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Abstract. Jayne and Rogers proved that every function from an analytic
space into a separable metrizable space is decomposable into countably many
continuous functions with closed domains if and only if the preimage of each

Fσ set under it is again Fσ . Many researchers conjectured that the Jayne-
Rogers theorem can be generalized to all finite levels of Borel functions. In
this paper, by using the Shore-Slaman join theorem on the Turing degrees, we

show the following variant of the Jayne-Rogers theorem at finite and transfinite
levels of the hierarchy of Borel functions: For all countable ordinals α and
β with α ≤ β < α · 2, every function between Polish spaces having small
transfinite inductive dimension is decomposable into countably many Baire

class γ functions with ∆0
β+1 domains such that γ +α ≤ β if and only if, from

each Σ0
α+1 set, one can continuously find its Σ0

β+1 preimage.

1. Summary

1.1. Introduction. In the early 20th century, Nikolai Luzin asked whether every
Borel function on the real line can be decomposed into countably many continu-
ous functions. The Luzin problem was negatively answered in the 1930s. Then,
which Borel functions are decomposable into continuous functions? In the end of
the 19th century, Baire introduced a well-known hierarchy of real functions by it-
erating pointwise limits of continuous functions. A famous theorem by Lebesgue
and Hausdorff states that every real function is of Baire class α if and only if the
preimage of each open set under it is a Borel set of additive class α, i.e., a Σ0

α+1

set in the well-known Borel hierarchy. One can introduce finer hierarchy of Borel
functions than Baire’s one. For countable ordinals α, β < ω1, a function is called
Σα,β if the preimage of each Σ0

α set under it is Σ0
β . Then, where is the boundary

of decomposability in this finer hierarchy of Borel functions?
A remarkable theorem proved by Jayne-Rogers [15] states that theΣ2,2 functions

are precisely the ∆0
2-piecewise continuous functions, where for a class Γ of Borel

sets and a class F of Borel functions, we say that a function is Γ-piecewise F
(denoted by the symbol decαF if Γ is a delta class ∆0

α) if it is decomposable into
countably many F-functions with Γ domains (see also [17] for an alternative proof).
Subsequently, Solecki [31] proved a dichotomy (see also [21, 24, 26]) sharpening
the Jayne-Rogers theorem by using the Gandy-Harrington topology from effective
descriptive set theory.

More recently, a significant breakthrough was made by Semmes [28], who used
Wadge-like infinite two-player games and priority arguments to show that on the
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zero-dimensional Polish space ωω, the Σ3,3 functions are precisely the ∆0
3-piecewise

continuous functions, and the Σ2,3 functions are precisely the ∆0
3-piecewise Σ0

2-
measurable (i.e., Σ1,2) functions. Countable decomposability at all finite levels
of Borel hierarchy has been studied by Pawlikowski-Sabok [24] and Motto Ros
[21]. Naturally, many researchers expected that the Jayne-Rogers theorem and
the Semmes theorem could be generalized to all finite levels of the hierarchy of
Borel functions (see Andretta [1], Semmes [28], Motto Ros [21, Conjecture 1.6],
and Pawlikowski-Sabok [24, Conjectures 7.1 and 7.2, and Question 7.3]).

Decomposability Conjecture. On separable metrizable spaces with analytic do-
main, the equality Σm+1,n+1 = decn+1Σ1,n−m+1 holds. In other words, the Σm+1,n+1

functions are precisely the ∆0
n+1-piecewise Σ0

n−m+1-measurable functions at all fi-
nite levels m,n ∈ ω.

In this paper, we introduce the notion of the Σ→
α,β functions, which are a special

subclass of the Σα,β functions. Roughly speaking, a function is said to be Σ→
α,β

if a continuous function witnesses that it is Σα,β , that is, a continuous function
maps each code of a Σ0

α set to a code of its Σ0
β preimage (For precise definition,

see Definition 1.1). One can also realize this notion by introducing lightface (i.e.,
computable) versions of the Σα,β functions and relativizing them by oracles.

Here, we should emphasize the significance of the concept of decomposability
in computability theory and computer science. As typical examples from compu-
tational complexity theory, nonuniform complexity classes are usually defined as
classes of problems that are feasibly solvable with advice strings, that is, classes
of problems solved by piecewise feasible functions. For several applications of
nonuniform computability on countably-based topological spaces, see [4, 33]. More-
over, it is important to note that a certain type of computational learning process
(such as the identification in the limit) can be captured as ∆0

2-piecewise continuity
[3, 6, 11, 12]. Further, as a type of piecewise continuity, the concept of layerwise
computability based on Luzin’s theorem in measure theory is playing a greater role
in the algorithmic randomness theory and effective probability theory [13, 19].

