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Abstract. We investigate computability theoretic and descriptive set theo-
retic contents of various kinds of analytic choice principles by performing a

detailed analysis of the Medvedev lattice of Σ1
1-closed sets. Among others,

we solve an open problem on the Weihrauch degree of the parallelization of
the Σ1

1-choice principle on the integers. Harrington’s unpublished result on a

jump hierarchy along a pseudo-well-ordering plays a key role in solving this
problem.

1. Introduction

1.1. Summary. The study of the Weihrauch lattice aims to measure the com-
putability theoretic difficulty of finding a choice function witnessing the truth of
a given ∀∃-theorem (cf. [3]) as an analogue of reverse mathematics [19]. In this
article, we investigate the uniform computational contents of the axiom of choice
Σ1

1-AC and dependent choice Σ1
1-DC for Σ1

1 formulas in the context of the Weihrauch
lattice.

The computability-theoretic strength of these choice principles is completely in-
dependent of their proof-theoretic strength, since the meaning of an impredicative
notion such as Σ1

1 is quite unstable among models of second-order arithmetic. Nev-
ertheless, it is still interesting to examine the uniform computational contents of
Σ1

1-AC and Σ1
1-DC in the full model PN. For instance, this setting is particularly

relevant for descriptive set theory and related areas, and indeed, the complexity of
the axiom of choice has already been studied a lot in descriptive set theory, under
the name of uniformization.

For a set A ⊆ X×Y define the x-th section of A as A(x) = {y ∈ Y : (x, y) ∈ A}.
We say that a partial function g : ⊆ X → Y is a choice function for A if g(x) is
defined and g(x) ∈ A(x) whenever A(x) is nonempty. Such a choice function is
also called a uniformization of A. In descriptive set theory and related areas, there
are a number of important results on measuring the complexity of choice functions:
Let X and Y be standard Borel spaces. The Jankov-von Neumann uniformization
theorem (cf. [13, Theorem 18.1]) states that if A is analytic, then there is a choice
function for A which is measurable w.r.t. the σ-algebra generated by the analytic
sets. The Luzin-Novikov uniformization theorem (cf. [13, Theorem 18.10]) states
that if A is Borel each of whose section is at most countable, then there is a Borel-
measurable choice function for A. Later, Arsenin and Kunugui (cf. [13, Theorem
35.46]) showed that the same holds even if each section is allowed to be σ-compact.
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In our setting, (a Σ1
1 definition φA of) a set A ⊆ X × Y is considered to be an

instance of the “uniformization problem”, and any choice function gA :⊆ X → Y
for A to be a solution of the instance. Then we examine the degree of difficulty
of such a transformation φA 7→ gA. In other words, we investigate not only the
complexity of a choice function gA itself, but also of the uniform content φA 7→ gA
of the uniformization problem. By the technique of relativization one can solve
problems in this area with results about uniform choice. Also, uniform results can
be more precise and one can wonder whether results about non-uniform choice are
still true in their uniform version.

The main tool for comparing these degrees of difficulty is Weihrauch reduction.
The notion of Weihrauch degree is used as a tool to classify certain ∀∃-statements by
identifying ∀∃-statements with a partial multivalued function. Informally speaking,
a (possibly false) statement S ≡ ∀x ∈ X [Q(x) → ∃yP (x, y)] is transformed into
a partial multivalued function f :⊆ X ⇒ Y such that dom(f) = {x : Q(x)} and
f(x) = {y : P (x, y)}. Then, measuring the degree of difficulty of witnessing the
truth of S is identified with that of finding a choice function for f . Here, we consider
choice problems for partial multivalued functions rather than relations in order to
distinguish the hardest instance f(x) = ∅ and the easiest instance x ∈ X \ dom(f).

In this article, we only consider subspaces of NN, so we can use the following
version of Weihrauch reducibility. For partial multivalued functions f, g, we say
that f is Weihrauch reducible to g (written f ≤W g) if there are partial computable
functions h, k such that x 7→ k(x,G ◦ h(x)) is a choice for f whenever G is a choice
for g. In other words,

(∀x ∈ dom(f))(∀y) [y ∈ g(h(x)) =⇒ k(x, y) ∈ f(x)].

In recent years, a lot of researchers has employed this notion to measure uniform
computational strength of ∀∃-theorems in analysis as an analogue of reverse math-
ematics. Roughly speaking, the study of the Weihrauch lattice can be thought of
as “reverse mathematics plus uniformity minus proof theory.” But this disregard
for proof theory provides us a new insight into the classification of impredicative
principles as we see in this article. For more details on the Weihrauch lattice, we
refer the reader to a recent survey article [3].

Coming back to our study of analytic axioms of choice, we write Σ1
1-ACN→X

for the independent axiom of countable choice on X seen as a partial multival-
ued function. As the countable axiom of choice corresponds to countably many
independent choice, it is noted in Observation 2.1 that this Weihrauch problem

corresponds to the parallelization of the Σ1
1 single choice, Σ̂1

1-CX . In particular,

Σ1
1-AC2 ≡W Σ̂1

1C2. The dependent choice Σ1
1-DCX corresponds to finding a path

through a Σ1
1 tree, where a finite path contains the choices already made, and the

possible extensions the choices to come. For instance, we note in Observation 2.3
that Σ1

1-DC2 ≡W Σ1
1-WKL, the problem of finding an infinite path in a binary Σ1

1

tree (see Section 2.1). We have the following, proved in Proposition 2.5:

Fact 1.1. We have Σ1
1-DC2 ≡W Σ1

1-ACN→2.

However, using the equivalences noted in the above paragraph, Lemma 4.7 in
[14] asserts:

Fact 1.2 (Kihara-Marcone-Pauly [14, Lemma 4.7]). In contrast to the previous
fact, we have Σ1

1-ACN→N ̸≤W Σ1
1-DC2.
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This suggests the following question about dependent and independent choice
when the objects are chosen from subsets of the integers:

Question 1.3 (Brattka et al. [2] and Kihara et al. [14, Question 4.10]). Do we
have Σ1

1-DCN ≤W Σ1
1-ACN→N?

Note that this question was not asked in these terms in [2] and [14, Question
4.10], however the two formulation are equivalent by Proposition 2.2.

To negatively solve this question, we will employ the notion of a pseudo-hierarchy:
A remarkable discovery by Harrison is that some non-well-ordering ≺ admits a
transfinite hierarchy based on an arithmetical formula. Furthermore, a basic obser-
vation is that, without deciding if a given countable linear ordering ≺ is well-ordered
or not, one can either produce an arithmetical transfinite hierarchy along ≺ or con-
struct an infinite ≺-decreasing sequence. Indeed, we will see that the degree of
difficulty of such a construction is quite close to that of uniformizing analytic sets
with compact sections, which is drastically easier than deciding well-orderedness of
a countable linear ordering.

In conclusion, we have an interesting difference between countable choice on 2
and on N: In the former, independent and dependent choices correspond, while in
the latter they differs. One can wonder when this transition happens, for various re-
strictions of the set we choose from. Many restrictions on the principle of choice on
a single set have already been studied, as for instance those defined in [3, Definition
7.4]. In this article, we will study the axioms of dependent and independent count-
able choices for the restrictions to finite, cofinite, all-or-finite, all-or-unique and
finite-or-cofinite sets of natural numbers. In summary, we will show the following
in the Weihrauch context:

• Countable choice on finite Σ1
1 sets is strictly easier than countable choice

on all-or-finite Σ1
1 sets (Corollary 3.13).

• Countable choice on cofinite Σ1
1 sets is incomparable with countable choice

on (all-or-)finite Σ1
1 sets (Corollary 3.19).

• Countable choice on all-or-finite Σ1
1 sets is strictly easier than countable

choice on Σ1
1 sets (Corollary 3.19).

• Countable choice on finite Σ1
1 sets has the same difficulty (modulo arith-

metical equivalence) as some disjunctive form of arithmetical transfinite
recursion (Theorem 2.12).

• Countable choice on (all-or-)finite Σ1
1 sets has the same difficulty as depen-

dent choice on (all-or-)finite Σ1
1 sets (Theorem 3.3 and Theorem 3.10).

• Countable choice on Σ1
1 sets is strictly easier than dependent choice on Σ1

1

sets (Theorem 3.30).

1.2. Preliminaries.

Weihrauch reducibility. We use several operations on the Weihrauch lattice (see also
[3, 4]). Given a partial multivalued function f , the parallelization of f is defined as
follows:

f̂((xn)n∈N) =
∏
n∈N

f(xn) = {(yn)n∈N : (∀n) yn ∈ f(xn)}.

If f ≡W f̂ , then we say that f is parallelizable. Given partial multivalued func-
tions f and g, the compositional product of f and g (written g⋆f) is a function which
realizes the greatest Weihrauch degree among g0 ◦ f0 for f0 ≤W f and g0 ≤W g.
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It is known that such an operation ⋆ exists. For basic properties of parallelization
and compositional product, see also [4].

Analytic sets as co-enumeration. In this article, we are mainly interested in analytic
sets, in other words in sets that are Σ1

1 relative to some oracle A. It is well-known
that Σ1

1(A) sets can be seen as a co-enumeration process along ωA1 (the supremum
of all A-computable ordinals), where at each step the co-enumeration is ∆1

1(A) in
a uniform manner. This is one of the most fundamental ideas in the study of Σ1

1

sets; see any textbook on hyperarithmetic theory or higher computability theory,
cf. [12].

This fact essentially follows from the Spector-Gandy theorem, i.e., Π1(LωCK
1

) =

Σ1
1. More precisely, P ⊆ NN is Σ1

1 if and only if there is a Π1 formula φ in the
language of set theory such that X ∈ P ⇐⇒ LωX

1
[X] |= φ(X). Obviously,

this idea is uniformly relativizable to any oracle by applying the above equivalence
to a universal Σ1

1 set which parametrizes all analytic sets (and then consider its
cross-sections).

One can utilize this fact to describe a construction of a Σ1
1(A) set as a uni-

form (co-enumeration) algorithm along an ωA1 -step computation. There are a lot of
recursion-theoretic frameworks to rigorously describe the idea of ordinal step com-
putations, such as admissible sets, norms, and inductive operators; see e.g. [12, 17].
In particular, we use the following notions:

A Π1
1-norm on a Π1

1 set P ⊆ X, where X is either N or NN, is a map φ : X →
ω1 ∪ {∞} such that ∀x ∈ X, (φ(x) < ωx1 ∨ φ(x) = ∞), such that P = {x ∈ X :
φ(x) <∞} and such that the following relations ≤φ and <φ are Π1

1:

a ≤φ b ⇐⇒ φ(a) <∞ and φ(a) ≤ φ(b),

a <φ b ⇐⇒ φ(a) <∞ and φ(a) < φ(b).

In our case, we will focus on the case where X = N. In this case, φ has value in
ωCK
1 ∪ {∞}. It is well-known that every Π1

1 set admits a Π1
1-norm (in an effective,

uniform, manner): Consider a many-one reduction from a Π1
1 set P to the set WO

of well orderings. Then we define Pα = {n : φ(n) < α}, which is a ∆1
1 set, and if

α is limit then we have Pα =
∪
β<α Pβ . If n ∈ Pα, it is natural to say that n is

enumerated into P by step α. Similarly, a Σ1
1 set S can be written as the intersection

S = {Sα : α < ωCK
1 } of a decreasing sequence of ∆1

1 sets, and if n ̸∈ Sα, we say
that n is removed from S by step α. We often use some other sentences which have
similar meanings.

This argument is uniformly relativizable to any oracle by using a Π1
1 norm on a

Π1
1 set which parametrizes all coanalytic sets (cf. [17]). In particular, every Σ1

1(A)
set can uniformly be seen as a co-enumeration of ∆1

1(A) sets, of length ω
CK
1 . In the

case of a Σ1
1 sets P ⊆ NN, P can be seen as a coenumeration of length ω1, where

an element x can only be removed before stage ωx1 .
The reversal is also well-known (which is essentially Kleene’s HYP quantification,

whose uniform version is also clearly effective). This fact can also be presented as
an ordinal step construction as follows: If we describe a ∆1

1 rule Γ: P<α 7→ Pα,
which satisfies the property R ⊆ Γ(R), then the least fixed point P of Γ is Π1

1; and
indeed the iteration (Γα(∅))α always stabilizes to the fixed point at ωCK

1 steps, i.e.,
P =

∪
{Pα : α < ωCK

1 }. Such a Γ is known as a ∆1
1 inductive operator, which is

a fundamental notion in generalized recursion theory, cf. [12]; see also [17, Section
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7C] for uniformity. A typical example of a ∆1
1 inductive operator is the standard

construction of the H-hierarchy of Turing jumps (see also Section 2.4). Similarly, if
we describe a ∆1

1 rule Θ: S<α 7→ Sα with Θ(R) ⊆ R we eventually obtain a Σ1
1 set

S =
∩
{Sα : α < ωCK

1 }. We consider Sα = Θα(N<N) as the stage α approximation
of S in our ∆1

1-construction of a Σ1
1 set S. Again, this is uniformly relativizable as

above.
There is an important result of recursion theory, known as Spector’s Σ1

1 bounding
principle (admissibility of ωCK

1 ). This theorem says that during an enumeration,
on certain conditions, an event will already happen at some stage of computation
(and not only at stage ωA1 , outside the scope of the enumeration).

Theorem 1.4 (Spector’s bounding principle). If f : N → OA is a Σ1
1(A) definable

function from N to the ordinals, then it must be bounded strictly below ωA1 . Here,
OA defines the set of codes for ordinals recursive in A.

We will use this way of defining Σ1
1 sets together with Spector’s bounding princi-

ple quite often in this paper. For instance, let us show that there exists a computable
function f such that f(a) is an index for a Σ1

1 set S ⊆ N such that:

• if a is an index for a nonempty Σ1
1 set, then S = N,

• if a is an index for an empty Σ1
1 set, then S = ∅.

