
De Groot duality for represented spaces

Takayuki Kihara and Arno Pauly

1 Department of Mathematical Informatics
Nagoya University, Japan
kihara@i.nagoya-u.ac.jp

2 School of Mathematics & Computer Science
Swansea University, Swansea, United Kingdom

Arno.Pauly@gmail.com

Abstract. We explore de Groot duality in the setting of represented
spaces. The de Groot dual of a space is the space of closures of its sin-
gletons, with the representation inherited from the hyperspace of closed
subsets. This yields an elegant duality, in particular between Hausdorff
spaces and compact T1-spaces. As an application of the concept, we study
the point degree spectrum of the dual of Baire space, and show that it
is, in a formal sense, far from being countably-based.

1 Introduction

In this article, through the theory of represented spaces and higher type com-
putability, we give a unified treatment of the studies of Π0

1 singletons in classical
computability theory [8, Definition XII.2.13] and de Groot duality in general
topology [3, Section 9.1.2]. The former notion has been associated with implicit
definability in classical logic [8, Definition XII.2.13]; hence, this unified treat-
ment gives de Groot duality a new interpretation: the duality of “explicit” and
“implicit”. Conversely, the pure topological aspect of the latter also provides a
renewed understanding of Π0

1 singletons. By exploring these notions, in this arti-
cle, we see an elegant duality between Hausdorff spaces and compact T1-spaces.

Formally, we introduce the de Groot dual of a represented space. Recall that
for any represented space X, we obtain the represented space A(X) of closed
subsets by identifying a set with the characteristic function of its complement
into Sierpiński space.

Definition 1. For a represented space X, let Xd denote the space {{x} | x ∈
X} ⊆ A(X). We call Xd the de Groot dual of X.

Example 2. Computable points in (NN)d are exactly Π0
1 singletons in NN.

Usually, we are only interested in T0 represented spaces, and we will assume
spaces to be T0 throughout the rest of the paper3. The T0-property is equivalent

3 The de Groot dual of a space is the same as the de Groot dual of its T0-quotient
anyway.



to x 7→ {x} : X → Xd being a bijection, and we can thus treat X and Xd to have
the same underlying set. The de Groot dual is particularly well-behaved when
we restrict our attention further to T1-spaces, where points are already closed. A
primary appeal of the dual is that for T1-spaces, it interchanges Hausdorff and
compact spaces. We summarize the properties of de Groot duality for T1-spaces
in Theorem 3 in Section 2.

While the de Groot dual has a natural definition in the setting of represented
spaces, the concept is originally from topology [4]; see [3, Section 9.1.2]. For
a topological space X , its de Groot dual is the topology on X generated by
complements of saturated compact subsets of X . It is no surprise to have an
analogy between concepts for represented spaces and topological spaces [2, 9];
and each represented space naturally comes equipped with a topology. Often,
these concepts align (only) up to sequentialization. We leave the study of the
precise relation of de Groot duality for represented spaces and for topological
spaces for future work.

1.1 Preliminaries

We briefly recap some preliminaries, and refer to [9] for more details. A repre-
sented space is a set X equipped with a partial surjection δX : ⊆ NN → X. If
δX(p) = x then we say that p is a name of x. A point x ∈ X is computable if
it has a computable name. A function f : X → Y is continuous (computable,
resp.) if there exists a continuous (computable, resp.) function which, given a
name of x ∈ X, returns a name of f(x) ∈ Y. We write X ≃ Y if X is com-
putably isomorphic to Y. One of the remarkable properties of the category of
represented spaces and continuous (computable) functions is that it is cartesian
closed.

We denote the represented Sierpiński space by S, which consists of a closed
point ⊥ (whose name is 000 . . . ) and an open point ⊤ (whose names are other
sequences). A subset A of a represented space X is open if its characteristic map
χA : X → S is continuous. Identifying a subset with its characteristic map, the
represented hyperspace O(X) of all open subsets of X can be defined by the
exponential SX. In a similar way, the represented hyperspace A(X) of all closed
sets can also be defined. As a subspace of a represented space is also represented,
the de Groot dual Xd ⊆ A(X) can also be treated as a represented space. If there
is no risk of confusion, a point {x} in the de Groot dual Xd is simply written as
x. Formally, this is justified by defining a dual name of x as an Xd-name of {x}.