Our main theorem states that for all countable ordinals α and β, every Σ→
α+1,β+1

function between Polish spaces having small transfinite inductive dimension is de-
composable into a countable list {Fn}n∈ω of functions such that each Fn is Σ0

γ+1-
measurable for some ordinal γ with γ + α ≤ β. Furthermore, if α ≤ β < α · 2,
a function between Polish spaces having small transfinite inductive dimension is
Σ→

α+1,β+1 if and only if it is decomposable into such a list {Fn}n∈ω where dom(Fn)

is ∆0
β+1. This can be considered as a partial solution to the decomposability con-

jecture. To achieve our objective, we employ the Shore-Slaman join theorem on the
Turing degrees to show the lightface (i.e., computable) version of our main theorem,
and then, we obtain the boldface theorem by relativizing it.

1.2. Preliminaries. For the basic concepts of computable analysis, see Weihrauch
[32], and for (effective) descriptive set theory, see Kechris [18] and Moschovakis [20].

The set of all natural numbers is denoted by ω. The notation f :⊆ X → Y
denotes that f is a partial function from X into Y . For any reals X,Y ∈ ωω, the
symbol X ≤T Y denotes that X is Turing reducible to Y ; X ⊕ Y denotes the real
Z with Z(2n) = X(n) and Z(2n + 1) = Y (n). Given X ∈ ωω and e, n,m ∈ ω,
the notation Φe(X;n) = m denotes that the e-th Turing machine with input n
and oracle X halts and outputs the value m. As usual, we sometimes think of
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each Turing machine Φe as a partial function from ωω into ωω, where its domain
dom(Φe) is the set of all oracles X such that Φe(X;n) is defined for all n ∈ ω. Let
X ′ denote the Turing jump of X, that is, the halting problem relative to X, and
let X(α) denote the α-th iterated Turing jump of X for every computable ordinal
α.

Let ωω denote the Baire space of infinite sequences of natural numbers, that
is, the topological product of countably many discrete spaces ω. Each Borel set
is frequently identified with a so-called Borel code in the fields of (descriptive) set
theory. We only require a coding Bα : x 7→ Bα

x of Σ0
α subsets of a given space X

to fulfill the following conditions.

(1) (Total surjectivity) Bα : ωω → Σ0
α(X ) is total and surjective.

(2) (Measurability) {⟨x, y⟩ ∈ ωω ×X : y ∈ Bα
x } is Σ0

α.

The usual Borel coding restricted to Σ0
α sets satisfies the above two conditions

(see [2, 20]). Hereafter, we fix a Borel coding Bα satisfying (1) and (2), and
then, identify each Borel set Bα

x with its code x ∈ ωω. For instance, we say that
a function F : Σ0

α(X ) → Σ0
β(Y) is continuous if there is a continuous function

f : ωω → ωω such that F (Bα
x ) = Bβ

f(x) for every x ∈ ωω. Then, the condition (2)

can be rephrased as follows.

(2’) The membership relation ∈α: X ×Σ0
α(X ) → S is Σ0

α-measurable,

where ∈α (x,A) is the truth value of x ∈ A, and S = {0, 1} is Sierpiński’s connected
two-point space whose open sets are ∅, {1}, and {0, 1}.

Hereafter, by a represented space, we mean a recursively presented Polish space
(see [20]; or, more generally, the reader may take a represented space in this paper
to mean an admissibly represented space in the sense of [32], that is, a T0 quotient
of a second-countable space endowed with the notion of computability [27]).

Definition 1.1. Let X ∈ 2ω be a real, let α, β < ωX
1 be ordinals, and let X and

Y be represented spaces. A function F : X → Y is Σ→
α,β (respectively, ΣX

α,β) if it is

Σα,β , and the function F−1 : Σ0
α(Y) → Σ0

β(X ) sending each Σ0
α set S ⊆ Y to its

preimage F−1(S) ⊆ X is continuous (respectively, X-computable).

