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Abstract We present a survey on computability on subsets of Euclidean space and,
more generally, computability concepts on metric spaces and their subsets. In par-
ticular, we discuss computability of points in co-c.e. closed sets, representations of
hyperspaces, Borel codes, computability of connectedness notions, classification of
Polish spaces, computability of semicomputable sets, continua and manifolds, prop-
erties of computable images of a segment, and computability structures.

1 Introduction

To investigate computability in analysis and related areas, we need a language for
taking about computability of complex numbers, compact sets, manifolds, etc. There
is a general consensus regarding computability of real and complex numbers. How-
ever, what do they mean by a computable compact set, a computable measurable
set, a computable Borel set, a computable manifold, and so on?

There have already been a number of reasonable answers to this question. There
are also various introductory materials on computability of basic concepts in analy-
sis and related fields, cf. [80, 96, 12, 10, 76, 79]. This survey collects the answers to
the above question from the modern perspective.

Computable analysis has become a flourishing field; as a result the researches
are very diverse. Each researcher needs the notion of computability at an appropri-
ate level of abstraction. Therefore, in this survey, we introduce the notion of com-
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putability of sets step by step, namely, from subsets of Euclidean spaces to subsets
of abstract represented spaces.

However, the real purpose of this survey is not merely introducing fundamental
notions of computability in analysis. In accordance with its rapid progress, com-
putable analysis has been becoming a matured field. A large part of the researches
are no longer at the stage of discussing basic definitions and producing expected re-
sults, but at the stage of producing unexpected, surprising results with sophisticated
techniques.

From the authors’ own point of view, we select remarkable results related to com-
putability of sets (the selection is by no means exhaustive, of course), and attempt
to sketch how the computability notions have brought us an enormous number of
highly nontrivial and astonishing results.

Here we summarize the structure of this survey. In Section 2, we discuss the
notion of computability of a subset of Euclidean space. Then, in Section 3, we in-
troduce various notions of computability of subsets of computable metric spaces.
In Section 4, we give a survey on degrees of noncomputability of points in co-c.e.
closed sets (also known as Π 0

1 classes) from the perspective of computable analysis.
In Section 5 we introduce the notion of computability of closed and compact sets
in more abstract settings. Namely, we consider the hyperspaces of closed sets and
compact sets, which enable us to introduce computability of sets as computability of
points in hyperspaces. We also consider computability of Borel sets in Section 5.3.
In Section 6, we consider computability of path-connectivity, local connectivity, etc.
In Section 7, we sketch how the structure of degrees of noncomputability of points
in a Polish space is affected by the global structure of the space itself with the em-
phasis on topological dimension theory. In Section 8, we give a survey on various
conditions under which a semicomputable set is computable. In Section 9, we state
some results about computable images of a segment. In Section 10, we consider
computability structures on metric spaces.

2 Computable Subsets of Euclidean Space

In this section we discuss several natural ways to define the notion of a computable
subset of Euclidean space.

A real number x is computable if it can be effectively approximated by a rational
number with arbitrary precision. A point x in Euclidean space Rn is computable if it
can be effectively approximated by a rational point q ∈Qn with arbitrary precision.
Similarly, we may say that a subset S of Rn is computable if it can be effectively
approximated by rational points with arbitrary precision. Of course, here we need to
make precise what an effective approximation by rational points means.

Let d be the Euclidean metric on Rn. Let A,B ⊆ Rn and ε > 0. We will say that
A and B are ε-close if for each x ∈ A there exists y ∈ B such that d(x,y)< ε and for
each y ∈ B there exists x ∈ A such that d(x,y)< ε .



Computability of Subsets of Metric Spaces 3

It is easy to conclude that for each compact set S ⊆Rn and each ε > 0 there exists
a finite subset A of Qn such that S and A are ε-close. In view of this, it is natural to
define that a compact set S ⊆ Rn is computable if for each k ∈ N we can effectively
find a finite subset Ak of Qn such that S and Ak are 2−k-close. Intuitively, the finite
set of points with rational coordinates Ak represents the image of the set S and this
image becomes sharper as k becomes larger.

Another way to define the notion of a computable subset of Euclidean space is to
follow the standard definition of a computable subset of Nn. In classical computabil-
ity theory a set S ⊆ Nn is computable if its characteristic function χS : Nn → N is
computable. However, if S ⊆Rn, S ̸= /0, S ̸=R, then the function χS : Rn →R is not
continuous and hence not computable. Therefore, it does not make sense to define
that a subset of Euclidean space is computable if its characteristic function is com-
putable. But, there is a suitable replacement for the characteristic function, namely
for S ⊆ Rn, S ̸= /0, we may consider the distance function dS : Rn → R defined by

dS(x) = d(x,S).

It is reasonable to consider here closed sets since they are uniquely determined by
their distance functions. We will say that a closed set S ⊆ Rn is computable if the
function dS : Rn → R is computable. Intuitively, this means that for a given x ∈ Rn

we can compute how close x lies to S (although, in general, we cannot effectively
determine whether x ∈ S or x /∈ S).

To introduce the notion of a computable subset of Rn we may also proceed in the
following way. We first define the notion of a computably enumerable (c.e.) subset
of Rn and then we define that S⊆Rn is computable if S and Rn\S are c.e. (following
the classical fact: S ⊆ Nn is computable if S and Nn \S are c.e.).

A subset S of Rn may be uncountable, so it does not make much sense to define
that S is c.e. if it is the image of a computable function N → Rn. What we can do
here is to define that S is c.e. if it is the closure of the image of such a function (or
S = /0). In other words, S is c.e. if S = /0 or there exists a computable sequence in Rn

which is dense in S. It is also reasonable to assume that S is closed (in this case the
given sequence uniquely determines S).

On the other hand, if S is closed, Rn \ S is open and to define that Rn \ S is c.e.
we need another notion of computable enumerability. An open set U ⊆ Rn will be
called c.e. open if it can be effectively exhausted by open balls. More precisely, U
is c.e. open if U = /0 or

U =
∪
i∈N

B(xi,ri),

where (xi) is a computable sequence in Rn and (ri) a computable sequence of posi-
tive real numbers. Here, for a ∈Rn and s > 0, B(a,s) denotes the open ball of radius
s centered in a. So, we will say that S ⊆ Rn is computable if S is c.e. closed and
Rn \S is c.e. open.

The second and third definition given in this section coincide, and all three defi-
nitions coincide if S is compact [12]. In the next section we examine computability
of sets in more general ambient spaces, namely in computable metric spaces.



4 Zvonko Iljazović and Takayuki Kihara

3 Computable Metric Spaces

To describe various computability notions in Euclidean space, such as those given
in the previous section, we actually only have to fix some effective enumeration
α :N→Qn of Qn or, more generally, some computable sequence α :N→Rn whose
image is dense in Rn. This motivates the study of the notion of a computable metric
space.

A computable metric space is a triple (X ,d,α), where (X ,d) is a metric space
and α = (αi) is a sequence in X whose image is dense in (X ,d) and such that
the function N2 → R, (i, j) 7→ d(αi,α j), is computable. If d is a complete metric,
then we also say that (X ,d,α) is a computable Polish space. For an introduction to
computable metric spaces, we refer the reader to [5, 95, 12, 70, 29].

Let (X ,d,α) be a computable metric space. A point x ∈ X is said to be com-
putable in (X ,d,α) if there exists a computable function f : N → N such that
d(x,α f (k)) < 2−k for each k ∈ N. A sequence (xi) in X is said to be computable in
(X ,d,α) if there exists a computable function f : N2 → N such that d(xi,α f (i,k))<

2−k for all i,k ∈ N.

Example 3.1. Let n ∈ N, n ≥ 1, let α : N→ Qn be a computable surjection and let
d be the Euclidean metric on Rn. Then (Rn,d,α) is a computable metric space. It
is easy to conclude that x ∈ Rn, x = (x1, . . . ,xn), is a computable point in (Rn,d,α)
if and only if x1, . . . ,xn are computable numbers. Moreover, a sequence (xi) in Rn

is computable in (Rn,d,α) if and only if the component sequences of (xi) are com-
putable as functions N → R. We say that (Rn,d,α) is the computable Euclidean
space.

A computable normed space (X ,∥·∥ ,e) is a separable normed space (X ,∥·∥)
together with a numbering e :N→X such that the linear span of rng(e) is dense in X ,
and the induced metric space is a computable metric space. A complete computable
normed space is called a computable Banach space. If a computable normed space
is also a Hilbert space, then it is called a computable Hilbert space. For basics on
these notions, see also Pour-El and Richards [80].

3.1 Computable Compact and Closed Sets

From now on, let (∆ j) be some fixed effective enumeration of all finite subsets of
N. If (X ,d,α) is a computable metric space and j ∈ N, let

Λ j = {αi | i ∈ ∆ j}. (1)

Clearly, (Λ j) is an enumeration of all finite subsets of {αi | i ∈ N}.
Let (X ,d) be a metric space. That two subsets A and B of X are ε-close can

be defined in the same way as in the case of Euclidean spaces (Section 2). For
nonempty compact sets A and B in (X ,d) we define their Hausdorff distance
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dH(A,B) = inf{ε > 0 | A and B are ε-close}. (2)

It is not hard to conclude that dH(A,B)< ε if and only if A and B are ε-close.
If (X ,d,α) is a computable metric space and S a nonempty compact set in (X ,d),

then for each ε > 0 there exists j ∈ N such that dH(S,Λ j)< ε .
Let (X ,d,α) be a computable metric space and let S be a compact set in (X ,d).

We say that S is a computable compact set in (X ,d,α) if S = /0 or there exists a
computable function f : N→ N such that dH(S,Λ f (k))< 2−k for each k ∈ N.

Example 3.2. Let (X ,d,α) be a computable metric space and let K be the set of all
nonempty compact sets in (X ,d). Then the function dH : K ×K → R defined by
(2) is a metric on K [73]. Let Λ = (Λ j) be the sequence defined by (1). It is easy
to conclude that Λ is a dense sequence in the metric space (K ,dH). Furthermore,
the function N2 →R, (i, j) 7→ dH(Λi,Λ j), is computable (see e.g. Proposition 2.5 in
[41]). Hence (K ,dH ,Λ) is a computable metric space. Note that computable points
in (K ,dH ,Λ) are exactly nonempty computable compact sets in (X ,d,α).

A computable metric space (X ,d,α) is said to be effectively compact if X is a
computable compact set in (X ,d,α).

If (X ,d) is a metric space, x ∈ X and r > 0, by B(x,r) we will denote the open
ball in (X ,d) of radius r centered in x and by B(x,r) the corresponding closed ball.

Let (X ,d,α) be a computable metric space, n ∈ N and r ∈ Q, r > 0. We say
that B(αn,r) is a rational open ball in (X ,d,α) and B(αn,r) a rational closed ball
in (X ,d,α). Let τ1,τ2 : N→ N and q : N→Q be some fixed computable functions
such that the image of q is the set of all positive rational numbers and {(τ1(i),τ2(i)) |
i ∈ N}= N2. For i ∈ N we define λi = ατ1(i), ρi = qτ2(i) and

Ii = B(λi,ρi), Îi = B(λi,ρi).

Then (Ii) is an enumeration of all rational open balls and (Îi) is an enumeration of
all rational closed balls in (X ,d,α).

Let (X ,d,α) be a computable metric space and let S be a closed set in (X ,d).
We say that S is a computably enumerable closed set in (X ,d,α) (or merely a com-
putably enumerable set in (X ,d,α)) if {i ∈ N | Ii ∩S ̸= /0} is a c.e. subset of N.

Suppose (X ,d,α) is a computable metric space, S a closed set in (X ,d) and (x j) a
computable sequence in (X ,d,α) which is dense in S, i.e. such that S = {x j | j ∈ N}.
(Here, by A, for A ⊆ X , we denote the closure of A in the metric space (X ,d).) Then
S is a c.e. set in (X ,d,α) [12]. So the following implication holds:

S contains a dense computable sequence ⇒ S c.e. (3)

The converse of implication (3) does not hold in general [4].
Let (X ,d) be a metric space and S ⊆ X . We say that S is a complete set in (X ,d)

if S = /0 or S ̸= /0 and (S,d|S×S) is a complete metric space.
If S is a complete set in a metric space (X ,d), then S is closed in (X ,d). Con-

versely, a closed set in (X ,d) need not be complete, however if the metric space
(X ,d) is complete, then each closed set in (X ,d) is complete.
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Although the converse of the implication (3) does not hold in general, it does hold
if S is a nonempty complete set. Hence, if (X ,d,α) is a computable metric space and
S is a nonempty c.e. set in this space which is complete in (X ,d), then S contains a
dense sequence which is computable in (X ,d,α) (see [46]). In particular, if (X ,d)
is a complete metric space, then each nonempty c.e. set in (X ,d,α) contains a dense
computable sequence [12].

