not explicitly definable
in arithmetic; nevertheless, Tarski’s truth definition gives an arithmetical inductive definition
of the arithmetical truth. The latter shows that the arithmetical truth is implicitly definable in
arithmetic; that is, it is a unique solution of an arithmetical predicate, or more precisely, the
set of codes of true sentences in first order arithmetic is an arithmetical singleton in 2N (see
e.g. Odifreddi [21, Definition XII.2.13 and Proposition XII.2.19]).

In this way, implicit definability can often encode powerful information. Indeed, the arith-
metical truth is implicitly Π0

2 definable in 2N. Moreover, if we write the arithmetical truth in a
functional form, we can save the complexity of the formula, which is then implicitly Π0

1 definable
in NN. In contrast, implicit Π0

1 definability in 2N coincides with computability. Why does this
happen, why is implicit Π0

1 definability (Π0
1 singleton) often tremendously strong, but sometimes

not strong at all? We shall refer to this question as Main Question.

Of course, many researchers may have thought that this is because 2N is compact, and NN is
far from compact. However, there has been almost no research that has explored this topological
idea further. To summarize our situation, {x} is Π0

1, which means that {x} is computable as a
closed set, but x can be neither computable nor even arithmetical. In such a case, the function
{x} 7→ x must have a very high complexity. Indeed, investigating the complexity of {x} 7→ x
corresponds to investigating the strength of implicit Π0

1 definability. One of the directions
prompted by this idea was to study the computability-theoretic strength of unique closed choice
(Brattka-de Brecht-Pauly [3]), where recall from Section 5.2 that the unique closed choice is the
partial function UCX : ⊆ A(X) → X defined by UCX({x}) = x; that is, this is {x} 7→ x.

While classical computability theorists concentrated on studying the details of the degree-
theoretic behavior of arithmetical singletons in NN, computable analysts investigated the behav-
ior of unique closed choice in a variety of natural represented spaces, including Euclidean line R;
see [3]. This direction may not have led to a complete solution of Main Question, but it did lead
us to the idea of comparing the strength of {x} 7→ x in various represented spaces. In Section
7.2, we add a few new results on unique closed choice.

Another direction we came up with was to study the computability-theoretic behavior of the
spaces of singletons, which is the part we have already developed in this article. However, before
arriving at the idea of this article, we first attempted to investigate the set of “degrees” of points
in the space of singletons, in particular a comparison of {deg(x) : x ∈ X} and {deg({x}) : {x} ∈

30 de Groot-like duality

Xd}, where deg(z) denotes the degree of a point z in a certain sense. This direction is based on
the authors’ earlier work [17] on point degree spectra. We discuss the details of this direction
in Section 7.3.

The two supplements (Sections 7.2 and 7.3) are interesting in their own right, independent
of Main Question, the former being a new contribution to the theory of Weihrauch degrees and
the latter to the theory of point degree spectra.

Let us return to Main Question. It is safe to say that Theorem 1.2 gives a complete so-
lution to Main Question. In classical computability theory, it is considered obvious that “any
computable data is implicitly Π0

1 definable,” but we now know the real reason. This is linked
to computability of x 7→ {x}, the item 3(e) in Theorem 1.2, which is equivalent to being com-
putably Hausdorff, and classical computability theorists had only considered this problem in 2N

and NN, which are obviously computably Hausdorff. For the fact that “implicit Π0
1 definability

implies computability” is true in 2N but not in NN, as already mentioned, most researchers had a
vague sense that compactness would be involved, and indeed this was completely correct. This
is linked to computability of {x} 7→ x, the item 4(d) in Theorem 1.2, which is equivalent to
being computably compact. This concludes the study of Main Question.

7.2 The strength of unique closed choice

In this section, we extend previous studies on the strength of unique closed choice. In [3] the
strength of unique closed choice on some Polish spaces was investigated. Here we give new
results on the strength of unique closed choice on some non-Polish/non-second countable spaces
such as C(NN,N). The strength of unique closed choice for a space X classifies how discontinuous
id : Xd → X is, i.e. how different the dual of a space is from the space itself.

We now formally introduce the notion of (unique) closed choice. A function F : X → P(Y)
is often called a multifunction, and written as F : X ⇒ Y . We often think of y ∈ F (x) as y
being a solution to the xth instance of the F -problem.