To emphasize its domain and range, we sometimes write F ∈ Σ→
α,β(X ,Y) (re-

spectively, ΣX
α,β(X ,Y)). The inclusion Σ→

α,β ⊆ Σ→
α+γ,β+γ holds for all ordinals

α, β, γ < ω1. A Σ1,α function and a ΣX
1,α function are often called a Σ0

α-measurable

function and a Σ0,X
α -computable function, respectively. The effective hierarchy of

Borel functions at finite levels has been studied by Brattka [2]. Pauly and de
Brecht [23] have also studied the Markov-effectivization of Σ2,2 in the sense that
F−1 : Σ0

2(Y) → Σ0
2(X ) is computable.

Definition 1.2. Let F be a class of partial functions from a represented space X
into a represented space Y.

(1) A function F : X → Y is countably F (denoted by decF) if there is a
countable partition {Qi}i∈ω of X such that F ↾ Qi ∈ F for each i ∈ ω.
Moreover, if each piece Qi can be chosen as a ∆0

α set, then F is said to be
∆0

α-piecewise F (denoted by decαF).
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(2) A function F : X → Y is countably Σ0,X
β -computable (denoted by decΣX

1,β

if there is a countable partition {Qi}i∈ω of X such that F ↾ Qi is Σ0,X
β -

computable uniformly in i ∈ ω. Moreover, if {Qi}i∈ω is uniformly ∆0,Y
α ,

then F is said to be ∆0,Y
α -piecewise Σ0,X

β -computable (denoted by decYαΣ
X
1,β).

The Σ→
2,2 functions have been studied by Pauly-de Brecht [23], who showed that

two equalities Σ2,2 = dec2Σ1,1 and Σ→
2,2 = dec2Σ1,1 hold.

Example 1.3. (1) Σ1,α+1(2
ω) ̸⊆ decΣ1,α(2

ω) holds for each α < ωCK
1 . In-

deed, the α-th Turing jump J (α) : 2ω → 2ω is Σ0
α+1-computable, but is not

countably Σ0
α-measurable.

(2) Let χQ : R → 2 be Dirichlet’s nowhere continuous function. Then, χQ ∈
Σ3,3 ∩ dec3Σ1,1, but χQ ̸∈ Σ1,2.

1.3. Main Theorem. By β−̂α, we denote the smallest ordinal δ with δ + α > β.
Note that n−̂m = n−m+ 1 for any natural numbers m ≤ n ∈ ω. To present our
main theorem, we use the notation Σ1,(β−̂α) =

∪
γ<β−̂α Σ1,γ+1.

Theorem 1.4. Let X and Y be Polish spaces having small transfinite inductive
dimensions, and let α ≤ β < ω1 be countable ordinals. Then, we have the following
inclusions.

decβ+1Σ1,(β−̂α)(X ,Y) ⊆ Σ→
α+1,β+1(X ,Y) ⊆ decΣ1,(β−̂α)(X ,Y).

Theorem 1.5. Let X and Y be Polish spaces having small transfinite inductive
dimensions. For any countable ordinals α, β < ω1 with α ≤ β < α · 2, we have the
following equality.

Σ→
α+1,β+1(X ,Y) = decβ+1Σ1,(β−̂α)(X ,Y).

Hence, as a corollary we can see that the class Σ→
m+1,n+1 is precisely the class of

∆0
n+1-piecewise Σ

0
n−m+1-measurable functions (compare with the decomposability

conjecture). Moreover, if α ≥ ω, the assumption of transfinite-dimensionality can
be removed from Theorems 1.4 and 1.5.

2. Proof of Main Theorem

2.1. Boldface versus Lightface. Hereafter, we deal with spaces endowed with
the notion of computability which fulfills the fundamental relativization principle
that “continuity is equal to computability relative to an oracle”. For instance, any
represented space in our sense (that is, any recursively presented Polish space, or
more generally, any admissibly represented space) satisfies this principle. It clearly
implies the equality Σ1,α = Σ→

1,α (see also [8]), whereas it is still open whether
Σα,β = Σ→

α,β , in general (see Problem 2.13). The relativization principle also
implies the following relativization lemmas for Σ→

α,β and decβΣ1,α.