Given x ∈ X, let κX(x) be the neighborhood filter of x; that is, {U ∈ O(X) :
x ∈ U}. Note that κX : X → OO(X) is always well-defined and computable,
since κX is obtained as currying of the evaluation map ∈ : X × O(X) → S. A
space X is computably admissible if κX has a partial computable left-inverse. The
image Xκ of κX is called the admissibilification of X. Note that X is computably
admissible iff κX is a computable isomorphism between X and Xκ.

A space X is computably compact if ∀X : O(X) → S is computable, where
∀X(U) = ⊤ iff U = X. Equivalently, {U ∈ O(X) : U = X} is a computable point
in OO(X). A space X is computably Hausdorff if ̸=: X×X → S is computable.



A space X is T1 if, for any x ∈ X, ̸=x : X → S defined by ̸=x(y) = (x ̸= y) is
continuous; that is, {x} ∈ A(X). A space X is T0 if κX has a partial left-inverse.
Note that these notions are defined for a represented space (not necessarily
a topological space), although, of course, a represented space can always be
equipped with its quotient topology.

2 Duality for T1 represented spaces

If we restrict to T1 spaces, the de Groot dual of X is simply the space of closed
singletons of X, with the subspace representation inherited from A(X). It is in
this setting that the dual exhibits very elegant properties, and in particular be-
comes a duality between Hausdorffness and compactness. The following theorem
lays out how the duality works. The proofs of its claims are spread throughout
Subsection 2 below. The requirement for the space and or its dual to contain
one or two computable points are used only for a few of the implications. We do
not know whether these requirements are needed, but having some computable
points seems like a sufficiently innocent restriction.

Theorem 3. Let X be computably admissible and T1, and let X and Xd each
contain two computable points. Then:

1. id : X → Xdd is computable.
2. Xd ∼= Xddd.
3. The following are equivalent:

(a) X is computably Hausdorff.
(b) X is computably Hausdorff and X ∼= Xdd.
(c) Xdd is computably Hausdorff.
(d) Xd is computably compact.
(e) id : X → Xd is computable.
(f) id : Xdd → Xd is computable.

4. The following are equivalent:

(a) X is computably compact.
(b) Xdd is computably compact.
(c) Xd is computably Hausdorff.
(d) id : Xd → X is computable.
(e) id : Xd → Xdd is computable.

5. The following are equivalent:

(a) X is computably compact and computably Hausdorff.
(b) X ∼= Xd.

The item (5) can be thought of as a computable version of [7, Example 4.1].
While the situation of Hausdorffness and compactness are mostly symmetrical
in our main theorem, there is a notable absence: For computably compact X we
cannot conclude that X ∼= Xdd. An example for this is exhibited in Section 4.



Proofs of the basics. We proceed to prove the various components of Theorem
3. Most of the proofs are presented by crystal-clear arguments based on higher
type computability. These seem to fit well with synthetic topology [2], with the
exception of the proofs of Propositions 8 and 16 and Lemma 14.

Throughout this section, the space X is assumed to be T1 without this being
necessarily stated explicitly.

Observation 4 The map ̸= : X×Xd → S is computable.

Proof. As A(X) ≃ SX, the non-membership relation ̸∈ : X×A(X) → S is exactly
the evaluation map, so it is computable. For x, y ∈ X, note that x ̸∈ {y} iff
x ̸= y. Thus, the non-membership relation ̸∈ restricted to X × Xd is exactly
the non-equality relation ̸= via the identification of {y} with y ∈ Xd. Therefore,
̸=: X×Xd → S is computable. ⊓⊔

Corollary 5. 1. Xd is T1 (and thus Xdd is well-defined).
2. id : X → Xdd is computable.

Proof. For (1), currying the function ̸= in Observation 4 yields the function
x 7→ X \ {x} : X → O(Xd). In particular, X \ {x} is open in Xd, which means
that Xd is T1. For (2), as currying preserves computability, the above function
is computable, and an O(Xd)-name of X \ {x} is exactly an Xdd-name of x. ⊓⊔

The following is essentially just a rephrasing of the definition of being com-
putably Hausdorff:

Observation 6 id : X → Xd is computable iff X is computably Hausdorff.

