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Abstract. Consider a randomness notion C. A uniform test in the sense of C
is a total computable procedure that each oracle X produces a test relative to

X in the sense of C. We say that a binary sequence Y is C-random uniformly
relative to X if Y passes all uniform C tests relative to X.

Suppose now we have a pair of randomness notions C and D where C ⊆ D,

for instance Martin-Löf randomness and Schnorr randomness. Several authors
have characterized classes of the form Low(C,D) which consist of the oracles
X that are so feeble that C ⊆ DX . Our goal is to do the same when the
randomness notion D is relativized uniformly: denote by Low⋆(C,D) the class

of oracles X such that every C-random is uniformly D-random relative to X.
(1) We show that X ∈ Low⋆(MLR, SR) if and only if X is c.e. tt-traceable

if and only if X is anticomplex if and only if X is Martin-Löf packing measure
zero with respect to all computable dimension functions.

(2) We also show that X ∈ Low⋆(SR,WR) if and only if X is computably
i.o. tt-traceable if and only ifX is not totally complex if and only ifX is Schnorr
Hausdorff measure zero with respect to all computable dimension functions.

1. Introduction

1.1. Lowness and triviality. In the theory of algorithmic randomness there are
three main approaches to define a randomness notion: typicalness, unpredictabil-
ity and incompressibility. Some randomness notions have characterizations of these
three types. Similarly, there are two different approaches to define a non-randomness
notion. One is computational weakness, that is, the class of sets that are too com-
putationally weak to derandomize another random set. The other is strong com-
pressibility. The main theme of this paper is the correspondence between these two
approaches. The first result of this type was the equivalence between lowness for
ML-randomness and K-triviality.

In computability theory a set A ∈ 2ω is called low if the jump A′ of A is Turing
reducible to the halting problem ∅′. This means that the set is computationally
weak and is not useful as an oracle. This class is an important class and there are
many results relating to it. Similarly, in the theory of algorithmic randomness we
consider a set that does not have computational power to derandomize a random
set. Formally, a set is called low for ML-randomness if every ML-random set is
ML-random relative to A, which was introduced in Zambella [56]. This class is
also an important class and there are many results relating to it. For instance,
the existence of a noncomputable set that is low for ML-randomness was shown in
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Kučera and Terwijn [36]. Naturally, the class of such sets is closed downward under
Turing reducibility.

Another important notion in the theory of algorithmic randomness isK-triviality.
First recall that the Levin-Schnorr theorem says that, a set A ∈ 2ω is Martin-Löf
random if and only if K(A↾n) > n−O(1), where K is the prefix-free Kolmogorov
complexity. This theorem means that typicalness of a set in the sense of Martin-Löf
is equivalent to incompressibility of the initial segments of the set. The notion of
K-triviality was introduced in Chaitin [10] as the opposite of incompressibility, that
is, sets with this property are easy to describe. Formally, a set A is called K-trivial
if K(A ↾ n) ≤ K(n) + O(1). Solovay [49] showed that there is a noncomputable
K-trivial set, that is, the class of K-trivial sets is a strict superclass of the class of
computable sets. See [56, 9, 15] for the improvement after that.

We further introduce two classes. A set A is called low for K if K(σ) ≤ KA(σ)+
O(1), which was introduced by An. A. Muchnick (unpublished). Note that this also
means computational weakness. A set A is called a base for MLR if there is a set
X ≥T A such that X is ML-random relative to A, which was introduced by Kučera
[35]. The following theorem is a surprising achievement in this field:

Theorem 1.1 (Nies [41], Hirschfeldt, Nies and Stephan [27]). The following are
equivalent for a set A:

(i) A is K-trivial,
(ii) A is low for ML-randomness,
(iii) A is low for K,
(iv) A is a base for MLR.

We can consider analogical notions for other randomness notions. According
to Downey-Griffiths [16], a set A ∈ 2ω is Schnorr random if and only if KM (A ↾
n) > n − O(1) for every computable measure machine M . Here M is said to be
a computable measure machine if M is prefix-free and its halting probability is a
computable real. Also note that KM is the Kolmogorov complexity with respect to
machineM . Then, Downey-Griffiths [16] introduced the notion of Schnorr triviality.
A set A is called Schnorr trivial if for every computable measure machine M , there
exists a computable measure machineN such thatKN (A↾n) ≤ KM (n)+O(1). As a
counterpart of Theorem 1.1, Franklin and Stephan [20] showed that a set is Schnorr
trivial if and only if it is low for uniform Schnorr randomness (for the definition,
see Section 2). This is another equivalence between computational weakness and
strong compressibility.

1.2. Traceability and complexity. The notion of lowness can be defined for any
pair of randomness notions. We give some further notions introduced in the study
of variants of the notions above.

Let W2R, MLR, CR, SR and WR be the classes of sets that are weakly 2-
random, ML-random, computably random, Schnorr random and Kurtz random,
respectively. Let C and D be classes of sets given by relativizable definitions. A
set A is low for C versus D (denoted by A ∈ Low(C,D)) if C ⊆ DA. This notation
was introduced by Kjos-Hanssen, Nies and Stephan [34]. We say that a set A is
low for C to mean A ∈ Low(C) = Low(C, C). Note that all these classes are closed
downward under Turing reducibility.

One of the most important concepts in the study of the lowness for randomness
is traceability. Traceability is another formulation of computational weakness. (See
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Definition 3.1 for the definition.) This notion was first introduced, inspired by a
notion in set theory, by Terwijn and Zambella [51], who showed that a set A is
computably traceable if and only if it is low for Schnorr tests.

We give some characterization of lowness for a pair of randomness notions. As
noted previously, A ∈ Low(MLR,MLR) iff A is K-trivial [41]. Actually A ∈
Low(MLR,CR) iff A is K-trivial [41]. Replacing MLR with W2R, the class has not
changed: A ∈ Low(W2R,MLR) iff A is K-trivial [14]; A ∈ Low(W2R,CR) iff A
is K-trivial [42]; A ∈ Low(W2R,W2R) iff A is K-trivial [14, 32, 42]. Thus, many
lowness classes are characterized as K-triviality.

Most classes contain a non-computable set but there is an exception: a set
A ∈ Low(CR,CR) iff A is computable [41].

When the second component is SR, the classes are characterized by traceability:
A ∈ Low(SR,SR) iff A is computably traceable [51, 34]; A ∈ Low(MLR, SR) iff
A is c.e. traceable [34]; A ∈ Low(CR,SR) iff A is computably traceable [34]; A ∈
Low(W2R,SR) iff A is c.e. traceable [2].

When the second component is WR, we have the following: A ∈ Low(WR,WR)
iff A is hyperimmune free and not DNC [50, 25]; A ∈ Low(CR,WR) iff A is not high
or DNC [25]; A ∈ Low(SR,WR) iff A is not high or DNC [25]; A ∈ Low(MLR,WR)
iff A is not DNC [11, 25]. See also Table 3 in Section 7 for the relationship among
these lowness notions.

We employ several complexity notions concerning the growth speed of the Kol-
mogorov complexity to give characterizations of lowness notions. Complexity and
autocomplexity were introduced by Kanovich [29] and the relation with DNC func-
tions and traceability was studied in [31]. Franklin, Greenberg, Stephan and Wu
[18] introduced anticomplexity and studied the relation with traceability. We will
give some characterizations of variants of complexity via traceability in Section 3.
Some of them are already in Hölzl and Merkle [28].

1.3. Uniform relativization. If we say that a set A ∈ 2ω is computable relative
to a set A ∈ 2ω, then it usually means that A is Turing reducible to B, that is,
A ≤T B. On the other hand, we can consider many variants such as A ≤tt B.

Given a randomness notion R and a set A ∈ 2ω, we sometimes define A-
relativized R-randomness notion by allowing the access to A as an oracle. Again
we can consider variants of the way of relativization.

Relativized ML-randomness is a natural notion because of van Lambalgen’s the-
orem [52], which says that A ⊕ B is ML-random if and only if A is ML-random
and B is ML-random relative to A. In contrast, van Lambalgen’s theorem with the
usual relativization does not hold for Schnorr randomness, computable randomness
[37, 55], Kurtz randomness [21] or weak 2-randomness [1].

Miyabe [39] and Miyabe and Rute [40] introduced uniform relativization. Note
that a test relative to a set X can be identified with an oracle procedure that pro-
duces a test relative to X. Here the procedure may not produces a test for a set
Y ̸= X. A uniform test requires the procedure to produce a test relative to X for
each oracleX. This is another type of relativization and is called uniform relativiza-
tion. See Section 2.1 for the concrete definition. They showed that van Lambalgen’s
theorem holds for uniform Schnorr randomness and uniformly computable random-
ness (in a weaker sense). Furthermore, Kihara and Miyabe [30] showed that van
Lambalgen’s theorem holds for uniform Kurtz randomness in another weaker sense.
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Thus, uniformly relativized randomness notions are more natural notions in some
cases.

Uniformly relativized randomness notion is a weaker notion than a randomness
notion with the usual relativization. Namely, if A is Schnorr random relative to
B, then A is Schnorr random uniformly relative to B. The converse does not hold
(for instance, choose a high Schnorr trivial set B [23], and a Schnorr random set
A ≤T B [42]). Of course, if B is computable, then A is R-random if and only if A
is R-random relative to B if and only if A is R-random uniformly relative to B.

The usual way to define a relativized randomness notion is the following: we first
define tests (or complexity, martingales) and randomness notions, and relativize
them after that. When we define uniformly relativized randomness notions, it is
more appropriate to define them directly because we need to talk about how to
relativize them explicitly. Thus, it is more appropriate to think that a randomness
notion is always equipped with its relativization. For instance, uniform Schnorr
randomness means that Schnorr randomness with uniform relativization.