Let (X ,d,α) be a computable metric space and let U ⊆ X . We say that U is a
computably enumerable open set in (X ,d,α) if there exists a c.e. set A ⊆ N such
that U =

∪
i∈A Ii. We say that S is co-computably enumerable (co-c.e.) closed set in

(X ,d,α) if X \S is a c.e. open set in (X ,d,α).
Let (X ,d,α) be a computable metric space and let S ⊆ X . We say that S is a

computable closed set in (X ,d,α) if S is c.e. and co-c.e. closed in (X ,d,α).
Let (X ,d,α) be a computable metric space, n ≥ 1 and B1, . . . ,Bn rational open

balls in this space. Then we say that B1 ∪·· ·∪Bn is a rational open set in (X ,d,α).
If (X ,d,α) is a computable metric space and j ∈ N, let

J j =
∪

i∈∆ j

Ii.

Then {J j | j ∈ N} is the family of all rational open sets in (X ,d,α).
Let (X ,d,α) be a computable metric space and let K be a compact set in (X ,d).

We say that K is a semicomputable compact set in (X ,d,α) if the set { j ∈ N | K ⊆
J j} is c.e.

Less formally, K is semicomputable compact if we can effectively enumerate all
rational open sets which cover K.

Let (X ,d,α) be a computable metric space and let K ⊆ X . Then the following
equivalence holds (see [41]):

K computable compact ⇐⇒ K c.e. and K semicomputable compact. (4)

The notion of a semicomputable compact set can be generalized in the following
way. Let (X ,d,α) be a computable metric space and let S ⊆ X be such that

(i) S∩B is a compact set in (X ,d) for each closed ball B in (X ,d);
(ii) the set {(i, j) ∈ N2 | S∩ Îi ⊆ J j} is c.e.

Then we say that S is a semicomputable set in (X ,d,α).
If S is compact in (X ,d) and semicomputable in (X ,d,α), then it is easy to con-

clude that S is semicomputable compact in (X ,d,α). The converse of this implica-
tion also holds (see Proposition 3.3 in [14]), hence the following equivalence holds:

S compact and S semicomputable ⇐⇒ S semicomputable compact. (5)

So, the notion of a semicomputable set generalizes the notion of a semicomputable
compact set. In view of (4), we extend the notion of a computable compact set.

Let (X ,d,α) be a computable metric space and let S ⊆ X . We say that S is a
computable set in (X ,d,α) if S is c.e. and semicomputable.
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By (4) and (5) we have

S computable compact ⇐⇒ S compact and S computable.

Condition (i) from the definition of a semicomputable set easily implies that each
semicomputable set in (X ,d,α) is closed in (X ,d). Moreover, we have the following
result (see Proposition 3.5 in [14]).

Proposition 3.3. Let (X ,d,α) be a computable metric space. Then each semicom-
putable set in this space is co-c.e. closed. Consequently, each computable set in
(X ,d,α) is a computable closed set in (X ,d,α).

In general, a co-c.e. closed set need not be semicomputable. Also, a computable
closed set need not be a computable set. Namely, in Example 3.2 in [40] a com-
putable metric space ([0,b],d,α) was constructed, where b is a positive real number
and d is the Euclidean metric on [0,b], such that {b} is a co-c.e. closed set, but b
is not a computable point in this space. In general, it is easy to conclude that in a
computable metric space a point x is computable if and only if the set {x} is semi-
computable (see page 10 in [14]). Therefore, {b} is not a semicomputable set in
([0,b],d,α). Moreover, [0,b] is a computable closed set in this space (in general, if
(X ,d,α) is a computable metric space, then X is clearly a computable closed set in
(X ,d,α)), but [0,b] is not a computable set in this space: it is not semicomputable,
which follows from Example 3.2 in [40].

However, under certain conditions on the ambient space, the notions of a semi-
computable set and a co-c.e. closed set coincide.

Let (X ,d,α) be a computable metric space such that the set {(i, j)∈N2 | Îi ⊆ J j}
is c.e. Then we say that (X ,d,α) has the effective covering property [12].

The following theorem gives a sufficient condition that a computable metric
space has the effective covering property (see [37]).

Theorem 3.4. Let (X ,d,α) be a computable metric space such that each closed
ball in (X ,d) is compact. Suppose that there exists a computable point a0 and a
computable sequence (xi) in this space and a computable function F : N2 →N such
that B(a0,m) ⊆

∪
0≤i≤F(m,k) B(xi,2−k) for all m,k ∈ N, m ≥ 1. Then (X ,d,α) has

the effective covering property.

Using Theorem 3.4, it is easy to conclude that the computable Euclidean space
has the effective covering property.

Example 3.5. Let I∞ denote the set of all sequences in [0,1]. It is known that the
metric d on I∞ defined by d((xi),(yi)) = ∑∞

i=0
1
2i |xi − yi| induces a topology which

coincides with the product topology on I∞. The metric space (I∞,d) is compact
(Tychonoff’s theorem) and it is called the Hilbert cube.

Let r :N→Q be a computable function whose range is [0,1]∩Q. Let σ :N2 →N
and η : N→N be computable functions such that each nonempty finite sequence in
N equals (σ(i,0), . . . ,σ(i,η(i))) for some i ∈N (such functions certainly exist). We
define α : N→ I∞ by αi = (rσ(i,0), . . . ,rσ(i,η(i)),0,0, . . .). Then (I∞,d,α) is a com-
putable metric space. Using Theorem 3.4 it is not hard to conclude that (I∞,d,α)
has the effective covering property (see [37]).
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The proof of the next proposition can be found in [14] (Proposition 3.6).

Proposition 3.6. Let (X ,d,α) be a computable metric space which has the effective
covering property and compact closed balls. Let S ⊆ X. Then S is co-c.e. closed if
and only if S is semicomputable. Consequently, S is a computable closed set if and
only if S is a computable set.

4 Non-Computability of Points in Co-C.E. Closed Sets

4.1 Basis Theorems in Computability Theory

In classical computability theory, a lot of energy has been devoted to the study of
the Turing degrees of points in subsets of an underlying space (mostly 2N or NN).
This field was pioneered by Kleene in 1950s, who showed that

1. There is a nonempty co-c.e. closed subset of R with no computable points.
2. There is a nonempty co-c.e. closed subset of NN with no ∆ 1

1 points.

The above results are sometimes referred as Kleene’s non-basis theorems. These
theorems were a starting point of the long-running study of degrees of points in
co-c.e. closed sets. As a second step, Kreisel proved the following basis theorems.

3. Every nonempty co-c.e. closed subset of R has a 0′-computable point.
4. Every nonempty co-c.e. singleton in R is computable.

These basis theorems fail for non-σ -compact spaces such as NN. Indeed, Jockusch-
McLaughlin [49] pointed out that for any computable ordinal α ,

5. there is a co-c.e. singleton {x} in NN such that x is not 0(α)-computable,

where 0(α) is the α-th Turing jump. This kind of bad behavior of a co-c.e. closed
set led us to the notion of semicomputability. For further studies on the degrees of
co-c.e. singletons in NN, see [18, 87] and [75, Chapters XII and XIII].

Regarding (3), the Kreisel basis theorem actually shows that the leftmost point
of a nonempty co-c.e. closed set P ⊆ [0,1] is left-c.e., that is, the supremum of a
computable sequence of rationals. It should be carefully noted that the notion “left-
c.e.” makes no sense at all in [0,1]n for n ≥ 2.

In the higher dimensional case, the following analog of left-c.e. is useful. For
n ≤ ω , a point x = (xi)i<n ∈ [0,1]n is n-left-CEA if x0 is left-c.e., and xi+1 is left-c.e.
relative to xi uniformly in i. More formally, there is a computable sequence (gi)i<n
of computable functions gi : [0,1]i →QN such that xi = supn gi(x0, . . . ,xi−1)(n).

Given n≤ω and a nonempty closed set P⊆ [0,1]n, inductively define the leftmost
point (xi)i<n of P as follows. Define xk as the smallest value such that P has a point
whose first k + 1 coordinates are (x0, . . . ,xk). By compactness of P, such a point
exists. Then, it is easy to get a higher-dimensional analog of Kreisel’s basis theorem.
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Proposition 4.1 (see Kihara-Pauly [57]). For any n ≤ ω , the leftmost point in a
nonempty co-c.e. closed subset of [0,1]n is n-left-CEA.

The Kreisel basis theorem has been refined by Jockusch-Soare’s so-called low
basis theorem. The importance of the low basis theorem is that the standard proof is
applicable for any effectively compact computable metric space.

Given a computable metric space X , its presentation automatically involves a
computable list (Ge)e∈N of c.e. open sets in X . Then, the Turing jump of a point
x ∈ X is defined by x′ = {e ∈ N : x ∈ Ge}. This generalization of the Turing jump
has desirable properties; see Gregoriades-Kihara-Ng [28]. We say that a point x∈X
is low if x′ is Turing reducible to 0′.

Theorem 4.2 (Low Basis Theorem; Jockusch-Soare [50]). Every nonempty co-
c.e. closed set in an effectively compact computable metric space contains a low
point.

Proof. Let P be a nonempty co-c.e. closed subset of an effectively compact com-
putable metric space X . We construct a 0′-computable decreasing sequence (Qe)e∈N
of co-c.e. closed sets in X . Define Q0 = P. By effective compactness, we can de-
cide Qe ⊆ Ge using 0′ uniformly in e. Put Qe+1 = Qe if Qe ⊆ Ge; otherwise, put
Qe+1 = Qe \Ge. For any z ∈

∩
e∈N Qe, clearly, z′(e) = 1 if and only if Qe ⊆ Ge. This

concludes that z′ ≤T 0′ since the latter condition is 0′-computable. ⊓⊔

A uniform version of the low basis theorem has also been proved by Brattka et
al. [8]. As a historical remark, the original low basis theorem [50] has been proved
in the context of degrees of theories. A PA-degree is a Turing degree d such that
every co-c.e. closed subset of 2N has a d-computable point.

We shall emphasize that our introduction of basis theorems only scratches the
surface of extremely deep studies on co-c.e. closed sets (also known as Π 0

1 classes).
We refer the interested reader to Cenzer [15] and Diamondstone et al. [22] for
more detailed introduction on degree-theoretic analysis of co-c.e. closed sets. De-
tailed analysis of basis theorems has also been carried out from the perspective of
Medvedev degrees and Muchnik degrees, cf. [86, 35, 34].

4.2 Basis Theorems in Computable Analysis

In computable analysis, we deal with a variety of geometric and topological prop-
erties of co-c.e. closed sets. When restricting our attention to co-c.e. closed sets
possessing such global properties, basis and non-basis theorems often exhibit an
interesting behavior. We first introduce a classical example in this direction. In the
early stages of computability theory, speaking of global properties, they were always
associated with measure and category. For instance,

Theorem 4.3 (Kreisel-Lacombe [58]). There is a co-c.e. closed subset of [0,1] of
positive Lebesgue measure that contains no computable point.
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A co-c.e. closed set constructed in Theorem 4.3 is totally disconnected; oth-
erwise, it contains a nonempty interval, and has a computable point. This trivial
observation has became a source of new basis and non-basis theorems. From the
geometric viewpoint, an interval is convex. From the topological viewpoint, an in-
terval is connected. For the geometric side, Le Roux-Ziegler [61] observed that a
nonempty convex co-c.e. closed set in Rn contains a computable point. In fact,

Theorem 4.4 (Neumann [74]). Every nonempty convex co-c.e. closed subset of a
finite dimensional computable Banach space contains a computable point.