Indeed, let a be an index for a Σ1
1 set E ⊆ N, and define f(a) to be the index of

the Σ1
1 set defined by the following co-enumeration: at stage α, do nothing if Eα

(E at stage α) is not empty, and remove everything if Eα = ∅.
Let Sa be the set of index f(a). If Sa is empty, then at some stage α, Eα is

empty, so E = ∅. Otherwise, suppose that E is empty. Then, we claim that there
must exists a stage α at which Eα is already empty: indeed, consider the function
which to n associates the stage where n is removed is Σ1

1, and by Spector’s bounding
principle (Theorem 1.4) let α < ωCK

1 be a bound to it. Then, at stage α, Eα is
empty and therefore Sa is also empty. So Sa is empty if and only if Eα is empty. To
conclude, it is clear from the definition of Sa that if it is nonempty, then Sa = N.

An easy but important observation is that this construction is uniformly rela-
tivizable. To proceed the construction (of an inductive operator), we only need the
existence of a bound α < ωA1 , but do not need to know the value of such an α, and
this fact is ensured by Theorem 1.4; that is, we do not require a uniform version of
Spector’s bounding principle, although it is not hard to see that Spector’s bounding
principle is uniformly relativizable.

2. Equivalence results in the Weihrauch lattice

2.1. Σ1
1-Choice Principles. One of the main notions in this article is the Σ1

1-
choice principle. In the context of the Weihrauch degrees, the Σ1

1-choice principle
on a space X is formulated as the partial multivalued function which, given a code
of a nonempty analytic set A, chooses an element of A.

We fix a coding system of all analytic sets in a Polish space X, and let Sp be
the analytic subset of X coded by p ∈ NN. For instance, let Sp be the projection
of the p-th closed subset of X × NN (i.e., the complement of the union of all basic
open balls of index p(n) for some n) into the first coordinate (cf. [14]). Such a p is
called an analytic code (or a Σ1

1-name) of Sp and a coanalytic code (or a Π1
1-name)

of the complement of Sp.
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The Σ1
1-choice principle on X, Σ1

1-CX , is the partial multivalued function which,
given a code of a nonempty analytic subset of X, chooses one element from X.
Formally speaking, it is defined as the following partial multivalued function:

dom(Σ1
1-CX) = {p ∈ NN : Sp ̸= ∅},

Σ1
1-CX(p) = Sp.

For the basics on the Σ1
1-choice principle on X, see also [14]. In a similar manner,

one can also consider the Γ-choice principle on X, Γ-CX , for any represented space
X and any collection Γ of subsets of X endowed with a representation S :⊆ NN → Γ
(where we write Sp in place of S(p)). We first describe how this choice principle is
related to several very weak variants of the axiom of choice.

In logic, the axiom of Σ choice, Σ-AC, is known to be the following statement:

∀a∃b φ(a, b) −→ ∃f∀a φ(a, f(a)),
where φ is a Σ formula. If we require a ∈ X and b ∈ Y , the above statement is
written as Σ-ACX→Y . We examine the complexity of a procedure that, given a Σ1

1

formula φ (with a parameter) satisfying the premise of Σ1
1-ACX→Y , returns a choice

for φ. In other words, we interpret Σ1
1-ACX→Y as the following partial multivalued

function:

dom(Σ1
1-ACX→Y ) = {p ∈ NN : ∀a∃b ⟨a, b⟩ ∈ Sp},

Σ1
1-ACX→Y (p) = {f ∈ Y X : (∀a) ⟨a, f(a)⟩ ∈ Sp}.

Unfortunately, this interpretation is different from the usual (relative) realizabil-
ity interpretation. However, the above interpretation of Σ1

1-ACX→N is related to
a descriptive-set-theoretic notion known as the generalized reduction property (or
equivalently, the number uniformization property) for Σ1

1 (cf. [13, Definition 22.14]).
The equivalence Σ1

1-CX ≡W Σ1
1-AC1→X is obvious. In this article, we are mainly

interested in countable choice Σ-ACN→X . The countable choice principles Σ-ACN→N
and Σ-ACN→NN are also known as Σ-AC0,0 and Σ-AC0,1, respectively. In the context
of Weihrauch degrees, the interpretation of the countable choice, Σ1

1-ACN→X , is
obviously related to the parallelization of the Σ1

1-choice principle.

Observation 2.1. If X is an initial segment of N, then we have Σ̂1
1-CX ≡W

Σ1
1-ACN→X . □

In logic, the axiom of Σ1
1-dependent choice on X is the following statement:

∀a∃b φ(a, b) −→ ∀a∃f [f(0) = a & ∀n φ(f(n), f(n+ 1))],

where φ is a Σ1
1-formula, and a and b range over X. It is known that dependent

choice is equivalent to the statement saying that if T is a definable pruned tree of
height ω, then there is an infinite path through T . However, this is achieved by
using dependent choice on the set of finite strings of elements of X, X<N. As this
is the principle that is actually used, and the one that makes sense for X being
finite, this is how we define Σ1

1-DCX :

dom(Σ1
1-DCX) = {p ∈ (NN) : Sp ⊆ X<N is a tree with [Sp] ̸= ∅},

Σ1
1-DCX(p) = [Sp]

Note that this formulation is different from Σ1
1-dependent choice on X in the con-

text of second order arithmetic. Indeed, our formulation falls between Σ1
1-dependent
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choice and strong Σ1
1-dependent choice (cf. Simpson [19, Definition VII.6.1]). Now,

it is easy to see the following:

Proposition 2.2. CNN ≡W Σ1
1-CNN ≡W Σ1

1-DCNN ≡W Σ1
1-DCN.

Proof. We prove the following Weihrauch inequality, in their order from left to
rigth: Σ1

1-DCNN ≤W Σ1
1-CNN ≤W CNN ≤W Σ1

1-DCN ≤W Σ1
1-DCNN .

Σ1
1-DCNN ≤W Σ1

1-CNN : The set of all solutions to an instance of Σ1
1-DCNN is

obviously Σ1
1 relative to the given parameter, and one can easily find its Σ1

1-index.
Σ1

1-CNN ≤W CNN : Let P ⊆ NN be a Σ1
1 set. From its index, one can compute

the index of a closed set Q ⊆ NN × NN such that the first projection of Q is P .
Thus, given an element of Q, one can find an element of P by applying the first
projection, and CNN ≥W Σ1

1-CNN .
CNN ≤W Σ1

1-DCN: Given a code q of a closed subset Cq of NN, compute a code of
a pruned Σ1

1 tree T such that Cq = [T ] (which is given by σ ∈ T iff Cq contains an
extension of σ). Then, let φT (σ, τ) be the formula expressing that τ is an immediate
successor of σ in T . Moreover, ⟨p, q, ε⟩ where Sq = N<N and Sp = {⟨σ, τ⟩ : φT (σ, τ)}
satisfies the premise of Σ1

1-DCN since T is pruned. Let f be a solution to this instance
of Σ1

1-DCN. Since T is pruned, f must be a path through T .
Σ1

1-DCN ≤W Σ1
1-DCNN : This is obvious as N can be computably embedded in

NN. □

2.2. Compact Choice Principles. According to the Arsenin-Kunugui uniformiza-
tion theorem (cf. [13, Theorem 18.10]), the choice principle for σ-compact ∆1

1 sets
is much simpler than the one for arbitrary ∆1

1 sets. We are interested in whether
an analogous statement holds for Σ1

1-choice, while we know that even compact
Σ1

1-choice does not admit a Borel uniformization.
We now consider subprinciples of the Σ1

1 choice principle by restricting its do-
main. Recall that Sp is the analytic set in X coded by p ∈ NN. Let R be a collection
of subsets of X. Define Σ1

1-CX ↾R, the Σ1
1-choice principle restricted to sets in R,

as follows:

Σ1
1-CX ↾R :⊆ NN ⇒ X,

dom(Σ1
1-CX ↾R) = {p ∈ NN : Sp ̸= ∅ and Sp ∈ R},

Σ1
1-CX ↾R (p) = Sp

First, we consider the Σ1
1 choice principle restricted to compact sets, that is, we

define compact Σ1
1-choice, Σ

1
1-KCX , as follows:

Σ1
1-KCX = Σ1

1-CX ↾{A⊆X:A is compact}.

In other words, the Σ1
1-compact choice principle, Σ1

1-KCX , is the multivalued
function which, given a code of a nonempty Σ1

1 set which happens to be compact,
chooses one element from the set. As the code contains no information about
compactness, the principle of compact Σ1

1 choice on NN should be considered as a
Σ1

1-version of König’s lemma rather than of weak König’s lemma. In contrast, a
Σ1

1-version of weak König’s lemma and related principles are studied in [14]; e.g.,

• The principle Σ1
1-WKL, the weak König’s lemma for Σ1

1-trees, is the partial
multivalued function which, given a Σ1

1-name of a binary tree T ⊆ 2<N,
chooses an infinite path through T .
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• The principle Π1
1-Sep, the problem of separating a disjoint pair of Π1

1 sets,
is the partial multivalued function which, given a Π1

1-name of a pair of
disjoint sets A,B ⊆ N, chooses (the characteristic function of) a set C ⊆ N
separating A from B, that is, A ⊆ C and B ∩ C = ∅.

Here, recall that p is called a Σ1
1-name of Sp, and a Π1

1-name of its complement.

Observation 2.3. Σ1
1-DC2 ≡W Σ1

1-WKL. □

Note that in [14, Lemma 4.6] these principles are shown to be equivalent to the
parallelization of two-valued Σ1

1 choice:

Fact 2.4 (Kihara-Marcone-Pauly [14]). Σ̂1
1-C2 ≡W Π1

1-Sep ≡W Σ1
1-WKL.

Although König’s lemma and weak König’s lemma are different in the com-
putability theoretic context, these are equivalent modulo some arithmetical power.
Using this observation, we now see that the Σ1

1 versions of König’s lemma and weak
König’s lemma are computably equivalent, and thus, the principles mentioned in
2.4 are equivalent to Σ1

1-compact choice.

Proposition 2.5. Σ1
1-KCNN ≡W Σ1

1-ACN→2 ≡W Σ1
1-WKL ≡W Σ1

1-DC2.

Proof. By Observation 2.1, we have Σ̂1
1-C2 ≡W Σ1

1-ACN→2. By Fact 2.4, Σ
1
1-ACN→2 ≡W

Σ1
1-WKL. By Observation 2.3, we have Σ1

1-WKL ≡W Σ1
1-DC2.

It remains to show that these are equivalent to the Σ1
1 compact choice principle.

First note that the reduction Σ1
1-WKL ≤W Σ1

1-KCNN is obvious, as if T ⊆ 2N is Σ1
1,

then [T ] is compact and Σ1
1. For the converse, we claim that if a set A ⊆ NN is Σ1

1

and compact then it is arithmetically isomorphic to a closed set B ⊆ 2N.
So suppose that A is Σ1

1 and compact. First, it is clearly closed, so let TA ⊆ N<N

be a Σ1
1 tree such that A = [TA] and TA has no dead-end; that is, TA is defined

as σ ∈ TA iff ∃X ≻ σ with X ∈ A. By compactness and the fact that the
tree is pruned, for every σ ∈ N<N, there exists finitely many i ∈ N such that
σ⌢i ∈ TA. We define TB by ∀σ ∈ 2<N, σ ∈ TB if and only if ∃τ ∈ TA such that
σ ≺ 0τ(0)10τ(1) · · · 0τ(|τ |−1)1. Then, the transformation TB 7→ TA is computable,
while TA 7→ TB is T ′

A-computable; hence B = [TB] is arithmetically isomorphic to
A.

In particular, B is Σ1
1, and moreover, from the above explicit definition of TB ,

one can effectively compute a Σ1
1-code of B from a given Σ1

1-code of A. It is easy
to compute an element of A from a given element of B. This argument shows that
Σ1

1-WKL ≡W Σ1
1-KCNN . □

Next, we show that the compact Σ1
1-choice principle is also Weihrauch equivalent

to the following principles:

• The principle Π1
1-Tot2, the totalization problem for partial Π1

1 two-valued
functions, is the partial multivalued function which, given a Π1

1-name of
(the graph of) a partial function φ : ⊆ N → 2, chooses a total extension
f : N → 2 of φ.

• The principle Π1
1-DNC2, the problem of finding a two-valued diagonally non-

Π1
1 function, is the partial multivalued function which, given a Π1

1-name of a
sequence of (the graphs of) partial functions (φe)e∈N, chooses a total func-
tion f : N → 2 diagonalizing the sequence, that is, f(e) ̸= φe(e) whenever
φe(e) is defined.
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The latter notion has also been studied by Kihara-Marcone-Pauly [14, Section
4.2]. The former notion is easily seen equivalent to Π1

1-Sep, which has also been
studied in [14], with the advantage of being generalizable to N. The following propo-
sition is a consequence of [14, Theorem 4.3, Proposition 4.5] and Observation 2.1:

Proposition 2.6. Σ1
1-ACN→2 ≡W Π1

1-Tot2 ≡W Π1
1-DNC2.

A set is σ-compact if it is a countable union of compact sets. By Saint Raymond’s
theorem (cf. [13, Theorem 35.46]), any Borel set with σ-compact sections can be
written as a countable union of Borel sets with compact sections. In particular, a
Borel code for a σ-compact set S can be computably transformed into a sequence
of Borel codes of compact sets whose union is S. However, there is no analogous
result for analytic sets (cf. Steel [21]). Therefore, we do not introduce σ-compact
Σ1

1-choice as

Σ1
1-CX ↾{A⊆X:A is σ-compact}.

Instead, we directly code an analytic σ-compact set as a sequence of analytic
codes of compact sets. In other words, the σ-compact Σ1

1-choice principle, Σ
1
1-KσCX ,

is the partial multivalued function which, given a Σ1
1-name of a sequence (Sn)n∈N of

compact sets such that at least one is nonempty, chooses an element from
∪
n∈N Sn.

Equivalently (modulo Weihrauch equivalence), one can formalize Σ1
1-KσCNN as the

compositional product Σ1
1-KCNN ⋆ Σ1

1-CN:

Lemma 2.7. Σ1
1-KσCNN ≡W Σ1

1-KCNN ⋆ Σ1
1-CN.