Lemma 2.1 (Relativization I). Let X and Y be represented spaces, and let α, β <
ω1 be countable ordinals. A function F : X → Y is Σ→

α,β if and only if it is ΣX
α,β

for some X ∈ 2ω with α, β < ωX
1 . □

Lemma 2.2 (Relativization II). Let X and Y be represented spaces, and let α, β <
ω1 be a countable ordinal. A function F : X → Y is decβΣ1,α if and only if it is

decXβ ΣX
1,α for some X ∈ 2ω with α, β < ωX

1 . □



DECOMPOSING BOREL FUNCTIONS 5

The inclusion decβ+1Σ1,(β−̂α) ⊆ Σ→
α+1,β+1 in Theorem 1.4 can be easily shown

by relativizing the following lemma.

Lemma 2.3. Let X and Y be represented spaces. Fix an oracles X, and ordinals
α ≤ β < ωX

1 .

decXβ+1Σ
X
1,(β−̂α)

(X ,Y) ⊆ ΣX
α+1,β+1(X ,Y).

Proof. Assume that F : X → Y is ∆0,X
β+1-piecewise Σ0,X

(β−̂α)
-computable. Fix an

X-computable sequence {Pe}e∈ω of ∆0,X
β+1(X ) sets such that He = F ↾ Pe is

Σ0,X
γ(e)+1(X )-computable, where γ(e) < β−̂α. Then, for each Σ0,X

α+1(Y) set S ⊆ Y,

the preimage F−1(S) is the union of {H−1
e (S) ∩ Pe}e∈ω. Note that H−1

e (S) is

Σ0,X
γ(e)+α+1, and the condition γ(e) < β−̂α implies γ(e) + α ≤ β. Thus, H−1

e (S)

is Σ0,X
β+1, and its index is computed from any index of S and e by the uniformity.

Thus, F−1(S) =
∪

e(H
−1
e (S) ∩ Pe) is Σ0,X

β+1, and we can effectively calculate its

index. Hence, F is a ΣX
α+1,β+1-function. □

2.2. Shore-Slaman Join Theorem. The key lemma used to show the inclusion
Σ→

α+1,β+1 ⊆ decΣ1,(β−̂α) in Theorem 1.4 is a join theorem concerning the class of
α-REA operators shown by Shore and Slaman. We will use the Shore-Slaman join
theorem only for the α-REA operator J (α) : x 7→ x(α).

Theorem 2.4 (Shore-Slaman Join Theorem [29]). Let α be a computable ordinal.
The Turing degree structure (DT ,≤,′ ,⊕) satisfies the following formula, for each
k ∈ ω.

(∀a,b)(∃c ≥ a) [((∀β < α) b ̸≤ a(β)) → (c(α) ≤ b⊕ a(α) ≤ b⊕ c)].

For α = 1, it is exactly the Posner-Robinson join theorem [25]. Historically,
Jockusch and Shore [16] were the first to ask whether the Posner-Robinson join
theorem can be generalized to all n-REA operators for n ∈ ω. The main tool for
addressing their question was introduced by Kumabe and Slaman, who showed the
join theorem for α = ω (for Kumabe-Slaman forcing, see also Day-Dzhafarov [5]).
Finally, Shore and Slaman proved the join theorem for all computable ordinals
α. It is noteworthy that by combining it with the Slaman-Woodin double jump
definability theorem, they showed that the Turing jump is first-order definable in
the partial ordering (DT ,≤) of the Turing degrees (see Slaman-Woodin [30]).

We employ the Shore-Slaman join theorem to show our main theorem. For
Theorem 1.4 with α = β, we only require the Shore-Slaman join theorem for α = 1,
i.e., the Posner-Robinson join theorem. To show Theorem 1.5 on all levels of Borel
hierarchy, we need the Shore-Slaman join theorem for all countable ordinals α < ω1.
By analyzing the proof of Shore-Slaman [29], it is not difficult to see that their
theorem can be generalized to all countable ordinals α < ωX

1 , for any X ∈ 2ω.
Here, ωX

1 is the least countable ordinal that is not computable inX. The relativized
Shore-Slaman join theorem implies the following lemma.

Lemma 2.5. Let X ∈ ωω be a real, and let α < ωX
1 be a countable ordinal. Suppose

that (y⊕Z)(α) ≤T (x⊕Z)(β) for every Z ≥T X. Then, there exists γ < β−̂α such
that y ≤T (x⊕X)(γ).
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Proof. Suppose for the sake of contradiction that y ̸≤T (x⊕X)(γ) for all γ < β−̂α.
Then, by the Shore-Slaman join theorem relative to X, there exists Z ≥T x ⊕ X

such that Z(β−̂α) ≤T y ⊕ Z. Hence, we have

(y ⊕ Z)(α) ≥T Z(β−̂α+α) >T Z(β) ≥T (x⊕X)(β).