The importance of the way of relativization goes for the study of lowness.
Franklin and Stephan [20] have already studied the truth-table version of relativiza-
tion of Schnorr randomness, which is equivalent to uniform Schnorr randomness,
and have shown that Schnorr triviality is equivalent to lowness for uniform Schnorr
randomness. This is another evidence that uniform relativization is a natural no-
tion.

With this background, we will consider the uniformly relativized versions of low-
ness and will characterize them via variants of traceability and complexity, namely,
truth-table traceability and total complexity.

1.4. Overview of the paper. In Section 3, we characterize lowness notions relat-
ing to ML-randomness, Schnorr randomness and Kurtz randomness via traceability.
In Section 4, we prove the last equivalence between lowness and traceability by ap-
plying the characterization of strong measure zero in the set theory of the real line.
In Section 5, we see the relationship between traceability and variants of complexity
such as complex sets and autocomplex sets. The results in Sections 3 and 5 will be
summarized in Table 2. In Section 6, we study the relationship between variants of
complexity and dimension-theoretic notions such as Hausdorff dimension and pack-
ing dimension. In Section 7, we summarize our results and give all implications
among twelve lowness properties. Our main results concerning the relationship be-
tween lowness for randomness notions and Kolmogorov complexity are illustrated
in Tables 2 and 3.

2. Preliminaries

We refer to [44, 45, 48] for background in computability theory and to the books
[13, 42] for the one in algorithmic randomness. Cantor space 2ω is the set of
infinite binary sequences equipped with the canonical product topology. A basic
open set on 2ω is a cylinder [σ] = {X ∈ ω : σ ≺ X} for a finite binary string
σ ∈ 2<ω. The open set generated by a set S ⊆ 2<ω of strings is denoted by [[S]], i.e.,
[[S]] =

∪
σ∈S [σ]. We fix a computable enumeration {Bn}n∈ω of all basic open sets.

An open set U is c.e. if U =
∪

n∈ω Bp(n) where p : ω → ω is a computable function,
or equivalently, U = [[S]] for some c.e. set S ⊆ 2<ω of strings. Let ε denote the
empty string. A real x ∈ R is computable if there is a computable sequence {qn} of
rationals such that |x− qn| < 2−n for each n.
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Note that the class of clopen sets is the class of finite unions of cylinders. Then,
we fix a computable enumeration {Cn}n∈ω of all clopen sets.

2.1. Randomness notions and their relativization. An ML-test is a sequence
{Un} of uniformly c.e. open sets such that µ(Un) ≤ 2−n for each n. A set X ∈ 2ω

is ML-random if X ̸∈
∩

n Un for every ML-test. A Schnorr test is an ML-test
{Un} such that µ(Un) is uniformly computable. A set X is Schnorr random if
X ̸∈

∩
n Un for each Schnorr test. A Kurtz null test is a ML test {Un} for which

there is a computable function f : ω → (2<ω)<ω such that Un = [[f(n)]] for all n. A
set X is Kurtz random if X ̸∈

∩
n Un for each Kurtz null test {Un}. We use MLR,

SR and WR to mean the sets of ML-random, Schnorr random and Kurtz random
reals. We have the following proper inclusions:

MLR ⊊ SR ⊊ WR.

We give two kinds of relativization of these randomness notions. There is a
way of relativization that has been frequently used in the literature. Uniform
relativization is a different way of relativization. Miyabe and Rute [40] defined
uniform Schnorr randomness and uniformly computable randomness and Kihara
and Miyabe [30] defined uniform Kurtz randomness. Here, we give a unified setting
of these relativized randomness notions.

Before introducing the notion of uniform relativization, recall that every Borel
set (in particular, every Gδ null set) can be identified with a real, so-called a Borel
code. In this paper, we use a coding of tests rather than the standard Borel coding of
null sets. Here, a test is a sequence {Un} of open sets such that limn µ(Un) = 0. Let
T be the class of all tests. We define three kinds of representations (i.e., codings)
of subsets of T .

The Martin-Löf representation (or ML-representation) is the partial function
ρMLR :⊆ ωω → T such that

ρMLR(p) = {Un}n∈ω where Un =
∪
m

Bp(n,m) and µ(Un) ≤ 2−n.

The Schnorr representation is the partial function ρSR :⊆ ωω → T such that

ρSR(p) = {Un}n∈ω where

Un =
∪
m

Bp(0,n,m), µ(Un) ≤ 2−n and |µ(Un)− qp(1,n,m)| < 2−m,

where qk is the k-th rational number. The Kurtz representation is the partial
function ρWR :⊆ ωω → T such that

ρWR(p) = {Un}n∈ω where Un = Cp(n,m) and µ(Un) ≤ 2−n.

Note that these representations are not surjective. Clearly, for each representation
ρ ∈ {ρMLR, ρSR, ρWR}, the set

∩
ρ(p) is null for every p ∈ dom(ρ). Our representa-

tions of tests are essentially same as the standard Borel coding of Gδ sets, except we
require that each test decoded by a code should rapidly converges to a null set. On
a general theory of representations in computable analysis, see also [53, 8, 7, 54].

Example 2.1. Assume that p ∈ ωω is computable in a set A. If p ∈ dom(ρMLR),
then ρMLR(p) is usually called a Martin-Löf test relative to A.

Let R ∈ {MLR, SR,WR}. An R-test relative to A ∈ 2ω is ρR(f(A)) for a
(partial) computable function f :⊆ 2ω → ωω. A uniform R-test is a function
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X 7→ ρR(f(X)) for a total computable function f : 2ω → ωω. We say that a set
B is R-random relative to A (denoted by B ∈ R(A)) if B ̸∈

∩
ρR(f(A)) for every

partial computable function f :⊆ 2ω → ωω. We say that a set B is R-random
uniformly relative to A (denoted by B ∈ R⋆(A)) if B ̸∈

∩
ρR(f(A)) for every total

computable function f : 2ω → ωω. It is not hard to check that these definitions are
equivalent to the definitions in the literature. As usual, SR and SR⋆ do not change
when we replace the definition of ρSR with

ρSR(p) = {Un}n∈ω where Un =
∪
m

Bp(n,m) and µ(Un) = 2−n,

on Cantor space with the uniform measure.
As already seen in the introduction, we write A ∈ Low(C,D) if C ⊆ D(A).

Similarly, we write A ∈ Low⋆(C,D) if C ⊆ D⋆(A). Since the inclusion D(A) ⊆
D⋆(A) generally holds for randomness notions D, we always have

Low(C,D) ⊆ Low⋆(C,D).

A survey article on the lowness property for randomness notions is to be found
in Franklin [19].

3. Lowness and Traceability

Many known lowness notions are characterized by using the notion of traceabil-
ity. The transition from lowness to traceability provides an important change in
perspective, that is, it is a transition from the (Π1

1) property for others to the (arith-
metical) property for a set itself. In this section we characterize lowness notions
via traceability in a unified form.

Definition 3.1. A trace is a sequence (Tn)n∈ω of finite sets. A function f is traced
by (Tn)n∈ω if f(n) ∈ Tn for every n. A function f is infinitely often (abbreviated
as i.o.) traced by (Tn)n∈ω if f(n) ∈ Tn for infinitely often n. We say that f is com-
putably often (abbreviated as c.o.) traced by (Tn)n∈ω if f(n) ∈ Tn for computably
often n, that is, there is a computable order l such that for every k, f(n) ∈ Tn for
some n ∈ [l(k), l(k+ 1)). If a trace (Tn)n∈ω is called c.e. if it is uniformly c.e., and
it is called computable if the canonical index of Tn is computable uniformly in n. A
trace (Tn)ω is bounded by an order p if #Tn ≤ p(n) for every n. Such a p is called
a bound for (Tn)ω.

A set A is c.e. traceable (computably traceable) if there is a computable order p
such that every f ≤T A is traced by a c.e. (resp. computable) trace with bound p. If
the condition f ≤T is replaced with f ≤tt A, then we say that A is c.e. tt-traceable
and computably tt-traceable, respectively. We can also introduce c.e. i.o. traceabil-
ity, computably c.o. tt-traceability and any other combination in a straightforward
manner.

Remark 3.2. In Kihara-Miyabe [30], computably c.o. tt-traceability is called Kurtz
tt-traceablility.

First recall that A ∈ Low(SR, SR) iff A is computably traceable by Terwijn-
Zambella [51, 34]. Its uniform-relativization version is that A ∈ Low⋆(SR, SR) iff
A is computably tt-traceable, which is shown by Franklin-Stephan [20].
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3.1. Characterizing Low⋆(MLR, SR). A set A ∈ Low(MLR, SR) iff A is c.e. trace-
able by Kjos-Hanssen-Nies-Stephan [34]. Here we give the uniform-relativization
version of this result.

Theorem 3.3. A set A ∈ Low⋆(MLR, SR) iff A is c.e. tt-traceable.

We show this by giving a series of lemmas following the argument in [2, 38].
For a set W ⊆ 2<ω, we denote by Wω the set of all sets of the form σ0σ1σ2 . . .

such that σi ∈ W for every i ∈ ω. The following lemma is obtained as a special case
of the combination of Lemma 12 and Proposition 13 in Bienvenu-Miller [2] with the
class C of all bounded c.e. open sets and the family {T (e)} of all Martin-Löf tests.

Lemma 3.4 (A rephrase of [2, Lemma 12 and Proposition 13]). Let W be a prefix-
free subset of 2<ω. Suppose that [W ] cannot be covered by any bounded c.e. open
set. Then, Wω contains a Martin-Löf random set.