Definition 7.1 (see [3, 4]). For a represented space X, the closed choice CX : ⊆ A(X) ⇒ X is
a partial multifunction such that its domain is the set of all nonempty closed subsets of X, and
for any nonempty A ∈ A(X), any element in A is a solution to CX(A); that is, CX(A) = A.
The unique closed choice UCX is the restriction of CX to the set of all closed singletons.

For the above definition, it should be noted that an input to CX is (an A(X)-name of) a
closed set A, whereas a (nondeterministic) output is (an X-name of) a point x ∈ A. The notion
used to compare the various principles is Weihraurch reducibility (see [4]).

Definition 7.2. Let X,Y,Z,W be represented spaces, and F : ⊆ X ⇒ Y and G : ⊆ Z ⇒ W
be partial multifunctions. We say that F is Weihrauch reducible to G if there exist partial
computable functions H,K : NN → NN such that

• for any name x of x ∈ dom(F) we have H(x) ∈ dom(G),

• and for any name y of y ∈ G(H(x)), we have K(x, y) ∈ F (x).

The space we consider here is one of the most important and fundamental examples of
non-second-countable spaces, the function space C(NN,N). Here, this space is obtained as the
exponential in the category of representation spaces. This space C(NN,N) is often referred to as
the second Kleene-Kreisel space.

It is not necessary to know what exactly the topology of this space is, but it is necessary to
know the names of the points in this space. A tree is a subset of N<ω which is closed under taking

T. Kihara & A. Pauly 31

prefixes. A tree is well-founded if there is no infinite path through it. A continuous function
f : NN → N is locally constant, so a name of f can be regarded as a list of pairs ⟨σ, n⟩ ∈ N<N×N
that code the information that f takes the constant value n on the open neighborhood [σ], where
[σ] is the set of all extensions of σ. If we consider this as attaching label n to string σ, we can also
consider a name f as a labeled well-founded tree. Here, to ensure well-foundedness, each time
a node is labeled, its (sufficiently large) extensions are removed from the tree so that it cannot
be extended to an infinite path, where well-foundedness of the tree corresponds to totality of f .

This observation predicts a connection between the function space C(NN,N) and the well-
founded trees. By picking a standard bijection between N<ω and N, we obtain an injective
representation δT :⊆ 2N → Trees of the space Trees of trees. We then obtain the space WT ⊆
Trees of well-founded trees.

Lemma 7.3. 1. NN computably embeds as a computable closed subspace into WT.

2. WTN computably embeds as a computable closed subspace into WT.

3. WT computably embeds as a computable closed subspace into C(NN,N).

4. There is a computable closed subset D ⊆ WT × NN and a computable bijection s : D →
C(NN,N).

Proof. (1) Map p ∈ NN to {ε} ∪ {n0k | n ∈ N ∧ k ≤ p(n)}. One can easily see that the
non-membership relation on its image is recognizable.

(2) Map a sequence of trees T0, T1, . . . to {ε} ∪ {nv | n ∈ N ∧ v ∈ Tn}. The range of the
embedding consists of the non-empty trees.

(3) Pick a computable bijection ⟨·, ·⟩ : N<ω → N. We map a well-founded tree T to the
continuous function fT : NN → N mapping p to ⟨p≤n⟩ where n is maximal such that p≤n ∈ T .
Given fT we can reconstruct T . Moreover, given some f : NN → N which is not of the form fT
we can recognize this fact: When the declaration that f takes the constant value τ on [σ] is
enumerated, we reject f if (a string coded by) τ is not an initial segment of σ.

(4) Our idea is to code a continuous function f ∈ C(NN,N) as a labeled well-founded tree, as
described above. A labeled tree is a pair of a tree T ⊆ N<ω and a labeling function ℓ : T → N;
thus one may think of a labeled well-founded tree as an element of WT×NN (using a computable
bijection between N and N<ω). We need to choose one name for each continuous function f to
get a bijection, so we consider the one for which the tree is the most minimal.

We further add a minimality witness for each tree with the following rules: Any vertex
not in the tree is labeled 0. Any leaf is marked as such and labeled with an outcome n ∈ N.
Any inner vertex is marked as such, together with the first pair of leafs extending it that have
different outcomes attached to it; that is, for any inner vertex σ ∈ T , its label is of the form
ℓ(σ) = ⟨τ, ρ⟩ for some leafs τ and ρ extending σ such that ℓ(τ) ̸= ℓ(ρ), and furthermore, ⟨τ, ρ⟩
is the lexicographically least such pair.