Proof. As in Corollary 5, one can see that id : X → Xd is computable iff ̸=: X×
X → S is computable, which means that X is computably Hausdorff. ⊓⊔

The connection to unique closed choice. The map id: Xd → X is just
another perspective on the principle of unique closed choice UCX studied in [1],
which is formally a partial function UCX : ⊆ A(X) → X, whose domain is the
set of all closed singletons, and UCX({a}) = a for any a ∈ X. In particular,
id : Xd → X is computable iff UCX is computable. More or less by the definition
of admissibility, we find that UCX is computable for a computably compact
computably admissible space:

Observation 7

1. If X is computably compact and computably admissible, then id : Xd → X is
computable.

2. If X is computably compact, then Xd is computably Hausdorff.

Proof. (1) A name of a given x ∈ Xd is also a name of X \ {x} ∈ O(X). By
computable compactness, given U ∈ O(X), one can semidecide if (X \{x})∪U =



X, which is true iff x ∈ U . By computable admissibility, this yields an X-name
of x.

(2) Names of x, y ∈ Xd are also names of X \ {x}, X \ {y} ∈ O(X). By
computable compactness, one can semidecide if (X \{x})∪(X \{y}) = X, which
is true iff x ̸= y. This shows that ̸=: Xd×Xd → S is computable. Consequently,
Xd is computably Hausdorff. ⊓⊔

Observation 7 (1) generalizes the classical observation that a Π0
1 singleton in

Cantor space is computable [8, Exercise XII.2.15 (c)] (whose uniform version is
given in [1, Corollary 6.4] in the context of a unique closed choice).

Interestingly, we also have a converse direction, which gives a topological
interpretation of the classical observation that a Π0

1 singleton in Baire space
(which is non-compact) is not necessarily computable [8, Exercise XII.2.15 (d)].
The statement can be described using the Weihrauch degree of UCX : {a} 7→ a.
That 1 ≤W UCX means that UCX has a computable instance {a} ∈ A(X). That
UCX ≤W 1 just means that UCX is computable.

Proposition 8. If UCX ≡W 1, then X is computably compact.

Before we begin the proof, let us make a technical comment. For A,B ∈
O(X), one can see that A ⊆ B iff A ≤O(X) B; that is, A is contained in the
closure of {B} in O(X). In fact, the standard representation of the function
space O(X) ≃ SX gives us even a better property: If A ⊆ B then the set of
names of A is included in the closure of the set of names of B; that is, any
neighborhood of a name of A contains a name of B.

Proof (Proposition 8). To prove thatX is computably compact, we need to prove
that given some U ∈ O(X) we can recognize if U = X. To do this, we compute
Ua := {a} ∪ (X \ U) ∈ A(X), and attempt to semidecide UCX(Ua) ∈ U?. If
we get a positive answer, we conclude that U = X. Note that since Ua is not
necessarily in the domain of UCX, this is not a well-typed expression - we just
run it as a partial algorithm to the best of our ability.

For correctness of this algorithm, first consider the case that X = U . Then
Ua = {a}, and thus UCX(Ua) is well-defined and returns a, and a ∈ U = X is
going to be recognized as true. Next, we consider the case that U = X \ {a}.
Again, we have that Ua = {a}, and UCX(Ua) = a, but as a /∈ U , we will
not answer yes. Finally, we consider the case where there exists some b ̸= a
with b /∈ U . Since {b} ⊆ Ua ∈ A(X), the name for Ua we compute can change
arbitrarily late to be a name for {b} instead; that is, any finite prefix of a name of
Ua can be extended to a name of {b}. While the computation UCX(Ua) has no
need to output anything, it must not output a prefix which cannot be extended
to a name for b. But if a prefix returned by UCX(Ua) is sufficient to confirm
membership of the potential output in U , it is inconsistent with a name for b,
as b /∈ U . Thus, this case cannot lead to an erroneous positive answer. ⊓⊔

Corollary 9. If id : Xd → X is computable and Xd contains a computable
point, then X is computably compact.



Proof. Just note that id : Xd → X is computable iff UCX ≤W 1, andXd contains
a computable point iff 1 ≤W UCX. Then the assertion follows from Proposition
8. ⊓⊔

Corollary 10. Let X contain a computable point. Then the following are equiv-
alent:

1. id : X → Xd and id : Xd → X are both computable.
2. X is computably admissible, computably compact and computably Hausdorff.