Let O be the class of open sets on 2ω. An open set U ⊆ 2ω is bounded if µ(U) < 1.
We say that a computable function g : 2ω → O is a uniformly Schnorr function if
the function X 7→ µ(g(X)) is computable. A computable function g : 2ω → O is
strictly bounded if supX∈2ω µ(g(X)) is strictly less than 1.

Lemma 3.5. Suppose that A ∈ Low⋆(MLR, SR). Then, A satisfies the following
property (I):

(I) f(A) is covered by a bounded c.e. open set for every strictly bounded uni-
formly Schnorr function f .

Proof. We show the contrapositive. Let f be a strictly bounded and uniformly
Schnorr function such that f(A) is not covered by any bounded c.e. open set.
Let g be a c.e. function from 2ω to a subset of 2<ω such that g(X) is prefix-free
and [[g(X)]] = f(X) for each X. By Lemma 3.4, there exists a ML-random set
Z ∈ (g(A))ω, which is not Schnorr random uniformly relative to A. □

A function g : ω → R+ is called summable if
∑

n g(n) < ∞. Consider the
following property (II) for a set A:

(II) For every total computable function f : 2ω × ω → R+ such that X 7→∑
n f(X,n) is finite and computable, there exists a left-c.e. summable

function g : ω → R+ such that f(A,n) ≤ g(n) for all n.

Lemma 3.6. Suppose that A satisfies the property (I) in Lemma 3.5. Then, A
also satisfies the property (II).

The following proof is almost identical to that of Proposition 25 in [2].

Proof. Let f : 2ω × ω → R+ such that X 7→
∑

n f(X,n) is computable. We can
assume that f(n) ≤ 1 for all n.

Let Bn,α = {X ∈ [0, 1]ω : Xn ∈ [0, α)}. Consider the function U : 2ω → O
defined by U(X) =

∪
n Bn,f(X,n). Then, U is a strictly bounded and uniformly

Schnorr function. By the assumption of (c), U(A) is covered by some bounded c.e.
open set V . Let g(n) = sup{α ∈ [0, 1] : Bn,α ⊆ V }. Then, f(A,n) ≤ g(n) for
all n, and g is left-c.e. The sum

∑
n g(n) is bounded because 1− µ(

∪
n Bn,g(n)) ≥

1− µ(V ) > 0 and
∏

n(1− g(n)) > 0. □
Lemma 3.7. Suppose that A satisfies the property (II). Then, A satisfies the fol-
lowing property (III):
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(III) for each uniformly computable measure machine M , we have K(σ) ≤
KMA(σ) +O(1).

The following proof is almost identical to that of Proposition 28 in [2]

Proof. Let M be a uniformly computable measure machine. Let f : 2ω×2<ω → R+

be the function defined by f(X,σ) = 2−KMX (σ). Then f is a left-c.e. funtion and
X 7→

∑
n f(X,n) is computable. By the assumption of (d), there is a left-c.e.

summable function g : 2<ω → R+ such that f(A,n) ≤ g(n) for all n.
Let c ∈ ω be a constant such that

∑
σ g(σ) ≤ 2c. Then, L = {(k, σ) : g(σ) ≥

2−k+c+1} is a KC-set. By the KC-theorem, K ≤ − log g+ c+1 ≤ − log f + c+1 ≤
KMA + c+ 1. □

Lemma 3.8. Suppose that A satisfies the property (III) in Lemma 3.7. Then, A
is c.e. tt-traceable.

Proof. Let Φ : 2ω × ω → 2<ω. We define an oracle machine M by MX(0n1) =
ΦA(n). Then M is a uniformly computable measure machine. By the assumption
(e), K(σ) ≤ KMA(σ) + c. Let Tn = {σ : K(σ) ≤ n+ c+ 1}. Then, {Tn} is a c.e.
trace with |Tn| ≤ 2n+c+1. Note that K(ΦA(n)) ≤ KMA(ΦA(n)) + c ≤ n + c + 1.
Hence, ΦA(n) ∈ Tn for all n. Hence, A is c.e. tt-traceable. □

Lemma 3.9. Let A be a c.e. tt-traceable set. Then, for each uniform Schnorr test
f ,

∩
n f(A,n) is covered by a ML-test. Thus, A ∈ Low⋆(MLR, SR).

Proof of (f)⇒(b). Let f be a uniform Schnorr test. Then, there is a tt-reduction Φ :
2ω×ω → (2<ω)<ω such that

∪
m[[Φ(X, ⟨n,m⟩)]] = f(X,n) and µ([[Φ(X, ⟨n,m⟩)]]) ≤

2−n−m. Since A is c.e. tt-traceable, there is a c.e. trace {Tk}k∈ω such that |T⟨n,m⟩| ≤
m and Φ(X, ⟨n,m⟩) ∈ T⟨n,m⟩ for each n,m ∈ ω. We can assume that, ifW ∈ T⟨n,m⟩,

then W ∈ (2<ω)<ω, and µ([[W ]]) ≤ 2−n−m. Let

Un =
∪
m

∪
W∈T⟨n+c,m⟩

[[W ]]

where c will be specified soon. Then, {Un} is a sequence of uniformly c.e. open
sets. Furthermore,

µ(Un) ≤
∪
m

∑
W∈T⟨n,m⟩

[[W ]] ≤
∑
m

m2−n−c−m ≤ 2−n

for all n for a sufficiently large c. Then, {Un} is a ML-test. Finally, note that, if
Z ∈

∩
n f(A,n), then Z ∈

∩
n Un. □

3.2. Characterizing Low(MLR,WR) and Low⋆(MLR,WR). Note that the class
Low(MLR,WR) has already characterized as non-DNC by Greenberg-Miller [25].
Here we give a characterization via traceability.

Theorem 3.10. A set A ∈ Low(MLR,WR) iff A is c.e. i.o. traceable.

Proof. By Greenberg-Miller [25], Low(MLR,WR) is characterized as non-DNC.
Hölzl-Merkle [28, Theorem 18] showed that non-DNC is equivalent to c.e. i.o. trace-
ability. □

Its uniform-relativization version is as follows.

Theorem 3.11. A set A ∈ Low⋆(MLR,WR) iff A is c.e. i.o. tt-traceable.
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Next we characterize Low⋆(MLR,WR) by modifying [13, Lemma 8.10.2].

Lemma 3.12. If A ∈ Low⋆(MLR,WR), then for every strictly increasing f ≤tt A,
the range of f is not a subset of a Martin-Löf random set.

Proof. The proof is a straightforward modification of that of (iii)⇒(iv) of Theorem
6.1 in Kihara-Miyabe [30]. For every strictly increasing f ≤tt A, there is a total
computable function Ψ such that ΨA = f . Without loss of generality, we may
safely assume that ΨZ is strictly increasing for every Z ∈ 2ω. Let EZ be the set of
all supersets of the range of ΨZ . Then, Z 7→ EZ forms a uniform Kurtz test. Since
A is low for Martin-Löf randomness versus uniform Kurtz randomness, EA does
not contain a Martin-Löf random element. In other words, the range of f = ΨA is
not a subset of a Martin-Löf random set. □

Lemma 3.13. Suppose that, for every strictly increasing f ≤tt A, the range of f
is not a subset of a Martin-Löf random set. Then, A is c.e. i.o. tt-traceable.

Proof. Let R1 be a nonempty Π0
1 class consisting of ML random reals. Let {Pe} be

a computable enumeration of all Π0
1 classes. Then there is a Π0

1 class R ⊆ R1 of
positive measure and a constant c ∈ ω such that R ∩ Pe ̸= ∅ implies µ(R ∩ Pe) ≥
2−e−c (see [13, Lemma 8.10.1]). Then, for each finite set D ⊂ ω, by RD we denote
the set of all supersets of D contained in R, i.e.,

RD = {X ∈ R : D ⊆ X}.

Choose a computable function e such that e(D) is an index of RD ⊆ R, i.e.,
Pe(D) = RD. Then, we have µ(RD) ≥ 2−e(D)−c if RD is nonempty. Consider the

following set WD ⊆ ω for any finite set D ⊂ ω.

WD = {n ∈ ω : n ≤ maxD} ∪ {n ∈ ω : RD∪{n} = ∅}.

By compactness, WD is c.e., uniformly in D. If X ∈ RD, then X(n) = 0 for any
n ∈ WD \ {n : n ≤ maxD}. Hence,

2−e(D)−c ≤ µ(RD) ≤ 2−|WD|+maxD+1.

Therefore, |WD| is bounded by the order h(D) = e(D) + c+maxD + 1.
Assume that A is not c.e. i.o. tt-traceable. Then there is a total computable

function Γ such that ΓA(D) ̸∈ WD for all finite sets D ⊆ ω, where we identify each
finite set D with its canonical index. Note that ΓA(D) > maxD for all finite sets
D ⊆ ω. Then, inductively define the total computable function Θ as follows.

ΘZ(n) = ΓZ({ΘZ(m) : m < n}).

Clearly, ΘA is strictly increasing, and by induction, we can easily see that

Rrng(ΘA) is nonempty, that is, the range of ΘA is infinite and has a superset which
is contained in R. In other words, the range of f = ΘA ≤tt A is an infinite subset
of a Martin-Löf random set. □

We say that a total function f : ω → ω is infinitely often (i.o.) equal to a partial
function g : ω → ω if f(n) = g(n) for infinitely many n ∈ dom(g). If not, we say
that f is eventually always different from g (see [31]).