Let D be the set of all labeled well-founded trees (T, ℓ) satisfying the above condition. This
set D is computably closed in WT × NN: If (T, ℓ) ̸∈ D because of an inner vertex σ, then we
can eventually recognize it by checking labels of all leafs τ, ρ extending σ. In the case of another
reason, it is obviously recognizable.

Now, each labeled tree (T, ℓ) ∈ D defines a continuous function f : NN → N which maps
p ∈ NN to the outcome label of the leaf of the tree reached by p. Defining s(T, ℓ) = f yields a
computable bijection.

32 de Groot-like duality

Corollary 7.4. CWT ≡W CC(NN,N) and UCWT ≡W UCC(NN,N).

Proof. Using the computable closedness of the image of a computable embedding in Lemma 7.3
(3), one can easily show CWT ≤W CC(NN,N); see also [3, Corollary 4.3]. By the same reason,

one can observe UCWT ≤W UCC(NN,N). Moreover, by Lemma 7.3 (4), the preimage function s−1

computably transforms a closed set in C(NN,N) into a closed set in D. As D is computably
closed, the latter can be considered as a closed set in WT × NN. Thus, the closed choice on
C(NN,N) is Weihrauch reducible to that on WT×NN. Lemma 7.3 (1),(2), the latter is Weihrauch
reducible to CWT by the same reason as above. As s is bijective, the above argument also shows
UCC(NN,N) ≤W UCWT.

We also show that these principles are closed under parallelization and sequential composi-
tion. The parallelization of F is defined as F̂ (⟨xi⟩i∈N) = ⟨F (xi)⟩i∈N. The sequential composition
G⋆F expresses the result of applying F followed by G. To be more precise, it is a representative
of the greatest Weihrauch degree in {g ◦ f : f ≤W F and g ≤W G}; see [4] for the details.

Corollary 7.5. CC(NN,N) and UCC(NN,N) are closed under parallelization and compositional prod-
uct.

Proof. By Corollary 7.4, it is sufficient to show both for CWT and UCWT. Using Lemma 7.3
(2), one can easily see that CWT and UCWT are closed under parallelization. Moreover, as WT
is a subspace of NN, CWT is closed under sequential composition by [3, Theorem 7.3]. The same
argument applies to UCWT.

Let us discuss the Weihrauch complexity of unique choice. As discussed in [15], the unique
choice on Baire space, UCNN , is related to the second strongest principle ATR in the Big Five
of reverse mathematics [30]. What we are now interested in is the complexity of UCC(NN,N).
We shall see that it is powerful enough to determine well-foundedness of a given tree. This
suggests that UCC(NN,N) is more powerful than the strongest principle in the Big Five. Let
isWellfounded: Trees → 2 be the problem determining whether the input tree is well-founded
or not.

Lemma 7.6. isWellfounded ≤W UCWT

Proof. We are given a tree T and construct a closed set A of trees containing exactly one well-
founded tree. Any tree which is not a subtree of 0N<ω or {1, 2}N<ω gets rejected from A. A
subtree of 0N<ω gets rejected if and only if it differs from 0T . A subtree of {1, 2}N<ω gets
rejected if it contains a vertex of the form 1v but not of the form 1n0k. Moreover, if kn is such
that 1n0kn is in the tree but 1n0kn+1 is not, and we find that k0k1k2 . . . kℓ does not belong to
T , we reject as well. Finally, the tree gets rejected unless a vertex of the form 2v is present if
and only if v is lexicographically below k0k1 . . . k|v|−1 and belongs to T .

If T is well-founded, then 0T is the only well-founded tree belonging to A. If T is ill-founded,
then the unique well-founded tree in A is of the form {ε, 1} ∪ {1n0i | i ≤ p(n)} ∪ 2T ′ where p
is the left-most infinite path through T and T ′ in the part of T to the left of p. If A is a valid
input to CWT, and if S the well-founded tree in A, we can determine whether T is well-founded
by inspecting whether 0 ∈ S or not.

T. Kihara & A. Pauly 33

Of course, deciding well-foundedness of a given tree corresponds to deciding the truth value
of a given Π1

1 formula φ with a real parameter. When such a formula has a number variable,
the process of constructing {n ∈ N : φ(n)} is called Π1

1 comprehension. Alternatively, the Π1
1

comprehension principle Π1
1-CA can be defined as the parallelization of isWellfounded. Note

that this is also known as the hyperjump operator; see e.g. [27, Section II.7] or [30, Definition
VII.1.5].

Corollary 7.7. Π1
1-CA <W UCC(NN,N).