However, this is a contradiction. □

2.3. Turing Degree Analysis. The condition F−1 : Σ0
α+1 → Σ0

β+1 is equivalent

to the condition F−1 : Σ0
α → ∆0

β+1, since Π0,X
α ⊆ Σ0,X

α+1, for every Σ0,X
α set A ⊆ Y,

the preimages F−1(A) and ∁F−1(A) = F−1(Y \A) are Σ0,X
β+1. This proof is clearly

effective. Thus, we can show that, if F−1 : Σ0
α+1 → Σ0

β+1 is X-computable, then

both F−1 : Σ0
α → Σ0

β+1 and ∁F−1 : Σ0
α → Σ0

β+1 are also X-computable, where ∁A
is the complement of A in the underlying space.

Lemma 2.6. Let X ∈ 2ω be a real, and let α, β < ωX
1 be ordinals. Assume that

F : D → E is a ΣX
α+1,β+1 function, where D and E are subsets of ωω. If D is

Σ0,X
β+1, (F (x)⊕X)(α) ≤T (x⊕X)(β) holds for any x ∈ D.

Proof. Note that SX
e = {z ∈ E : (z ⊕ X)(α)(e) = 1} is Σ0

α(E). Moreover, the
function SX : ω → Σ0

α(E) sending e to SX
e is X-computable. To determine whether

(F (x)⊕X)(α)(e) = 1, we note that this condition is equivalent to F (x) ∈ SX
e , which

is also equivalent to x ∈ F−1SX(e). Then, the condition x ∈ F−1SX(e) is ∆0,X
β+1,

since F−1SX , ∁F−1SX : ω → Σ0
β+1 are X-computable, and by the condition (2)

of our Borel coding. Consequently, we obtain the inequality (F (x) ⊕ X)(α) ≤T

(x⊕X)(β) for any x ∈ D. □

Lemma 2.7. Let α, β < ωX
1 be countable ordinals, and let D be a subset of ωω.

Then, a function F : D → ωω is of class decΣX
1,α+1 if and only if the following

condition holds:
F (x) ≤T (x⊕X)(α), for any x ∈ D.

Proof. (⇒) Fix a countable cover {Xi}i∈ω ofD such that F ↾ Xi is Σ
0,X
α+1-computable

for each i ∈ ω. By the universality of the Turing jump, there is a sequence of indices
{e(i)}i∈ω such that for each i ∈ ω,

F (x) = Φe(i)((x⊕X)(α);x), for any x ∈ D.

(⇐) Conversely, define Qe = {x ∈ D : Φe((x⊕X)(α)) = F (x)}. For any x ∈ D,
if a function satisfies F (x) ≤T (x ⊕ X)(α), there is an algorithm e ∈ ω such that
F (x) = Φe((x ⊕ X)(α)). Therefore,

∪
e Qe = D. Finally, Fe = Φe((x ⊕ X)(α))

is Σ0,X
α+1-computable for each e ∈ ω, and F ↾ Qe = Fe ↾ Qe, for each e ∈ ω, as

desired. □

Corollary 2.8. Let α, β < ωX
1 be countable ordinals, and let D be a Σ0,X

β+1 subset
of ωω. Then, we have the following inclusion.

ΣX
α+1,β+1(D,ωω) ⊆ decΣX

1,(β−̂α)
(D,ωω).

Proof. Fix a ΣX
α+1,β+1 function F : ωω → ωω. Clearly, F ∈ ΣZ

α+1,β+1 for every
Z ≥T X. By Lemma 2.6, the function F must satisfy the inequality

(F (x)⊕ Z)(α) ≤T (x⊕ Z)(β)
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for any Z ≥T X and x ∈ D. By Lemma 2.5, for any x ∈ D, we have F (x) ≤T

(x⊕X)(γ) for some γ < β−̂α. Thus, by Lemma 2.7, F is of class decΣX
1,(β−̂α)

. □

2.4. Complexity of the Decomposition. In this section, we assume that X =
Y = ωω. Kuratowski’s extension theorem states that every partialΣ0

α+1-measurable
function from an metrizable space into a Polish space can be extended to a Σ0

α+1-
measurable function with a Π0

α+2 domain. Obviously, this theorem is effectivized
as follows.