Lemma 3.14. Let A be a c.e. i.o. tt-traceable set. Then, every f ≤tt A is i.o.
equal to a partial computable function.
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Proof. Assume that A is c.e. i.o. tt-traceable. Then, there is a computable order
p such that every g ≤tt A is i.o. traced by a c.e. trace (Tn)n∈ω with #Tn ≤ p(n)
for every n ∈ ω. Define a computable order q by q(0) = 0 and q(n + 1) = q(n) +
p(n). Assume that f ≤tt A is given. Let u be the use of the computation, i.e.,
ΦA↾u(n)(n) = f(n) for every n. Then we must have a computable trace (Tn)n∈ω

for n 7→ A ↾u(q(n + 1)). Enumerate Tn as {σk : k ∈ [q(n), q(n + 1))} for every n,
where σk may be undefined. Then, we define a partial computable function g by
g(k) = Φσk(k) for every k. It is not hard to see that f is i.o. equal to g. □

Lemma 3.15. Suppose that every f ≤tt A is i.o. equal to a partial computable
function. Then, A ∈ Low⋆(MLR,WR).

Proof. Fix any uniform Kurtz test {ΦZ↾u(n)(n)}n∈ω, where u is a computable order
and µ(ΦZ↾u(n)) ≤ 2−n for all Z ∈ 2ω. Then, f(n) = A↾u(n) is truth-table reducible
to A. Assume that f ≤tt A is i.o. equal to a partial computable function, that is,
there is a partial computable function ρ such that |ρ(n)| ≥ u(n) for any n ∈ dom(ρ);
and A ↾u(n) = ρ(n) for infinitely many n ∈ dom(ρ). Then, consider the following
sequence {Vn}n∈ω:

V ρ
n =

∪
{[[Φρ(m)(m)]] : m > n, m ∈ dom(ρ), and µ(Φρ(m)(m)) ≤ 2−m}.

Clearly, {V ρ
n }n∈ω is uniformly c.e., and µ(Vn) ≤ 2−n. Hence, {V ρ

n }n∈ω is a ML
test, and clearly

∩
m ΦA↾u(m)(m) ⊆

∩
m V ρ

m. Therefore, if a real is not A-tt-Kurtz
random, then it is not ML random. In other words, A ∈ Low⋆(MLR,WR). □

3.3. Characterizing Low(SR,WR). By combining previous works, we have the
following result.

Theorem 3.16. A set A ∈ Low(SR,WR) iff A is computably i.o. traceable.

Proof. Again, by Greenberg-Miller [25], Low(SR,WR) is characterized as non-DNC
and non-high. Hölzl-Merkle [28, Theorem 18] showed that non-DNC is equivalent
to c.e. i.o. traceability. Furthermore, Hölzl-Merkle [28, Theorem 5] showed that
c.e. i.o. traceability and non-high is equivalent to computable i.o. traceability. □

We will characterize its uniform-relativization version Low⋆(SR,WR) in Section
4.

3.4. Characterizing Low(WR,WR). A set A ∈ Low⋆(WR,WR) iff A is com-
putably c.o. tt-traceable by Kihara-Miyabe [30, Theorem 6.1]. We give its usual-
relativization version.

Theorem 3.17. A set A ∈ Low(WR,WR) iff A is computably c.o. traceable

Proof. Kihara-Miyabe [30, Corollary 6.9] characterized Low(WR,WR) as being
computably c.o. tt-traceable and hyperimmune-free. The hyperimmune-freeness
ensures that every f ≤T A is indeed f ≤tt A. Hence, every A ∈ Low(WR,WR)
must be computably c.o. traceable.

Conversely, assume that A is computably c.o. traceable. Every function f ≤T A
is dominated by a strictly increasing function g ≤T A. By computably c.o. trace-
ablity, there are a computable trace {Dn}n∈ω and a computable function l such
that for every k, g(n) ∈ Dn for some n ∈ [l(k), l(k+ 1)). Now it is easy to see that
g is dominated by the function 1 + max

∪
n∈[lk+1,lk+2)

Dn. □
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Now we summarize the relationship between lowness for randomness notions and
traceability in Table 1.

MLR SR WR

MLR unknown c.e. traceable [34] c.e. i.o. traceable (3.10)

SR computably traceable [51, 34] computably i.o. traceable (3.16)

WR computably c.o. traceable (3.17)

MLR⋆ SR⋆ WR⋆

MLR unknown c.e. tt-traceable (3.3) c.e. i.o. tt-traceable (3.11)

SR computably tt-traceable [20] computably i.o. tt-traceable (4.1)

WR computably c.o. tt-traceable [30]

Table 1. Characterization of Lowness Properties by Traceability

4. Effective Strong Measure Zero

In this section we characterize another lowness notion via traceability.

Theorem 4.1. A set A ∈ Low⋆(SR,WR) iff A is computably i.o. tt-traceable.

We will see in Theorems 5.3 and 6.3 that computably i.o. traceability is charac-
terized as being Schnorr Hh-null for every computable order h. Here, see Section 6
for the definition of Schnorr Hh-nullness. It is not hard to see that this property is
essentially equivalent to the notion of effectively strongly measure zero in the sense
of Higuchi-Kihara [26]. The following proof is inspired by the proof of Pawlikowski’s
characterization [46] of strong measure zero in set theory.

Theorem 4.2. The following are equivalent for V ⊆ 2ω.

(i) V is Schnorr Hh-null for every computable order h.
(ii) E[V ] =

∪
A∈V E(A) is covered by a Schnorr test for every uniform Kurtz

test E.

Proof. (i)⇒(ii): Every uniform Kurtz test E can be thought of as a truth table
functional Ψ such that E(Z) =

∩
n[[Ψ

Z(n)]], and µ([[ΨZ(n)]]) ≤ 2−n. Let u be a
computable modulus of uniform computability of Ψ, that is, for all Z ∈ 2ω and all
n ∈ ω, the value ΨZ↾u(n)(n) is determined.

Let h be a sufficiently slow-growing computable order fulfilling 2−h(u(n)) ≥ 1/(n+
1) for all n ∈ ω. Assume that A is Schnorr h-dimensional measure zero. By our
assumption, we have a computable sequence {Wn}n∈ω of c.e. sets of strings such
that V ⊆ [[Wn]] and

∑
σ∈Wn

2−h(|σ|) < 1/(n+1) is computable uniformly in n ∈ ω.

Thus, each σ ∈ Wn has length greater than u(n), and moreover Wn contains at
most k strings of length ≤ u(n+ k), since, otherwise,∑

σ∈Wn

2−h(|σ|) ≥ (k + 1)2−h(u(n+k)) ≥ k + 1

n+ k + 1
≥ 1

n+ 1
.

For every σ, let kσ be the greatest k such that |σ| ≥ u(k). Then define Nn =∪
σ∈Wn

[[Ψσ(kσ)]]. Then µ(Nn) ≤ 2−n since Wn contains at most k strings of length

≤ u(n+ k) as seen before, and µ([[Ψσ(kσ)]]) ≤ 2−kσ . It is also not hard to see that
µ(Nn) is computable uniformly in n. Therefore, {Nn}n∈ω forms a Schnorr test.
Moreover, V ⊆

∩
n[[Wn]] clearly implies E[V ] ⊆

∩
n Nn as desired.
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(ii)⇒(i): We first define a special Kurtz test D which has some probabilistic
independence property.

Construction of a Kurtz test D. Given a computable order g, inductively
define two computable orders h and h+ by h(0) = 0, h+(n) = h(n) + g(n), and
h(n + 1) = h+(n) + 2g(n). Then let Dk ⊆ 2h(k+1) be the set of all strings of the
form τ⌢σi

⌢ρ such that |τ | = h(k), σi is the i-th string with length g(n), |ρ| = 2g(n)

and the i-th bit of ρ is 0 (equivalently ρ(i) = 0). Then D =
∩

n[[Dn]] is a Kurtz
test, since the µ-measure of

∩
m<n[[Dm]] and [[Dn]] are 2−n and 2−1 respectively.

Now it is easy to see that E : Z 7→ Z + D = {Z + Y : Y ∈ D} is a uniform
Kurtz test, where Z + Y ∈ 2ω is defined by (Z + Y )(n) ≡ Z(n) + Y (n) mod 2.
Therefore, the assertion (ii) ensures that E[V ] = V +D =

∪
A∈V (A+D) is covered

by a Schnorr test {Wn}n∈ω. Let W = W3. By using the property V + D ⊆ W ,
we approximate V by a sequence of clopen sets V [k] such that {

∪
k>n V [k]}n∈ω

forms a Schnorr Hf -test that covers V , that is, V ⊆
∩

n

∪
k>n V [k], where f will

be introduced later.
We say that a string σ approaches W over a string τ except for ε if

(1− ε) · µ(W |τσ) > µ(W |τ)

is satisfied. Note that Kolmogorov’s inequality implies that µ({σ : tµ(W |σ) >
µ(W )}) < t. Hence, given a string τ , the probability of the event that a string
approaches W over τ except for 2−(k+1) is less than 1 − 2−(k+1). We also say

that a string σ ∈ 2[h(k),h(k)
+) approaches V except for ε if σ has an extension

σ+ ∈ 2[h(k),h(k+1)) such that every string in σ +Dk approaches W over a string of

length h(k) except for ε. By Vτ [k] ⊆ 2[h(k),h(k)
+) we denote the set of all strings

that approach V over τ except for 2−(k+1), and put V [k] =
∪

τ∈2h(k) Vτ [k].

Claim. For every k ∈ ω, there are at most (k + 1) · 2h(k) many strings which
approach V except for 2−(k+1). In other words, #V [k] ≤ (k + 1) · 2h(k).

By definition, every string in Vτ [k]+Dk approaches W over τ except for 2−(k+1).
By probabilistic independence of Dk, the µ-measure of Vτ [k] is 1− 2−|Vτ [k]|, while
the probability of approaching W over τ except for 2−(k+1) is less than 1− 2−(k+1)

as mentioned before. This implies #Vτ [k] ≤ k + 1. Hence, the desired value is
computed by multiplying the above number by the number of strings τ ∈ 2h(k).