Proof. The direction from (2) to (1) follows from Observations 6 and 7 (1). For
the direction from (1) to (2), Observation 6 and Corollary 9 show that X is
computably compact and computably Hausdorff. It remains to show that X is
computably admissible. Let evx : O(X) → S defined by evx(U) = (x ∈ U) be
given. As y 7→ X \ {y} : Xd → O(X) is a computable embedding, the function
y 7→ evx(X \ {y}) : Xd → S is also computable. Note that evx(X \ {y}) = ⊤ iff
x ̸= y, so this yields a name of X \ {x} ∈ O(Xd), which is exactly an Xdd-name
of x. This shows that evx 7→ x : ⊆ OO(X) → Xdd is always computable. By
using our assumption (1) twice, we see that id : Xdd → X is computable, so we
conclude that X is computably admissible. ⊓⊔

More on Hausdorffness.

Proposition 11. If X is computably Hausdorff, then id : Xdd → Xd is com-
putable.

Proof. By Observation 4, ̸=: Xd × Xdd → S is computable. Since X is com-
putably Hausdorff, by Observation 6, id : X → Xd is computable, so ̸=: X ×
Xdd → S is computable. By currying, the function x 7→ X \ {x} : Xdd → O(X)
is computable, which means that id : Xdd → Xd is computable. ⊓⊔

Corollary 12. Let X be computably Hausdorff and contain a computable point.
Then Xd is computably compact.

Proof. By Proposition 11 and Corollary 9 (applied to Xd rather than X). Note
that by Corollary 5 (2), we obtain a computable point in Xdd from the one we
have in X. ⊓⊔

Corollary 13. If Xd is computably compact, then X is computably Hausdorff.

Proof. By Observation 7 (2), if Xd is computably compact, then Xdd is com-
putably Hausdorff. By Corollary 5, id : X → Xdd is computable, so X admits a
computable injection into a computable Hausdorff space, and is thus itself com-
putably Hausdorff. ⊓⊔

Lemma 14. Let Xd contain two computable points and let X be computably
admissible. Then id : (Xd ∧Xdd) → X is computable.



Proof. We are given {x} ∈ Xd and {{x}} ∈ Xdd and seek to compute x ∈ X.
As X is computably admissible, we can equivalently seek to semidecide whether
x ∈ U for given U ∈ O(X). In addition, we have access to computable {y}, {z} ∈
Xd with y ̸= z.

We can compute Ay = {y}∪ ({x}∩ (X \U)) and Az = {z}∪ ({x}∩ (X \U))
as elements of A(X). While Ay and Az may fail to be singletons, and thus the
queries Ay ∈ {{x}}? and Az ∈ {{x}}? are not necessarily well-typed, we can
attempt the computations anyway. If either of them yields a no-answer, we have
confirmed that x ∈ U .

To see this, first consider the case where x ∈ U . Then Ay = {y} andAz = {z},
thus our queries are well-typed. Moreover, since y ̸= z, at least one of x ̸= y and
x ̸= z must be true. The corresponding query will yield no, and we thus answer
correctly.

Now consider the case where x /∈ U . Then Ay = {x, y} and Az = {x, z}.
Our names for Ay and Az thus can change arbitrarily late to become a name
for {x} instead. While the computations Ay ∈ {{x}}? and Az ∈ {{x}}? may be
ill-typed, they must not produce output inconsistent with returning a positive
answer for {x} ∈ {{x}}?. Thus, we will not receive a no-answer, and hence not
answer incorrectly. ⊓⊔

Corollary 15. Let X be computably Hausdorff, computably admissible and con-
tain two computable points. Then X ∼= Xdd.

Proof. Computability of id : X → Xdd is available without assumptions (Corol-
lary 5). For the converse direction, note that given {{x}} ∈ Xdd we can first in-
voke Proposition 11 (since X is assumed to be computably Hausdorff) to obtain
{x} ∈ Xd. We then use Lemma 14 to get x ∈ X. Note that sinceX is computably
Hausdorff, having two computable points in X yields two computable points in
Xd by Observation 6. ⊓⊔

Note that combining Observation 6 and Corollaries 9 and 15 yields the effec-
tivization of [7, Example 4.2].

Proposition 16. If Xd contains two computable points and is computably Haus-
dorff, then X is computably compact.

Proof. Let {a}, {b} ∈ Xd, a ̸= b, be the computable points available to us. To
show that X is computably compact, we show that we can, given A ∈ A(X),
recognize if A = ∅. That Xd is computably Hausdorff means we have available to
us a computable map isNotEqual : Xd ×Xd → S. We attempt the computation
isNotEqual({a}∪A, {b}∪A), and claim that the answer to this correctly identifies
whether A = ∅.