Surprisingly, however, it is not true in infinite dimensional spaces. This fact is
first implicitly mentioned by Miller [68]. Later it is shown that there is a computable
dynamical system without computable invariant measures [25], where the set of
invariant measures in a computable system forms a compact convex co-c.e. set.

Theorem 4.5 ([68, 25, 74]; see also Theorem 7.2). There exists a nonempty convex
co-c.e. closed subset of the Hilbert cube [0,1]N containing no computable points.

For the topological side, it naturally raises the question whether every connected
co-c.e. closed set contains a computable point. It is trivially false as pointed out by
Le Roux-Ziegler [61].

Example 4.6. If A is a co-c.e. closed subset of [0,1] with no computable element,
then the Cantor tartan given by ([0,1]×A)∪(A× [0,1]) is a connected co-c.e. closed
subset of [0,1]2 with no computable points. Similarly, ([0,1]2 ×A)∪ ([0,1]×A×
[0,1])∪ (A× [0,1]2) is a simply connected co-c.e. closed subset of [0,1]3 with no
computable points.

A topological space X is n-connected if it is pathwise connected and πi(X) ≡ 0
for any 1 ≤ i ≤ n, where πi(X) is the i-th homotopy group of X . A space X is simply
connected if X is 1-connected. By a similar construction as in Example 4.6, one
can get a nonempty n-connected, but not (n+ 1)-connected, co-c.e. closed set in
[0,1]n+2 which contains no computable points.

A space X is contractible if the identity map on X is null-homotopic. Note that,
if X is contractible, then X is n-connected for each n ≥ 1. A higher dimensional
variant of a Cantor tartan is never contractible. Thus, to construct a contractible co-
c.e. closed set with no computable points, we need a different approach. By a curve,
we mean a one-dimensional nondegenerate continuum. By a continuum, we mean a
compact and connected metric space.

Theorem 4.7 (Kihara [53]). There exists a contractible, co-c.e., planar curve which
contains no computable points.

Proof (Sketch). Let C ⊆ [0,1] be a co-c.e. closed set with no computable points, and
A be a computable arc, one of whose endpoints is non-computable (see Miller [67,
Example 4.1]). Imagine the cone space (C×A)/(C×{a}), where a is a unique non-
computable end-point of A. This gives us a Cantor fan with no computable points
although it is unclear if it is co-c.e. or if it computably embeds into the Euclidean
plane. However, a slight modification of this construction makes a fan co-c.e. in
[0,1]2. For more details, see [53]. ⊓⊔
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As indicated in the above sketch, the example given by Kihara [53] is topologi-
cally homeomorphic to the Cantor fan. All known finite-dimensional co-c.e. closed
sets with no computable points are not locally connected.

Question 4.8. Does there exist a nonempty, locally connected, co-c.e. closed subset
of [0,1]n for some n ∈ N containing no computable points?

Note that Theorem 4.5 implies the existence of a nonempty, locally connected,
co-c.e. closed subset of the Hilbert cube [0,1]N which contains no computable points
since every convex set is locally connected.

As a historical remark, basis theorems in classical computable analysis have
sometimes been associated with mass problems. A mass problem is a subset of a
(represented) space, which appears as the set of solutions of a mathematical prob-
lem. Several mathematical problems in algebra, analysis, combinatorics, etc. have
been found to be represented as co-c.e. closed subsets of certain computable metric
spaces (cf. Cenzer-Remmel [16]). Degrees of difficulty of mass problems are often
measured by Medvedev and Muchnik reducibility. We refer the reader to Simpson
[84, 86] for Muchnik degrees of co-c.e. closed sets. The concept of mass problems
is strongly tied with Reverse Mathematics [85], and the study of Weihrauch degrees
as well (see the last Chapter in this handbook).

5 Represented Spaces and Uniform Computability

In previous sections, we only took account of non-uniform computability. In this
section, we introduce the notion of a represented space, which gives us a lan-
guage for talking about uniform computability. For basics on represented spaces,
see Weihrauch [96]. We also refer the reader to Pauly [76] for an excellent introduc-
tion to the theory of represented spaces.

Let X = (X ,d,α) be a computable metric space. Then, a Cauchy name of a
point x ∈ X is a sequence p ∈ NN such that d(x,αp(k)) < 2−k for any k ∈ N. This
notion induces a partial surjection δ :⊆ NN → X defined by

δ (p) = x ⇐⇒ p is a Cauchy name of x.

This surjection δ is called the Cauchy representation of X (induced from (d,α)).
In general, a represented space is a pair X = (X ,δX ) of a set X and a partial

surjection δX :⊆NN → X . Such δX is called a representation of X . If δX (p) = x, then
p is called a δX -name of x (or simply, a name of x if δX is clear from the context).
A point x ∈ X is computable if x has a computable name. A function f : X → Y
is computable (continuous, resp.) if there is a partial computable (continuous, resp.)
function on NN which, given a name of x ∈ X , returns a name of f (x) ∈ Y . In
general, a partial function Φ :⊆ NN → NN is a realizer of f if for any name p of
x ∈ X , Φ(p) is a name of f (x). By definition, f is computable if and only if f has
a computable realizer.
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Remark 5.1. The notion of computability on computable metric spaces coincides
with the notion of computability on represented spaces (w.r.t. the induced Cauchy
representation). Thus, the theory of represented spaces generalizes the classical the-
ory on computable metric spaces. Indeed, this epoch-making theory makes it pos-
sible to develop computability theory on an extremely wide class of topological
spaces including various non-Hausdorff spaces, non-second-countable spaces, etc.
cf. [76]. More precisely, Schröder [81, 82] showed that a T0 space is admissibly
represented if and only if it has a countable cs-network (a cs-network is a variant of
Arhangel’skii’s notion of a network introduced by Guthrie [31]).

Remark 5.2. As a related concept, the notion of a numbered set has been exten-
sively studied in the theory of numbering (see Ershov [23]). A numbered set is a
represented space (X ,δX ) such that the domain of δX is (effectively homeomorphic
to) the natural numbers N. There is a unification of these concepts. In realizability
theory [93, 1], a represented space is called a modest set, and a multi-represented
space is called an assembly. To be precise, a represented space is a modest set over
Kleene’s second (relative) algebra, i.e., the (relative) partial combinatory algebra
given by Kleene’s functional realizability, and a numbered set is a modest set over
Kleene’s first algebra, i.e., the pca given by Kleene’s number realizability. We refer
the reader to Bauer [1] for more details. This unification is useful since many gen-
eralized computation models such as infinite time Turing machines induce pcas [2],
and thus we do not have to reinvent the wheel for generalized computable analysis.

5.1 Represented Hyperspaces

The notion of a representation provides us an abstract way of introducing com-
putability on subsets of a space by considering a represented hyperspace.

By A(X), we denote the set of all closed subsets of a computable metric space
X = (X ,d,α). Recall that (Ii)i∈N is a list of rational open balls in X . For p ∈ NN,
we write rng(p) = {p(n)−1 : p(n)> 0}. We first introduce two representations ψ+

and ψ− of A(X) capturing c.e. closed sets and co-c.e. closed sets, respectively.

ψ+(p) = S ⇐⇒ rng(p) = {n : S∩ In ̸= /0},

ψ−(p) = S ⇐⇒ S = X \
∪
{In : n ∈ rng(p)}.

The representations ψ+ and ψ− correspond to the lower Fell topology and the up-
per Fell topology on the hyperspace A(X) of closed subsets of X (cf. [12]). We then
consider represented spaces A+(X ) = (A(X),ψ+), and A−(X ) = (A(X),ψ−). It
is clear that the computable points in A+(X ) and A−(X ) are exactly the c.e.
closed sets and the co-c.e. closed sets, respectively. One can also get a representa-
tion capturing computable closed sets as follows.

ψ±(p⊕q) = S ⇐⇒ ψ+(p) = ψ−(q) = S,
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where (p⊕q)(2n) = p(n) and (p⊕q)(2n+1) = q(n). Then, the computable points
in A±(X ) are exactly the computable closed sets. Note that some authors use
A (X ) to denote A±(X ), while some other authors use A (X ) to denote A−(X ).

We next introduce a representation of the hyperspace K(X) of compact subsets
of X . For a computable metric space X = (X ,d,α), recall that (J j) j∈N is the list of
rational open sets in X . Then, we define

κ−(p) = S ⇐⇒ rng(p) = { j ∈ N : S ⊆ Jp( j)}.

We also define κ±(p ⊕ q) = S if and only if ψ+(p) = κ−(q) = S. We then de-
fine K−(X ) = (K(X),κ−) and K±(X ) = (K(X),κ±). The computable points in
K−(X ) and K±(X ) are exactly the semicomputable compact sets and the com-
putable compact sets, respectively.

The notion of a represented hyperspace enables us to discuss uniform com-
putability of operations on closed and compact subsets of a computable metric
space. For instance, consider the union and the intersection of co-c.e. closed sets.
It is clear that if A and B are co-c.e. closed subsets of X , so are A∪B and A∩B.
Indeed, the union and the intersection ∪,∩ : A−(X )×A−(X ) → A−(X ) are
computable, that is, given names of A and B, one can effectively find names of A∪B
and A∩B. In this wise, the notion of computability on represented spaces automat-
ically involves uniformity.

From the uniform perspective, the negative representation is quite well-behaved.
Actually, most basic operations on A−(X ) are known to be computable. For
the positive representation, as shown in Brattka-Weihrauch [13], even the inter-
section ∩ : A±(Rn)2 → A+(Rn) is not computable. Indeed, for a T1-space X ,
∩ : A+(X )2 → A+(X ) is computable, iff X is computably discrete [76].

There are a number of results regarding uniform computability of operations on
hyperspaces. For instance, let chull be the map which, given a closed set, returns its
convex hull. Then, chull : A+(Rn)→A+(Rn) and chull : A−([0,1]n)→A−([0,1]n)
are computable [104, 60]. This useful result gives us a computable enumeration of
all co-c.e. closed convex sets in [0,1]n while there is no limit computable way of
deciding convexity of a co-c.e. closed set (cf. [79]). For further studies on com-
putability on operation on hyperspaces, see Brattka-Presser [12]. For further read-
ing on computability on other hyperspaces, we refer the reader to [32, 103, 104] for
regular closed sets, and to [100, 101, 99] for measurable sets.

5.2 Represented Function Spaces

There is a way of viewing a hyperspace of closed sets as a function space. To see
this, we first explain an important nature of represented spaces: The category of
represented spaces and (relatively) computable functions is cartesian closed. This
follows from a more general fact that the category Mod(Σ˜ ,Σ) of modest sets over a
relative pca ⟨Σ˜ ,Σ⟩ is cartesian closed (cf. Bauer [1]). The following is the details.
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By Φz
e , we denote the e-th partial computable function on NN relative to an or-

acle z ∈ NN. Let e⌢z denote the concatenation of e and z, that is, (e⌢z)(0) = e and
(e⌢z)(n+1) = z(n). If X and Y are represented spaces, the set of relatively com-
putable functions from X to Y is represented as follows.

η(e⌢z) = f ⇐⇒ if p is a name of x ∈ X , then Φz
e(p) is a name of f (x) ∈ Y .

In other words, Φ z
e is a realizer of f . By C (X ,Y ) we denote the space of rel-

atively computable functions from X to Y represented by η . Clearly, the com-
putable points in C (X ,Y ) are exactly the computable functions from X to Y .

Consider the set S = {⊤,⊥} represented by

δS(p) =

{
⊤ if (∃n) p(n) ̸= 0,
⊥ if (∀n) p(n) = 0.

We call S= (S,δS) the represented Sierpiński space [81]. Assume that X is a rep-
resented space. Then, we can think of the function space C (X ,S) as the hyper-
space of open sets in X , by identifying a function f : X → S with the open set
f−1{⊤} ⊆ X . Similarly, this space can also be viewed as the hyperspace of closed
sets, by identifying a function f : X → S with the closed set f−1{⊥} ⊆ X . Via
this identification, the representation η of the space C (X ,S) yields the Sierpiński
representation ψSier of the hyperspace A(X) of closed subsets of X as follows.