Claim. For every A ∈ V , the segment A↾ [h(k), h(k+1)) approaches V itself except
for 2−(k+1) for infinitely many k. In other words, V ⊆

∩
l

∪
k>l V [k].

Suppose for the sake of contradiction that some A ∈ V approaches V except for
2−(k+1) for at most finitely many k. Then there exists k0 such that for every k ≥ k0
and every τ ∈ 2h(k), some σ ∈ A↾ [h(k), h(k+1))+Dk does not approach V except
for 2−(k+1). Therefore, inductively, we can construct Z ∈ Q+A+D ⊆ W fulfilling

(1− 2−(k+1)) · µ(W |Z ↾h(k + 1)) ≤ µ(W |Z ↾h(k)).
Here, Z ↾ h(k0) may satisfy µ(W |Z ↾ h(k0)) ≤ µ(W ). Since W is open, there

exists k ≥ k0 such that Z ↾h(k) ⊆ W . Hence, we have µ(W |Z ↾h(k)) = 1 and

µ(W ) ≥ µ(W |Z ↾h(k0)) ≥
k−1∏
i=k0

(1− 2−(i+1)) · µ(W |Z ↾h(k)) > 1/8.
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This contradicts our assumption µ(W ) = 1/8.

Given a computable order f , take g as a sufficiently fast-growing computable
order satisfying f(h(k) + g(k)) − h(k) ≥ 2k + 2. Then, for Un =

∪
k>n V [k], the

collection {Un}n∈ω can be covered by a Schnorr Hf -test, since for every k ∈ ω,

dwtf (V [k]) ≤ (k + 1) · 2h(k) · 2−f(h(k)+g(k)) ≤ 2−(k+1).

Consequently, A is Schnorr Hf -null for every computable order f . □
It remains to show that the assertion (ii) in Theorem 4.2 is equivalent to A ∈

Low⋆(SR,WR). To verify this, we transform every Kurtz test into a “nice” Kurtz
test. Call H ⊆ 2ω infinitely often (i.o.) homogeneous if for infinitely many n and
for any σ, τ ∈ 2n, if H∩ [σ] and H∩ [τ ] are nonempty, then these sets are equivalent
above level n. Such an n is called a homogeneity level for H.

Lemma 4.3. Every Kurtz test (uniformly) relative to A is covered by an i.o. ho-
mogeneous Kurtz test (uniformly) relative to A.

Proof. Let EA =
∩

n[[E
A
n ]] be a Kurtz test (uniformly) relative to A. Note that

µ([[EA
n ]]) ≤ 2−n for every n. We inductively define a computable order l as follows.

Put l(0) = 0, and l(n + 1) be the maximal length of strings contained in EA
n·l(n).

Then, for every n, let dupl(n)(E
A
n·l(n)) be the set obtained by duplicating EA

n·l(n) at

level l(n), that is,

dupl(n)(E
A
n·l(n)) = {τ⌢ρ : τ ∈ 2l(n) and σ⌢ρ ∈ EA

n·l(n) for some σ ∈ 2l(n)}.

Put DA
n = dupl(n)(E

A
n·l(n)) for every n. Since µ([[EA

n·l(n)]]) ≤ 2−n·l(n), we have

µ([[DA
n ]]) ≤ 2l(n)2−n·l(n) = 2−n. Then, clearly DA =

∩
n[[D

A
n ]] is an i.o. homoge-

neous Kurtz test, and DA covers EA. □
Let I be a class of subsets of 2ω. The class I is said to be closed under finite

duplication provided N ∈ I implies dup|σ|(N ∩ [σ]) ∈ I for every string σ. Here,

dup|σ|(N ∩ [σ]) = {τ⌢g : τ ∈ 2|σ| and σ⌢g ∈ N}.
Note that the class of all Schnorr tests is closed under finite duplication.

Lemma 4.4. Let I be a countable class closed under finite duplication. For every
i.o. homogeneous closed set H ⊆ 2ω, if H is not covered by any N ∈ I, then H is
not covered by

∪
I.

Proof. Suppose for the sake of contradiction that H is i.o. homogeneous, and H
is not covered by any N ∈ I. We first claim that, for every N ∈ I, the set
H \ N is dense in H. Otherwise, there is a string σ extendable in H such that
H ∩ [σ] ⊆ N . Without loss of generality, we may assume that |σ| is a homogeneity
level of H. However, the homogeneity of H implies H ⊆ dup|σ|(N∩[σ]), and since I
is closed under finite duplication, we have dup|σ|(N ∩ [σ]) ∈ I. This contradicts our
assumption. Thus, H \N is dense in H, and since I has at most countably many
elements, the Baire category theorem in H ensures the existence of an element in
H that is not contained in any N ∈ I. In other words, H is not covered by

∪
I. □

Corollary 4.5. The following are equivalent for A ∈ 2ω.

(i) E(A) is covered by a Schnorr test for every uniform Kurtz test E : 2ω → E.
(ii) A ∈ Low⋆(SR,WR).
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Proof. (i)⇒(ii): Assume that the assertion (i) holds. If Z is not Kurtz random
uniformly relative to A, we have a uniform Kurtz test E such that Z ∈ E(A). By
our assumption, E(A) is covered by a Schnorr test, and then Z is contained in such
a Schnorr test. Therefore, Z is not Schnorr random. Hence, A ∈ Low⋆(SR,WR).

(ii)⇒(i): We show the contrapositive. Assume that there exists a uniform Kurtz
test E such that E(A) is not covered by a Schnorr test. By Lemma 4.3, we may
safely assume that E(A) is i.o. homogeneous. Since the class of all Schnorr tests is
countable and closed under finite duplication, by Lemma 4.4, E(A) is not covered
by the intersection of all Schnorr tests, that is, E(A) contains a Schnorr random
element. Consequently, A ̸∈ Low⋆(SR,WR). □

5. Traceability and Complexity

If an infinite binary sequence is traceable in some sense, the sequence would be
expected to be so compressible that the compression rate can be bounded by any
computable function. Implicitly, this expectation was verified by Kjos-Hanssen,
Merkle and Stephan [31], who used the notion of a complex set to characterize
the class of diagonally noncomputable functions. More directly, Hölzl-Merkle [28]
gave characterizations of traceability notions by complexity concepts with respect
to prefix-free machines and total machines, where a partial computable function
M : 2<ω → 2<ω is said to be a total machine if dom(M) is total. Franklin-
Greenberg-Stephan-Wu [18] also introduced the notion of anticomplex.

Definition 5.1 ([31, 28, 18]). A set A ∈ 2ω is complex (resp. autocomplex) if there
exists a computable (resp. A-computable) order g such that K(A ↾ g(n)) ≥ n for
almost all n. A set A is totally complex if there exists a computable order g such
that for every total machine M , we have KM (A ↾ g(n)) ≥ n for almost all n. A
set A is anticomplex if for every computable order g, we have K(A ↾ g(n)) ≤ n for
almost all n.

We introduce variants of complexity. The c.o. version is inspired by Theorem
5.2 in [30].

Definition 5.2. A set A is totally auto-anticomplex if, for every A-computable
order g, there is a total machine M such that KM (A ↾ g(n)) ≤ n for almost all n.
A set A is totally c.o. anticomplex if for every computable order g, there exists a
total machine M making KM (A ↾ g(n)) ≤ n to be true computably often, that is,
there exists a computable order h such that for every k ∈ ω, KM (A↾g(n)) ≤ n for
some n ∈ [h(k), h(k + 1)). Moreover, one can also define any combination of these
notions such as totally c.o. auto-anticomplex in a straightforward manner.

Hölzl-Merkle [28, Theorem 26] characterized Schnorr triviality as totally anti-
complex sets, while the former concept refers to a computable measure machine
and the latter concept refers to a total machine. We claim that one can replace
“total machine” in the definition of a totally complex set with “computable mea-
sure machine” or “decidable machine”. Here, recall that a partial computable
function M : 2<ω → 2<ω is a computable measure machine if it is prefix-free and
µ(
∪

σ∈dom(M)[[σ]]) is computable, and M is a decidable machine if dom(M) is com-

putable.
We can easily see that every computable measure machine is indeed a prefix-free

decidable machine. Moreover, if M is a prefix-free decidable machine, then one
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can easily construct a total machine N such that KN (σ) ≤ KM (σ) for every σ by
adding N(τ) = ε for every τ ̸∈ dom(M). Given a total machine M , we construct
a machine N by setting N(0|τ |1τ) = M(τ) for every τ . Then it is easy to see that
KM (σ) ≤ n implies KN (σ) ≤ 2n + 1, and the measure of dom(N) is computable.
Hence, we obtain the claim.

Similarly, the replacement does not change the notion of a totally autocomplex
set and so on.

We review some known results. A set A is c.e. traceable iff A is auto-anticomplex
by Hölzl-Merkle [28, Theorem 22]. A set A is c.e. tt-traceable iff A is anticomplex
by Hölzl-Merkle [28, Theorem 23]. A set A is computably tt-traceable iff A is
totally anticomplex by Hölzl-Merkle [28, Theorem 26]. A set A is c.e. i.o. traceable
iff A is not autocomplex by Kjos-Hanssen–Merkle–Stephan [31]; see also Hölzl-
Merkle [28, Theorem 18]. A set A is c.e. i.o. tt-traceable iff A is not complex
by Kjos-Hanssen–Merkle–Stephan [31]; see also Hölzl-Merkle [28, Theorem 20]. A
set A is computably i.o. tt-traceable iff A is not totally complex by Hölzl-Merkle
[28, Theorem 25]. A set A is computably c.o. tt-traceable iff A is not totally
c.o. anticomplex by Kihara-Miyabe [30, Theorem 6.1].