If A = ∅, we are computing isNotEqual({a}, {b}), which has to answer yes. If
A ̸= ∅, then isNotEqual({a}∪A, {b}∪A) is not well-typed. Consider some c ∈ A.
Then names for both {a} ∪ A and {b} ∪ A can change arbitrarily late to be a
name for {c} instead. Thus, the computation of isNotEqual({a}∪A, {b}∪A) must
never output anything that would be inconsistent with isNotEqual({c}, {c}), i.e.,
it must never answer yes. We thus obtain the desired behaviour. ⊓⊔



Iterated duality. The following observation is straightforward for T1-spaces,
but false in general (see Example 27 below).

Observation 17 If f : X → Y is a computable bijection, then f−1 : Yd → Xd

is well-defined and computable.

For the topological de Groot dual, Kovár has shown that taking iterated duals
will yield at most four distinct topological spaces [7]. For T1 represented spaces,
the iterated dual will only yield at most three distinct represented spaces, with an
argument that is similar to but simpler than the one by Kovár. We will see later
an example showing that X,Xd and Xdd can indeed be three non-isomorphic
represented spaces (Section 4).

Corollary 18. Xd ∼= Xddd.

Proof. That id : Xd → Xddd is computable is just a consequence of Corollary
5. To get the computability of id : Xddd → Xd, we apply Observation 17 to
id : X → Xdd from Corollary 5. ⊓⊔

Corollary 19. Let X contain two computable points. Then Xdd is computably
Hausdorff iff X is.

Proof. If X is computably Hausdorff, so is its admissibilification Xκ, and they
have the same dual. Corollary 15 then yields Xκ

∼= Xdd, so the latter is com-
putably Hausdorff.

Conversely, if Xdd is computably Hausdorff, then by Corollary 12, Xddd is
computably compact (we can lift a computable point fromX toXdd by Corollary
5). SinceXd ∼= Xddd by Corollary 18,Xd is computably compact. Then Corollary
13 shows that X is computably Hausdorff. ⊓⊔

Let us confirm that the above completes the proof of Theorem 3. The item (1)
follows from Corollary 5 (2). The item (2) follows from Corollary 18. For the item
(3), (a)→(b): Corollary 15. (b)→(c): trivial. (a)↔(c): Corollary 19. (a)↔(d):
Corollaries 12 and 13. (a)↔(e): Observation 6. (a)→(f): Proposition 11. (f)→(e):
Theorem 3 (1). For the item (4), (a)↔(c): Observation 7 (2) and Proposition 16.
(b)↔(c)↔(e): Apply Theorem 3 (3) (d)↔(a)↔(e) to Xd. (a)↔(d): Observation
7 (1) and Corollary 9. The item (5) follows from Corollary 10.

3 Duality for non-T1 represented spaces

Notation. We now leave behind the tacit restriction to T1-spaces. We recap
some basic notions we will need for our discussion here. For a represented space
X, we shall write ≤X for its specialization preorder; which is defined as x ≤X y
iff every open containing x also contains y. Equivalently, {x} ⊆ {y}. A set
A ⊆ X is saturated if it is an intersection of open sets. The saturation of a set
A is ↑ A :=

∩
{U∈O(X)|A⊆U} U . Note that the saturation of a compact set is also

compact since an open cover of A always covers the saturation ↑A. If we consider



only singletons, the topological closure corresponds to the ≤X-downward closure,
and the saturation corresponds to the ≤X-upward closure.

One can see that the de Groot dual inverts the specialization preorder; that
is, x ≤Xd y iff y ≤X x. In particular, X is T1 iff Xd is T1. Thus, the sequences of
iterated duals of T1 and non-T1 spaces never intersect. Recall that, for T0-case,
the map x 7→ {x} = ↓x is bijective, so one can think of an underlying set of Xd

as X by identifying {x} with x. Hereafter, we assume that a represented space
X is always T0.

Iterated duality for non-T1 represented spaces. Below we observe that
the iteration sequence of the de Groot dual of a represented space terminates in
at most three steps, even if we start from a non-T1 space. This contrasts with the
existence of a topological space whose iterated dual sequence does not terminate
in at three steps [7].

Theorem 20. Xddd ≃ Xd for any represented T0-space X.

To see this, we first see the following analogue of Observation 4.

Observation 21 The map ̸≤X : X×Xd → S is computable.