Proof. We start by proving Σ1
1-KσCNN ≤W Σ1

1-KCNN ⋆Σ1
1-CN. Given a sequence (Sn)

of compact Σ1
1 sets, first use Σ1

1-CN to get n with Sn ̸= ∅ (as the set {n ∈ N : ∃x ∈
Sn} is Σ1

1), and then Σ1
1-KCNN to choose an element of Sn.

For the converse direction, let ((Sn)n∈N, P ) be an instance of Σ1
1-KCNN ⋆ Σ1

1-CN,
that is, for any n Sn is a Σ1

1 set which is non-empty and compact whenever n ∈ P .

Let Ŝn be the Σ1
1 set defined by x ∈ Ŝn if and only if n ∈ P and x ∈ Sn. The

collection (Ŝn)n∈N is an instance of Σ1
1-KσCNN , and any solution for it is a solution

for the initial instance (Sn)n∈N, P . □

2.3. Restricted Choice Principles. Next, we consider several variations of the
axiom of choice for φ:

(1) The axiom of unique choice: If for any a ∈ X, {b : φ(a, b)} is a singleton,
then there is a choice function for φ, that is, ∃f∀a φ(a, f(a)).

(2) The axiom of finite choice: If for any a ∈ X, {b : φ(a, b)} is nonempty and
finite, then there is a choice function for φ, that is, ∃f∀a φ(a, f(a)).

(3) The axiom of cofinite choice: If for any a ∈ X, {b : φ(a, b)} is nonempty
and cofinite, then there is a choice function for φ.

(4) The axiom of finite-or-cofinite choice: If for any a ∈ X, {b : φ(a, b)} is
nonempty and either finite or cofinite, then there is a choice function for φ.

(5) The axiom of all-or-finite choice: If for any a ∈ X, {b : φ(a, b)} is nonempty
and is either equal to X, or finite, then there is a choice function for φ.

(6) The axiom of all-or-unique choice: If for any a ∈ X, {b : φ(a, b)} is
nonempty and is either equal to X, or a singleton, then there is a choice
function for φ.

(7) The axiom of total unique choice: There is a function such that whenever
{b : φ(a, b)} is a singleton, for a ∈ X, we have φ(a, f(a)).
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The last notion is a modification of a variant of hyperarithmetical axiom of
choice introduced by Tanaka [22] in the context of second order arithmetic, where
the original formulation is given as follows:

∃Z∀n [∃!Xφ(n,X) −→ φ(n,Zn)],

where φ is a Σ1
1 formula. We will only consider the above principles restricted to

countable domains; that is, the principles of countable choice.

2.3.1. Restricted single choice. As in Observation 2.1, we may interpret these ax-
ioms of countable choice as parallelization of partial multivalued functions. To do
so, we define:

Σ1
1-UCX = Σ1

1-CX ↾{A⊆X:|A|=1},

Σ1
1-C

fin
X = Σ1

1-CX ↾{A⊆X:A is finite},

Σ1
1-C

cof
X = Σ1

1-CX ↾{A⊆X:A is cofinite},

Σ1
1-C

foc
X = Σ1

1-CX ↾{A⊆X:A is finite or cofinite},

Σ1
1-C

aof
X = Σ1

1-CX ↾{A⊆X:A=X or A is finite},

Σ1
1-C

aou
X = Σ1

1-CX ↾{A⊆X:A=X or |A|=1}.

Note that the all-or-unique choice is often denoted by AoUCX instead of Caou
X ,

cf. [15]. In order to interpret the axiom of total unique choice as a multivalued
function, we introduce the totalization of the Σ1

1-choice principle (restricted to R)
on X. Recall that Sp is the analytic set in X coded by p ∈ NN. Then we define
Σ1

1-C
tot
X ↾R as follows:

Σ1
1-C

tot
X ↾R : NN ⇒ N,

dom(Σ1
1-C

tot
X ↾R) = NN,

Σ1
1-C

tot
X ↾R (p) =

{
Sp if Sp ∈ R,

X otherwise.

Roughly speaking, if a given Σ1
1 set S is nonempty and belongs to R, then any

element of S is a solution to this problem as a usual choice problem, but even if a
set S is either empty or does not belong to R, there is a need to feed some value,
although any value is acceptable as a solution.

In second order arithmetic, the totalization of dependent choice is known as
strong dependent choice (cf. Simpson [19, Definition VII.6.1]). Here we consider the
totalization Σ1

1-UC
tot
X of Σ1

1-UCNN , which can be viewed as the multivalued version
of the axiom of total unique choice mentioned above:

Σ1
1-UC

tot
X = Σ1

1-C
tot
X ↾{S⊆NN:|S|=1}

2.3.2. Restricted countable choice. Hereafter, we will consider several restrictions
of Σ1

1 countable choice and Σ1
1 dependent choice for numbers. Recall from Obser-

vation 2.1 that Σ1
1-ACN→N can be identified with the parallelization of Σ1

1-CN, and
from Proposition 2.2 that Σ1

1-DCN can be identified with Σ1
1-CNN .

Definition 2.8. We define several versions of axiom of choice where the set we
have to choose from are restricted to special kinds:

Σ1
1-AC

▽
N→N = Σ̂1

1-C
▽
N
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where ▽ ∈ {fin, cof, foc, aof, aou} respectively corresponding to “finite”, “cofinite”,
“finite or cofinite”, “all or finite” and “all or unique”. We will also consider the
Dependent Choice with the same restricted sets:

Σ1
1-DC

▽
N = Σ1

1-CNN ↾{[T ]:∀σ∈T,{n:σ⌢n∈T} is ▽} .

where ▽ ∈ {fin, cof, foc, aof, aou} has the same meaning. For any σ ∈ N<N a string
corresponding to a choice for the previous sets, {n : σ⌢n ∈ T} corresponds to the
next possible choice, and this set has to satisfy the condition specified by ▽. Note
that it corresponds to a particular formulation of Σ1

1 dependent choice, as explained
just before Proposition 2.2.

In the following, we will say that a tree T is homogeneous if the set [T ] of all
infinite paths through T is equal to some

∏
n∈NAn, that is [T ] is truly an instance

of the axiom of choice. In other words, a homogeneous tree T is a tree where the set
{n ∈ N : σ⌢n ∈ T} depends only on |σ| when σ ∈ T . Note that if T is homogeneous
then the set H := [T ] satisfies the following property: We have h ∈ H iff ∀i ∈ N,
∃f ∈ H with h(i) = f(i).

2.3.3. Weihrauch equivalences. Among others, we see that “all-or-unique” choice is
quite robust. Recall from Proposition 2.6 that the Π1

1-totalization principle Π1
1-Tot2

and the Π1
1-diagonalization principle Π1

1-DNC2 restricted to two valued functions
are equivalent to the Σ1

1 compact choice principle. We now consider the N-valued
versions of the totalization and the diagonalization principles:

• The principle Π1
1-TotN, the totalization problem for partial Π1

1 functions, is
the partial multivalued function which, given a Π1

1-name of (the graph of)
a partial function φ :⊆ N → N, chooses a total extension of φ.

• The principle Π1
1-DNCN, the problem of finding a diagonally non-Π1

1 func-
tion, is the partial multivalued function which, given a Π1

1-name of a se-
quence of (the graphs of) partial functions (φe)e∈N, chooses a total function
f : N → N diagonalizing the sequence, that is, f(e) ̸= φe(e) whenever φe(e)
is defined.

It is clear that Π1
1-DNCN ≤W Π1

1-DNC2 ≡W Π1
1-Tot2 ≤W Π1

1-TotN. One can
easily see the following.

Proposition 2.9. Σ1
1-AC

aou
N→N ≡W Π1

1-TotN.

Proof. The argument is almost the same as Proposition 2.6. Given a Π1
1-name of

a partial function φ, define Sn = {a : φ(n) ↓ → a = φ(n)}, which is uniformly
Σ1

1 (relative to the given name). Clearly, either Sn = N or Sn is a singleton.
Hence, the all-or-unique choice principle chooses an element of Sn, which produces
a totalization of φ.

Conversely, we first claim that for a Σ1
1 set S =

∩
{Sα : α < ωCK

1 } (which is
induced from a given Π1

1 norm as explained in Section 1.2), if S is a singleton, say
S = {n}, then there is α < ωCK

1 such that Sα = {n}. This is because, for any
m ̸= n, we have m ̸∈ S =

∩
α Sα, so there is a smallest α(m) < ωCK

1 such that
m ̸∈ Sα(m). As α is a ∆1

1 function, by Spector bounding (Theorem 1.4), we must

have α = supm ̸=n α(m) < ωCK
1 . Then Sα = {n}, which verifies the claim.

Now, for the n-th Σ1
1 set Sn ⊆ N with a ∆1

1-approximation (Sn,α)α<ωCK
1

, we

define a ∆1
1 sequence (fα) of partial functions on N. First, let f0 be the empty

function, and then wait until Sn,α becomes a singleton (which is a ∆1
1 property as
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Sn,α is ∆1
1) at some stage α < ωCK

1 , say Sn,α = {sn}. If it happens, we define
fα(n) ↓= sn; otherwise fα(n) ↑. We eventually obtain (an index of) a partial
function f with a Π1

1 graph (i.e., a partial Π1
1 function), which satisfies f(n) = sn

whenever Sn = {sn} by the above claim. In particular, for any total extension f̂ of

f , we have f̂(n) ∈ Sn whenever Sn = N or Sn is a singleton.
Now, the construction (i.e., the inner reduction) from S to f is clearly uniform,

and relativizable (see also the argument in Section 1.2). The outer reduction is
trivial. Therefore, these give a Weihrauch reduction. □

We now show that all-or-unique choice is also Weihrauch equivalent to total
unique choice.

Proposition 2.10. Let X be a ∆1
1 subset of N. Then, Σ1

1-UC
tot
X ≡W Σ1

1-C
aou
X .

Proof. We start by proving that Σ1
1-UC

tot
X ≤W Σ1

1-C
aou
X . Consider the following

computable inner reduction, which given an index for a Σ1
1 set S =

∩
{Sα : α <

ωCK
1 }, output an index for the following Σ1

1 set R ⊆ X (that we describe as a
co-enumeration along ωCK

1 ): First R does nothing until an ordinal stage where
(the co-enumeration of) S is a singleton; that is, for each stage α < ωCK

1 , check
if the ∆1

1 set Sα is a singleton or not (which is a ∆1
1 property). If it happens, R

removes all integers so that Rα = Sα; if not, we keep Rα = X. Since either R = X
or R is a singleton, R is an instance of Σ1

1-UC
tot
X . By the claim in the proof of

Proposition 2.9, if S is a singleton then it is witnessed at some stage before ωCK
1 and

so R = S; therefore, the identity map trivially gives an outer reduction. Moreover,
the construction is effective; that is, given a Σ1

1-code of S, one can effectively find
a Σ1

1-index of R.
We now prove that Σ1

1-C
aou
X ≤W Σ1

1-UC
tot
X . Every instance of Σ1

1-C
aou
X is an in-

stance of Σ1
1-UC

tot
X with the same solution, so this is trivial. □

In particular, the totalization of two-valued unique choice is equivalent to the
compact choice.

Corollary 2.11. ̂Σ1
1-UC

tot
2 ≡W Σ1

1-KCNN .

Proof. It is clear that Σ1
1-C

aou
2 ≡W Σ1

1-C2, so Σ̂1
1-C

aou
2 ≡W Σ̂1

1-C2 ≡W Σ1
1-ACN→2 by

Observation 2.1. Thus, the assertion follows from Fact 2.4 and Proposition 2.5 □

2.4. Arithmetical Transfinite Recursion. In reverse mathematics, the axiom of
Σ1

1-choice is known to be weaker than the arithmetical transfinite recursion scheme
ATR0 (cf. [19, Section VIII.4]). However, an analogous result does not hold in
the Weihrauch context. The purpose of this section is to clarify the relationship
between the Σ1

1-choice principles and the arithmetical transfinite recursion principle
in the Weihrauch lattice.

Kihara-Marcone-Pauly [14] first introduced an analogue of arithmetical transfi-
nite recursion, ATR0, in the context of Weihrauch degrees, and studied two-sided
versions of several dichotomy theorems related to ATR0, but they have only con-
sidered the one-sided version of ATR0. Then, Goh [9] introduced the two-sided
version of ATR0 to examine the Weihrauch strength of König’s duality theorem for
infinite bipartite graphs. Roughly speaking, the above two Weihrauch problems are
introduced as follows:
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• The one-sided version, ATR, by [14] is the partial multivalued function
which, given a countable well-ordering ≺, returns the jump hierarchy for
≺.

• The two-sided version, ATR2, by [9] is the total multivalued function which,
given a countable linear ordering ≺, chooses either a jump hierarchy for ≺
or an infinite ≺-decreasing sequence.

Here, a jump hierarchy for a partially ordered set (P,<P ) is a sequence (Hp)p∈P
of sets satisfying the following property: For all p ∈ P ,

Hp =
⊕
q<P p

H ′
q,

where
⊕

n Sn denotes the usual Turing join (i.e., the coproduct) defined by
⊕

n Sn =
{⟨n, x⟩ : x ∈ Sn}, and H ′ denotes the Turing jump of H. Note that the definition
of a jump hierarchy is clearly described by an arithmetical condition. For more
details, see also Sacks [18, Section II.4].

Even if ≺ is not well-founded, some solution to ATR2(≺) may produce a jump
hierarchy for ≺ (often called a pseudo-hierarchy) by Harrison’s well-known result
that there exists pseudo-well-orders which admit a jump hierarchy (but in this
case the jump hierarchy is not necessarily unique). Regarding ATR2, we note that,
sometimes in practice, what we need is not a full jump hierarchy for a pseudo-
well-ordering, but a jump hierarchy for an initial segment of ≺ containing its well-
founded part. Therefore, we introduce another two-sided version ATR2′ as follows:

Let L be a linearly ordered set. The well-founded part of L is the largest initial
segment of L which is well-founded. We say that an initial segment I of L is large
if it contains the well-founded part of L.

We consider a variant of the arithmetical transfinite recursion ATR2′ , which
states that for any linear order ≺x coded by x, one can find either a jump hierarchy
for a large initial segment of ≺x or an infinite ≺x-decreasing sequence:

ATR2′(x) = {0⌢H : H is a jump hierarchy for a large initial segment of ≺x}
∪ {1⌢p : p is an infinite decreasing sequence with respect to ≺x}.