ψSier(p) = S ⇐⇒ S = η(p)−1{⊥}

We now claim that ψSier is equivalent to ψ−. Given representations δ and η of a
set X , we say that δ is reducible to η if there is a computable function which, given
a δ -name of x ∈ X , returns an η-name of x. In other words, id : (X ,δ )→ (X ,η) is
computable. We say that δ is equivalent to η if δ is bireducible to η . Under this
definition, one can show the following.

Proposition 5.3 (Brattka-Presser [12]). The negative representation ψ− of the
hyperspace of closed subsets of a computable metric space is equivalent to the
Sierpiński representation ψSier.

The represented hyperspace K−(X ) of compact sets can also be viewed as a
function space. Let O(X ) be the hyperspace of open sets in X represented as
above, i.e., O(X ) ≃ C (X ,S). A space X is compact, iff the universal quantifier
∀X : O(X ) → S is continuous, where ∀X (X) = ⊤ and ∀X (U) = ⊤ for U ̸= X .
Thus, a subset Y of X is compact, iff AY : O(X )→ S is continuous, where

AY (U) =

{
⊤ if Y ⊆U,

⊥ if Y ̸⊆U.

In other words, Y ⊆ X is compact, iff AY ∈ OO(X ). Note that AY = AZ iff Y
and Z have the same saturation (cf. [76]). Thus, this notion yields a representation
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κ∀ of saturated compact sets:

κ∀(p) = K ⇐⇒ p is an OO(X )-name of AK .

One can easily see that κ∀ is equivalent to κ− (for the hyperspace of compact subsets
of a computable metric space).

The dual notion of compactness is known as overtness [90]. A space X is overt,
iff the existential quantifier ∃X : O(X )→ S is continuous, where ∃X (U) =⊤ for
U ̸= /0 and ∃X ( /0) = ⊥. Thus, a subset Y of X is overt, iff EY : O(X ) → S is
continuous, where

EY (U) =

{
⊤ if Y ∩U ̸= /0,
⊥ if Y ∩U = /0.

Although every subset Y ⊆ X is known to be overt, this definition yields a
nontrivial (multi-)represented space V (X ) of overt subsets of X by identifying
Y ⊆ X with EY ∈ OO(X ). Obviously, EY = EZ iff Y and Z have the same topo-
logical closure; hence it induces a representation ψ∃ of the hyperspace of closed
subsets of X :

ψ∃(p) = Y ⇐⇒ p is an OO(X )-name of EY .

It is clear that ψ∃ is equivalent to the positive representation ψ+ (for the hyperspace
of closed subsets of a computable metric space).

In this way, computability theory on hyperspaces is absorbed into computabil-
ity theory on function spaces. It should be carefully noted that the function-space
representations ψSier, κ∀, and ψ∃ are defined for the hyperspaces of any represented
spaces, while the hyperspace representations ψ−, ψ+, κ−, etc. make sense only for
the hyperspaces of computable metric spaces. The representations introduced in this
section are essentially due to Schröder [81]. The term “overt” is due to Taylor [90].
This framework has become fundamental in various contexts such as Escardó’s syn-
thetic topology [24] and Taylor’s abstract Stone duality [90, 91]. See also Pauly
[76] for more detailed study on represented hyperspaces in the language of function
spaces.

5.3 Borel Codes

A representation of Borel subsets of R (widely known as Borel codes) was first
introduced by Solovay [88] to define the notion of a random real over a model.
Solovay further explored the theory of Borel codes in his monumental work [89] on
a model of Zermelo-Fraenkel (ZF) set theory in which all sets of reals are Lebesgue
measurable. Since then, his representation of Borel sets has been a fundamental
notion almost everywhere in set theory.

Here we only deal with Borel sets of finite rank. Let X be a computable metric
space. We define representations σ0

n and π0
n of Σ˜ 0

n and Π˜ 0
n subsets of X as follows.
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π0
1 (p) = ψ−(p), σ0

1 (p) = X \π0
1 (p),

π0
n (p) = X \σ0

n (p), σ0
n+1(p) =

∪
i∈N

π0
n (pi),

where recall that ψ− is the negative representation of the hyperspace of closed sub-
sets of X . By Σ˜ 0

n(X ) and Π˜ 0
n(X ), we denote the hyperspaces of Σ˜ 0

n and Π˜ 0
n sub-

sets of X represented by σ0
n and π0

n , respectively. By definition, Π˜ 0
1(X ) is iden-

tical with A−(X ). In particular, the computable points in the spaces Σ˜ 0
1(X ) and

Π˜ 0
1(X ) are the c.e. open sets and the co-c.e. closed sets, respectively. In general, a

computable point in Σ˜ 0
n(X ) (Π˜ 0

n(X ), resp.) is called a Σ 0
n set (a Π 0

n set, resp.)
A function f : X → Y is Σ˜ 0

n-measurable if the preimage of an open set un-
der f is Σ˜ 0

n. By second-countability of Y , this is equivalent to saying that f−1 :
Σ˜ 0

1(Y ) → Σ˜ 0
n(X ) is continuous. We say that f : X → Y is Σ 0

n -computable if
f−1 : Σ˜ 0

1(Y )→ Σ˜ 0
n(X ) is computable (see Brattka [6]). Clearly, Σ˜ 0

1-measurability
and Σ 0

1 -computability are equivalent to continuity and computability, respectively.
The correspondence between the Borel hierarchy and the Baire hierarchy (the
Banach-Hausdorff-Lebesgue theorem) was effectivized by Brattka as follows.

Theorem 5.4 (Brattka [6]). Let X and Y be computable metric spaces, and let
k ≥ 2. Then, any Σ 0

k+1-computable function f : X → Y is the pointwise limit of a
computable sequence of Σ 0

k -computable functions. For X = NN this holds true in
case k = 1 as well.

In other words, Σ 0
n+1-computability is equivalent to n-th iterated limit com-

putability (which can be thought of as a uniform version of the Shoenfield Limit
Lemma). By using this notion, we can talk about the degrees of noncomputability
of operations on represented spaces. Borel complexity of operations on represented
hyperspaces has been studied by Gherardi [26] and Brattka-Gherardi [9].

Example 5.5 (Gherardi [26]). The intersection ∩ : A (Rn)×A (Rn) → A (Rn) is
Σ 0

2 -computable, but not computable. The intersection ∩ : A+(Rn)×A+(Rn) →
A+(Rn) is Σ 0

3 -computable, but not Σ 0
2 -computable.

In his work on functional analysis, Jayne [47] introduced a finer hierarchy of
Borel functions. For f : X → Y , we write f−1Σ˜ 0

m ⊆ Σ˜ 0
n if the preimage of a Σ˜ 0

m
set under f is Σ˜ 0

n. In this terminology, Σ 0
n -measurability is described as f−1Σ˜ 0

1 ⊆
Σ˜ 0

n. By using Louveau’s separation theorem [62] in effective descriptive set theory,
Gregoriades-Kihara-Ng [28] showed that the property f−1Σ˜ 0

m ⊆ Σ˜ 0
n is equivalent to

that f−1 : Σ˜ 0
m(Y )→ Σ˜ 0

n(X ) has a Borel realizer. However, it is open whether the
property f−1Σ˜ 0

m ⊆ Σ˜ 0
n is equivalent to that f−1 : Σ˜ 0

m(Y )→ Σ˜ 0
n(X ) is continuous.

The Jayne-Rogers theorem [48] states that for a function f from an analytic sub-
set X of a Polish space to a separable metric space, f−1Σ˜ 0

2 ⊆ Σ˜ 0
2 if and only if it is

closed-piecewise continuous, that is, there is a closed cover (Pn)n∈N of X such that
f ↾ Pn is continuous for any n ∈ N.

We consider effective versions of Jayne’s Borel hierarchy and piecewise con-
tinuity. A computable Π 0

n cover of X is a computable sequence (Pn)n∈N of Π 0
n



Computability of Subsets of Metric Spaces 17

subsets of X such that X =
∪

n Pn. We say that f : X → Y is Π 0
n -piecewise Σ 0

m-
computable if there is a computable Π 0

n cover of X such that the restriction f ↾ Pn is
Σ 0

m-computable uniformly in n ∈N. If m = 1, we simply say that f is Π 0
n -piecewise

computable. The notion of Π 0
1 -piecewise computability is equivalent to computabil-

ity with finite mindchanges, which has turned out to be a very important notion in
computable analysis (cf. [8, 21]). Then, the Jayne-Rogers theorem is effectivized as:

Theorem 5.6 (Pauly-de Brecht [77]). Let f : X →Y be a function between com-
putable metric spaces X and Y . Then, f−1 : Σ˜ 0

2(Y ) → Σ˜ 0
2(X ) is computable if

and only if f is Π 0
1 -piecewise computable.

Soon after, Kihara [54] found that Theorem 5.6 can be generalized to higher
Borel ranks whenever X and Y are finite dimensional. The notion of topologi-
cal dimension suddenly appeared out of nowhere! The reason is later clarified by
Kihara-Pauly [57]: In [54], the Shore-Slaman join theorem in Turing degree theory
was a key tool for generalizing Theorem 5.6; however, the degree structure of an
infinite dimensional computable metric space is generally different from the Turing
degrees (see Sections 7.2 and 7.3). After this discovery, Gregoriades-Kihara-Ng [28]
introduced a variant of the Kumabe-Slaman forcing to generalize the Shore-Slaman
join theorem in the setting of “infinite dimensional” Turing degree theory, and then
succeeded to remove the dimension-theoretic restriction from the former result [54].

Theorem 5.7 (Gregoriades-Kihara-Ng [28]). Let f : X → Y be a function be-
tween computable Polish spaces X and Y , and assume that n < 2m. Then,
f−1 : Σ˜ 0

m+1(Y )→Σ˜ 0
n+1(X ) is computable if and only if f is Π 0

n -piecewise Σ 0
n−m+1-

computable.

An open problem is whether we can remove the assumption n < 2m from Theo-
rem 5.7. For other directions of investigation on piecewise computability, it is also
important to think about decomposition into finitely many computable functions.
For k ∈ N, we say that f : X → Y is k-Γ -piecewise computable if there is an in-
creasing sequence (Gi)i<k of Γ sets such that X =

∪
i<k Gi and f ↾ Gi \Gi−1 is

computable. Then, (k+1)-Π 0
1 -piecewise computability corresponds to computabil-

ity with at most k mindchanges [21], and (k+ 1)-∆ 0
2 -piecewise computability cor-

responds to computability with finite mindchanges and at most k errors [33]. For
further reading on piecewise computability, see also de Brecht [21] and Kihara [55].

The notion of Borel codes in the context of represented spaces has also been stud-
ied in Gregoriades et al. [29] in detail. Borel codes are also used to introduce (multi-
)representations of Borel-generated σ -ideals such as Lebesgue null sets and meager
sets (cf. [56]). Representations of such σ -ideals are evidently useful when talking
about randomness, genericity, forcing, etc. as Solovay did. This way of thinking has
become ubiquitous in modern set theory.

For further direction, Pauly-de Brecht [78] recently proposed synthetic descrip-
tive set theory as a reinterpretation of descriptive set theory (DST) in the category-
theoretic context. One of the core ideas of synthetic DST is the use of endofunctors.
An endofunctor is a functor from a category to itself. They introduced specific end-
ofunctors relevant for the study of DST, e.g. the finite mindchange endofunctor ∇
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and the jump endofunctor ′. Applying ∇ and ′ to the hyperspace of open sets yields
the hyperspaces of ∆˜ 0

2 sets and Σ˜ 0
2 sets in the Borel hierarchy, respectively. In this

way, synthetic DST provides a language for talking about descriptive set theoretic
concepts in a unified category-theoretic manner.

6 Computability of Connectedness Notions

The notion of represented spaces is useful for introducing effective versions of vari-
ous topological concepts. In this section, we will use represented spaces to introduce
the notions of effective pathwise connectivity, effective local connectivity, etc., and
then we will address a few computability-theoretic works involving these notions.

6.1 Effective Connectivity Properties

Consider the notion of pathwise connectivity and arcwise connectivity. Every arc-
wise connected space is pathwise connected, and the converse also holds for Haus-
dorff spaces. However, Miller [67] first observed that the notions of effective path-
wise connectivity and effective arcwise connectivity do not coincide even for com-
putable closed subsets of [0,1]2.