Proof. As A(X) ≃ SX, the non-membership relation ̸∈ : X×A(X) → S is exactly
the evaluation map, so it is computable. For x, y ∈ X, note that x ̸∈ {y} iff
x ̸≤X y. Thus, the non-membership relation ̸∈ restricted to X×Xd is exactly the
relation ̸≤X via the identification of {y} with y ∈ Xd. Therefore, ̸≤X : X×Xd →
S is computable. ⊓⊔

We see that Corollary 5 (2) also holds for non-T1 spaces.

Corollary 22. id : X → Xdd is computable.

Proof. Currying the function ̸≤X in Observation 21 yields the saturation x 7→
↑X{x} = {y ∈ X : x ≤X y} : X → A(Xd). Note that an element of Xdd is of the
form ↓Xd{x}, which turns out to be ↑X {x} since the de Groot dual inverts the
specialization preorder as mentioned above. Hence, the range of the saturation
is exactly Xdd, so id : X → Xdd is computable. ⊓⊔

In general, for (non-T1) topologies σ and τ (on the same underlying set), the
condition σ ⊆ τ does not imply τd ⊆ σd, but if σ and τ have the same spe-
cialization order, this does hold. Based on this observation, we see the following
non-T1 analogue of Observation 17.

Observation 23 If f : X → Y is computable, and f : (X,≤X) → (Y,≤Y) is an
order isomorphism, then f−1 : Yd → Xd is well-defined and computable.

Proof. Computability of f : X → Y implies computability of f−1 : A(Y) →
A(X) (via computability of Y). For any y ∈ Y , by surjectivity, we have some
x ∈ X such that f(x) = y. Since f is an order isomorphism, x′ ≤X x if and
only if f(x′) ≤Y f(x) = y. This implies that f−1[↓Y{y}] = ↓X{x}. Hence,
f−1 : Yd → Xd is well-defined and computable. ⊓⊔



Proof (Theorem 20). That id: Xd → Xddd is computable is just a consequence
of Corollary 22. To get the computability of id : Xddd → Xd, note that X and
Xdd have the same specialization order since the de Groot dual inverts the spe-
cialization preorder as mentioned above. In particular, id : X → Xdd is an order
isomorphism. Hence, we just need to apply Observation 23 to id: X → Xdd from
Corollary 22. ⊓⊔

4 Examples

The cofinite topology on N. An important example to illustrate the duality
between Hausdorff spaces and compact T1-spaces is the observation that Nd =
Ncof , where Ncof are the natural numbers equipped with the cofinite topology.
We then also have that (Ncof)

d = N.

The cocylinder topology on Baire space. As announced in Section 2, we
give an example where X ≃ Xdd is not necessarily true even if X is computably
compact and T1.

Definition 24. The cocylinder topology τc on NN is generated by co-cylinders
{X : X ̸≻ σ} where σ ranges over finite strings. We write NN

c = (NN, τc).

The space NN
c is second-countable, computably compact and T1. It is neither

Hausdorff nor sober (and thus not stably compact). We see below that (NN
c )

d ≃
NN and thus (NN

c )
dd ≃ (NN)d, but (NN)d is not second-countable (see Section 5),

so (NN
c )

dd ̸≃ NN
c .

Proposition 25. (NN
c )

d ≃ NN

Proof. First note that a name of x ∈ NN
c is an enumeration (σn)n∈N of all non-

prefixes of x. And, a name of a closed set A ∈ A(NN
c ) is a sequence D = (Dn)n∈N

of finite sets Dn of strings such that x ∈ A iff, for any n ∈ N, Dn contains a prefix
of x. Thus, given an NN-name of x, by putting Dn to be the singleton {x ↾ n},
where x ↾ n is the prefix of x of length n, we get a name of {x} ∈ A(NN

c ). This
shows that id : NN → (NN

c )
d is computable.

Conversely, assume that a name D of a closed set A ∈ A(NN
c ) is given. From

such a sequence D, one may construct a finite-branching tree whose infinite
paths correspond to the elements of A. To see this, we inductively construct a
sequence E = (En)n∈N of finite sets of strings as follows: Let E0 be the singleton
consisting of the empty string. Assume that En has already been constructed.
For each σ ∈ En, and each τ ∈ Dn which is comparable with σ, put the longer
of σ and τ into En+1. By leaving only shorter strings in En+1, we may assume
that elements of En+1 are pairwise incomparable. Note that En+1 is contained
in the upward closure of En (w.r.t. the prefix order). We claim that x ∈ A iff En

has a prefix of x for any n ∈ N. For the backward direction, note that if En+1

has a prefix of x then so does Dn. For the forward direction, if x ∈ A, one can
inductively ensure that En contains a prefix of x. By the assumption x ∈ A, Dn

also contains a prefix of x, so a prefix of x survives in En+1.