We show some characterizations of remaining possible combinations.

Theorem 5.3. For any set A ∈ 2ω,

(i) A is computably traceable iff A is totally auto-anticomplex.
(ii) A is computably i.o. traceable iff A is not totally autocomplex.
(iii) A is computably c.o. traceable iff A is totally c.o. auto-anticomplex.

Here we only show the first one because the other two are not hard to see by the
same argument.

Proof. Assume that A is computably traceable. Then, there is a computable order
p such that every g ≤T A is traced by a computable trace (Tn)n∈ω with #Tn ≤
p(n) for every n ∈ ω. Let g be any A-computable order. Then we must have a
computable trace (Tn)n∈ω for n 7→ A↾g(n). Define a computable order q by q(0) =
0 and q(n+1) = q(n) + p(n), and then enumerate Tn as {σn

k : k ∈ [q(n), q(n+1))}
for every n. We construct a computable measure machine M by M(0k1) = σn

k for
k ∈ [q(n), q(n + 1)). Then, clearly KM (A ↾ g(n)) ≤ q(n + 1) + 1 for all n. Note
that the computable order q does not depend on g. Thus we can conclude that A
is totally auto-anticomplex.

Conversely, assume that A is totally auto-anticomplex. To see that A is com-
putably traceable, assume that g ≤T A is given. Let u ≤T A be the A-use in
the computation of g ≤T A, i.e., g(n) = ΦA↾u(n)(n) for some computation Φ. It
suffices to construct a computable trace which traces n 7→ A ↾ u(n). Since A is
totally auto-anticomplex, there exists a computable measure machine M such that
KM (A ↾u(n)) ≤ n for all n. Then, consider the set Tn = {σ ∈ 2<ω : KM (σ) ≤ n}.
Clearly, #Tn ≤ 2n, and (Tn)n∈ω is computable uniformly in n ∈ ω since the mea-
sure of the domain of M is computable. Thus, (Tn)n∈ω is a computable trace with
bound n 7→ 2n which traces n 7→ A↾u(n) as desired. □

Now, the lowness notions are completely characterized by Kolmogorov complex-
ity as in Table 2, where M ranges over all computable measure machines, and the
quantifiers ∀∞, ∃∞ and ∃c.o. are interpreted as ”for all but finitely many”, “infinitely
often” and “computably often (recall Definitions 3.1 and 5.2)”, respectively.



16 TAKAYUKI KIHARA AND KENSHI MIYABE

MLR SR WR

MLR K-trivial: auto-anticomplex: not autocomplex:
∀n K(A↾n) ≤+ K(n) ∀g ≤TA ∀∞n K(A↾g(n)) ≤ n ∀g ≤TA∃∞n K(A↾g(n)) ≤ n

SR totally auto-anticomplex: not totally autocomplex:
∀g ≤TA ∃M∀∞n KM (A↾g(n)) ≤ n ∀g ≤TA∃M∃∞n KM (A↾g(n)) ≤ n

WR totally c.o. auto-anticomplex:
∀g ≤TA ∃M∃c.o.n KM (A↾g(n)) ≤ n

MLR⋆ SR⋆ WR⋆

MLR K-trivial: anticomplex: not complex:
∀n K(A↾n) ≤+ K(n) ∀g ≤T ∅ ∀∞n K(A↾g(n)) ≤ n ∀g ≤T ∅ ∃∞n K(A↾g(n)) ≤ n

SR tot. anticomplex (Schnorr trivial): not totally complex:
∀g ≤T ∅ ∃M∀∞n KM (A↾g(n)) ≤ n ∀g ≤T ∅ ∃M∃∞n KM (A↾g(n)) ≤ n
≡ ∀N∃M∀n KM (A↾n) ≤ KN (n)

WR totally c.o. anticomplex:
∀g ≤T ∅ ∃M∃c.o.n KM (A↾g(n)) ≤ n

Table 2. Characterization of Lowness Properties by Kolmogorov Complexity

6. Complexity and Dimension

In the previous section, the notion of traceability has been characterized in the
context of Kolmogorov complexity. The compression rate of an infinite binary
sequence is closely related to the notions of effective Hausdorff dimension and mar-
tingales (see for instance, Downey-Hirschfeldt [13, Chapter 13]). Kihara-Miyabe
[30, Section 5] introduced the notion of Kurtz dimension (with respect to any com-
putable dimension function) as a clopen version of effective dimension, and charac-
terized c.o. traceability by using the notion of Kurtz dimension. In this section, we
introduce the notion of effective dimension scaled by a computable function, and
then characterize the notion by complexity and martingales.

6.1. Hausdorff Dimension. For an order h : ω → ω, a set E ⊆ 2ω is effective
Hausdorff h-dimensional measure zero or Martin-Löf Hh-null if there is a com-
putable sequence {Wn}n∈ω of c.e. sets of strings such that

E ⊆ [[Wn]] and
∑

σ∈Wn

2−h(|σ|) ≤ 2−n for all n ∈ ω.

For every set W of strings, the value
∑

σ∈W 2−h(|σ|) is called the direct weight of
W with respect to scale h, or simply, the direct h-weight of W , and abbreviated as
dwth(W ) hereafter. If {dwth(Wn)}n∈ω is a computable sequence, then E is called
Schnorr Hh-null. If {Wn}n∈ω is a computable sequence of finite sets of strings, then
E is called Kurtz Hh-null. We also say that A ∈ 2ω is Martin-Löf (resp. Schnorr,
and Kurtz) Hh-null if {A} is Martin-Löf (resp. Schnorr, and Kurtz) Hh-null.

Remark 6.1. If it is the case that h is of the form n 7→ sn, the notions of Martin-Löf
and Schnorr Hh-nullness have been widely studied in the terminology of effective
dimension and Schnorr dimension (see Downey-Hirschfeldt [13, Chapter 13]). The
notion of Martin-Löf Hh-nullness for any dimension function h has also been intro-
duced in Reimann [47] in a slightly different form. The notion of Kurtz Hh-nullness
for any dimension function h has been introduced in Kihara-Miyabe [30].

The following theorem generalizes a well-known characterization of effective di-
mension (see also Downey-Hirschfeldt [13, Chapter 13]).
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Theorem 6.2. Let h be any computable order. Then, the following are equivalent
for a set E ⊆ 2ω.

(i) E is Martin-Löf Hh-null.
(ii) There is a c.e. martingale d such that for all A ∈ E,

lim sup
n→∞

d(A↾n)
2n−h(n)

= ∞.

(iii) For all A ∈ E,

lim inf
n→∞

(K(A↾n)− h(n)) = −∞.

As a corollary, a set is not complex if and only if it is Martin-Löf Hh-null for
every computable order h. We omit the proof of Theorem 6.2 since the proof
is straightforward. Instead, we give the proof of the next theorem, a Schnorr
version of Theorem 6.2. The following theorem generalizes a characterization of
Schnorr dimension by Downey-Merkle-Reimann [17] (see also Downey-Hirschfeldt
[13, Section 13.15]).

Theorem 6.3. Let h be any computable order. Then, the following are equivalent
for a set E ⊆ 2ω.

(i) E is Schnorr Hh-null.
(ii) There is a computable martingale d such that for all A ∈ E,

lim sup
n→∞

d(A↾n)
2n−h(n)

= ∞.

(iii) There is a computable measure machine M such that for all A ∈ E,

lim inf
n→∞

(KM (A↾n)− h(n)) = −∞.

Proof. (i)⇒(ii): Suppose that E ⊆ 2ω is Schnorr Hh-null via a sequence {Wn}n∈ω.
For each σ, let Bσ be a martingale defined by

Bσ(τ) =


2|τ | if τ ⪯ σ

2|σ| if σ ≺ τ

0 otherwise.

Then d =
∑

n

∑
σ∈W2n+1

2n−h(|σ|)Bσ is a martingale with the initial capital∑
n

∑
σ∈W2n+1

2n · 2−h(|σ|) ≤
∑
n

2n · dwth(W2n+1) ≤
∑
n

2−n−1 = 1.

To see that d is computable, it suffices to approximate
∑

σ∈W2n+1
2n−h(|σ|)Bσ

with any precision 2−t. Wait for stage s to get dwth(W2n+1,>s) ≤ 2−n−|τ |−t, where
W2n+1,>s = W2n+1 \W2n+1,s. Then,∑
σ∈W2n+1,>s

2n−h(|σ|)Bσ(τ) =
∑

σ∈W2n+1,>s

2n+|τ |−h(|σ|) = 2n+|τ | ·dwth(W2n+1,>s) ≤ 2−t

Therefore, d is computable.
Now fix A ∈ E. For each n, let kn be a number such that A↾kn ∈ W2n+1. Then,

d(A↾kn) ≥ 2n−h(kn)BA↾kn(A↾kn) = 2n · 2kn−h(kn).

Consequently, we have the desired condition.
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(ii)⇒(iii): Let d be a computable martingale satisfying (ii). Without loss of
generality, we may assume that d(ϵ) = 1. Consider the following c.e. set:

Wn = {σ ∈ 2<ω : d(σ) > 22n2|σ|−h(|σ|)}.

Let Vn be a maximal c.e. subantichain of Wn. Then∑
σ∈Vn

2n−h(|σ|) ≤
∑
σ∈Vn

2n−h(|σ|) 2
−2nd(σ)

2|σ|−h(|σ|) = 2−n
∑
σ∈Vn

2−|σ|d(σ) ≤ 2−n.

Here, the last inequality follows from Kolmogorov’s inequality (see [13, Theorem
6.3.3]) with our assumption d(ϵ) = 1. Then, the KC theorem [13, Theorem 3.6.1]
implies the existence of a machine M such that KM (σ) ≤ h(|σ|) − n + c holds for
each n and σ ∈ Vn. In particular, lim infn→∞(KM (A ↾ n) − h(n)) = −∞ for all
A ∈ E.