Example 6.1 (Miller [67, Example 5.1]). There is a planar arc A with computable
end points such that A is computable closed, A is the image of a computable function
f : [0,1]→ [0,1]2, but A cannot be the image of a computable injection g : [0,1]→
[0,1]2.

Informally, we say that a space X is computably pathwise connected if, given
(names of) points x,y ∈ X , one can effectively find (a name of) a continuous func-
tion f : [0,1]→ X such that f (0) = x and f (1) = y.

This yields the notion of computability of a multi-valued function. For repre-
sented spaces X and Y , a multi-valued function F : X ⇒ Y is computable if
there is a computable (single-valued) function Φ which, given a name of a point
x ∈ X , returns a name of an element of F(x) ∈ X . Note that Φ does not necessar-
ily induce a function from X to Y , that is, even if p0 and p1 are names of the same
point x ∈ X , Φ(p0) and Φ(p1) can be names of different points y0 ̸= y1 in F(x).

Brattka [7] formalized the notion of effective pathwise connectivity as follows.
We say that a computable metric space X is effectively pathwise connected if the
multi-valued function F : X 2 ⇒ C ([0,1],X ) defined by

F(x,y) = { f ∈ C ([0,1],X ) : f (0) = x and f (1) = y}

is computable. Note that if F has a single-valued continuous selection, then X has
to be contractible. Thus, multi-valuedness of the above definition is essential!
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One can also define various different effectivizations of path/arcwise connectiv-
ity. For instance, a computable metric space X is [co-c.e. arc]-connected if the
multi-valued function F : X 2 ⇒ A−(X ) defined by

F(x,y) = {S ∈ A−(X ) : x,y ∈ S and S is an arc}

is computable. It is easy to see that there is a planar curve A such that A is com-
putable closed, effective pathwise connected, but not [co-c.e. arc]-connected [53].

6.2 Computable Graph Theorem

In classical computability theory a function f : N→ N is computable if and only if
its graph is computable. On the other hand, if X and Y are topological spaces such
that Y is compact and Hausdorff, then a function f : X →Y is continuous if and only
if its graph is a closed set in X ×Y [72]. The question is what can be said about a
computable version of this result, i.e. if X and Y are computable metric spaces and
f : X → Y , under what assumptions the computability of f is equivalent to the fact
that the graph of f is a computable closed set.

If (X ,d,α) and (Y,d′,α ′) are computable metric spaces, we define their product
as the computable metric space (X ×Y,d′′,α ′′) defined by

d′′((x,y),(x′,y′)) = max{d(x,x′),d′(y,y′)} and α ′′⟨i, j⟩= (α(i),α ′( j)).

Let (X ,d,α) be a computable metric space and let O be the family of all open
sets in (X ,d). Let δ be the representation of O defined by

δ (p) =
∪

{In | n ∈ rng(p)} .

We say that (X ,d,α) is effectively locally connected [7] if there exists a computable
multivalued function C :⊆X ×R⇒O such that for all x∈X and r > 0 the set C(x,r)
is nonempty and each U ∈C(x,r) is a connected set such that x ∈U ⊆ B(x,r).

Theorem 6.2 (Brattka [7]). Let X and Y be computable metric spaces. Then the
function

graph : C (X ,Y )→ A±(X ×Y ), f 7→ graph( f ) (6)

is computable.

(i) If Y is effectively compact, then the partial inverse graph−1 :⊆ A−(X ,Y ) →
C (X ,Y ) of the map (6) is computable.

(ii) If X is effectively locally connected and Y = Rn for some n ≥ 1, then the partial
inverse graph−1 :⊆ A±(X ,Y )→ C (X ,Y ) of the map (6) is computable.

(iii) If X is effectively pathwise connected and n ≥ 1, then the map

F :⊆ A−(X ×Rn)×X ×Rn → C (X ,Rn), (A,a,b) 7→ graph−1(A),
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which is defined for all (A,a,b) such that A = graph( f ) and f (a) = b for some
f ∈ C (X ,Rn), is computable.

As a consequence of Theorem 6.2 we get the following result.

Corollary 6.3 (Brattka [7]). Let X and Y be computable metric spaces. Suppose Y
is effectively compact and f : X → Y . Then f is computable if and only if graph( f )
is co-c.e. closed and if and only if graph( f ) is computable closed. We get the same
conclusion if we assume that X is effectively pathwise connected and Y = Rn for
some n ≥ 1.

The additional assumptions on the computable metric spaces in the statement of
Corollary 6.3 cannot be omitted: in general it is possible that f is not computable
although it is continuous and graph( f ) is computable closed [7].

A computable metric space (X ,d,α) is said to be locally computable if for each
compact set A in (X ,d) there exists a computable compact set K in (X ,d,α) such
that A ⊆ K. In the following theorem we get the same conclusion as in Corollary 6.3
but with different assumptions.

Theorem 6.4 (Brattka [7]). Let X and Y be computable metric spaces such that X
is compact and Y is locally computable. Let f : X → Y be a continuous function.
Then f is computable if and only if graph( f ) is co-c.e. closed and if and only if
graph( f ) is computable closed.

6.3 Degrees of Difficulty

A new paradigm brought from the theory of representation enables us to talk about
the degrees of difficulty of problems involving hyperspaces. For instance,

1. Find a connected component of a given nonempty co-c.e. closed subset of [0,1]n.
2. Find a nontrivial subcontinuum of a given co-c.e. closed subset of [0,1]N of pos-

itive dimension.

The problem (1) has been studied by Le Roux-Ziegler [61] and Brattka et al. [11].
If a compact metric space is not zero-dimensional, it always has a nondegenerate
subcontinuum. The problem (2) has been studied by Kihara [52].

In general topology, there are various strengthening of connectivity. One of those
is the notion of a Cantor manifold, which is introduced by Urysohn as one of the
most fundamental notions in topological dimension theory. We say that a topological
space X is disconnected by A ⊆ X if X \A is a union of disjoint open sets. It
is clear that a space is disconnected iff it is disconnected by the empty set /0. An
n-dimensional Cantor manifold is an n-dimensional compact space which is not
disconnected by an at most (n−2)-dimensional subset.

Kihara [52] recently noticed that the notion of a Cantor manifold has an applica-
tion in the study of degrees of points in computable metric spaces. A key tool is the
Hurewicz-Tumarkin Cantor manifold theorem, which says that every n-dimensional
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compact metric space contains an n-dimensional Cantor manifold (cf. [36, 92]). An
interesting open question is to determine the degree of difficulty of the Cantor man-
ifold theorem. For instance,

Question 6.5. Let P ⊆ [0,1]N be a co-c.e. closed set of positive dimension. Does
every PA-degree computes an A−-name of a Cantor submanifold of P?

7 Classification of Polish Spaces

7.1 Borel Isomorphism Theorem

Kuratowski’s Borel isomorphism theorem is one of the most fundamental theorems
on Polish spaces, which says that every uncountable Polish space is Borel isomor-
phic to R. For an effective counterpart, if we replace “uncountable” with “perfect,”
it is known that every perfect computable Polish space is ∆ 1

1 -isomorphic to R (see
Moschovakis [70, Section 3I]). However, Gregoriades [27] showed that perfectness
is essential for effectivity.

Theorem 7.1 (Gregoriades [27]). There exists a zero-dimensional, uncountable,
computable Polish space which is not ∆ 1

1 -isomorphic to R.

Proof. Let T ⊆ ω<ω be Kleene’s tree, none of whose infinite paths is ∆ 1
1 , and let

[T ] be the set of infinite paths through T . Consider T = T ∪ [T ], where a basic open
set is the set of all extensions of a finite string in T , or the singleton consisting of
a finite string. It is easy to give a computable Polish metrization of T . Then T is a
c.e. open set consisting of isolated points in T . By our choice of T , the ∆ 1

1 points
in T are exactly T ; hence, c.e. open in T . Therefore, T is not ∆ 1

1 -isomorphic to R
since the set of all ∆ 1

1 points in R is not ∆ 1
1 . ⊓⊔

Gregoriades [27] then studied the ∆ 1
1 -embeddability order on (zero-dimensional)

computable Polish spaces, and showed that every countable partial order can be
embedded into the order. The proof requires a detailed analysis of (hyper)degrees of
points in computable Polish spaces. All spaces that appear in his proof computably
embed into NN, and thus, one can just adopt classical degree theory. However, as we
will see later, exploring degree theory in an arbitrary computable metric space leads
us to the discovery of a new connection between computability and dimension.

7.2 Continuous Degree Theory

Recall that every points in a computable metric space is named by elements in NN

via the Cauchy representation. We estimate how complicated a point in a com-
putable metric space is by considering the degree of difficulty of calling a name
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of the point. Of course, it is possible for each point to have many names, and this
nature yields the phenomenon that there is a point with no easiest names with respect
to Turing reducibility.

Let X and Y be computable metric spaces. A point y ∈ Y is point-Turing re-
ducible to x ∈ X if there is a computable function Φ that, given a name p of x,
returns a name Φ(p) of y. In other words, there is a partial computable function
f :⊆ X → Y such that f (x) = y. This notion was introduced by Miller [68] under
the name of representation reducibility and continuous degrees. We say that a point
x ∈ X has a Y -degree if x is point-Turing equivalent to a point in Y . Pour-El and
Richards [80] observed that any point in Euclidean space has a 2N-degree.

Miller’s discovery of non-2N-degrees and the connection between such degrees
and Scott ideals is an astounding achievement of the noughties, which has brought
a new paradigm in computability theory.

A Turing ideal is a set I ⊆ 2N which forms an ideal w.r.t. Turing reducibility
≤T , that is, x ≤T y ∈ I implies x ∈ I , and x,y ∈ I implies x⊕ y ∈ I . A Scott
ideal is a Turing ideal I such that for any x ∈I , if P ⊆ 2N is nonempty and co-c.e.
closed relative to x (that is, P is computable relative to x as a point in A−(2N)), then
P∩I is nonempty.

Theorem 7.2 (Miller [68]).

1. The Hilbert cube [0,1]N has a point of non-2N-degree.
2. If x ∈ [0,1]N has a non-2N-degree, then the set of all y ∈ 2N that are point-Turing

reducible to x forms a Scott ideal.
3. For every countable Scott ideal I , there is a point x ∈ [0,1]N such that y ∈ I if

and only if y is point-Turing reducible to x.

Proof (for 1). Let Φe be the e-th partial computable function from [0,1]N to [0,1].
By approximating partial computations, one can easily construct a computable func-
tion ψ : [0,1]N×N→ A−([0,1]) such that ψ(x,e) = {Φe(x)} if x ∈ dom(Φe); oth-
erwise, ψ(x,e) is a nondegenerate interval. Then, Ψ : [0,1]N → A−([0,1]N) defined
by Ψ(x) = ∏e ψ(x,e) is a computable function with a co-c.e. closed graph such that
Ψ(x) is nonempty and convex for any x∈ [0,1]N. By Kakutani’s fixed point theorem,
Ψ has a fixed point x ∈Ψ(x). Note that there is a computable multi-valued function
F : [0,1]N ⇒ [0,1] such that F(x) ̸= x(e) for any e ∈ N. In particular, any name of x
computes some y ∈ [0,1] such that y ̸∈ {x(e) : e ∈ N}. If x has a 2N-degree, x com-
putes its name, and thus, computes such a y; however, by the property x ∈Ψ(x), if x
computes y, then y = x(e) for some e, a contradiction. ⊓⊔

Later, Day-Miller [20] observed a similar phenomenon in the theory of algo-
rithmic randomness. The space of Borel probability measures on 2N is computably
metrizable (e.g. via the Prokhorov metric). A probability measure µ is called neu-
tral if every infinite binary sequence is Martin-Löf random w.r.t. µ . Day-Miller [20]
noticed that a neutral measure cannot have a 2N-degree, and hence, its lower Turing
cone forms a Scott ideal as in Theorem 7.2 (2). They also showed an analog of The-
orem 7.2 (3): For every Scott ideal I , there is a neutral measure µ such that y ∈ I
iff y is point-Turing reducible to µ .
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7.3 Computable Aspects of Infinite Dimensionality

The previous works on continuous degrees [68, 20] make crucial use of the Kakutani
fixed point theorem (for infinite dimensional spaces). This leads us to the conjecture
that the notion of topological dimension is essential in degree theory on computable
metric spaces. It becomes more and more plausible by the recent works [54, 28]
extending Theorem 5.6 and also by the following result.