Proof. By Corollary 7.5, UCC(NN,N) is closed under parallelization, so parallelize both sides of

Lemma 7.6 to obtain Π1
1-CA ≤W UCC(NN,N). For the strictness, note that Π1

1-CA is not closed
under compositional product; that is, the double hyperjump is more powerful than the single
hyperjump [27], while UCC(NN,N) is closed under compositional product by Corollary 7.5.

The above proof indeed shows that UCC(NN,N) is stronger than the iterated hyperjump oper-

ator; that is, Π1
1-CA

♢ ≤W UCC(NN,N), see [31] for the diamond operator.

7.3 The Point Degree Spectrum of (NN)d

Finally, we discuss an approach to studying the structure of a represented space by measuring
the computability-theoretic complexity of its points. This idea was introduced in the authors’
previous study [17], which we called the point degree spectrum. For a more comprehensive study,
see also [16]. The reason why it is appropriate here to measure the complexity of points in a
space is that the study of Π0

1 singletons in classical computability theory is a degree-theoretic
analysis of a point (i.e., a singleton), rather than an exploration of the entire de Groot dual.

Definition 7.8. Let X and Y be represented spaces. For x ∈ X and y ∈ Y we write y ≤M x
if there exists a partial computable function F : ⊆ X → Y such that F (x) = y; that is, given a
name of x, one can effectively find a name of y.

The structure (X,≤M) (or the set of ≡M -equivalence classes of all elements in X) is called
the point degree spectrum of X. The point degree spectrum links the study of computability-
theoretic degree structures such as the Medvedev degrees, enumeration degrees and Turing
degrees to σ-homeomorphism types of topological spaces [16,17,24].

We show that, relative to any oracle, the point degree spectrum of the de Groot dual of NN

contains non-enumeration degrees. Indeed, we show that there are “powerless” points in (NN)d

in the sense that they cannot compute any nontrivial enumeration degree.

Definition 7.9. A non-computable point x ∈ X is SN-quasi-minimal if for any y ∈ SN, y ≤M x
implies that y is computable.

As SN is a universal second-countable T0 space, we find that a SN-quasi-minimal point is
Y-quasi-minimal for any second countable space Y. The degrees of points in SN are exactly
the enumeration degrees, so another perspective on SN-quasi-minimal points is that they are
non-computable points not computing any non-trivial enumeration degree.

Note that while the previous sections have focused mainly on the complexity of {x} 7→ x,
the above notion (for X = (NN)d) analyzes computability of {x} 7→ y for all y ∈ SN. This is also
important for understanding the computability-theoretic strength of singletons.

Theorem 7.10. Relative to any oracle, there are continuum many SN-quasi-minimal (NN)d-
degrees.

34 de Groot-like duality

In the following, we write xX to emphasize that x is a point in the represented space X. To
avert superscript-overload, we will write E for SN and B for NN.

Lemma 7.11. If yE ≤T xB
d
, then one of the following must hold:

1. yE is computable.

2. xB ≤T xB
d ⊕ (N \ y)E

Proof. A witness for yE ≤T xB
d
is an enumeration operator Φ that reads sufficiently many non-

prefixes of x and then enumerates numbers n ∈ N into y. The two cases we distinguish concern
whether Φ will give wrong answers if fed wrong input. To be precise, the first case is that there
exists some ℓ ∈ N such that Φ will never enumerate some m /∈ y when reading only finite strings
of length at least ℓ. The second case then is that for any ℓ ∈ N there exists a finite list of strings,
each string having length at least ℓ, which causes Φ to enumerate some m /∈ y.

In the first case, yE is already computable: We can inspect Φ to enumerate all numbers
m ∈ N that would ever be enumerated upon reading a finite list of finite strings, each longer
than ℓ. By assumption, all of these numbers actually belong to y. Moreover, xB

d
has a name

made up from only finite words longer than ℓ, which ensures that we do enumerate all m ∈ y in
the manner.

In the second case, if we do have access to (N \ y)E we can actually find, for each ℓ ∈ N,
a finite sequence of words of length ℓ or more, which cause some m /∈ y to be enumerated by
Φ. But that means that such a sequence cannot be extended to a name for xB

d
; i.e. that we

have identified finitely many words of length ℓ or more with the guarantee that one of them is a
prefix of xB. Doing this for all ℓ ∈ N means we obtain a finitely branching tree T (with known

branching factors) through which x is an infinite path. If we also have xB
d
available to us, we

can eliminate all infinite paths but x from T , and then compute xB.