Claim. Let α < ωX
1 . For any partial Σ0,X

α+1-computable function F :⊆ X → Y,

there is a Π0,X
α+2 set D with dom(F ) ⊆ D ⊆ X and a Σ0,X

α+1-computable extension
G : D → Y of F . □

Claim. Every partial Σ0,X
γ+1-computable function F :⊆ X → Y has a total multi-

valuedX-computable extension F̃ : X → Π0
γ+1(Y) in the sense that F̃ (x) = {F (x)}

for any x ∈ dom(Fn).

Proof. Since Y is Polish, the diagonal set ∆Y = {(x, x) ∈ Y2 : x ∈ Y} is Π0
1. Note

that graph(F ) = (F, id)−1(∆Y). Since F is partially Σ0,X
γ+1-computable, there is a

Π0,X
γ+1 set G ⊆ X ×Y such that graph(F ) = G∩ (dom(F )×Y). Then, the function

F̃ : X → Π0
γ+1(Y) sending x to G[x] is X-computable (see Brattka [2, Proposition

3.2]), where G[x] = {y ∈ Y : (x, y) ∈ G}. □

We now estimate the complexity of our decomposition.

Lemma 2.9. Suppose that 2 ≤ α ≤ β < α · 2 < ωX
1 . Then, we have the following

inclusion:

ΣX
α+1,β+1(X ,Y) ∩ decΣX

1,(β−̂α)
(X ,Y) ⊆ decXβ+1Σ

X
1,(β−̂α)

(X ,Y).

Proof. Assume that F is decomposable into a uniform sequence {Fn}n∈ω of Σ0
(β−̂α)

-

measurable functions. It suffices to estimate the complexity ofQn = {x ∈ dom(Fn) :
F (x) = Fn(x)} in X .

Note that α · 2 = α + α > β implies that β−̂α ≤ α. Therefore, Π0,X
γ+1 ⊆ Σ0,X

α+1

for any γ < β−̂α. This implies that the total multi-valued extension F̃n : X →
Σ0

α+1(Y) in the sense of the previous claim is X-computable. Recall that the

membership relation ∈β+1: X ×Σ0
β+1(X ) → S is Σ0,X

β+1-computable. Therefore,

Kn = (∈β+1 ◦(id, F−1 ◦ F̃n))
−1({1}) = {(z, x) ∈ X 2 : F (z) ∈ F̃n(x)}.

is Σ0,X
β+1, since F ∈ ΣX

α+1,β+1 implies that ∈β+1 ◦(id, F−1F̃n) : X 2 → S is Σ0,X
β+1-

computable, and {1} is Σ0
1 in S. Consequently, Qn can be represented as follows:

Qn = dom(Fn) ∩ (id, id)−1(Kn ∩∆X )

By the first claim, we may assume that dom(Fn) is Π0,X
γ+2. Then, Π0,X

γ+2 ⊆ Π0,X
β

holds since α ≥ 2 implies that γ < β−̂2. Consequently, this set is Σ0,X
β+1 uniformly in

n ∈ ω. Let {Qn,m}m∈ω be a uniform sequence of Π0,X
β sets with Qn =

∪
m∈ω Qn,m.

Then, F ↾ Qn = Fn ↾ Qn,m for each n,m ∈ ω. □

As a consequence, we obtain Theorems 1.4 and 1.5 for X = Y = ωω, by rela-
tivizing Corollary 2.8 and Lemma 2.9 via Lemmas 2.1 and 2.2.
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2.5. Topological Dimension and Quasi-Polish Spaces. In this section, we
discuss the possibility of proving our main theorem for a wider class of topological
spaces. This is an important task because it seems that the original motivations
behind pioneering works on first-level Borel isomorphisms (i.e., Σ2,2-isomorphisms)
by Jayne [14] and Jayne and Rogers [15] and others were to classify topological
spaces. To show our main theorem for a wider class rather than ωω, we focus on
the Borel structure of a given space.

We call a bijection h : ωω → X a Borel isomorphism at the level 3/2 (for short,
a 3/2-isomorphism) if h is ∆0

2-piecewise continuous and h−1 is ∆0
3-piecewise con-

tinuous. Note that an uncountable (quasi-)Polish space having transfinite small
inductive dimension (see Engelking [9]) is 3/2-isomorphic to ωω (see also [22, The-
orem 4.21]).