Seemingly, ATR2′ is completely unrelated to any other choice principles. Sur-
prisingly, however, we will see that the parallelization of ATR2′ is arithmetically
equivalent to the choice principle for Σ1

1-compact sets. We say that f is arithmeti-
cally Weihrauch reducible to g (written f ≤aW g) if we are allowed to use arithmetic

functions H and K (i.e., H,K ≤W lim(n) for some n ∈ N) in the definition of
Weihrauch reducibility.

Theorem 2.12. ÂTR2′ ≡aW Σ1
1-KCNN ≡aW Σ1

1-AC
aou
N→N ≡aW Σ1

1-AC
aof
N→N.

We divide the proof of Theorem 2.12 into two lemmas.

Lemma 2.13. ATR2′ ≤aW Σ1
1-KCNN .

Proof. By Corollary 2.11, it suffices to prove ATR2′ ≤aW ̂Σ1
1-UC

tot
2 . Fix x a code for

a linear order. Given n ∈ N, let JHn be the set of jump hierarchies for ≺x↾n (where
≺x↾n is the restriction of ≺x up to {y : y ≺x n}). Note that {(n,H) : H ∈ JHn} is
arithmetical (since the definition of a jump hierarchy is described by an arithmetical
condition as mentioned above). For a, k ∈ N, if a ≺x n then we consider the set
Sna,k of all possible values of Ha(k), the k-th value of the a-th level of H, for some



14 PAUL-ELLIOT ANGLÈS D’AURIAC AND TAKAYUKI KIHARA

jump hierarchy H ∈ JHn, i.e., Sna,k = {Ha(k) : H ∈ JHn}. If a ̸≺x n then

put Sna,k = {0}. Clearly, Sna,k is Σ1
1 uniformly in n, a, k, and therefore there is a

computable function f such that Sna,k is the f(n, a, k)-th Σ1
1 set. Note that if ≺x↾n is

well-founded, then the product Sn :=
∏

⟨a,k⟩ S
n
a,k essentially1 consists of the unique

jump hierarchy for ≺x↾n. In particular, Sna,k is a singleton for any a ≺x n and k ∈ N
whenever ≺x↾n is well-founded.

Given pn,a,k ∈ Σ1
1-UC

tot
2 (f(n, a, k)) (that is, pn,a,k ∈ Sna,k whenever Sna,k is a

singleton), define Hn =
⊕

{⟨a,k⟩:a≺xn} pn,a,k. Note that if n is contained in the

well-founded part of ≺x, then Hn must be the jump hierarchy for ≺x↾n. By using
arithmetical power (being a jump hierarchy is a Π0

2 statement), first ask if Hn is
a jump hierarchy for ≺x↾n for every n. If yes,

⊕
nHn is a jump hierarchy along

the whole ordering ≺x. In particular, the whole ordering includes the well-founded
part of ≺x, and therefore is large.

If no, we claim that there is no ≺x-least n such that Hn is not a jump hierarchy
for ≺x↾n. Indeed, suppose there exists one, then obviously n is not contained in the
well-founded part of ≺x. Hence, ≺x↾n is a large initial segment of ≺x. Moreover,
by minimality of n, every Hj for j ≺x n is a jump hierarchy, so by definition of a
jump hierarchy,

⊕
{H ′

j : j ≺x n} is the jump hierarchy for ≺x↾n. But then, none
of the Sna,k are empty, and Hn must be a jump hierarchy for ≺x↾n, a contradiction
proving the claim.

Let j0 be the <N-least number such that Hj0 is not a jump hierarchy for ≺x↾j0 ,
and jn+1 ≺x jn be the <N-least number such that Hjn+1 is not a jump hierarchy
for ≺x↾jn+1 . Finding such a sequence is ∆0

3, so one can arithmetically find such an
infinite sequence (jn)n∈N, which is clearly decreasing with respect to ≺x. □

Lemma 2.14. Σ1
1-C

aof
N ≤aW ÂTR2′ .

Proof. First, consider a computable instance S of Σ1
1-C

aof
N . Let ≺n be a linear order

on an initial segment Ln of N such that n ∈ S iff ≺n is ill-founded. Let Hn be a
solution to the instance ≺n of ATR2′ . Ask the arithmetic question whether there
exists n such that Hn is an infinite decreasing sequence w.r.t. ≺n. If so, one can
computably find such an n, which belongs to S. Otherwise, each Hn is (essentially)
a jump hierarchy along a large initial segment Jn of Ln. In an arithmetical way, one
can obtain Jn. Then ask if Ln \ Jn is nonempty, and has no ≺n-minimal element.
If the answer to this arithmetical question is yes, we have n ∈ S.

Thus, we are left with the case where for any n either Ln = Jn holds or Ln \ Jn
has a ≺n-minimal element. In this case, if n ∈ S then Jn is ill-founded. This is
because if Jn is well-founded, then Jn is exactly the well-founded part of Ln since Jn
is large, and thus Ln \ Jn is nonempty and has no ≺n-minimal element. Moreover,
since Jn admits a jump hierarchy while it is ill-founded, Jn is a pseudo-well-order;
hence Hn computes all hyperarithmetical reals (see [6]). Conversely, if n ̸∈ S then
Hn is a jump hierarchy along the well-order Jn = Ln, which is hyperarithmetic.

Now, ask if the following (Hn)n∈N-arithmetical condition holds:

(∃i)(∀j) Hi ̸<T Hj .(1)

By our assumption that S ̸= ∅, there is k ∈ S, so that Hk computes all hyper-
arithmetic reals. Therefore, if (1) is true with witness i, the hierarchy Hi cannot

1It coincides in the domain of ≺x↾n, however for a ̸≺x n, we have Sn
a,k = {0}.



A COMPARISON OF VARIOUS ANALYTIC CHOICE PRINCIPLES 15

be hyperarithmetic; hence i ∈ S. Then one can arithmetically find such an i. If (1)
is false, for any i there is j such that Hi <T Hj . In this case, start from i := k ∈ S,
and obtain an infinite sequence j0, j1, j2, . . . such that Hk <T Hj0 <T Hj1 <T . . . .
Since Hk computes all hyperarithmetical sets, Hjn is not hyperarithmetical for any
n, i.e., jn ∈ S. This implies that S is an infinite set. However, by our assumption,
if S is infinite, then S = N. Hence, any i is solution to S.

Finally, one can uniformly relativize this argument to any instance of Σ1
1-C

aof
N . □

Proof of Theorem 2.12. By Lemma 2.13, ÂTR2′ ≤aW ̂Σ1
1-KCNN . By Corollary 2.11,

̂Σ1
1-KCNN ≡W

̂̂
Σ1

1-UC
tot
2 ≡W

̂Σ1
1-UC

tot
2 ≡W Σ1

1-KCNN . By Proposition 2.10 and Defini-

tion 2.8, ̂Σ1
1-UC

tot
2 ≡W Σ̂1

1-C
aou
X ≡W Σ1

1-AC
aou
N→N.

Clearly, Σ1
1-AC

aou
N→N ≤W Σ1

1-AC
aof
N→N, as witnessed by the identity reductions. By

Definition 2.8 and Lemma 2.14, Σ1
1-AC

aof
N→N ≡W Σ̂1

1-C
aof
N ≤aW

̂̂
ATR2′ ≡W ÂTR2′ .

□

One can also consider a jump hierarchy for a partial ordering. Then, we consider
the following partial order version of Goh’s arithmetical transfinite recursion. Let
(≺x) be a coding system of all countable partial orderings.

ATRpo
2 (x) = {0⌢H : H is a jump hierarchy for ≺x}

∪ {1⌢p : p is an infinite decreasing sequence with respect to ≺x}.

Note that ATRpo
2 (x) is an arithmetical subset of NN. Obviously,

ATR ≤W ATR2′ ≤W ATR2 ≤W ATRpo
2 ≤W Σ1

1-CNN .

This version of arithmetical transfinite recursion directly computes a solution to all-
or-finite choice on the natural numbers without using parallelization or arithmetical
Weihrauch reductions.

Proposition 2.15. Σ1
1-C

aof
N ≤W ATRpo

2 .

Proof. Let S be a computable instance of Σ1
1-C

aof
N . Let Tn be a computable tree

such that n ∈ S iff Tn is ill-founded. Define

T = 00 ⊔n Tn = {⟨⟩, ⟨0⟩, ⟨00⟩} ∪ {⟨00n⟩σ : σ ∈ Tn}.

Let i⌢H be a solution to the instance T (ordered by reverse inclusion) of ATRpo
2 .

If i = 1, i.e., if H is an infinite decreasing sequence w.r.t. T , then this provides an
infinite path p through T . Then, choose n such that 00n ≺ p, which implies Tn is
ill-founded, and thus n ∈ S. Otherwise, i = 0, and thus H is a jump hierarchy for
T . We define H∗

n = H⟨00n⟩. Note that if n ̸∈ S then H∗
n is hyperarithmetic, and if

n ∈ S then H∗
n computes all hyperarithmetical reals. By the definition of a jump

hierarchy, we have (H∗
n)

′′ ≤T H. Thus, the following is an H-computable question:

(∃i)(∀j) H∗
i ̸<T H∗

j .(2)

As in the proof of Lemma 2.14, one can show that if (2) is witnessed by i then
i ∈ S, and if (2) is false then any i is a solution to S. As before, one can uniformly
relativize this argument to any instance S. □

Question 2.16. ATR2 ≡aW ATR2′ ≡aW ATRpo
2 ?
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3. An analysis of the analytic axioms of choice and dependent choice

In this section, we investigate the structure of different restrictions of the axiom of
analytical choice under the Weihrauch reducibility. We compare the dependent and
independent axiom of choice for the various restrictions, and the relative strength
of the restrictions.

We show both Weihrauch reductions and non reductions. A powerful tool for
proving the latter is Medvedev reduction, introduced in [16] to classify problems
according to their degree of difficulty, as for Weihrauch reducibility. However, when
Weihrauch reducibility compare problems that have several instances, each of them
with multiple solutions, Medvedev reducibility compare “mass problems”, which
correspond to problems with a single instance. A mass problem is a set of functions
from natural numbers to natural numbers, representing the set of solutions. For
two mass problems P,Q ⊆ NN, we say that P is Medvedev reducible to Q if every
solution for Q uniformly computes a solution for P .

Definition 3.1 (Medvedev reduction). Let P,Q ⊆ NN be sets. We say that P
is Medvedev reducible to Q, written P ≤M Q if there exists a single computable
function f such that for every x ∈ Q, f(x) ∈ P .

If P :⊆ X ⇒ NN is now a Weihrauch problem, that is a partial multivalued
function, then for any instance x ∈ X, one can consider the mass problem P (x)
(the set of all solutions of the x-th instance of P ). Then, if P ≤W Q, then for
every computable instance x of P , there is a computable instance y of Q such that
P (x) ≤M Q(y). Using Medvedev reducibility, we are able to compare the degree
of complexity of different instances of the same problem, and we will be interested
in the structural property of their complexity: Given a Weihrauch problem P , we
define the Medvedev partial order of P to be the partial order of Medvedev degrees
of P (x) for all computable instances x ∈ dom(P ), under the Weihrauch reduction.
We will see below Definition 2.8 that when P corresponds to a restriction of the
axiom of choice, the corresponding partial order is an upper semi-lattice, while when
it corresponds to a restriction of the axiom of dependent choice, the corresponding
partial order is a lattice. For instance, P = Σ1

1-DCN yields the Medvedev lattice of
Σ1

1-closed sets, which is interesting in its own right.
We will be mainly interested in the existence of maximal elements of Medvedev

semi-lattices of P , for P being various choice problems, as it can be used to
Weihrauch-separate two problems. Suppose that P ≤W Q and the Medvedev
semi-lattice of Q has no maximal element, while the Medvedev semi-lattice of P
has one. Then, we have P <W Q: Let x ∈ dom(P ) be any computable instance
realizing a maximal Medvedev degree in P , and take y ∈ dom(Q) computable such
that P (x) ≤M Q(y) (as P ≤W Q). By the fact that Q has no maximal element, let
z ∈ dom(Q) be computable and such that Q(z) >M Q(y). Then, it cannot be that
there is t ∈ dom(P ) computable such that P (t) ≥M Q(z), as it would contradict
maximality of x. Therefore, z is a witness that P <W Q.

Throughout this section, we use the following abuse of notation.

Notation. Given a Weihrauch problem P , we abuse notation by writing “A ∈ P”
or “A in P” to mean that A is a computable instance of P , that is, A = P (x) for
some computable x ∈ dom(P ).

Given ▽ ∈ {fin, cof, foc, aof, aou}, the partial order on the computable instances
of Σ1

1-AC
▽
N→N under Medvedev reducibility form an upper semi-lattice. Indeed, if
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A =
∏
nAn and B =

∏
nBn are two computable instances of Σ1

1-AC
▽
N→N, then C =∏

n Cn where C2n = An and C2n+1 = Bn is a computable instance of Σ1
1-AC

▽
N→N

which is a least upper bound of A and B. Similarly, the partial order on the
computable instances of Σ1

1-DC
▽
N under Medvedev reducibility form a lattice: If A

and B are instances of Σ1
1-DC

▽
N , then C = {τ ∈ N<N : σ0 : n 7→ τ(2n) ∈ A ∧ σ1 :

n 7→ τ(2n + 1) ∈ B} is a computable instance of Σ1
1-DC

▽
N which is a least upper

bound of A and B, and for ▽ ∈ {fin, foc, aof} (respectively ▽ ∈ {cof, aou}) the
set D = 0⌢A ∪ 1⌢B (respectively D =

∪
n(2n

⌢A) ∪ (2n + 1⌢B)) is a computable
instance of Σ1

1-DC
▽
N which is a greatest lower bound for A and B.

This structural difference imply that no matter the restriction on analytical AC
and DC, the corresponding semi-lattices will always be different under Medvedev
reducibility, as there exists two homogeneous sets whose product is not Medvedev
equivalent to a homogeneous set.