It remains to show that M is indeed a computable measure machine. To see this,
we approximate the value

∑
σ∈Vn

2n−h(|σ|) within a given precision 2−t. Given t,

we choose s such that 2s−h(s) ≥ 2t−n. If τ ∈ Vn and |τ | ≥ s, we have

d(τ) ≥ 22n · 2|τ |−h(|τ |) ≥ 22n+s−h(s) ≥ 2t+n.

By Kolmogorov’s inequality, the probability of {σ : d(σ) ≥ 2t+n} is not greater
than 2−t−n. Thus, ∑

σ∈Vn∩2≥s

2n−h(|σ|) ≤ 2n
∑

σ∈Vn∩2≥s

2−|σ| ≤ 2−t.

Hence, the value is shown to be computable, and this ensures that the measure
of dom(M) is computable.

(iii)⇒(i): Assume that there exists a computable measure machine M such that
lim infn→∞(KM (A ↾ n) − h(n)) = −∞ for all A ∈ E. Consider the sequence
{Wn}n∈ω of c.e. open sets defined by

Wn = {σ ∈ 2<ω : KM (σ) ≤ h(|σ|)− n}.

Then A ∈
∩

n Wn, and

dwth(Wn) =
∑

σ∈Wn

2−h(|σ|) ≤ 2−n
∑

σ∈Wn

2−KM (σ) ≤ 2−n.

To see that dwth(Wn) is computable uniformly in n, given precision t, we wait
for stage s to meet µ([[dom(M>s)]]) ≤ 2n−t. Then

dwth(Wn,>s) ≤ 2−n
∑

σ∈Wn,>s

2−KM (σ) ≤ 2−n
∑

τ∈dom(M>s)

2−|τ | ≤ 2−t

Hence, E is Schnorr h-dimensional measure zero. □

As a corollary, a set is not totally complex if and only if it is Schnorr Hh-null
for every computable order h.

The Kurtz version of Theorems 6.2 and 6.3 has already been proved in Kihara-
Miyabe [30].

Theorem 6.4 (Kihara-Miyabe [30]). Let h be any computable order. Then, the
following are equivalent for a set E ⊆ 2ω.

(i) E is Kurtz Hh-null.
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(ii) There are a computable martingale d and a computable order g such that
for all A ∈ E,

(∀n ∈ ω)(∃k ∈ [g(n), g(n+ 1))) d(A↾k) ≥ 2n · 2k−h(k).

(iii) There are a computable measure machine M and a computable order g
such that for all A ∈ E,

(∀n ∈ ω)(∃k ∈ [g(n), g(n+ 1))) KM (A↾k) ≤ h(k)− n.

6.2. Packing Dimension. The notion of packing dimension from fractal geome-
try is also known to be strongly related to Kolmogorov complexity (see Downey-
Hirschfeldt [13, Section 13.11]). We next introduce the effective version of packing
dimension for any dimension function h. For an order h : ω → ω, given a tree
T ⊆ 2<ω, define Ph

n(T ) ∈ [0,∞] as follows.

Ph
n(T ) = sup

{∑
σ∈W

2−h(|σ|) : W ⊆ T ∩ 2≥n

}
,

where W ranges over all prefix-free subsets of 2<ω. Then, we denote the value
limn→∞ Ph

n(T ) by Ph
∞(T ). The packing h-dimensional measure of a set E ⊆ 2ω is

defined as follows.

Ph(E) = inf

{ ∞∑
i=0

Ph
∞(Ti) : E ⊆

∪
i∈ω

[Ti]

}
,

where Ti ranges over all subtrees of 2<ω, and we denote by [T ] the closed set
generated by a tree T , i.e., [T ] = {A ∈ 2ω : (∀n) A↾n ∈ T}.

A set E ⊆ 2ω is said to be packing h-null if Ph(E) = 0. If {Ti}i∈ω can be chosen
as a computable sequence of c.e. trees (resp. computable trees), then E is called
Martin-Löf Ph-null (resp. Schnorr Ph-null). We also say that A ∈ 2ω is Martin-Löf
(resp. Schnorr) Ph-null if {A} is Martin-Löf (resp. Schnorr) Ph-null.

Remark 6.5. It is not hard to see that if there is a real s such that h(n) = sn for
every n ∈ ω, the value Ph(E) is known as the s-dimensional packing measure of E
in the usual sense. If h is such a function, the notions of Martin-Löf and Schnorr
Ph-nullness have been studied in the terminology of effective packing dimension
and Schnorr packing dimension (see Downey-Hirschfeldt [13, Chapter 13]), though
it seems that the notion of Schnorr packing dimension has been only defined in the
terminology of martingales.

It is known that for every set E ⊆ 2ω, the packing dimension dimP(E) coincides
with the modified upper box-counting dimension dimMB(E). Here, recall that the
upper box-counting dimension dimB(E) of a set E ⊆ 2ω is given by

dimB(E) = lim sup
n→∞

log |E ↾n|
n

,

where E ↾n = {σ ∈ 2n : E ∩ [σ] ̸= ∅}. We introduce the function-scaled version of
the upper box-counting dimension. For an order h : ω → ω, a tree T ⊆ 2<ω is said
to be upper box-counting h-null if

lim sup
n→∞

(log |T ↾n| − h(n)) = −∞,

where T ↾n = {σ ∈ 2n : σ ∈ T}.
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A set E ⊆ 2ω is modified upper box-counting h-null if there is a sequence {Ti}i∈ω

of trees such that E ⊆
∪

i∈ω[Ti] and Ti is upper box-counting h-null for every
i ∈ ω. We simply say that such a set E is very h-small. We say that a set E ⊆ 2ω is
Martin-Löf (resp. Schnorr) very h-small if there is a computable sequence {Ti}i∈ω

of c.e. (resp. computable) trees Ti such that E ⊆
∪

i∈ω[Ti] and Ti is upper box-
counting h-null for every i ∈ ω.

Remark 6.6. An effectivization of box-counting dimension has been introduced by
Reimann [47], see Downey-Hirschfeldt [13, Section 13.11]. Our terminology “very
h-smallness” is inspired by the notions of smallness and very smallness in Binns [3].
Here, Binns [3] introduced these notions in the following manner: For a closed set
P ⊆ 2ω, we define bP (n) to be the least k such that |P ↾k| ≥ n. The set P is small
if bP is not dominated by a computable function, and very small if bP dominates all
computable functions. It is easy to see that a Π0

1 class is very small if and only if it
is Martin-Löf (Schnorr) very h-small for every computable order h. Binns [3, 4] has
investigated nontrivial behavior of the Muchnik degrees of small and very small Π0

1

classes. The relationship between smallness and traceability has been mentioned in
Binns and Kjos-Hanssen [5, 6] in the context of reverse mathematics.

We say that an order h is suitable if h(n+1) ≤ h(n)+ 1 holds. We also consider
its inverse function h−1, where for every n ∈ ω, the value h−1(n) is defined to be
the least t such that h(t) ≥ n holds. Note that the inverse of a suitable order is
strictly increasing.

Theorem 6.7. Let E be a subset of 2ω, and let h be a computable suitable order.
Then we have (i) ⇒ (ii) ⇒ (iii) ⇒ (iv).

(i) There is a computable order u such that, for all A ∈ E,

K(A↾h−1(n)) ≤ n− u(n), for almost all n ∈ ω.

(ii) E is Martin-Löf Ph-null.
(iii) E is Martin-Löf very h-small.
(iv) For all A ∈ E, there is a constant c ∈ ω such that

C(A↾h−1(n)) ≤ n+ c, for almost all n ∈ ω.

Proof. (i)⇒(ii): Put g = h−1. Consider the following c.e. tree:

Tk = {σ ∈ 2<ω : (∀n ≥ k) g(n) < |σ| → K(σ ↾g(n)) ≤ n− u(n)}.
Clearly, E ⊆

∪
k[Tk]. Let W be a prefix-free subset of Tk ∩ 2≥n for n > k with

u(n) ≥ t. Then, we can find a prefix-free set V ⊆ Tk ∩
∪

s≥n 2
g(s) such that

[V ] = [W ] by enumerating all extensions τ of a string σ ∈ W , where τ is of length
g(s) for the least s such that g(s) ≥ |σ|. Then, h(n+ 1) ≤ h(n) + 1 implies that∑

σ∈W

2−h(|σ|) ≤
∑
σ∈V

2−h(|σ|) =
∞∑

n=k+1

∑
σ∈V ∩2g(n)

2−h(g(n)) ≤
∞∑

n=k+1

∑
σ∈V ∩2g(n)

2−n

≤
∞∑

n=k+1

∑
σ∈V ∩2g(n)

2−K(σ)−u(n) ≤
∑
σ∈V

2−t2−K(σ) ≤ 2−t.

Therefore, Ph
∞(Tk) = 0, for all k ∈ ω. Hence, Ph

∞(E) = 0.
(ii)⇒(iii): Clearly, Ph

n(T ) ≥ 2−h(m)|T ↾m| for all m ≥ n. Therefore,

logPh
n(T ) ≥ log(2−h(m)|T ↾m|) = log |T ↾m| − h(m).
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Hence, logPh
∞(T ) ≥ logPh

n(T ) ≥ lim supn→∞(log |T ↾ n| − h(n)). Thus, if E is
packing h-null, then it is very h-small.