For instance, if a space X is the Euclidean n-space Rn or the unit n-sphere Sn

(as a recursively presented Polish space), it is computably 3/2-isomorphic to Baire
space ωω, where a bijection h : ωω → X is called an X-computable 3/2-isomorphism

for some oracle X ∈ 2ω if h ∈ decX2 ΣX
1,1 and h−1 ∈ decX3 ΣX

1,1. This is because the

boundary sphere ∂B(q; r) of each rational open ball is Π0
1 uniformly in its center

q with ratio r, and the Π0
2 set X \

∪
q,r ∂B(q; r) is computably homeomorphic to a

Π0
1 subspace of ωω (see also [22, Theorems 4.7 and 4.21]).

Corollary 2.10. Let X ∈ 2ω be a real. Let X and Y be represented spaces that are
X-computably 3/2-isomorphic to ωω. For any ordinals α, β < ωX

1 with α ≤ β <
α · 2, we have the following equality.

ΣX
α+1,β+1(X ,Y) = decXβ+1Σ

X
1,(β−̂α)

(X ,Y).

Proof. Assume that F is ΣX
α+1,β+1. For α = 0, it is obvious. If α = 1, α ≤ β < α ·2

implies β = 1. Then, it is the computable version of the Jayne-Rogers theorem
proved by Pauly-de Brecht [23]. Thus, we can assume that α ≥ 2.

Let hX : ωω → X and hY : ωω → Y be X-computable 3/2-isomorphisms. By

Lemma 2.3, we have hX , hY ∈ decXα+1Σ
X
1,1 ⊆ ΣX

α+1,α+1 and h−1
X , h−1

Y ∈ decXβ+1Σ
X
1,1 ⊆

ΣX
β+1,β+1. Assume that F : X → Y is a ΣX

α+1,β+1 function. It is not hard to see

that the function hYFh−1
X : ωω → ωω is ΣX

α+1,β+1, since h−1
X ∈ ΣX

β+1,β+1 and

hY ∈ ΣX
α+1,α+1. By Corollary 2.8, we can see that hYFh−1

X is contained in the class

decXΣX
1,(β−̂α)

. Then, by Lemma 2.9, we have hYFh−1
X ∈ decXβ+1Σ

0,X

1,(β−̂α)
. Conse-

quently, F = hYh
−1
Y FhXh−1

X ∈ decXβ+1Σ
X
1,(β−̂α)

holds since hY , h
−1
X ∈ decXβ+1Σ

X
1,1.

Conversely, by Lemma 2.3, such F is ΣX
α+1,β+1. □

In general, all two uncountable (quasi-)Polish spaces are Σ0
3-measurably isomor-

phic ([22, Proposition 4.3]), that is, there is a bijection h between two uncountable
(quasi-)Polish spaces such that both h and h−1 are Σ0

3-measurable.

Corollary 2.11. Let X ∈ 2ω be a real. Let X and Y be represented spaces that are
Σ0,X

n -computably isomorphic to ωω for some n ∈ ω. For any ordinals α, β < ωX
1

with ω ≤ α ≤ β < α · 2, we have the following equality.

ΣX
α+1,β+1(X ,Y) = decXβ+1Σ

X
1,(β−̂α)

(X ,Y).

Proof. Let hX : ωω → X and hY : ωω → Y be Σ0,X
n -computable isomorphisms. By

Lemma 2.3, we have hX , h−1
X , hY , h

−1
Y ∈ ΣX

1,n ⊆ ΣX
ω,ω ⊆ ΣX

α+1,α+1. Assume that
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F : X → Y is a ΣX
α+1,β+1 function. As in the proof of Corollary 2.10, we can see

that G = hYFh−1
X is contained in the class decXβ+1Σ

X
1,(β−̂α)

. If α ≥ ω, we now claim

that β−̂α is a limit ordinal. If not, there is an ordinal γ such that β−̂α = γ + 1.
By definition, γ + α ≤ β and note that 1 + α = α whenever α ≥ ω. Therefore, we
have β < β−̂α+ α = γ + 1 + α = γ + α ≤ β, a contradiction.

Now, we have a ∆0,X
β+1 partition {Pn}n∈ω such that each G ↾ Pn is Σ0,X

γ+1-

computable for some γ < β−̂α. Then, it is easy to see that hYGh−1
X ↾ hX (Pn)

is Σ0,X
γ+2n-computable. Note that γ + 2n < β−̂α holds since β−̂α is a limit ordinal.