Proposition 3.2. For every ▽ ∈ {fin, cof, foc, aof, aou}, there exists A ∈ Σ1
1-DC

▽
N

such that there is no B ∈ Σ1
1-AC

▽
N→N with A ≡M B.

Proof. Simply take A0 and A1 in Σ1
1-AC

fin
N→N with are not Medvedev equivalent,

and consider C = 0⌢A0∪1⌢A1, which is in Σ1
1-DC

fin
N . Now, toward a contradiction,

suppose also that there exists H in Σ1
1-AC

fin
N→N (actually there is no need for H to

be Σ1
1) such that C ≡M H. Let ϕ and ψ be witness of this, i.e ϕ (resp. ψ) is total

on C (resp. H) and its image is included in H (resp. C).
Now, we describe a way for some Ai to Medvedev compute A1−i: Let i ∈ 2 and

σ be extendible in H such that ψσ(0) = 1 − i. Given x ∈ Ai, apply ϕ on i⌢x to
obtain an element y of H. Define ỹ to be y with its beginning replaced by σ. Then,
by homogeneity, ỹ is still in H, so ϕ(ỹ) has to be in (1− i)⌢A1−i.

For other values of ▽, the proof is exactly the same or very similar. □

Note that the above proof used the fact that there always exists infimum in
Σ1

1-DC
▽
N while this is not clear in Σ1

1-AC
▽
N→N.

3.1. Axioms of finite analytic choice. We already have defined Σ1
1-KCNN in

Section 2.2, which is clearly the same problem as Σ1
1-DC

fin
N up to the coding of the

instance. Using our previous work, we show that the finite choice can always be
weakened to independent choice over 2 possibilities:

Theorem 3.3. Σ1
1-AC

fin
N→N ≡W Σ1

1-DC
fin
N ≡W Σ1

1-WKL.

Proof. First, it is clear that we have Σ1
1-AC

fin
N→N ≤W Σ1

1-DC
fin
N . Up to the coding of

the instance, we also have Σ1
1-DC

fin
N ≡W Σ1

1-KCNN . By Proposition 2.5, Σ1
1-KCNN ≡W

Σ1
1-ACN→2 ≡W Σ1

1-WKL. But clearly, Σ1
1-ACN→2 ≤W Σ1

1-AC
fin
N→N.

□

In the following, we are interested in a finer analysis of Σ1
1-AC

fin
N→N and Σ1

1-DC
fin
N

using Medvedev reducibility. In particular, we show that both of these semi-lattices
admit a maximal element: Indeed, we show that there is a single nonempty compact
homogeneous Σ1

1 set coding all information of nonempty compact Σ1
1 sets. This

can be viewed as an effective version of Dellacherie’s theorem (cf. Steel [21]) in
descriptive set theory.

Theorem 3.4. There exists a maximum in the Medvedev semi-lattices of Σ1
1-AC

fin
N→N

and Σ1
1-DC

fin
N .
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Proof. To construct a greatest element in Σ1
1-DC

fin
N , by Proposition 2.5, we only

need to enumerate all nonempty compact Σ1
1 subsets of 2N. Let Se be the e-th Σ1

1

subtree of 2<N. Then, consider a ∆1
1 co-enumeration (Se,α)α<ωCK

1
of Se (induced

from a Π1
1-norm, as explained in Section 1.2). If [Se] is empty, by compactness, Se

is finite.
If Se is finite, we claim that there is α < ωCK

1 such that Se,α is finite, and
the least such α is a successor ordinal. To see this, first note that for each σ ∈
2<N \ Se, there is α(σ) < ωCK

1 such that σ ̸∈ Se,α(σ). Now, 2<N \ Se is cofinite,
and in particular, computable, so by Spector bounding (Theorem 1.4), we have
α = sup{α(σ) : σ ∈ 2<N \ Se} < ωCK

1 . For the second assertion of our claim, by
minimality of α, we have [Se,β ] ̸= ∅ for any β < α, and moreover, if α is a limit
ordinal, then [Se,α] =

∩
[Se,α[n]]. However, by compactness, this intersection is

nonempty, which contradicts our choice of α.
Now we construct a uniform ∆1

1 approximation of a sequence (Te)e∈N of nonempty
Σ1

1 sets such that if [Se] ̸= ∅ then Te = [Se]. Define Te,0 = 2N, and for any α > 0,
Te,α = [Se,α] if [Se,α] ̸= ∅ (which is a Π0

1(Se,α) property by compactness, so in
particular ∆1

1). If α > 0 is the first stage such that [Se,α] = ∅, then, by the above
claim, α is a successor ordinal, say α = β + 1. In this case, define Te,γ = Te,β for
any γ ≥ α, and end the construction. By minimality of α, we have Te,β ̸= ∅ since
β < α. Then consider Te =

∩
α Te,α, and it is not hard to check that the sequence

(Te)e∈N has the desired property. It is easy to check that this argument is uniformly
relativizable to any oracle.

As a maximal instance of Σ1
1-DC

fin
N , it suffices to take the one consisting of the

product of all Te. Note that by Theorem 3.3 this also shows the maximality result
for Σ1

1-AC
fin
N→N. □

As a special property of Σ1
1 compact sets, we have the following analog of the

hyperimmune-free basis theorem. For p, q ∈ NN we say that p is higher Turing
reducible to q (written p ≤hT q) if there is a partial Π1

1-continuous function Φ:⊆
NN → NN such that Φ(q) = p (see Bienvenu-Greenberg-Monin [1] for more details).
Here, Φ is Π1

1-continuous if Φ(q)(n) ↓= m is a Π1
1 relation.

Lemma 3.5. For any Σ1
1 compact set K ⊆ NN there is an element p ∈ K such that

every f ≤hT p is majorized by a ∆1
1 function.

Proof. Let (ψe) be a list of higher Turing reductions. Let K0 = K. For each e, let
Qe,n = {x ∈ NN : ψxe (n) ↑}. Then Qe,n is a Σ1

1 closed set. If Ke ∩Qe,n is nonempty
for some n, define Ke+1 = Ke ∩Qe,n for such n; otherwise define Ke+1 = Ke. Note
that if Ke ∩ Qe,n is nonempty for some n, then ψxe is not total for any x ∈ Ke+1.
If Ke ∩ Qe,n is empty for all n, then ψe is total on the Σ1

1 compact set Ke, one
can find a ∆1

1 function majorizing ψxe for all x ∈ Ke (cf. the proof of [14, Lemma
4.7]). Define K∞ =

∩
nKn, which is nonempty since Kn is compact. Then, for any

p ∈ K∞, every f ≤hT p is majorized by a ∆1
1 function. □

Note that continuity of higher Turing reduction is essential in the above proof.
Indeed, one can show the following:

Proposition 3.6. There is a nonempty Σ1
1 compact set K ⊆ NN such that for any

p ∈ K, there is f ≤T p′ which dominates all ∆1
1 functions.

Proof. Let (φe) be an effective enumeration of all partial Π1
1 functions φe :⊆ N → 2.

As in the argument in Proposition 2.6 or Proposition 2.9, one can see that the set
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Se of all two-valued totalizations of the partial Π1
1 function φe is nonempty and

Σ1
1. Then the product K =

∏
e Se is also a nonempty Σ1

1 subset of 2N. It is clear
that every p ∈ K computes any two-valued total ∆1

1 function, so (non-uniformly)
computes any total ∆1

1 function on N. Let BB be a total p′-computable function
which dominates all p-computable functions. In particular, BB ≤T p′ dominates
all ∆1

1 functions. □

3.2. Axioms of all-or-finite and all-or-unique analytic choice. We now dis-
cuss choice when the sets from which we choose can be either everything, or finite.
We will show that under the Weihrauch scope, this principle is a robust one, in the
sense of having multiple characterization, that is strictly above Σ1

1-DC
fin
N . It also

share with the latter that dependent and independent choice are equivalent and the
existence of a maximal element containing all the information, with very similar
proof as for Σ1

1-DC
fin
N .

In Proposition 2.9, we hinted that Σ1
1-AC

aou
N→N is robust. We give two other

evidences of this in the following theorems.

Theorem 3.7. Σ1
1-AC

aof
N→N ≡W Σ1

1-AC
aou
N→N

Proof. It is clear that Σ1
1-AC

aof
N→N ≥W Σ1

1-AC
aou
N→N, by the identity function. It re-

mains to prove Σ1
1-AC

aof
N→N ≤W Σ1

1-AC
aou
N→N. Let A =

∏
nAn ∈ Σ1

1-AC
aof
N→N. We define

uniformly in A the set B =
∏

⟨m,n⟩B
m
n such that A ≤M B and B ∈ Σ1

1-AC
aou
N→N.

We will ensure that there exists a single computable function Φ such that for any
m and X ∈

∏
nB

m
n we have ΦX ∈ Am.

We first describe the co-enumeration of Bmn . Let (Am,α)α<ωCK
1

be an approxi-

mation of Am ⊆ N (induced from a Π1
1-norm, as explained in Section 1.2). First,

wait for the first stage where Am is finite (if this never happens then Bmn = N).
Here note that if Am is finite then its finiteness is witnessed at some stage before
ωCK
1 by Spector bounding (Theorem 1.4) as seen in the proof of Theorem 3.4. If

it happens, wait for exactly n additional elements to be removed from Am. If this
happens, let Bmn = {c} where c is the code for the finite set Am at this stage αn.
More formally, we suppose that in the co-enumeration of Am at most one element
is removed at each stage, and we let α0 be the least stage such that Am,α0 is finite,
and αn+1 be the least stage such that Am,αn+1 ⊊ Am,αn if it exists. Then, let De

be the finite set coded by e, and set Bmn = {c} with Dc = Am,αn .
Now, we describe the function Φ. Given X, find the first i such that we do not

have the following: DX(i) ⊋ DX(i+1) ̸= ∅. Note that X(0) codes a finite set, so the
length of the chain DX(0) ⊋ DX(1) ⊋ . . . has to be finite. Therefore, there exists

such an i. Then, output any element ΦX from DX(i). if X ∈
∏
nB

m
n , whenever

we reach stage αn, we have DX(n) = Am,αn , and thus i ≥ n. Assume that αk
is the last stage such that some element is removed from Am. Then, k ≤ i and
DX(k) = Am,αk

= Am ⊇ DX(i). This implies that if X ∈
∏
nB

m
n , then the chosen

element ΦX is contained in Am, as required. □

We have seen by combining Proposition 2.6, Theorem 3.3 and Proposition 2.5
that Σ1

1-AC
fin
N→N is Weihrauch equivalent to Π1

1-Tot2 and Π1
1-DNC2. Moreover, we

have also shown in Proposition 2.9 that Σ1
1-AC

aou
N→N is Weihrauch equivalent to

Π1
1-TotN. Recall from Section 2.3 we have introduced the Π1

1-diagonalization prin-
ciple Π1

1-DNCN, which is a special case of the cofinite Σ1
1-choice principle. For this

principle, we know in advance a bound of the number of elements removed by a
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cofinite set. Such a principle is bounded by the following principle for ℓ ∈ N:

Σ1
1-C

cof↾ℓ
X = Σ1

1-CX ↾{A⊆X:|X\A|≤ℓ} .

Namely, we have Π1
1-DNCN ≤W Σ1

1-C
cof↾1
NN . One can consider the coproduct of

(Σ1
1-C

cof↾ℓ
X )ℓ∈N and call it strongly-cofinite choice on X. One can show that this

principle is strictly weaker than the cofinite choice (Proposition 3.8 and Theorem
3.17 below). Even more generally, we consider finite-or-strongly-cofinite choice,

denoted Σ1
1-AC

fosc
N→N, which accepts an input of the form (p, ψ), where for any n ∈ N,

p(n) is a code of a Σ1
1 subset Sp(n) of N such that either Sp(n) is nonempty and

finite, or |N\Sp(n)| ≤ ψ(n). If (p, ψ) is an acceptable input, then Σ1
1-AC

fosc
N→N chooses

one element from
∏
n Sp(n).

We show that all-or-unique choice is already strong enough to compute finite-
or-strongly-cofinite choice:

Proposition 3.8. Σ1
1-AC

fosc
N→N ≡W Σ1

1-AC
aof
N→N.

Proof. First, it is clear that Σ1
1-AC

fosc
N→N ≥W Σ1

1-AC
aof
N→N as witnessed by the indentity

function. It remains to prove Σ1
1-AC

fosc
N→N ≤W Σ1

1-AC
aof
N→N. Let A =

∏
nAn with a

bound ψ given. We will construct a uniformly Σ1
1 sequence (B

n
m)m≤ψ(n) of subsets of

N. We use Bn0 , B
n
1 , . . . , B

n
ψ(n)−1 to code information which element is removed from

An whenever An is cofinite, and use Bnψ(n) to code full information of An whenever

An is finite. If a0 is the first element removed from An, then put Bn0 = {a0}, and
if a1 is the second element removed from An, then put Bn1 = {a1}, and so on. If
An becomes a finite set, then Bnψ(n) just copies An, otherwise B

n
ψ(n) = N. One

can easily ensure that for any n ∈ N and m < ψ(n), if An is finite, then Bnm is
a singleton disjoint from An; otherwise B

n
m = N. Moreover, we can also see that

either Bnψ(n) is nonempty and finite or Bnψ(n) = N.
Now, assume that X ∈

∏
n,mB

n
m is given. If X(n, ψ(n)) ̸∈ {X(n, i) : i < ψ(n)},

then put Y (n) = X(n, ψ(n)). Otherwise, choose Y (n) ̸∈ {X(n, i) : i < ψ(n)}.
Clearly, the construction of Y from X is uniformly computable.

If An becomes a finite set, the first case happens, and Y (n) = X(n, ψ(n)) ∈
Bnψ(n) = An. If An remains cofinite, it is easy to see that N \ An ⊆ {X(n, i) : i <

ψ(n)}, and therefore Y (n) ∈ An. Consequently, Y ∈ A. □

Corollary 3.9. Σ1
1-AC

aou
N→N ≡W Σ1

1-AC
aof
N→N ≡W Σ1

1-AC
fosc
N→N.

In the following we will only consider all-or-finite choice, by convenience. We
now prove that dependent choice does not add any power, and the existence of an
instance that codes all the other, with very similar proofs as in the Σ1

1-DC
fin
N case.