Now, the downward closure of
∪

n∈N En yields a finite-branching tree TE . If
A is a singleton {x}, by the above arguments, one can see that TE has a unique
infinite path x. However, we only have an enumeration of the tree TE which is
not pruned, so it is not straightforward to compute an NN-name of the unique
path x. To overcome this difficulty, note that only one of the elements of En is
a prefix of x. If σ ∈ En is not a prefix of x, we claim that there exists m > n
such that Em fails to have an extension of σ. Otherwise, for any m > n, Em has
an extension τm of σ. If (τm)m>n is eventually constant, say τ , then almost all
Dm contain an initial segment of τ , so any infinite string extending τ must be a
path through TE , which is impossible. Hence, (τm)m∈N contains infinitely many
different strings in TE extending σ. Since TE is finite-branching, König’s lemma
implies that TE has an infinite path extending σ, which is again impossible by
our assumption. This verifies the claim, which shows that σ ∈ En not being a
prefix of x is semidecidable. Wait for all but one string in En to turn out not
to be a prefix of x. Then the last remaining one turns out to be a prefix of x.
In this way, we can compute a NN-name of the unique path x, which shows that
id : (NN

c )
d → NN is computable. ⊓⊔

The lower reals. The following example shows that we need to distinguish
a space being isomorphic to its dual and being equal to its dual: The lower
reals and the upper reals are isomorphic (with x 7→ −x being a computable
isomorphism), but not equal (as id : R< → R> is not computable).

Proposition 26. Rd
< = R>

The following shows that Observation 17 (about being able to reverse the
direction of a computable bijection by taking the dual) does not hold once we
move beyond T1-spaces:

Example 27. id : R → R< is a computable bijection, yet id : Rd
< → Rd is not

computable.

5 The Point Degree Spectrum of (NN)d

As an application for de Groot duality, we show that, relative to any oracle,
the point degree spectrum of the de Groot dual of NN contains non-enumeration
degrees. The point degree spectrum links the study of recursion-theoretic de-
gree structures such as the Medvedev degrees, enumeration degrees and Turing
degrees to σ-homeomorphism types of topological spaces [5, 6, 10].

Let X and Y be represented spaces. For x ∈ X and y ∈ Y we write y ≤M x
if there exists a partial computable function F : ⊆ X → Y such that F (x) = y;
that is, given a name of x, one can effectively find a name of y.

Definition 28. A non-computable point x ∈ X is SN-quasi-minimal if for any
y ∈ SN, y ≤M x implies that y is computable.



As SN is a universal second-countable T0 space, we find that a SN-quasi-
minimal point isY-quasi-minimal for any second countable spaceY. The degrees
of points in SN are exactly the enumeration degrees, so another perspective on
SN-quasi-minimal points is that they are non-computable points not computing
any non-trivial enumeration degree.

Theorem 29. Relative to any oracle, there are continuum many SN-quasi-minimal
(NN)d-degrees.

In the following, we write xX to emphasize that x is a point in the represented
space X. To avert superscript-overload, we will write E for SN and B for NN.

Lemma 30. If yE ≤T xBd

, then one of the following must hold:

1. yE is computable.

2. xB ≤T xBd ⊕ (N \ y)E

Proof (Theorem 29). Given an oracle z, it is easy to construct a Π0
1 (z) singleton

{x} in NN such that x ̸≤T z′ (see [8, Exercises XII.2.14 (d), and XII.2.15 (e)]).
Moreover, if {x} is such a Π0

1 (z), then so is {x ⊕ z}. We will write xz := x ⊕ z
where x is constructed from z in this manner.