Theorem 7.3 (Kihara-Pauly [57]). The following are equivalent for computable
metric spaces X and Y :

1. Every X -degree is a Y -degree.
2. There is a countable partition (Xi)i∈N of X such that each Xi computably em-

beds into Y .

By Theorem 7.3 with Y = 2N, we can characterize the Turing degrees in terms of
topological dimension theory. A topological space is called countable dimensional
if it is a countable union of finite dimensional subspaces. If X is Polish, it is equiva-
lent to having transfinite small inductive dimension in the sense of Menger-Urysohn
(cf. [36]). Then, relative to some oracle, all points in X have 2N-degrees, iff X is
countable dimensional. In particular, Theorem 7.2 (1) is a corollary of Theorem 7.3
since it is known that the Hilbert cube is not countable dimensional (cf. [36, 92]).
This simple observation completely solves a mystery about the occurrence of non-
2N-degrees in the Hilbert cube (and the space of probability measures).

There is another circumstantial evidence that topological dimension theory is
crucial to making a deep study of computable metric spaces. For n ≤ ω , an n-
left-CEA operator is a function Γ : NN → [0,1]n such that Γ (x) is n-left-CEA
uniformly relative to x. A universal n-left-CEA operator is an n-left-CEA opera-
tor Γ : NN → [0,1]n such that for any n-left-CEA operator Λ , there is e such that
Γ (e⌢x) =Λ(x) for any x. Kihara-Pauly [57] showed that the graph of a universal n-
left-CEA operator (as a subspace of the Hilbert cube) has an interesting dimension-
theoretic property.

1. The graph Gn of a universal n-left-CEA operator is a totally disconnected n-
dimensional Polish space, whose countable product GN

n is also n-dimensional.
2. The graph Gω of a universal ω-left-CEA operator is a totally disconnected infi-

nite dimensional Polish space.

We say that X is finite-level Borel isomorphic to Y if there is a bijection f :
X → Y such that f−1Σ˜ 0

n ⊆ Σ˜ 0
n and f Σ˜ 0

n ⊆ Σ˜ 0
n for some n ∈N. We also say that X

finite-level Borel embeds into Y if X is finite-level Borel isomorphic to a Borel
subset of Y of finite rank. By applying Theorems 5.7, 7.2 and 7.3, one can show
that the graph of a universal ω-left-CEA operator has an intermediate finite-level
Borel isomorphism type.

Theorem 7.4 (Kihara-Pauly [57]). The Hilbert cube does not finite-level Borel em-
bed into Gω , and Gω does not finite-level Borel embed into any countable dimen-
sional Polish space.
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Despite of its importance, there are only a few results on computable topologi-
cal dimension theory. The very first step was done by Kenny [51]. Effectivizations
of the existence of a Henderson compactum and the Cantor manifold theorem are
discussed in Kihara [52]. Recently, McNicholl and Rute took an important next
step. They introduced the notion of a uniform degree, which is a generalization of
truth-table degrees in the setting of computable metric spaces. Then, for instance,
they proved that a point in R2 is contained in a computable arc if and only if it
has an R-uniform degree. The notion of a uniform degree is connected to various
notions in topological dimension theory. We have the impression that the further
development on the generalized truth-table degrees would give new insights into the
computability-theoretic nature of topological dimension theory.

8 Computability of Semicomputable Sets

Each computable closed set (and in particular computable) set is clearly co-c.e.
closed. Conversely, a co-c.e. closed set need not be computable closed. Moreover,
as noted in Section 4, there exists a nonempty co-c.e. subset of R which does not
contain a computable point. Hence, co-c.e. sets can be “far away from being com-
putable”. However, it turns out that under certain assumptions we can conclude that
a co-c.e. closed set is computable. The pioneer work in this area was made by Miller.

Theorem 8.1 (Miller [67]).

1. If S ⊆ Rm is co-c.e. closed and S ∼= Sn for some n ≥ 1, then S is computable.
2. If D ⊆ Rm is co-c.e. closed and there exists, for some n ≥ 1, a homeomorphism

f : Bn → D such that f (Sn−1) is also co-c.e. closed, then D is computable.

Here Sn denotes the unit sphere in Rn+1, Bn denotes the unit closed ball in Rn and
X ∼= Y denotes that topological spaces X and Y are homeomorphic.

By Theorem 8.1 in Euclidean space each co-c.e. closed topological circle is com-
putable and each co-c.e. arc with computable endpoints is computable. The sec-
ond claim of Theorem 8.1 does not hold in general if we omit the assumption that
f (Sn−1) is co-c.e. closed. At the same time, the fact that f (Sn−1) is co-c.e. closed is
not actually necessary for f (Bn) to be computable.

Theorem 8.2 (Miller [67]).

1. There is a co-c.e. arc in R2 which is not computable.
2. There is a computable arc in R2 with non-computable endpoints.

So, although a co-c.e. closed set need not be computable, it makes sense to ask
the following general question: under what conditions does the implication

S co-c.e. closed =⇒ S computable closed (7)

hold in a computable metric space (X ,d,α)? Miller’s work shows that topology
plays an important role regarding conditions under which (7) holds. In Theorem
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8.1, however, the ambient space is Euclidean space. It was later shown by Iljazović
[39] that the claim of that theorem holds in more general computable metric spaces:

Theorem 8.3. Let (X ,d,α) be a computable metric space which has the effective
covering property and compact closed balls. Suppose S ⊆ X is such that S ∼= Sn for
some n≥ 1 or S ∼=Bn by a homeomorphism f :Bn → S such that f (Sn−1) is a co-c.e.
closed set in (X ,d,α). Then the implication (7) holds.

In particular, (7) holds if S is a topological circle or an arc with computable end-
points (in a computable metric space which has the effective covering property and
compact closed balls).

8.1 Semicomputable Chainable and Circularly Chainable
Continua

Arcs and topological circles are just representatives of more general topological
spaces: chainable and circularly chainable continua [73].

Let (X ,d) be a metric space, ε > 0 and C0, . . . ,Cm a finite sequence of nonempty
open sets in (X ,d) such that diamCi < ε for each i ∈ {0, . . . ,m}. We say that
C0, . . . ,Cm is an ε-chain in (X ,d) if, for all i, j ∈ {0, . . . ,m}, Ci ∩C j = /0 if and
only if 1 < |i− j|. We say that C0, . . . ,Cm is an ε-circular chain in (X ,d) if, for
all i, j ∈ {0, . . . ,m}, Ci ∩C j = /0 if and only if 1 < |i− j| < m. We say that a finite
sequence of sets C0, . . . ,Cm covers a set X if X ⊆C0 ∪·· ·∪Cm.

A continuum (X ,d) will be called a chainable continuum if for each ε > 0 there
exists an ε-chain in (X ,d) which covers X . A continuum (X ,d) will be called a
circularly chainable continuum if for each ε > 0 there exists an ε-circular chain in
(X ,d) which covers X . If (X ,d) is a continuum and a,b ∈ X , we say that (X ,d) is a
continuum chainable from a to b if for each ε > 0 there exits an ε-chain C0, . . . ,Cm
in (X ,d) which covers X and such that a ∈C0 and b ∈Cm.

The segment [0,1] is a continuum chainable from 0 to 1. Consequently, if X is
an arc with endpoints a and b, then X is a continuum chainable from a to b. The
unit circle S1 is a circularly chainable continuum and therefore each topological
circle is also a circularly chainable continuum. On the other hand, the space K =
({0}× [−1,1])∪{(x,sin 1

x ) | x ∈ (0,1]}, known as the topologist’s sine curve, is an
example of chainable continuum (K is chainable from a to c and also from b to c,
where a = (0,−1), b = (0,1) and c = (1,sin1)) which is not an arc. Furthermore,
the space W = K ∪ ({0}× [−2,−1])∪ ([0,1]×{−2})∪ ({1}× [−2,sin1]), known
as the Warsaw circle, is an example of an circularly chainable continuum which is
not a topological circle.

Theorem 8.4 (Iljazović [37]). Let (X ,d,α) be a computable metric space which
has the effective covering property and compact closed balls. Let S ⊆ X.

1. If S is (as a subspace of (X ,d)) a circularly chainable continuum which is not
chainable, then (7) holds.
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2. If S is a continuum chainable from a to b, where a and b are computable points
in (X ,d,α), then (7) holds.

3. Suppose S is a co-c.e. closed set. If S is a chainable and decomposable con-
tinuum, then for each ε > 0 there exists a subcontinuum K of S such that K is
computable and dH(S,K)< ε . Moreover, K can be chosen so that it is chainable
from a to b, where a and b are computable points.

That a continuum K is decomposable means that there exist proper subcontinua
K1 and K2 of K such that K = K1 ∪K2. For example, [0,1] is decomposable since
[0,1] = [0, 1

2 ]∪ [ 1
2 ,1].

Each topological circle is a circularly chainable continuum which is not chain-
able. Therefore, Theorem 8.4 is a generalization of Theorem 8.3 for n = 1.

In Theorem 8.3 and Theorem 8.4 we assume that the computable metric space
(X ,d,α) has the effective covering property and compact closed balls. The natural
question is: are these additional assumptions on a computable metric space neces-
sary? The answer is affirmative: we cannot omit these assumptions. By [40] there
exists a computable metric space such that the following hold:

1. There exists a co-c.e. closed topological circle S in (X ,d,α) which does not
contain a computable point (and which in particular is not computable closed);

2. There exists a co-c.e. closed arc S in (X ,d,α) which is chainable from a to b,
where a and b are computable points, but which is not computable closed;

3. There exists a co-c.e. closed arc S in (X ,d,α) which does not contain a com-
putable point (and which in particular cannot be approximated by a computable
subcontinuum).

Moreover, (X ,d,α) can be chosen so that either it has compact closed balls (but
not the effective covering property) or it has the effective covering property (but not
compact closed balls).

Recall that even a one-point co-c.e. closed set need not be computable (the dis-
cussion after Proposition 3.3). This indicates that we have to restrict ourselves to
some special computable metric spaces if we are looking for topological conditions
under which (7) holds.

On the other hand, by Theorem 3.6, in computable metric spaces which have the
effective covering property and compact closed balls conditions under which (7)
holds are same as conditions under which the implication

S semicomputable =⇒ S computable (8)

holds. It turns out, however, that it is more convenient to search for conditions under
which (8) holds than for conditions under which (7) holds since we do not need
any additional assumptions on the ambient space. For example, (8) holds in any
computable metric space if S ∼= Sn or S ∼= Bn by a homeomorphism f : Bn → S such
that f (Sn−1) is a semicomputable set [41]. This is a generalization of Theorem 8.3.
Similarly, if in Theorem 8.4 we remove the assumptions on the computable metric
space, replace “co-c.e. set” by “semicomputable set” and replace (7) by (8), we get
the claim which also holds [43] and which generalizes Theorem 8.4.
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Actually, we have a much more general result than Theorem 8.3: (8) holds if S is
a compact manifold with computable boundary.

8.2 Semicomputable Manifolds

Let Hn = {(x1, . . . ,xn) ∈ Rn | xn ≥ 0} and BdHn = {(x1, . . . ,xn) ∈ Rn | xn = 0} (for
n ≥ 1).

A second countable Hausdorff space X is said to be an n–manifold with boundary
if for each x ∈ X there exists a neighborhood N of x in X such that N is homeomor-
phic to Rn or there exists a homeomorphism f : Hn → N such that x ∈ f (BdHn).

If X is an n–manifold with boundary, we define ∂X to be the set of all points
x ∈ X which have no neighborhood homeomorphic to Rn. We say that ∂X is the
boundary of the manifold X .

If X is an n-manifold with boundary such that ∂X = /0, then we say that X is an
n-manifold. Hence a second countable Hausdorff space X is an n-manifold if and
only if each point x ∈ X has a neighborhood homeomorphic to Rn.

Let n ∈ N. Then Sn is an n-manifold and Bn is an n-manifold with boundary, its
boundary is Sn−1 [71]. Consequently, if X ∼= Sn, then X is an n-manifold. Further-
more, if f : Bn → X is a homeomorphism, then X is an n-manifold with boundary
and ∂X = f (Sn−1).