Theorem 3.10. Σ1
1-AC

aof
N→N ≡W Σ1

1-DC
aof
N .

Proof. It is clear that Σ1
1-AC

aof
N→N ≤W Σ1

1-DC
aof
N . The argument for Σ1

1-DC
aof
N ≤W

Σ1
1-AC

aof
N→N is similar to the finite case (Theorem 3.4). If T is a Σ1

1 tree, for every
σ define Tσ by the following Σ1

1 procedure: First, put Tσ = N, and then wait for
succT (σ) := {n : σ⌢n ∈ T} to be finite but nonempty. As in the proof of Theorem
3.4, if succT (σ) is finite, its finiteness is witnessed at some stage < ωCK

1 by Spector
bounding (Theorem 1.4). For the first such stage α (which is not necessarily a
successor ordinal), if succT (σ) becomes empty, we just keep Tσ = N, and end
the construction. If succT (σ) turns out to be finite but nonempty, at every stage
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after α define Tσ to be succT (σ) except if this one becomes empty. Note that if
succT (σ) becomes a finite set at some stage α0, but an empty set at a later stage
α1, then the least such stage α1 must be a successor ordinal, and therefore we can
keep Tσ being nonempty (see also the proof of Theorem 3.4). Clearly, Tσ is either

finite or N. If T is an instance of Σ1
1-DC

aof
N , then Tσ = succT (σ) and therefore∏

σ∈N<N Tσ ≥M [T ]. □
The absence of a maximal element in the Medvedev semi-lattice of the axiom

of choice on “all-or-finite” sets would allow us to Weihrauch separate it from its
“finite” version. However, Σ1

1-AC
aof
N→N does also have a maximum element.

Theorem 3.11. There exists a single maximum Medvedev degree in Σ1
1-AC

aof
N→N

and Σ1
1-DC

aof
N .

Proof. The argument is again similar to Theorem 3.4, even though we have no
compactness assumption.

By Theorem 3.10 that Σ1
1-AC

aof
N→N ≡W Σ1

1-DC
aof
N , it suffices to prove the result

for one of the functions, let us say Σ1
1-AC

aof
N→N. Let Ae =

∏
n S

e
n be the e-th Σ1

1

homogeneous set. We set Ãe =
∏
n S̃

e
n to be defined by the following Σ1

1 procedure:

First, set S̃en = N, and then wait for some Sen to become finite and nonempty. If

this happens, define S̃en = Sen until it removes its last element. At this point, leave

S̃en nonempty, which is possible since it can happen only at a successor stage (this
is because Sen has already become a finite set at some previous stage). Then, one

can see that Ãe is in Σ1
1-AC

aof
N→N, and if Ae is also an instance of Σ1

1-AC
aof
N→N then

Ãe = Ae.
Then (Ãe)e∈N is an enumeration of all nonempty elements of Σ1

1-AC
aof
N→N. Define

the maximum to simply be
∏
e

∏
n S̃

e
n. □

We now prove that the relaxed constraint on the sets that allows them to be full
does increase the power of the choice principle, making Σ1

1-AC
aof
N→N strictly above

Σ1
1-AC

fin
N→N. We use the fact that the semi-lattice of Σ1

1-AC
fin
N→N has a maximal

element (Theorem 3.4), and we show that it must be strictly below some instance

of Σ1
1-AC

aof
N→N.

Theorem 3.12. For every A ∈ Σ1
1-AC

fin
N→N, there exists B ∈ Σ1

1-AC
aof
N→N such that

A <M B.

Proof. We will find C =
∏
n Cn ∈ Σ1

1-AC
aof
N→N such that C ̸≤M A. Then, B = A×C

will witness the theorem.
Now, let us describe the co-enumeration of Cn. First, wait for x 7→ Φxn(n) to

be total on A, where Φn is the n-th partial computable function: More precisely,
as Φxn(n) ↓ is Σ0

1, the formula ∀x(x ∈ A → Φxn(n)) is Π1
1. Hence, if it holds, it is

witnessed at some stage before ωCK
1 (via a Π1

1 norm assigned to this formula). Next,
since A is compact and Φ is continuous, Φ takes only finitely many values on A; that
is, ΦAn (n) := {Φxn(n) : x ∈ A} is finite. Clearly, ΦAn (n) is Σ

1
1, and therefore, again,

as in the proof of Theorem 3.4, the finiteness of ΦAn (n) is witnessed at some stage
α before ωCK

1 . At this point, remove everything from Cn except maxΦAn,α(n) + 1,

where ΦAn,α(n) is the stage α approximation of ΦAn (n).
We have that Cn is either N if the co-enumeration is stuck waiting for x 7→ Φxn(n)

to be total on A, or a singleton otherwise. Also, it is clear that for any n, Φn cannot
be a witness that C ≤M A, so C ̸≤M A. □
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Corollary 3.13. We have Σ1
1-AC

fin
N→N <W Σ1

1-AC
aof
N→N.

Proof. By Theorem 3.12 and Theorem 3.4. □
One can also use the domination property to separate the all-or-finite choice

principle and the (σ-)compact principle.

Proposition 3.14. There exists A ∈ Σ1
1-AC

aof
N→N such that every element p ∈ A

computes a function which dominates all ∆1
1 functions.

Proof. Let (φe)e∈N be an effective enumeration of all partial Π1
1 functions on N.

Define A⟨e,k⟩ ⊆ N for k, e ∈ N as follows. Begin with A⟨e,k⟩ = N. Wait until we
see φe(k) ↓. If it happens, set A⟨e,k⟩ = {φe(k)}. Define A =

∏
nAn. Then define

Ψp(k) =
∑
e≤k p(⟨e, k⟩), which is clearly computable in p. It is easy to see that Ψp

dominates all ∆1
1 function whenever p ∈ A. □

This shows that all-or-finite Σ1
1-choice is not Weihrauch-reducible to σ-compact

Σ1
1-choice.

Corollary 3.15. Σ1
1-AC

aof
N→N ̸≤W Σ1

1-KσCNN .

Proof. Recall that a computable instance of Σ1
1-KσCNN is a countable union of

compact Σ1
1 sets. Thus, by Lemma 3.5, there is a solution p to any given computable

instance of Σ1
1-KσCNN such that any function which is higher Turing reducible to p

is majorized by a ∆1
1 function. However, by Proposition 3.14, there is a computable

instance of Σ1
1-AC

aou
N→N whose solution consists of ∆1

1 dominants. □
Corollary 3.16. Σ1

1-KσCNN is not parallelizable, and Σ1
1-KCNN <W Σ1

1-KσCNN .

Proof. Clearly, Σ1
1-ACN→N (and therefore Σ1

1-AC
aof
N→N) is Weihrauch reducible to

the parallelization of Σ1
1-KσCNN . Therefore, by Corollary 3.15, Σ1

1-KσCNN is not
parallelizable. By definition, any Σ1

1-AC
▽
N→N is parallelizable, and so is Σ1

1-KCNN by
Proposition 2.5. □
3.3. Axioms of cofinite analytic choice. The choice problem when all sets are
cofinite is quite different from the other restricted choices we study. It is the only
one that does not include Σ1

1-AC
fin
N→N.

Let us fix an instance A =
∏
nAn of Σ1

1-AC
cof
N→N. For every n, An is cofinite,

so there exists an such that for any i ≥ an, we have i ∈ An. Now, call f the
function n 7→ an. We have that f ∈ A, and for every g pointwise above f , we
must have g ∈ A. So we clearly have A ≤W {g ∈ NN : ∀i f(i) ≤ g(i)} = Af . This

essential property of Σ1
1-AC

cof
N→N prevents an instance to have more computational

power than Af for some f ∈ NN.
The cofiniteness still allows some more power, as we will prove in this section

that Σ1
1-AC

cof
N→N is Weihrauch incomparable with both Σ1

1-AC
fin
N→N and Σ1

1-AC
aof
N→N.

Theorem 3.17. There exists A ∈ Σ1
1-AC

cof
N→N such that for any B ∈ Σ1

1-AC
aof
N→N

A ̸≤M B.

Proof. We use the existence of a maximum all-or-finite degree of Theorem 3.11 to
actually only prove

∀B ∈ Σ1
1-AC

aof
N→N,∃A ∈ Σ1

1-AC
cof
N→N : A ̸≤M B.

Fix a B =
∏
n∈NBn, with Bn ⊆ N being either N or finite. We will construct A =∏

e∈NAe, and use Ae to diagonalize against Φe being a witness for the reduction, by
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ensuring that either Φe is not total on B, or ∃k ∈ N, σ ∈
∏
n<k Bn with Φσe (e) ↓̸∈

Ae. Here is a description of the construction of Ae, along with sequences of string
(σn) and (τn):

(1) First, Ae = N. Wait for a stage where B ⊆ dom(Φe), that is Φe is total on
the current approximation of B. Define σ0 = ϵ = τ0, and move to step (2).

(2) Let n be the maximum such that τn is defined. Find σn+1 ≻ τn in the
current approximation of B such that Φ

σn+1
e (e) ↓. Take σn+1 to be the

leftmost such, and remove Φ
σn+1
e (e) from Ae. Move to step (3).

(3) Wait for some stage where ΦBe (e) := {ΦXe (e) : X ∈ B} ⊆ Ae. If it happens,
wait again for the current approximation of B to be “all or finite”, which
will happen. Take τn+1 to be the greatest prefix of σn+1 still in B, and
return to step (2).

As in the proof of Theorem 3.12, the property B ⊆ dom(Φe) is Π
1
1, so it is witnessed

at some stage < ωCK
1 . Let us prove that Ae is cofinite. If the co-enumeration of Ae

stays at step (1), then Ae = N is cofinite. Otherwise, let us prove that there can
only be finitely many τn defined.

Suppose all τn are defined. Then, the pointwise limit of the τn must be defined:
Let ℓ be an integer such that (τn(ℓ

′))n∈N stabilizes for big enough n, for all ℓ′ < ℓ.
Start from a stage n0 where they have stabilized. For n > n0, if τn+1(ℓ) changes,
that is τn+1(ℓ) ̸= τn(ℓ), it must be that τn(ℓ) has been removed from Bℓ. But then,
Bℓ will become finite before the co-enumeration continues, and τn(ℓ) can only take
values in Bℓ and never twice the same. Therefore, (τn(ℓ))n becomes constant at
some point. Now, let X ∈ NN be the limit of (τn). As X(ℓ) ∈ Bℓ for every ℓ, we
have X ∈ B. Since B ⊆ dom(Φe) is already witnessed at some previous stage, and
this is a positive property, we must have X ∈ dom(Φe). Thus, there is σ ≺ X such
that Φσe (e) ↓. Let s be such that σ ⪯ τt for any t ≥ s. However, our algorithm can
reach step (2) at most once after s: This is because, as σ ⪯ τs ⪯ σs+1, we must
have Φ

σs+1
e (e) = Φσe (e), which is removed from Ae at step (2). This ensures that

ΦXe (e) = Φσe (e) ̸∈ Ae, so ΦBe (e) ⊆ Ae is never witnessed, and thus τs+1 is undefined.
Hence, there is an n0 such that τn is defined only for n < n0, and thus σn can

be defined only for n ≤ n0, therefore by construction at most n0 + 1 elements are
removed from Ae, and thus Ae is cofinite.

It remains to prove that A ̸≤M B. Suppose Φe is a witness for the Medvedev
reduction. Φe must be total on B, so we get past step (1) in the definition of Ae.
Then, as only finitely many τn are defined, the co-enumeration has to be stuck at
some step, waiting for something to happen. It cannot be stuck in step (2), as Φe is
total on B, and any finite sequence τ ∈

∏
n<|σ|Bn can be extended in an element

of B by homogeneicity. This means that the co-enumeration is stuck at step (3),
waiting for ΦBe (e) ⊆ Ae, to never happen. This leaves us with ΦBe (e) ̸⊆ Ae, so there
is X ∈ B such that ΦXe (e) ̸∈ Ae, and so ΦXe ̸∈ A. □

Theorem 3.18. For any A ∈ Σ1
1-AC

aof
N→N and B ∈ Σ1

1-AC
cof
N→N, if A ≤M B, then A

contains a ∆1
1 path.

Proof. Assume that A ≤M B via some partial computable function Φ, and A and
B are of the forms

∏
nAn and

∏
nBn, respectively. We describe the ∆1

1 procedure
to define C ∈ A:

Given n, in parallel, wait for n to be enumerated in one of those two Π1
1 sets:



24 PAUL-ELLIOT ANGLÈS D’AURIAC AND TAKAYUKI KIHARA

(1) If n is enumerated in {n : ∃k ∈ N, ∀f ∈ NN, ∃σ ≥ f, Φσ(n) = k}, define
C(n) to be one of these k.

(2) If n is enumerated in {n : ∀f ∈ NN, ∀k,∃k′ > k, ∃σ ≥ f such that Φσ(n) =
k′} then define C(n) = 0.

Here, σ ≥ f denotes the pointwise domination order, that is, σ(n) ≥ f(n) for all
n < |σ|. As the items (1) and (2) are both Π1

1, it is easy to check that C is ∆1
1.

We claim that one of the two options will happen. Assume that case (2) fails.
Then, there are f ∈ NN and k ∈ N such that for any σ ≥ f , if Φσ(n) ↓ then Φσ(n) ≤
k. If moreover (1) fails, then for any ℓ ≤ k, there is fℓ such that if σ ≥ fℓ and
Φσ(n) ↓ then Φσ(n) ̸= ℓ. We define g ∈ NN by g(j) = max{f(j), f0(j), . . . , fk(j)}
for any j. Then we have g ≥ f, f0, . . . , fk, and therefore, if σ ≥ g then Φσ(n)
cannot take any value. Hence, as Bj is cofinite for any j, there is bj ∈ N such that
[bj ,∞) ⊆ Bj . As Φ is total on B, if h(j) ∈ Bj for every j then Φh(n) is defined for
any n. However, if we define h(j) = max{g(j), bj} then h(j) ∈ Bj and therefore
Φh(n) ↓, a contradiction. This verifies our claim.