Now, given an oracle r, consider any z ≥T Or, where Or is the hyperjump
of r, that is, a Π1

1 (r)-complete subset of N. Then, {xz} is not a Π0
1 (r) singleton;

otherwise, xz is ∆1
1 in r [8, Proposition XII.2.16], and thus xz ≤T Or ≤T z, a

contradiction.
We will show that (xz)

Bd

is E-quasiminimal relative to r. We argued above

that (xz)
Bd

is not computable relative to r. Assume that some non-computable

y ∈ E satisfies yE ≤T (xz)
Bd

relative to r. Then it follows by Lemma 30 that

xB
z ≤T xBd

z ⊕ (N \ y)E ⊕ r. We know that z can compute xBd

z and r, and thus also
yE . But then z′ computes z and (N \ y)E , hence xz ≤T z′. But we constructed
xz such that x ̸≤T z′, and thus have reached a contradiction. It follows that

(xz)
Bd

is E-quasiminimal relative to r. As there are continuum many z ≥T Or,
and since z1 ̸= z2 implies xz1 ̸= xz2 , the claim follows. ⊓⊔

Having continuum many SN-quasi-minimal points has a topological interpre-
tation:

Corollary 31. For any second-countable T0 space Y, if f : (NN)d → Y can be
decomposed into countably many continuous functions, then there is a continuum-
sized set A such that the image f [A] is countable.

Proof. Let f : Bd → Y be a σ-continuous function, where Y is a second-countable
T0 space. Then, via an embedding Y ↪→ SN, one can think of f as a σ-continuous
function f : Bd → SN. Then, f is σ-computable relative to some oracle r. Note
that f(x) ≤M x ⊕ r. Let A ⊆ Bd be the set of all points which are second-
countable quasi-minimal relative to r, that is, if x ∈ A then f(x) is r-computable.
Then, since there are only countably many r-computable points in SN, the range
of f [A] is countable as desired. ⊓⊔



The idea of the proof of Theorem 29 is to exploit the difference in computabil-
ity theoretic strength between explicit and implicit definability. A similar idea
has been used in the classical theory of implicit definability (Π0

1 singletons), so
we mention its historical origin to conclude the discussion.

Recall that an object is implicitly definable (in arithmetic) if it is a unique
solution of an (arithmetical) predicate; see e.g. Odifreddi [8, Definition XII.2.13].
One of the triggers that made this notion worth studying in logic was, for exam-
ple, the following observation: Tarski’s truth undefinability theorem tells us that
arithmetical truth is not explicitly definable in arithmetic; nevertheless, arith-
metical truth is known to be implicitly definable in arithmetic. What the latter
means is that arithmetical truth is a unique solution of an arithmetical predi-
cate; more precisely, the set of codes of true sentences in first order arithmetic is
an arithmetical singleton in P(N) (see e.g. Odifreddi [8, Definition XII.2.13 and
Proposition XII.2.19]).

In this way, implicit definability can often encode powerful information, and
in fact, we have used this property to analyze the point degree spectrum of the
de Groot dual of NN.

Acknowledgements

We are grateful to Matthew de Brecht for fruitful discussions. We are also grateful
to the anonymous referees for valuable suggestions and comments.

References

1. Brattka, V., de Brecht, M., Pauly, A.: Closed choice and a uniform low basis
theorem. Ann. Pure Appl. Logic 163(8), 986–1008 (2012)

2. Escardó, M.: Synthetic topology: of data types and classical spaces. Electronic
Notes in Theoretical Computer Science 87, 21–156 (2004)

3. Goubault-Larrecq, J.: Non-Hausdorff topology and domain theory: Selected topics
in point-set topology, New Mathematical Monographs, vol. 22. Cambridge Univer-
sity Press, Cambridge (2013)

4. de Groot, J., Herrlich, H., Strecker, G.E., Wattel, E.: Compactness as an operator.
Compositio Math. 21, 349–375 (1969)

5. Kihara, T., Ng, K.M., Pauly, A.: Enumeration degrees and non-metrizable topol-
ogy. arXiv:1904.04107 (2019)

6. Kihara, T., Pauly, A.: Point degree spectra of represented spaces. Forum Math.
Sigma 10, Paper No. e31, 27 (2022)

7. Kovár, M.M.: At most 4 topologies can arise from iterating the de Groot dual.
Topology Appl. 130(2), 175–182 (2003)

8. Odifreddi, P.G.: Classical Recursion Theory. Vol. II, Studies in Logic and the
Foundations of Mathematics, vol. 143. North-Holland Publishing Co., Amsterdam
(1999)

9. Pauly, A.: On the topological aspects of the theory of represented spaces. Com-
putability 5(2), 159–180 (2016)

10. Pauly, A.: Enumeration degrees and topology. In: Sailing routes in the world of
computation, Lecture Notes in Comput. Sci., vol. 10936, pp. 328–337. Springer,
Cham (2018)