Proof of Theorem 7.10. Given an oracle z, it is easy to construct a Π0
1(z) singleton {x} in NN

such that x ̸≤T z′ (see [21, Exercises XII.2.14 (d), and XII.2.15 (e)]). Moreover, if {x} is such
a Π0

1(z), then so is {x ⊕ z}. We will write xz := x ⊕ z where x is constructed from z in this
manner.

Now, given an oracle r, consider any z ≥T Or, where Or is the hyperjump of r, that is,
a Π1

1(r)-complete subset of N. Then, {xz} is not a Π0
1(r) singleton; otherwise, xz is ∆1

1 in
r [21, Proposition XII.2.16], and thus xz ≤T Or ≤T z, a contradiction.

We will show that (xz)
Bd

is E-quasiminimal relative to r. We argued above that (xz)
Bd

is

not computable relative to r. Assume that some non-computable y ∈ E satisfies yE ≤T (xz)
Bd

relative to r. Then it follows by Lemma 7.11 that xBz ≤T xB
d

z ⊕ (N \ y)E ⊕ r. We know that z

can compute xB
d

z and r, and thus also yE . But then z′ computes z and (N \ y)E , hence xz ≤T z′.
But we constructed xz such that x ̸≤T z′, and thus have reached a contradiction. It follows
that (xz)

Bd
is E-quasiminimal relative to r. As there are continuum many z ≥T Or, and since

z1 ̸= z2 implies xz1 ̸= xz2 , the claim follows.

Having continuum many SN-quasi-minimal points has a topological interpretation. For topo-
logical spaces X and Y, a function f : X → Y is σ-continuous (see e.g. [17]) if it can be decom-
posed into countably many continuous functions; that is, there is a countable partition {Xi}i∈N
of X such that f |Xi is continuous for each i ∈ N. The relevance of (the hierarchy of) σ-continuity
to computability theory is discussed in depth in [10,14,17].

T. Kihara & A. Pauly 35

Corollary 7.12. For any second-countable T0 space Y, if f : (NN)d → Y is σ-continuous, then
there is a set A of cardinality continuum such that the image f [A] is countable.

Proof. Let f : Bd → Y be a σ-continuous function, where Y is a second-countable T0 space.
Then, via an embedding Y ↪→ SN, one can think of f as a σ-continuous function f : Bd → SN.
Then, f is σ-computable relative to some oracle r (see e.g. [17]). Note that f(x) ≤M x⊕ r. Let
A ⊆ Bd be the set of all points which are second-countable quasi-minimal relative to r, that is,
if x ∈ A then f(x) is r-computable. Then, since there are only countably many r-computable
points in SN, the range of f [A] is countable as desired. By Theorem 7.10, A has cardinality of
the continuum.

Note that the idea of the proof of Theorem 7.10 is to exploit the difference in computability
theoretic strength between explicit and implicit definability. That is, the classical observation
that “implicit definability can often encode more powerful information than explicit definability”
is the key to the analysis of the point degree spectrum of the de Groot dual of NN.

Acknowledgements

We are grateful to Matthew de Brecht for fruitful discussions. We also thank Satoshi Nakata
and Soichiro Okuda for valuable comments on synthetic domain theory. We are also grateful to
the anonymous referees for valuable suggestions and comments.

References

[1] Andrej Bauer (2002): A relationship between equilogical spaces and type two effectivity. 48, pp.
1–15. Dagstuhl Seminar on Computability and Complexity in Analysis, 2001.

[2] Andrej Bauer, Lars Birkedal & Dana S. Scott (2004): Equilogical spaces. Theoret. Comput. Sci.
315(1), pp. 35–59.

[3] Vasco Brattka, Matthew de Brecht & Arno Pauly (2012): Closed choice and a uniform low basis
theorem. Ann. Pure Appl. Logic 163(8), pp. 986–1008.

[4] Vasco Brattka, Guido Gherardi & Arno Pauly ([2021] c⃝2021): Weihrauch complexity in com-
putable analysis. In: Handbook of computability and complexity in analysis, Theory Appl. Comput.,
Springer, Cham, pp. 367–417.

[5] Mart́ın Escardó (2004): Synthetic Topology: of Data Types and Classical Spaces. Electronic Notes
in Theoretical Computer Science 87, pp. 21–156.

[6] Mart́ın Escardó & Reinhold Heckmann (2001/02): Topologies on spaces of continuous functions. In:
Proceedings of the 16th Summer Conference on General Topology and its Applications (New York),
26, pp. 545–564.