If (X ,d) is a metric space, A ⊆ X and r > 0, then we will denote by Nr(A) the
r-neighborhood of A, i.e.

Nr(A) =
∪
x∈A

B(x,r).

Note that for A,B ⊆ X and r > 0 we have that A and B are r-close if and only if
A ⊆ Nr(B) and B ⊆ Nr(A). The following notion is useful in the proof of the fact
that (8) holds for compact manifolds with computable boundaries.

Let (X ,d,α) be a computable metric space and A,B ⊆ X , A ⊆ B. We say that A
is computable up to B if there exists a computable function f : N→ N such that

A ⊆ N2−k(Λ f (k)) and Λ f (k) ⊆ N2−k(B)

for each k ∈ N (recall definition (1)). Clearly, if S is a nonempty compact set in
(X ,d), then S is computable if and only if S is computable up to S. Furthermore, it
is easy to prove the following fact (see [41]): if A1, . . . ,An are sets computable up to
S, then A1 ∪·· ·∪An is computable up to S.

If S ⊆ X and x ∈ S, we say that S is computable at x if there exists a neighborhood
N of x in S such that N is computable up to S. The proof of the following proposition
is straightforward (see [41]).

Proposition 8.5. Let (X ,d,α) be a computable metric space and let S ⊆ X be a
compact set. Then S is computable if and only if S is computable at x for each x ∈ S.

A connection between topology and computability is apparent in the following
result: if x has a Euclidean neighborhood in S, then S is computable at x.
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Theorem 8.6 (Iljazović [41]). Let (X ,d,α) be a computable metric space and let S
be a semicomputable set in this space.

1. Suppose x ∈ S is a point which has a neighborhood in S homeomorphic to Rn for
some n ∈ N\{0}. Then S is computable at x.

2. Let T be a semicomputable set such that T ⊆ S. Suppose x∈ S is a point which has
a neighborhood N in S with the following property: there exists n ∈N\{0} and a
homeomorphism f : Hn → N such that f (BdHn) = N ∩T . Then S is computable
at x.

Actually, the original result from [41] assumes that S is compact, but this assumption
can be easily removed (see Theorem 5.2 in [46]).

Proposition 8.5 and Theorem 8.6 imply that (8) holds if S is a compact manifold
with computable boundary. This can be stated in the following way.

Theorem 8.7 ([41]). Let (X ,d,α) be a computable metric space and let S be a semi-
computable set in this space which is, as a subspace of (X ,d), a compact manifold
with boundary. Then the following implication holds:

∂S computable =⇒ S computable.

In particular, each semicomputable compact manifold is computable.

In general, S ⊆ Rn is co-c.e. closed if and only if S = f−1({0}) for some com-
putable function f : Rn → R [12]. Hence, if f : Rn → R is a computable function,
then f−1({0}) need not be a computable set, moreover f−1({0}) need not contain
a computable point even if f−1({0}) ̸= /0.

Let f : Rn →Rm be a function of class C1. Suppose y ∈Rm is a regular value of f
(which means that the differential D( f )(x) : Rn →Rm of f in x is surjective for each
x ∈ f−1({y})) and f−1({y}) ̸= /0. Then it is known from differential topology (see
e.g. [83]) that f−1({y}) is an (n−m)-manifold. Additionally, if f is computable,
then f−1({y}) is co-c.e. closed and therefore semicomputable (Proposition 3.6).
The following is a consequence of Theorem 8.7.

Corollary 8.8. If f : Rn →Rm is a computable function of class C1 and y ∈Rm is a
regular value of f such that f−1({y}) is bounded, then f−1({y}) is computable.

For example, Corollary 8.8 easily implies that the set of all (x,y,z) ∈ R3 such that
x2(1+ ex)+ y2(1+ ey)+ z2(1+ ez) = 1 is computable (see [41]).

The claim of Theorem 8.7 need not hold if we omit the assumption that S is
compact. This is shown by the following simple example from [14].

Example 8.9. Let A be a c.e. subset of N which is not computable. Then the set
B = N \A is co-c.e. closed in R and therefore the set S = B×R is co-c.e. closed
in R2. Since B ⊆ N, S is a 1-manifold. So S is a semicomputable 1-manifold in R2,
but S is not computable in R2 which can be deduced from the fact that B is not
computable in N.
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In general, if X is an n-manifold with boundary, then each connected compo-
nent of X is also an n-manifold with boundary. Semicomputable 1-manifolds with
boundaries have been studied in [14]. It is a well known fact (see e.g. [83]) that if X
is a connected 1-manifold with boundary, then X is a topological line (i.e. X ∼= R)
or a topological ray (i.e. X ∼= [0,∞)) or a topological circle or an arc.

Theorem 8.10 (Burnik-Iljazović [14]). Let (X ,d,α) be a computable metric space
and let S be a semicomputable set in this space which is, as a subspace of (X ,d), a
1-manifold with boundary. Let K be a connected component of S.

1. If K is a topological line or circle, then K is c.e. closed in (X ,d,α).
2. If K is a topological ray with computable endpoint or an arc with computable

endpoints, then K is c.e. closed.
3. If ∂S is semicomputable, then each connected component of S is c.e. closed.

Since the union of finitely many c.e. closed sets is c.e. closed, an immediate conse-
quence of Theorem 8.10 is the following theorem.

Theorem 8.11 ([14]). Let (X ,d,α) be a computable metric space and let S be a
semicomputable set in this space which is a 1-manifold with boundary. Suppose that
S has finitely many connected components. Then the following implication holds:

∂S computable =⇒ S computable.

In particular, each semicomputable 1-manifold with finitely many connected com-
ponents is computable.

It should be mentioned that the uniform versions of Theorems 8.3, 8.7 and 8.11
do not hold in general: there exists a sequence of topological circles in R2 (in fact
in [0,1]2) which is uniformly semi-computable, but not uniformly computable (Ex-
ample 7 in [37]).

If S is a co-c.e. closed set in a computable metric space (X ,d,α) such that X \S
is disconnected (for example, this holds by the Generalized Jordan curve theorem
if S is homeomorphic to Sn and X = Rn+1), then it is possible to conclude that,
under some additional assumptions, S is computable closed or at least contains a
computable point. Such conditions have been studied in [37, 42].

Finally, let us mention that semicomputable manifolds in computable topological
spaces have been studied in [44]. For a study of computable topological spaces see
[98, 97].

8.3 Inner Approximation

Let A be a collection of continua, and let B be a continuum. We say that B is
inner approximated by A if, for any ε > 0, there exists A ∈ A such that A ⊆ B and
dH(A,B) < ε , where we recall that dH is the Hausdorff distance. Classically, every
arcwise connected continuum is inner approximated by locally connected continua.
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In the computability-theoretic setting, claim 3 of Theorem 8.4 says the follow-
ing: every co-c.e. chainable and decomposable continuum is inner approximated by
computable chainable continua (in appropriate computable metric spaces; in fact,
by [43], in any computable metric space any semicomputable chainable and decom-
posable continuum is inner approximated by computable chainable continua).

However, we do not always have a computable inner approximation. Recall that
X is contractible if the identity map on X is null-homotopic, and that a curve means
a one-dimensional continuum.

Theorem 8.12 (Kihara [53]).

1. There exists a contractible, locally contractible, co-c.e., planar curve which is
not inner approximated by computable continua.

2. There exists a contractible, computable, planar curve which is not inner approx-
imated by locally connected, co-c.e. continua.

8.4 Density of Computable Points in Semicomputable Sets

Let (X ,d,α) be a computable metric space, S ⊆ X and x ∈ S. Suppose that there
exists a neighborhood N of x in S such that N is computable in (X ,d,α). Then N, as
a subset of S, is clearly computable up to S. So if x has a computable neighborhood
in S, then S is computable at x.

Theorem 8.13 (Iljazović-Validžić [46]). Let (X ,d,α) be a computable metric space
and S a complete set in (X ,d). Suppose S is computable at x. Then there exists a
neighborhood N of x in S such that N is computable compact in (X ,d,α). More-
over, for each ε > 0 there exists such N with the property that diamN < ε .

If S is a nonempty compact set in a metric space (X ,d) and ε > 0, then S∩B(x, ε
3 )

is a compact set for each x ∈ X , and it follows readily that there exist compact sets
K1, . . . ,Kn whose union is S and whose diameters are less than ε . On the other hand,
if S is a computable compact set, i ∈ N and r ∈ Q, r > 0, then the intersection
S∩B(αi,r) need not be computable compact even if B(αi,r) is computable compact
(see [46]). Nevertheless, we have the following result.

Corollary 8.14 ([46]). Let (X ,d,α) be a computable metric space and let S be a
nonempty computable compact set in this space. Then for each ε > 0 there ex-
ist nonempty computable compact sets K1, . . . ,Kn such that S = K1 ∪ ·· · ∪Kn and
diamKi < ε for each i ∈ {1, . . . ,n}.

Proof. Let ε > 0. Since S is computable, it is computable at each point x ∈ S and
therefore, by Theorem 8.13, each point of S has a neighborhood in S which is com-
putable and has the diameter less than ε . This, together with the compactness of S,
proves the claim of the corollary. ⊓⊔
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Using Corollary 8.14 it is easy to deduce the following facts (see [46]): if (F,G)
is a separation of a computable compact set, then F and G are computable compact
sets; if S is a computable compact set which has finitely many components, then
each of these components is a computable compact set.

A connected component of a computable compact set need not be computable in
general. For example, there are uncountably many components of the Cantor set, so
at least one of them is not computable.

Let S be a semicomputable set in a computable metric space. Then S may not be
computable but, at the same time, computable points which lie in S may be dense in
S. Therefore, the general question is under what conditions the implication

S semicomputable =⇒ computable points are dense in S (9)

holds in a computable metric space? If (8) holds under certain conditions, then under
same conditions (9) also holds. The converse does not hold. For example, (9) holds
if S is an arc in Euclidean space, but (8) need not hold if S is an arc in Euclidean
space [67]. Miller has proved in [67] that (9) holds in Euclidean space if S ∼= Bn for
some n ∈ N.

The following result follows from Theorem 8.6 and Theorem 8.13.

Theorem 8.15 (Iljazović-Validžić [46]). Let (X ,d,α) be a computable metric space
and let S be a semicomputable set in this space. Suppose that S is a manifold with
boundary or S has the topological type of a polyhedron. Then the set of all com-
putable points which belong to S is dense in S.

That S has the topological type of a polyhedron means that S ∼= P for some polyhe-
dron P. A polyhedron in a space obtained from simplices (line segments, triangles,
tetrahedra, and their higher dimensional analogues) by gluing them together along
their faces (see [71] for the definition).

Suppose S is a nonempty compact set in which computable points are dense.
Then for each ε > 0 there exist computable points x0, . . . ,xn ∈ S such that S and
{x0, . . . ,xn} are ε-close. So, for each ε > 0 there exists a computable set K such that
K ⊆ S and dH(S,K)< ε . In particular, if S is a nonempty semicomputable compact
set which satisfies the conditions of Theorem 8.15, then S can be approximated by
its computable subset with arbitrary precision. However, if S is a nonempty semi-
computable compact manifold with boundary, then we can find an even better ap-
proximation, namely for each ε > 0 there exists a computable subset K of S which
is ε-close to S and covers the entire set S except for some part of S which lies in an
ε-neighborhood of ∂S (see Theorem 5.4 in [46]).

At the end of this section, let us mention the following problem. Suppose
(X ,d,α) is a computable metric space and U and V are c.e. open sets in this space.
Let S = X \(U ∪V ). Suppose A is a computable compact set which is connected and
which intersects both U and V . Then clearly A∩S ̸= /0. The question is: does A∩S
have to contain a computable point? It is not hard to see that the answer in general
is negative [43]. An affirmative answer to this question is given in [43] in the case
when A is an arc and, under some additional assumptions, in the case when A is
a chainable continuum. These results can be considered as generalizations of the
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computable intermediate value theorem: if f : [0,1]→ R is a computable function
such that f (0)< 0 and f (1)> 0, then f has a computable zero-point [80].