(iii)⇒(iv): Assume that E is Martin-Löf very h-small via a computable sequence
{Ti}i∈ω of c.e. trees. Then, for every i ∈ ω there is ki ∈ ω such that log |Ti ↾n| ≤
h(n), i.e., |Ti ↾n| ≤ 2h(n) for all n ≥ ki. Then, we have |Ti ↾h−1(n)| ≤ 2n, whenever
h−1(n) ≥ ki. Since h−1 is strictly increasing, one can easily construct a machine
M(i) such that CM(i)(σ) = n for all σ ∈ Ti ↾h−1(n) with h−1(n) ≥ ki. □

Corollary 6.8. The following conditions are pairwise equivalent for E ⊆ 2ω.

(i) For all computable g, for all A ∈ E,

K(A↾g(n)) ≤ n, for almost all n ∈ ω.

(ii) E is Martin-Löf Ph-null, for all computable orders h.
(iii) E is Martin-Löf very h-small, for all computable orders h.

In particular, A ∈ 2ω is anticomplex if and only if it is Martin-Löf Ph-null for
every computable order h.

Theorem 6.9. Let E be a subset of 2ω, and let h be a computable suitable order.
Then we have (i) ⇒ (ii) ⇒ (iii) ⇒ (iv).

(i) There are a computable measure machine M and a computable order u
such that, for all A ∈ E,

KM (A↾h−1(n)) ≤ n− u(n), for almost all n ∈ ω.

(ii) E is Schnorr Ph-null.
(iii) E is Schnorr very h-small.
(iv) There is a computable measure machine M such that for all A ∈ E, there

is a constant c ∈ ω such that

C(A↾h−1(n)) ≤ n+ c, for almost all n ∈ ω.

Proof. Straightforward. □

Corollary 6.10. The following conditions are pairwise equivalent for E ⊆ 2ω.

(i) For all computable g, there is a computable measure machine M such that
for all A ∈ E,

KM (A↾g(n)) ≤ n, for almost all n ∈ ω.

(ii) E is Schnorr Ph-null, for all computable orders h.
(iii) E is Schnorr very h-small, for all computable orders h.

In particular, A ∈ 2ω is totally anticomplex (or equivalently, Schnorr trivial) if
and only if it is Schnorr Ph-null for every computable order h.

7. Implication and Separation

Table 3 shows the relationship among lowness properties for pairs of randomness
notions. In this section, we show that Table 3 is complete, that is, no further arrows
could be added to Table 3.
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Low⋆(MLR,MLR) //

tthhhhhhh
Low⋆(MLR, SR) // Low⋆(MLR,WR)

Low(MLR,MLR) //

44hhhhhhh

@A 22ddddddddddddddddddddddd

Low(MLR, SR) //

44iiiiii
Low(MLR,WR)

44iiiiii

Low⋆(SR, SR)

@A
//

//

OO

Low⋆(SR,WR)

OO

Low(SR, SR)

@A
//

OO

//

44iiiiii
Low(SR,WR)

OO

44iiiiii

Low⋆(WR,WR)

OO

Low(WR,WR)

OO

44iiiiii

Table 3. Implications of Lowness Properties

7.1. Implications. Table 3 contains three nontrivial inclusions. We first check
that these implications can be deduced from known results.

Proposition 7.1. Low(MLR,MLR) ⊆ Low(SR,WR).

Proof. Greenberg-Miller [25] characterized Low(SR,WR) as being neither DNC nor
high. If A ∈ Low(MLR,MLR), then A ∈ Low(MLR,WR), whence A is not DNC.
Furthermore, K-triviality implies superlow [41], therefore non-high. □

The inclusion Low(SR, SR) ⊆ Low(WR,WR) holds because computable trace-
ability implies computable c.o. traceability. The same argument shows the inclusion
Low⋆(SR, SR) ⊆ Low⋆(WR,WR). It is also known that several lowness properties
coincide inside non-high or hyperimmune-free Turing degrees as listed below.

(i) A ∈ Low(SR, SR) iff A ∈ Low(MLR, SR) and A is hyperimmune-free ([34]).
(ii) A ∈ Low(SR,WR) iff A ∈ Low(MLR,WR) and A is not high ([25]).
(iii) A ∈ Low(WR,WR) iff A ∈ Low(SR,WR) and A is hyperimmune-free

([25]).
(iv) A ∈ Low(SR, SR) iff Low⋆(SR, SR) and A is hyperimmune-free ([22]).
(v) A ∈ Low(WR,WR) iff Low⋆(WR,WR) and A is hyperimmune-free ([30]).

Indeed, by the characterizations via traceability, it is easy to see that for every
hyperimmune-free A, A ∈ Low(R, S) if and only if A ∈ Low⋆(R, S) for any random-
ness notions R, S ∈ {MLR,SR,WR}. Therefore, we indeed have the following.

(vi) A ∈ Low(SR, SR) iff A ∈ Low⋆(MLR,SR) and A is hyperimmune-free.
(vii) A ∈ Low(WR,WR) iff A ∈ Low⋆(MLR,WR) and A is hyperimmune-free.

However, there must be a difference between Low(SR, SR) and Low(WR,WR)
within hyperimmune-free Turing degrees. We also have another correspondence
within non-high degrees.

Proposition 7.2. If A is not high, then A ∈ Low⋆(MLR,WR) if and only if
A ∈ Low⋆(SR,WR).

Proof. Assume that A is not high, and A ∈ Low⋆(MLR,WR). Then A is c.e. i.o. tt-
traceable. It suffices to show that A is computably i.o. tt-traceable. Fix a com-
putable function g ≤tt A. Let (Tn)n∈ω be a c.e. trace of n 7→ g(n). Given a
computable enumeration (Tn,s)n,s∈ω and k, we can A-computably find the least
stage t(k) such that g(n) ∈ Tn,t(k) for at least k + 1 many n ∈ ω. Since A is not
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high, we have a computable function v that is not dominated by t. We may assume
that v is non-decreasing.

Then, we construct a computable trace T ∗ = (T ∗
n)n∈ω by putting T ∗

n = Tn,v(n) for
every n ∈ ω. For any n ∈ ω, if v(n) ≥ t(n), there are at least n+1 many s such that
g(s) ∈ Ts,v(n). In particular, there must be s ≥ n such that g(s) ∈ Ts,v(n) ⊆ Ts,v(s).
By our choice of v, such n occur infinitely often. Hence, g is traced by T ∗ infinitely
often. □

7.2. Separations. Franklin [24] noted the following separations.

(i) Low(SR,SR) ̸⊆ Low(MLR,MLR).
(ii) Low(MLR,MLR) ̸⊆ Low⋆(SR,SR).

Assertion (i) can be easily verified by looking at the cardinalities of the two sets,
and assertion (ii) is verified by constructing a 1-generic K-trivial set, where such a
generic cannot be Schnorr trivial. By looking at the distribution of generic reals,
we easily see the following separation result.

Proposition 7.3. Low(SR,WR) ̸⊆ Low⋆(WR,WR).

Proof. A weak 1-generic real cannot also be in Low⋆(WR,WR), since weak 1-
genericity implies Kurtz randomness. However, every 1-generic real is diagonally
computable, and no 2-generic real is high. Hence, every 2-generic real should be
contained in Low(SR,WR). □

Note that the above genericity argument clearly implies the following.

(iii) Low(MLR,MLR) ̸⊆ Low⋆(WR,WR).

Proposition 7.4. Low(WR,WR) ̸⊆ Low⋆(MLR, SR).

Proof. Higuchi-Kihara [26] constructed a small perfect Π0
1 class P ⊆ 2ω containing

no anticomplex element. Here, recall the definition of smallness from Remark 6.6. It
was shown in Higuchi-Kihara [26] that if a Π0

1 classes is small, then it is Martin-Löf
Hh-null for every computable order h. By effective compactness of P , if it is covered
by a c.e. open set Wn, we can effectively find a clopen subset of Wn that covers
P uniformly in n. Hence, P is indeed Kurtz Hh-null for every computable order
h. Therefore, P is included in Low⋆(WR,WR) by Kihara-Miyabe [30, Theorem
6.1]. By hyperimmune-free basis theorem (see for instance, Downey-Hirschfeldt [13,
Theorem 2.19.11]), P has a hyperimmune-free element, and every hyperimmune-free
element A ∈ P is contained in Low(WR,WR) as seen in Section 7.1. The property
of P implies that A is not anticomplex. Hence, we have A ̸∈ Low⋆(MLR,SR). □

Proposition 7.5. Low⋆(SR,SR) ̸⊆ Low(MLR,WR).

Proof. Recall that Low(MLR,WR) is characterized as being not autocomplex,
and Low⋆(SR, SR) is characterized by Schnorr triviality by Franklin-Stephan [20].
Kanovich showed that a c.e. set A is autocomplex if and only if it is Turing equiva-
lent to the halting problem (see Downey-Hirschfeldt [13, Theorem 8.16.7]). Downey,
Griffiths and LaForte [12, Theorem 8] showed that there exists a c.e. Schnorr triv-
ial set which is Turing equivalent to the halting problem. Hence, an autocomplex
Schnorr trivial real exists. □

Proposition 7.6. Low(MLR, SR) ̸⊆ Low⋆(SR,WR).
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Proof. Kjos-Hanssen, Nies and Stephan [34] characterized the class Low(MLR, SR)
by c.e. traceability. Kjos-Hanssen and Nies [33] showed that there exists a super-
high jump traceable set. Thus, there exists a high c.e. traceable real (see also
Franklin, Greenberg, Stephan and Wu [18, Section 4.1]). Note that c.e. traceability
is invariant under the Turing equivalence. Furthermore every high degree contains
a Schnorr random real ([43]; see also Downey and Hirschfeldt [13, Theorem 8.11.6]).
In particular, such a real cannot be contained in Low⋆(SR,WR). □

Consequently, we conclude that Table 3 is complete.
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