[7] Mart́ın Escardó, Jimmie Lawson & Alex Simpson (2004): Comparing Cartesian closed categories of
(core) compactly generated spaces. Topology Appl. 143(1-3), pp. 105–145.

[8] Mart́ın Escardó & Chuangjie Xu (2016): A constructive manifestation of the Kleene-Kreisel contin-
uous functionals. Ann. Pure Appl. Logic 167(9), pp. 770–793. Available at https://doi.org/10.
1016/j.apal.2016.04.011.

[9] Jean Goubault-Larrecq (2013): Non-Hausdorff topology and domain theory: Selected topics in point-
set topology, New Mathematical Monographs 22. Cambridge University Press, Cambridge.

36 de Groot-like duality

[10] Vassilios Gregoriades, Takayuki Kihara & Keng Meng Ng (2021): Turing degrees in Polish spaces
and decomposability of Borel functions. J. Math. Log. 21(1), pp. Paper No. 2050021, 41.

[11] J. de Groot (1967): An isomorphism principle in general topology. Bull. Amer. Math. Soc. 73, pp.
465–467.

[12] J. de Groot, H. Herrlich, G. E. Strecker & E. Wattel (1969): Compactness as an operator. Compositio
Math. 21, pp. 349–375.

[13] J. M. E. Hyland (1991): First steps in synthetic domain theory. In: Category theory (Como, 1990),
Lecture Notes in Math. 1488, Springer, Berlin, pp. 131–156.

[14] Takayuki Kihara (2015): Decomposing Borel functions using the Shore-Slaman join theorem. Fund.
Math. 230(1), pp. 1–13.

[15] Takayuki Kihara, Alberto Marcone & Arno Pauly (2020): Searching for an analogue of ATR0 in the
Weihrauch lattice. J. Symb. Log. 85(3), pp. 1006–1043.

[16] Takayuki Kihara, Keng Meng Ng & Arno Pauly (2019). Enumeration degrees and non-metrizable
topology. arXiv:1904.04107.

[17] Takayuki Kihara & Arno Pauly (2022): Point degree spectra of represented spaces. Forum Math.
Sigma 10, pp. Paper No. e31, 27.

[18] Takayuki Kihara & Arno Pauly ([2023] c⃝2023): De Groot duality for represented spaces. In: Unity
of logic and computation, Lecture Notes in Comput. Sci. 13967, Springer, Cham, pp. 89–101.

[19] Martin Maria Kovár (2003): At most 4 topologies can arise from iterating the de Groot dual. Topology
Appl. 130(2), pp. 175–182.

[20] John R. Longley (1994): Realizability Toposes and Language Semantics. Ph.D. thesis, University of
Edinburgh.

[21] P. G. Odifreddi (1999): Classical Recursion Theory. Vol. II, Studies in Logic and the Foundations
of Mathematics 143. North-Holland Publishing Co., Amsterdam.

[22] Jaap van Oosten (2008): Realizability: an introduction to its categorical side, Studies in Logic and
the Foundations of Mathematics 152. Elsevier B. V., Amsterdam.

[23] Arno Pauly (2016): On the topological aspects of the theory of represented spaces. Computability
5(2), pp. 159–180.

[24] Arno Pauly (2018): Enumeration degrees and topology. In: Sailing routes in the world of computation,
Lecture Notes in Comput. Sci. 10936, Springer, Cham, pp. 328–337.

[25] Arno Pauly & Matthew de Brecht (2015): Descriptive set theory in the category of represented
spaces. In: 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2015),
IEEE Computer Soc., Los Alamitos, CA, pp. 438–449.

[26] Giuseppe Rosolini (1986): Continuity and Effectiveness in Topoi. Ph.D. thesis, University of Oxford.

[27] Gerald E. Sacks (1990): Higher recursion theory. Perspectives in Mathematical Logic. Springer-
Verlag, Berlin.

[28] Matthias Schröder (2003): Admissible representations for continuous computations. Ph.D. thesis,
University of Hagen, Germany.

[29] Matthias Schröder ([2021] c⃝2021): Admissibly represented spaces and qcb-spaces. In: Handbook of
computability and complexity in analysis, Theory Appl. Comput., Springer, Cham, pp. 305–346.

[30] Stephen G. Simpson (2009): Subsystems of second order arithmetic. Perspectives in Logic. Cambridge
University Press, Cambridge; Association for Symbolic Logic, Poughkeepsie, NY, second edition.

[31] Linda Westrick (2021): A note on the diamond operator. Computability 10(2), pp. 107–110.