Let K be the unit square in the plane, i.e. K = [0,1]× [0,1], and let K̊ be the
corresponding open unit square. Suppose f ,g : [0,1]→ K are continuous functions
such that f (0) = (0,0), f (1) = (1,1), g(0) = (0,1), g(1) = (1,0) and f (t),g(t) ∈ K̊
for each t ∈ [0,1]\{0,1}. Then the images of f and g intersect. This nontrivial fact
can be proved using the Jordan curve theorem (see e.g. [94]). Manukyan has proved
that a constructive version of this result does not hold in general [63, 59]. The open
question was: does a computable version of this result hold? Weihrauch has recently
solved this problem; his result can also be considered as a generalization of the
computable intermediate value theorem.

Theorem 8.16 (Weihrauch [94]). Let f ,g : [0,1]→K be computable functions such
that f (0) = (0,0), f (1) = (1,1), g(0) = (0,1), g(1) = (1,0) and f (t),g(t) ∈ K̊ for
each t ∈ [0,1]\{0,1}. Then the images of f and g intersect in a computable point.

The image of a computable function [0,1]→Rn is easily seen to be a computable
compact set. On the other hand, the intersection of a semicomputable set and a co-
c.e. closed set is a semicomputable set (in any computable metric space, see [43]).
So Theorem 8.16 and the above results from [43] can be viewed as results which
provide conditions under which a semicomputable set contains a computable point.

9 Computable Images of a Segment

As said, if f : [0,1] → Rn is a computable function, then f ([0,1]) is a computable
compact set in Rn. The question is what can be said about various forms of the
converse of this statement. By Example 6.1, there exists a computable arc A in R2

with computable endpoints such that A is not the image of any computable injection
[0,1]→R2 (in fact, A is the image of a computable function [0,1]→R2). Moreover,
we have the following result.

Theorem 9.1 (Gu-Lutz-Mayordomo [30]). There exists an arc A in R2 with the
following properties:

1. A is rectifiable (i.e. A has finite length) and smooth except at one endpoint;
2. there exists a computable function f : [0,1] → R2 whose image is A (moreover,

f , the velocity function f ′ and the acceleration function f ′′ are polynomial time
computable);

3. for any computable function f : [0,1] → R2 whose image is A and for every
m ∈N, m ≥ 1, there exist disjoint closed subintervals I0, . . . , Im of [0,1] such that
the arc f (I0) has positive length and f (Ii) = f (I0) for each i ∈ {1, . . . ,m}.

If f : [0,1]→R2 is a computable injection, then the arc f ([0,1]) need not be rec-
tifiable. On the other hand, if f : [0,1]→ R2 is a computable function such that the
curve f ([0,1]) is rectifiable, then f ([0,1]) clearly need not be an arc. The following
result points out a significant difference between these two types of sets.
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Theorem 9.2 (McNicholl [64]).

1. There exists a computable injection f : [0,1]→R2 and a point x ∈ f ([0,1]) such
that there exists no computable function g : [0,1]→ R2 with the following prop-
erty: g([0,1]) is a rectifiable curve and x ∈ g([0,1]).

2. There exists a computable function g : [0,1]→ R2 such that g([0,1]) is a rectifi-
able curve and a point x ∈ g([0,1]) with the following property: there exists no
computable injection f : [0,1]→ R2 such that x ∈ f ([0,1]).

Of course, the arc f ([0,1]) in 1. cannot be rectifiable and the function g in 2. cannot
be injective.

A metrizable space which is locally connected, connected and compact is called
a Peano continuum. The Hahn-Mazurkiewicz theorem (see e.g. [73, 17]) says that a
Hausdorff space X is a Peano continuum if and only if there is a continuous surjec-
tion [0,1]→ X .

If X is a subset of the plane, it makes sense to ask whether a computable version
of the Hahn-Mazurkiewicz theorem holds.

Theorem 9.3 (Couch-Daniel-McNicholl [19]). There is a computable compact set
X in R2 which is a Peano continuum and such that there exists no computable func-
tion [0,1]→ R2 whose image is X.

However, the situation changes under the assumption that X is effectively locally
connected. If X ⊆ Rn, a local connectivity operator for X is a continuous operator
that, given a name of a point p ∈ X in Rn and a name of a rational rectangle R in Rn

which contains p gives a name of an open set U in Rn such that U ∩X is connected
and p ∈ U ∩X ⊆ R (see [19]). The set X is in [19] defined to be effectively locally
connected if it has a computable local connectivity operator.

Theorem 9.4 (Couch-Daniel-McNicholl [19]). Let X ⊆Rn be a computable Peano
continuum. Suppose X is effectively locally connected. Then there exists a com-
putable function g : [0,1] → Rn whose image is X. Moreover, a name of such a
function g can be uniformly computed from a name of a computable compact set X
and a name of a local connectivity operator for X.

The following theorem is a computable version of another well know topologi-
cal result: each compact metric space is a continuous image of the Cantor set (see
Theorem 6.C.12 in [17]).

Theorem 9.5 (Couch-Daniel-McNicholl [19]). Let C be the Cantor middle-third
set. Let X be a nonempty computable compact set in Rn. Then there exists a com-
putable surjection C → X. Moreover, a name of such a surjection can be uniformly
computed from a name of a computable compact set X.

10 Computability Structures

If (X ,d) is a metric space and α a sequence in X such that (X ,d,α) is a computable
metric space, then we say that α is an effective separating sequence in (X ,d) [102].
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Suppose α and β are effective separating sequences in a metric space (X ,d). We
say that α and β are equivalent if α is a computable sequence in (X ,d,β ) and β is
a computable sequence in (X ,d,α).

If (X ,d,α) is a computable metric space, let Sα denote the set of all computable
sequences in (X ,d,α). It is easy to conclude that effective separating sequences α
and β in (X ,d) are equivalent if and only if Sα = Sβ [45].

The notions of a computable point, a computable sequence, a c.e. closed set, a
co-c.e. closed set, a computable compact set in a computable metric space (X ,d,α)
depend, by definition, on the sequence α . However, it is easy to conclude that these
notions coincide in (X ,d,α) and (X ,d,β ) if α and β are equivalent effective sep-
arating sequences. This means that these notions can be viewed as notions defined
related to the entire set Sα and not just to α itself. Therefore, we can take the sets of
the form Sα as a basis for computability concepts on a metric space (X ,d), which
leads to the notion of a computability structure on a metric space.

A computability structure S on a metric space (X ,d) is a set of sequences in X
such that the following holds [69, 102, 80, 45]:

1. if (xi),(y j) ∈ S , then the function N2 → R, (i, j) 7→ d(xi,y j), is computable;
2. if (xi)∈S and (yi) is a sequence in X such that d(yi,xF(i,k))< 2−k for all i,k ∈N,

where F : N2 → N is a computable function, then (yi) ∈ S .

A computability structure S on a metric space (X ,d) is said to be separable if
there exists (xi) ∈ S such that (xi) is a dense sequence in (X ,d).

If (X ,d) is a metric space, then there exist computability structures on (X ,d):
we can take any a ∈ X , and then {(a,a,a, . . .)} is trivially a computability structure
on (X ,d). On the other hand, a separable computability structure on a metric space
(X ,d) need not exist. It certainly does not exist if (X ,d) is not a separable metric
space, but even if (X ,d) is separable, a separable computability structure on (X ,d)
need not exist. For example, we can take X = {0,γ}, where γ is an incomputable
real number, and the Euclidean metric d on X .

The general question is: if (X ,d) is a metric space, how many separable com-
putability structures do exist on (X ,d)?

A computable metric space (X ,d,α) is said to be effectively totaly bounded if
there exists a computable function f : N→ N such that

X = B(α0,2−k)∪·· ·∪B(α f (k),2
−k)

for each k ∈ N. If (X ,d,α) is effectively totaly bounded, then (X ,d) is obviously
totaly bounded. Conversely, if (X ,d) is totaly bounded, (X ,d,α) need not be effec-
tively totaly bounded [38].

If α and β are equivalent effective separating sequences on a metric space
(X ,d,α), then it is not hard to conclude that (X ,d,α) is effectively totaly bounded
if and only if (X ,d,β ) is effectively totaly bounded. However, this claim holds even
if α and β are not equivalent.
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Theorem 10.1 (Iljazović [38]). If α and β are effective separating sequences in
a metric space (X ,d), then (X ,d,α) is effectively totally bounded if and only if
(X ,d,β ) is effectively totally bounded.

Using Theorem 3.4 and Proposition 3.6 it is easy to conclude that a computable
metric space (X ,d,α) is effectively compact if and only if (X ,d) is compact and
(X ,d,α) is effectively totaly bounded.

Theorem 10.2 (Iljazović [38]). Let (X ,d,α) be an effectively compact computable
metric space such that there exist only finitely many isometries of the metric space
(X ,d). Then there exists a unique separable computability structure on (X ,d).

For example, Theorem 10.2 implies that there exists a unique separable computabil-
ity structure on [0,1].

Let (X ,d) be a metric space, S a set of sequences in X and f : X → X an isom-
etry. Let f (S ) denotes the set {( f (xi)) | (xi) ∈ S }. Then S is a (separable) com-
putability structure on (X ,d) if and only if f (S ) is a (separable) computability
structure on (X ,d).

A metric space (X ,d) is said to be computably categorical if for all separable
computability structures S and T on (X ,d) there exists an isometry f : X → X
such that f (S ) = T [66].

Theorem 10.3 (Melnikov [66]).

1. Every separable Hilbert space is computably categorical (as a metric space).
2. The space C[0,1] of all continuous functions [0,1]→R with the metric of uniform

convergence (supremum metric) is not computably categorical.
3. Cantor space {0,1}N with the metric d((xn),(yn)) = max{2−n | xn ̸= yn} is com-

putably categorical.

Theorem 10.4 (McNicholl [65]). Let p∈R, p≥ 1. Let lp be the set of all sequences
(xi) of complex (or real) numbers such that ∑∞

i=0 |xi|p < ∞. Then lp, with the metric

induced by the norm ∥(xi)∥= (∑∞
i=0 |xi|p)

1
p , is computably categorical if and only if

p = 2.

The general question is: if (X ,d) is a separable metric space, does there exist
a metric space (Y,d′) which is homeomorphic to (X ,d) and which has a separa-
ble computability structure? A similar question is this: if S is a (compact) set in a
computable metric space, does there exist a computable compact set T in the same
space such that S and T are homeomorphic? Bosserhoff and Hertling have studied a
similar problem in Euclidean space and they got the following result.

Theorem 10.5 (Bosserhoff-Hertling [3]). Let n ∈ N, n ≥ 1.

1. There exists a c.e. closed set K in Rn such that K is compact, K ⊆ [0,1]n, and
such that f (K) is not a computable compact set in Rn for any homeomorphism
f : Rn → Rn.

2. There exists a co-c.e. closed set K in Rn such that K is compact, K ⊆ [0,1]n, and
such that f (K) is not a computable compact set in Rn for any homeomorphism
f : Rn → Rn.
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A computability structure on a metric space is called maximal if it is maximal
with respect to inclusion. Each separable computability structure is maximal, but the
converse does not hold in general. The question is under what conditions a maximal
computability structure is separable. Another question is under what conditions a
maximal computability structure on a metric space is unique.

Let S be a computability structure on a metric space (X ,d) and let a ∈ X . We
say that a is a computable point in S if there exists (xi) ∈ S and i ∈ N such that
xi = a.

For X ⊆ Rn, X ̸= /0, let dimX be the largest number k ∈ N such that there exist
geometrically independent points a0, . . . ,ak ∈ X .

Theorem 10.6 (Iljazović-Validžić [46]).

1. Each maximal computability structure on Rn is separable.
2. If X ⊆Rn, dimX = k, k ≥ 1, and a0, . . . ,ak−1 ∈ X are geometrically independent

points such that d(xi,x j) is a computable number for all i, j ∈ {0, . . . ,k − 1},
where d is the Euclidean metric on X, then there exists a unique maximal com-
putability structure on (X ,d) in which a0, . . . ,ak−1 are computable points.

3. Let γ > 0. For a ∈ [0,γ] let Ma be the unique maximal computability structure
on [0,γ ] in which a is a computable point (such a computability structure exists
by claim 2). Then Ma is a separable computable structure if and only if a and
γ −a are left computable numbers.
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