As before, by cofiniteness, there exists b ∈ NN such that g ≥ b implies g ∈ B.
Fix n. In case (1), for k = C(n), there is σ ≥ b such that Φσ(n) = k. Therefore,
C(n) ∈ ΦB(n) := {ΦX(n) : X ∈ B}, and moreover ΦB(n) ⊆ An since Φ witnesses
A ≤M B and A =

∏
nAn. Hence we get C(n) ∈ An. In case (2), there are

infinitely many k and there is σ ≥ b such that Φσ(n) = k. This means that ΦB(n)
is infinite, and therefore An is infinite since ΦB(n) ⊆ An as above. Hence An = N
and C(n) ∈ An. Consequently, we obtain C ∈ A. □

Corollary 3.19. We have both Σ1
1-AC

cof
N→N ̸≤W Σ1

1-AC
aof
N→N and Σ1

1-AC
fin
N→N ̸≤W

Σ1
1-AC

cof
N→N.

Proof. The first part is implied by Theorem 3.17 (see the argument in the paragraph
below Definition 3.1). The second part is implied by Theorem 3.18 and the fact that
there exist Σ1

1 finitely branching homogeneous trees with no ∆1
1 member (cf. [14,

Theorem 4.3 and Lemma 4.4]). □

We now show that Σ1
1-AC

cof
N→N does not admit a maximal element, using a proof

similar to the one of Theorem 3.17.

Theorem 3.20. For every B ∈ Σ1
1-AC

cof
N→N, there exists A ∈ Σ1

1-AC
cof
N→N such that

A ̸≤ B. Thus, Σ1
1-AC

cof
N→N does not have a maximal element.

Proof. Fix a B =
∏
n∈NBn, with each Bn ⊆ N cofinite. We will construct A =∏

e∈NAe, and use Ae to diagonalize against Φe being a witness for the reduction, by
ensuring that either Φe is not total on B, or ∃k ∈ N, σ ∈

∏
n<k Bn with Φσe (e) ↓̸∈

Ae. Here is a description of the construction of Ae, along with sequences of string
(σn) and (τn):

(1) First, Ae = N. Wait for a stage where B ⊆ dom(Φe), that is Φe is total on
the the current approximation of B. Define σ0 = ϵ = τ0 and move to step
(2).

(2) Let n be the maximum such that τn is defined. Find σn+1 ≻ τn in the
current approximation of B such that Φ

σn+1
e (e) ↓. Take σn+1 to be the

leftmost such, and remove Φ
σn+1
e (e) from Ae. Move to step (3).

(3) Wait for some stage where ΦBe (e) ⊆ Ae. Take τn+1 to be the greatest prefix
of σn+1 still in B, and return to step (2).
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Let us prove that Ae is cofinite. If the co-enumeration of Ae stays at step (1), then
Ae = N is cofinite. Otherwise, let us prove that there can only be finitely many τn
defined, just as in Theorem 3.17.

Suppose infinitely many (τn) are defined. Then, this must have a limit: Let ℓ be
a level such that (τn(ℓ

′))n stabilizes for all ℓ′ < ℓ. Start from a stage where they
have stabilized. From this stage, if τn(ℓ) changes, it must have been removed from
Bℓ. But that can happen only finitely many times, as Bℓ is cofinite. Therefore,
(τn(ℓ)) becomes constant at some point. However, this is impossible:Let X ∈ NN

be the limit of (τn). As X(ℓ) ∈ Bℓ for every ℓ, we have X ∈ B. Since B ⊆ dom(Φe)
is already witnessed at some previous stage, and this is a positive property, we
must have X ∈ dom(Φe). Thus, there is σ ≺ X such that Φσe (e) ↓. Let s be such
that σ ⪯ τt for any t ≥ s. However, our algorithm can reach step (2) at most
once after s: This is because, as σ ⪯ τs ⪯ σs+1, we must have Φ

σs+1
e (e) = Φσe (e),

which is removed from Ae at step (2). This ensures that ΦXe (e) = Φσe (e) ̸∈ Ae, so
ΦBe (e) ⊆ Ae is never witnessed, and thus τs+1 is undefined. Hence, there is an n0
such that τn is defined only for n < n0, and thus σn can be defined only for n ≤ n0,
therefore by construction at most n0 + 1 elements are removed from Ae, and thus
Ae is cofinite.

Hence, there is an n0 such that τn is defined only for n < n0, and thus σn can
be defined only for n ≤ n0, therefore by construction at most n0 + 1 elements are
removed from Ae, and thus Ae is cofinite.

It remains to prove that A ̸≤M B. Suppose Φe is a potential witness for the
inequality. Either Φe is not total on B, or we get stuck at some step in the co-
enumeration of Ae, waiting for ΦBe (e) ⊆ Ae to never happen, leaving us with
ΦBe (e) ̸⊆ Ae, so there is X ∈ B such that ΦXe (e) ̸∈ Ae, and so ΦXe ̸∈ A.

We now prove the last assertion: Σ1
1-AC

cof
N→N does not have a maximal element.

Let B =
∏
nBn ∈ Σ1

1-AC
cof
N→N. Let A =

∏
nAn given by the first part of the proof.

Then, C =
∏
nAn ×

∏
mBm ∈ Σ1

1-AC
cof
N→N and A,B ≤M C so B <M C. □

We here also note some domination property of the cofinite choice. The following
fact is implicitly proved by Kihara-Marcone-Pauly [14, Lemma 4.7] to separate

Σ1
1-WKL and Σ̂1

1-CN.

Fact 3.21 ([14]). There exists A ∈ Σ1
1-AC

cof
N→N such that every element p ∈ A

computes a function which dominates all ∆1
1 functions.

Therefore, as in the proof of Corollary 3.15, we can observe the following.

Corollary 3.22. Σ1
1-AC

cof
N ̸≤W Σ1

1-KσCN.

3.4. Axioms of finite-or-cofinite analytic choice. In this part, we study the
weakened restriction to sets that are either finite, or cofinite. This restriction
allows any instance from the stronger restrictions, thus Σ1

1-AC
aof
N→N, Σ1

1-AC
fin
N→N,

and Σ1
1-AC

cof
N→N are Weihrauch reducible to Σ1

1-AC
foc
N→N (and similarly for dependent

choice). It is the weakest form of restriction other than “no restriction at all” that
we will consider. However, we don’t know if this restriction does remove some
power and is strictly below Σ1

1-ACN→N or not, as asked in Question 3.24.

In the following, we will show that Σ1
1-AC

foc
N→N, Σ

1
1-DC

foc
N and Σ1

1-ACN→N, Σ
1
1-DCN

do not admit a maximal computable instance. We will give several different proofs
of this result. Theorem 3.23 is an attempt to answer Question 3.24 positively, but
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the conclusion turns out to be too weak, by lacking the effectivity required for a
diagonalization.

Theorem 3.23. For every A ∈ Σ1
1-AC

foc
N→N, there exists B ∈ Σ1

1-ACN→N such that
B ̸≤M A.

Proof. We will build B =
∏
eBe ∈ Σ1

1-ACN→N by defining Be in a uniform Σ1
1 way,

such that if Φe is total on A, then ΦAe (e) ̸⊆ Be.

Fix e ∈ N, and A =
∏
nAn ∈ Σ1

1-AC
foc
N→N. In our definition of the co-enumeration

of Be along the ordinals, there will be two main steps: The first one forces that if

ΦAe (e) ⊆ Be, then for every l, |ΦA↾≤l
e (e)| < ω where A↾≤l = {σ ∈ N≤l : [σ]∩A ̸= ∅}.

The second step will force that if ΦAe (e) ⊆ Be, then A is empty or Φe is not total
on A.

In order to conduct all these steps, we will need to remove several times an
element of Be, but we do not want it to become empty. This is why in parallel of
removing elements from Be, we also mark some as “saved for later”, so we know
that even after infinitely many removals, Be is still infinite.

We now describe the first part of the co-enumeration. For clarity, we use the
formalism of an infinite time algorithm, that could easily be translated into a Σ1

1

formula.
for l ∈ N do

Mark a new element of Be as saved;

while Φ
A↾≤l
e (e) is infinite do

for i ∈ N do
Mark a new element of Be as saved;

Remove from Be the first element of Φ
A↾≤l
e (e) that is not saved, if

it exists. Otherwise, exit the loop;

Wait for ΦAe (e) ⊆ Be;

end

Wait for every An with n ≤ l to be finite or cofinite;

Unmark the elements marked as saved by the “for i ∈ N” loop;

end

end

Let us first argue that for a fixed l, the “while” part can only be executed a finite
number of times. At every execution of the “for i ∈ N” loop, either one element of

A↾≤l is removed, or Φ
A↾≤l
e (e) is finite and we exit the while loop (this is because at

every step, only finitely many elements are marked as saved). But this means that
if a “for” loop loops infinitely many times, by the pigeon hole principle there must
exists a specific level l0 ≤ l such that Al0 went from cofinite to finite. But this can
happen only l + 1 times, and the “while” loop can only run l + 1 many times.

Let us now argue that at every stage of the co-enumeration, including its end,
every Be is infinite. Fix a level l, and suppose that at the beginning of the corre-
sponding “while” loop, Be is infinite. As after every loops of the “for i ∈ N” loop
one element is saved, it means that after all these infinitely many loop, Be contains
infinitely many elements. This will happen during only finitely many loops of the
“while” loop, so at the beginning of level l + 1, Be is infinite. A similar argument
with the elements saved by the first “for l ∈ N” loop shows that if the first part of
the co-enumeration ends, Be is still infinite.
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Now we split into two cases. If the first part of the co-enumeration never stops,
as the “while” loop is in fact bounded, it means that the co-enumeration is forever
stuck waiting for ΦAe (e) ⊆ Be. But as this never happens, Be has the required
property. Otherwise, the first part of the co-enumeration ends, and we are at a

stage where for every l, Φ
A↾≤l
e (e) is finite, but Be is infinite. We now continue to

the second part of the co-enumeration of Be:

for l ∈ N do

Remove from Be all the elements of Φ
A↾≤l
e (e);

Wait for ΦAe (e) ⊆ Be;

end

We argue that this co-enumeration never finishes. Let x ∈ A, and σ ≺ x such
that Φσe (e) ↓= k. The co-enumeration will never reach the stage where l = |σ + 1|,
as it cannot go through l = |σ|: If it reaches such stage, it will remove k from Be
and never have ΦAe (e) ⊆ Be. So, the co-enumeration has to stop at some step of
the “for” loop, waiting for ΦAe (e) ⊆ Be never happening. As Be is infinite, it has
the required property. □

In order to Weihrauch-separate Σ1
1-AC

foc
N→N from the unrestricted Σ1

1-ACN→N,
one would need a stronger result with a single B ∈ Σ1

1-ACN→N not Medvedev re-

ducible to any A ∈ Σ1
1-AC

foc
N→N. We could try to apply the same argument to

define
∏

⟨n,e⟩B⟨n,e⟩, this time diagonalizing against an enumeration (Se)e∈N of

Se =
∏
n S

e
n ∈ Σ1

1-ACN→N. If Se is not in Σ1
1-AC

foc
N→N, the co-enumeration will

be stuck somewhere in the co-enumeration of some level, with no harm to the
global diagonalization.

However, if some particular Se is empty, we could end up with some B⟨n,e⟩ = ∅,
making B empty. Indeed, suppose we reach the second part of the co-enumeration.
Then, the malicious Se can make sure that every step of the second loop are
achieved, by removing from Se all strings σ such that Φσe (e) ↓̸∈ B⟨n,e⟩, at every
stage of the co-enumeration. As a result, both Se and B⟨n,e⟩ will become empty.

Question 3.24. Do we have Σ1
1-AC

foc
N→N <W Σ1

1-ACN→N?

We now give a stronger result with a much simpler, but not effective, proof. As
a corollary, we will obtain the fact that Σ1

1-ACN→N and Σ1
1-DCN do not admit a

maximal computable instance.

Theorem 3.25. For every A ∈ Σ1
1-DCN, there exists B ∈ Σ1

1-ACN→N such that
B ̸≤M A.

Proof. We first claim that there is no enumeration of all nonempty elements of
Σ1

1-ACN→N. More than that, we will prove that there is no
∏
n,e∈N S

e
n ∈ Σ1

1-ACN→N
uniformly Σ1

1 such that for every B =
∏
nBn ∈ Σ1

1-ACN→N, there exists an e such
that

∏
n S

e
n ⊆ B. Let (Sen)n,e∈N be any uniformly Σ1

1 enumeration. We construct
(Be)e∈N, a witness that this enumeration is not a counterexample to our claim. We
define Be by stages: At stage α, Be[α] is equal to the open interval ]min(See [α]);∞[,
where See [α] is the stage α approximation of See . Then Be =

∩
αBe[α] defines a Σ1

1

set. We have
∏
nBn ̸⊇

∏
n S

e
n for every e ∈ N and the claim is proved.

Now, suppose that there exists A ∈ Σ1
1-DCN such that for every B ∈ Σ1

1-ACN→N,
we have B ≤M A. Let us define Sen by

m ∈ Sen ⇐⇒ ∃X ∈ A [ΦXe (n) ↓= m or Φe is not total on A].
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Here, it is easy to check that non-totality of Φe on the Σ1
1 set A is a Σ1

1 property
(see also the proof of Theorem 3.12). Hence, (Sen) is Σ

1
1 uniformly in e and n. Given

any B ∈ Σ1
1-ACN→N, as B ≤M A, fix a witness Φe. Then Φe is total on A, and

therefore Sen = ΦAe (n) := {ΦXe (n) : X ∈ A}. By our choice of Φe, we also have
ΦAe :=

∏
n Φ

A
e (n) ⊆ B, and as B is homogeneous we obtain

∏
n S

e
n ⊆ B. Then,

(Sen)e,n∈N would be a contradiction to our first claim. □

Corollary 3.26. Neither Σ1
1-ACN→N nor Σ1

1-DCN admits a maximal element.