Consequently, F = hYGh−1
X ∈ decXβ+1Σ

X
1,(β−̂α)

holds since {hX (Pn)}n∈ω is a ∆0,X
β+1

partition of X . □

As a consequence, we obtain Theorem 1.5, by relativizing Corollaries 2.10 and
2.11 via Lemmas 2.1 and 2.2. Indeed, Theorems 1.4 and 1.5 also hold for quasi-
Polish spaces having transfinite small inductive dimensions (see also de Brecht [7]
for quasi-Polish spaces and the modified Borel hierarchy).

2.6. Open Questions. The concept of the Σα,β-functions was applied by Jayne
[14] to study the Banach space B∗

α(X) of bounded real-valued Baire functions of
class α on a realcompact space X . Jayne [14, Theorem 2] showed that for any
realcompact spaces X ,Y and ordinals α, β ≥ 1, B∗

β(X ) is linearly isometric to

B∗
α(Y) if and only if there exists a Σα+1,β+1-isomorphism of X onto Y. Here, a

bijection f : X → Y is said to be a Σα+1,β+1-isomorphism if f is Σα+1,β+1 and its
inverse function f−1 is Σβ+1,α+1. It is natural to ask whether the same result holds
for Σ→

α+1,β+1-isomorphisms. The problem is how we refine the result by Jayne [14,

Theorem 1] into the following form.

Problem 2.12. Is every Boolean algebra isomorphism of ∆0
β+1(X ) onto ∆0

α+1(Y)
induced by a Σ→

α+1,β+1-isomorphism of X onto Y?

More generally, it is also important to ask whether the classes Σα,β and Σ→
α,β

coincide.

Problem 2.13. Does the equality Σα,β(ω
ω, ωω) = Σ→

α,β(ω
ω, ωω) hold for all count-

able ordinals α, β < ω1?

It should also be asked whether Theorem 1.5 can be generalized to all countable
ordinals α, β < ω1. Indeed, Pawlikowski-Sabok [24, Question 7.3] proposed the
problem to find an analogue of the Jayne-Rogers theorem at transfinite levels of
Borel functions. We conclude the paper with a proposal on the precise form of the
decomposability problem at transfinite levels of the hierarchy of Borel functions.

Problem 2.14. Let X and Y be separable metrizable spaces with X analytic. For
any countable ordinals α ≤ β < ω1, is the following equality true?

Σα+1,β+1(X ,Y) = decβ+1Σ1,(β−̂α)(X ,Y).

Recently, Gregoriades and Kihara [10] succeeded in removing the continuity as-
sumption from Theorem 1.4, that is, they showed

decβ+1Σ1,(β−̂α)(X ,Y) ⊆ Σα+1,β+1(X ,Y) ⊆ decΣ1,(β−̂α)(X ,Y).

in the same cases as the current paper by a slight extension of the current idea.
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[17] M. Kačena, L. Motto Ros, and B. Semmes, Some Observations on ‘A new proof of a theorem

of Jayne and Rogers’, Real Anal. Exchange 38 (2012), 121–132.
[18] A. S. Kechris, Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer-Verlag,

New York, 1995.
[19] K. Miyabe, L1-computability, layerwise computability and Solovay reducibility, Computabil-

ity 2 (2013), 15–29.
[20] Y. N. Moschovakis, Descriptive Set Theory, Math. Surveys Monogr., Amer. Math. Soc.,

2009.

[21] L. Motto Ros, On the structure of finite levels and ω-decomposable Borel functions, J.
Symbolic Logic 78 (2013), 1257–1287.



DECOMPOSING BOREL FUNCTIONS 11

[22] L. Motto Ros, P. Schlicht, and V. Selivanov, Wadge-like reducibilities on arbitrary quasi-

Polish spaces, to appear in Math. Structures Comput. Sci.
[23] A. Pauly and M. de Brecht, Non-deterministic computation and the Jayne Rogers Theorem,

Electronic Proceedings in Theoretical Computer Science 143 (2014), 87–96.
[24] J. Pawlikowski and M. Sabok, Decomposing Borel functions and structure at finite levels of

the Baire hierarchy, Ann. Pure Appl. Logic 163 (2012), 1748–1764.
[25] D. B. Posner and R. W. Robinson, Degrees joining to 0′, J. Symbolic Logic 46 (1981),

714–722.
[26] M. Sabok, σ-continuity and related forcings, Arch. Math. Logic 48 (2009), 449–464.
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