Proof. Let A =
∏
nAn ∈ Σ1

1-ACN→N. By Theorem 3.25, let B =
∏
nBn ∈

Σ1
1-ACN→N such that B ̸≤M A. Then, C =

∏
nAn ×

∏
mBm ∈ Σ1

1-ACN→N is
such that A <M C. A similar argument works for Σ1

1-DCN. □

There is another non-effective proof showing that Σ1
1-DCN does not have a maxi-

mal element (but the proof does not work for Σ1
1-ACN→N). Indeed, remarkably, the

result shows that there is no greatest nonempty Σ1
1 closed set even with respect

to hyperarithmetical Muchnik degrees. We say that A ⊆ NN is hyperarithmetically
Muchnik reducible to B ⊆ NN (written A ≤HYP

w B) if for any x ∈ B there is y ∈ A
such that y ≤h x, that is, y is hyperarithmetically reducible to x.

Fact 3.27 (cf. Gregoriades [11, Theorem 3.13]). If P is a ∆1
1 closed set with no ∆1

1

element, then there exists a clopen set C such that P ∩ C ̸= ∅ and P <HYP
w P ∩ C.

Proof. This is what Gregoriades essentially obtained in the proof of [11, Theorem
3.13]. If P = [T ] for a computable tree T , the “key remark” in the proof of [11,
Theorem 3.13] gives us a clopen neighborhood C = [u] of some γ ∈ P such that
∆1

1(γ) ∩ P ∩C = ∅, so ∅ ≠ P ∩C ̸≤HYP
w {γ} ⊆ P . The tree T can be replaced with

a ∆1
1 tree since the “key remark” follows from the equivalence (1) in the proof of

[11, Theorem 3.13], as it gives an implicit Σ1
1 definition of the leftmost path αL of

P , which leads to a contradiction. Observe that, even if we replace T with a ∆1
1

tree, the condition is still Σ1
1, which concludes the proof. □

Note that any P satisfying the conclusion of the above fact cannot be homo-
geneous since if P is homogeneous, C is clopen, and P ∩ C is nonempty, then we
always have P ∩ C ≡M P . So, Fact 3.27 does not imply Theorem 3.25.

Corollary 3.28. For any nonempty Σ1
1 set A ⊆ NN, there is a nonempty Π0

1 set
B ⊆ NN such that A <HYP

w B.

Proof. For any nonempty Σ1
1 set A, it is easy to see that there is a nonempty Π0

1 set
A∗ such that A ≤M A∗. If A∗ has a ∆1

1 element, then the assertion is clear as any
Π0

1 set B with no ∆1
1 element is such that A∗ <HYP

w B. If A∗ has no ∆1
1 element,

by Fact 3.27, there is clopen C such that A ≤M A∗ <HYP
w A∗ ∩ C. □

In [5], Cenzer and Hinman showed that the lattice of Π0
1 classes in Cantor space

is dense. Here we already showed the lack of maximal elements, we now prove the
lack of minimal elements:

Theorem 3.29. For every A ∈ Σ1
1-DCN with no computable member, there exists

B >M NN in Σ1
1-DCN such that

NN <M A ∪B <M A.
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Proof. We first reduce the problem to finding a non-computable hyperarithmetical
real X such that A contains no X-computable point. If such an X exists, then we
have NN <M A ∪ {X} <M A.

It suffices to show that ΦXe ̸∈ A for any e, and ∅ <T X. The latter condition is
ensured by letting X be sufficiently generic. To describe a strategy for ensuring the
first condition, fix a pruned Σ1

1 tree TA such that [TA] = A. There are two ways
for Φe to not be a witness that A has a X-computable element: either Φσe ̸∈ TA for
some σ ≺ X, or X ̸∈ dom(Φe). Let us argue that we have the following: For any
e ∈ N and σ ∈ N<N there exists a finite string τ extending σ such that

(3) either Φτe ̸∈ TA or [τ ] ∩ dom(Φe) = ∅
Indeed, if it were not the case for some e ∈ N, we would have a string σ such that
for every τ extending σ, Φτe ∈ TA and there exists an extension ρ ≻ τ such that Φρe
strictly extends Φτe , allowing us to compute a path of TA, which is impossible as
A >M NN.

Begin with the empty string σ0 = ∅. For e let De be the e-th dense Σ0
1 set

of strings. Given σe, in a hyperarithmetical way, one can find a string σ∗
e ∈ De

extending σe. Now, we have a Π1
1 function assigning e to the first σe+1 extending

σ∗
e we find verifying (3). This function is total, and then ∆1

1. Moreover, it is clear
that ΦXe does not define an element of A for any X extending σe+1. □
3.5. Axiom of choice versus dependent choice. H. Friedman showed that the
axiom of Σ1

1-dependent choice is strictly stronger than the axiom of Σ1
1-choice in

the context of second order arithmetic (cf. [19, Corollary VIII.5.14]). Although
the Weihrauch degrees of the principles Σ1

1-DCNN and Σ1
1-ACN→NN are the same

(Observation 2.1 and Proposition 2.2), we will see that Σ1
1-DCN is strictly stronger

than Σ1
1-ACN→N, which finally solves Question 1.3:

Theorem 3.30. ATR2 ̸≤W Σ1
1-ACN→N; hence Σ1

1-ACN→N <W Σ1
1-DCN.

Proof. Let Ae be the set of solutions to the e-th computable instance of ATR2, that
is, 0⌢H ∈ Ae if and only if H is a jump hierarchy for the e-th computable linear
order ≺e, and 1⌢p ∈ Ae if p is an infinite decreasing sequence w.r.t. ≺e. Suppose for
the sake of contradiction that A =

∏
eAe is Medvedev reducible to a homogeneous

Σ1
1 set S. Let B be the set of all indices e ∈ N such that the set of all infinite

decreasing sequences w.r.t. ≺e is not Medvedev reducible to S, and let C be the set
of all indices e ∈ N such that the set of all jump-hierarchies for ≺e is not Medvedev
reducible to S. Note that B and C are Σ1

1.
Moreover, we claim that B and C are disjoint. To see this, let Φ be a continuous

function witnessing A ≤M S. If there is X ∈ S such that ΦX(0) is i then, by
continuity of Φ, there is a finite initial segment σ of X such that ΦY (0) = i for any
Y extending σ. However, by homogeneity of S, S∩ [σ] is Medvedev equivalent to S.
This means that, for any e, S Medvedev bounds either the set of infinite paths or
the set of jump-hierarchies for the e-th computable tree. This concludes the proof
of the claim.

Let WO be the set of all indices of well-orderings, and NPWO be the set of all
indices for computable linear orderings with infinite hyperarithmetic decreasing se-
quences (i.e., linear orderings which are not pseudo-well-ordered). Clearly, WO is
contained in B. Moreover, by H. Friedman’s theorem [7] saying that a computable
linear order which supports a jump hierarchy cannot have a hyperarithmetical de-
scending sequence (see also Friedman [8] for a simpler proof based on Steel’s result
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[20]), NPWO is contained in C. Since B and C are disjoint Σ1
1 sets, by the effective

version of the Lusin separation theorem (cf. [17, Exercise 4B.11]), there is a ∆1
1

set A separating B from C. This contradicts (Goh’s refinement [10, Theorem 3.3]
of) Harrington’s unpublished result, which states that if a Σ1

1 set separates WO
from NPWO, then it must be Σ1

1-complete. So A cannot be Medvedev below a
homogeneous set, and thus ATR2 ̸≤W Σ1

1-ACN→N.
Clearly, ATR2 ≤W Σ1

1-CNN since being a jump hierarchy and being an infinite
decreasing sequence are arithmetical properties. Since Σ1

1-CNN is Weihrauch equiv-
alent to Σ1

1-DCN by Proposition 2.2, we obtain Σ1
1-ACN→N <W Σ1

1-DCN. □

Finally, we decompose the axiom of countable Σ1
1 choice into finite Σ1

1 choice
and cofinite Σ1

1 choice.

Theorem 3.31. Σ1
1-ACN→N ≤W Σ1

1-AC
fin
N→N ⋆ Σ

1
1-AC

cof
N→N.

Proof. Given a homogeneous Σ1
1 tree T ⊆ N<N, let fT be the leftmost path through

T . Then fT has a finite-change higher approximation, i.e., there is a ∆1
1 sequence

approximating f with finite mind-changes (cf. [1] for the definition). Let mT (n)
be the number of changes of the approximation procedure for fT ↾ n+ 1. One can
assume that fT (n) ≤ mT (n). Then, one can effectively construct a Σ1

1 sequence
(Sn)n∈N of cofinite subsets of N such thatm ∈ Sn impliesm > mT (n). In particular,

any element g ∈
∏
n Sn majorizes mT , and thus fT . Use Σ1

1-AC
cof
N→N to choose such

a g, and consider the Σ1
1(g) tree T g = {σ ∈ T : (∀n < |σ|) σ(n) < g(n)}. Then

T g is a finite branching infinite tree since fT ∈ [T g]. Therefore, as in the proof of
Proposition 2.5, one can effectively covert T g into a Σ1

1(g) infinite binary tree T ∗.

Use Σ1
1-WKL (which is Weihrauch equivalent to Σ1

1-AC
fin
N→N, as seen in Theorem 3.3)

to get an infinite path p through T ∗. From p one can easily construct an infinite
path through T g ⊆ T . □

3.6. Summary of this section. In summary, we obtain the following:

Theorem 3.32. We have

Σ1
1-DCN

//

��

Σ1
1-DC

foc
N

+3

��

Σ1
1-DC

aof
N

+3
OO

��

Σ1
1-DC

fin
NOO

��
Σ1

1-ACN→N
// Σ1

1-AC
foc
N→N

+3

"*N
NNN

NNN
NNN

NNN
NNN

NNN
N

Σ1
1-AC

aof
N→N

+3

×
��

Σ1
1-AC

fin
N→N

Σ1
1-AC

cof
N→N

×pppp

88ppppp

Here, arrows → and ⇒ denote ≥W and >W, respectively. See also Figure 1.

A few questions about Σ1
1-AC

foc
N→N remain open:

Question 3.33. Is Σ1
1-AC

foc
N→N <W Σ1

1-DC
foc
N ? Is Σ1

1-AC
foc
N→N <W Σ1

1-ACN→N?

We also do not know if the dependent and independent choice for cofinite sets
coincide.

Question 3.34. Is Σ1
1-AC

cof
N→N <W Σ1

1-DC
cof
N ?
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Closed choice: CNN , Σ1
1-DCN

Σ1
1 homogeneous choice: Σ1

1-ACN→N

Σ1
1-AC

aof
N→N, Π1

1-TotN

Σ1
1 compact choice: Σ1

1-KCNN , Σ1
1-AC

fin
N→N, Σ1

1-WKL, Π1
1-SEP

Unique choice: UCNN , ∆1
1-CA, Σ1

1-SEP

ATR2
ATR′

2

×

Figure 1. Key principles between UCNN and CNN (where dashed
lines denote parallel arithmetical Weihrauch reducibility)

We solved the main question by showing Σ1
1-ACN→N <W Σ1

1-DCN (Theorem 3.30),
but it is just a computable separation. Therefore, it is natural to ask if Σ1

1-ACN→N
and Σ1

1-DCN can be separated even in the hyperarithmetical sense. In other words,
the following is one of the most important open questions, where UCNN is the unique
choice principle (or equivalently, the choice principle for Σ1

1 singletons; cf. [14]).

Question 3.35. Is UCNN ⋆ Σ1
1-ACN→N <W Σ1

1-DCN?

We also ask a question purely on the structure of Medvedev degrees for finite
axioms of choice. Define more generally Σ1

1-AC
P
N→N to be Σ1

1-ACN→N where the set
from which we choose have to be taken from P. For instance, if P = {A ⊆ N : |A| <
ω}, then Σ1

1-AC
P
N→N = Σ1

1-AC
fin
N→N.

Question 3.36. Let P = {A ⊆ N : A ⊆ 2} and Q = {A ⊆ N : |A| ≤ 2}. Is every

element of Σ1
1-AC

Q
N→N Medvedev equivalent to some element of Σ1

1-AC
P
N→N?

We are also interested in comparing various kinds of arithmetical transfinite
recursion.

Question 3.37. ATR2 ≡aW ATR2′ ≡aW ATRpo
2 ?

Finally, we mention a few descriptive set theoretic results deduced from our
results. For a set A ⊆ NN×NN, each Ax = {y ∈ NN : (x, y) ∈ A} is called a section.
If the section Ax is nonempty for each x ∈ NN then A is called total. Below, we use
≤cW to denote the continuous version of Weihrauch reducibility; see [3].

Theorem 3.38. (1) There is a total analytic set A with compact homoge-
neous sections such that any total analytic set with compact sections is
≤cW-reducible to A.

(2) For any total analytic set A with closed sections, there is a total analytic
set with homogeneous sections which is not ≤cW-reducible to A.

(3) There is a total Fσδ set with Gδ sections which is not ≡cW-equivalent to any
analytic set with closed sections.

(4) There is a total closed set which is not ≤cW-reducible to any total analytic
set with homogeneous sections.
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Proof. (1) follows from the relativization of Theorem 3.4 since Σ1
1-AC

fin
N→N ≡W

Σ1
1-KCNN by Proposition 2.5 and Theorem 3.3. (2) follows from the relativization

of Theorem 3.25. For (3), let S be the set of pairs (x, y) with y ̸≤T x. Then S is
Fσδ, and each S(x) = {y : y ̸≤T x} is co-countable; hence Gδ. Suppose that S is
≡cW-equivalent to an analytic set A with closed sections. In particular, there are x-
computable functions h0, h1 such that S(x) ≤xM A(h0(x)) ≤xM S(h1 ◦h0(x)), where
≤xM indicates the Medvedev reducibility relative to x. By definition of S, z ≤T x
implies S(z) ⊇ S(x), so S(z) ≤M S(x). Hence, S(h1◦h0(x)) ≤M S(x), and thus, we
have S(x) ≡xM A(h0(x)). Since A(h0(x)) is closed, one can apply (a relativization
of) Theorem 3.29 to get a Σ1

1(x) closed set B such that NN <xM B <xM A(h0(x)).
However, this implies NN <xM B <xM S(x), which is impossible by definition of S.
Finally, (4) follows from the relativization of Theorem 3.30. □
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LACL, Département d’Informatique, Faculté des Sciences et Technologie, 61 avenue
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