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ABSTRACT. We investigate computability theoretic and descriptive set theo-
retic contents of various kinds of analytic choice principles by performing a
detailed analysis of the Medvedev lattice of E%—Closed sets. Among others,
we solve an open problem on the Weihrauch degree of the parallelization of
the E%—choice principle on the integers. Harrington’s unpublished result on a
jump hierarchy along a pseudo-well-ordering plays a key role in solving this
problem.

1. INTRODUCTION

1.1. Summary. The study of the Weihrauch lattice aims to measure the com-
putability theoretic difficulty of finding a choice function witnessing the truth of
a given V3-theorem (cf. [3]) as an analogue of reverse mathematics [19]. In this
article, we investigate the uniform computational contents of the axiom of choice
¥1-AC and dependent choice 31-DC for 3} formulas in the context of the Weihrauch
lattice.

The computability-theoretic strength of these choice principles is completely in-
dependent of their proof-theoretic strength, since the meaning of an impredicative
notion such as ! is quite unstable among models of second-order arithmetic. Nev-
ertheless, it is still interesting to examine the uniform computational contents of
¥1-AC and ©}-DC in the full model PN. For instance, this setting is particularly
relevant for descriptive set theory and related areas, and indeed, the complexity of
the axiom of choice has already been studied a lot in descriptive set theory, under
the name of uniformization.

For a set A C X xY define the z-th section of A as A(z) ={y €Y : (z,y) € A}
We say that a partial function g: C X — Y is a choice function for A if g(z) is
defined and g(z) € A(x) whenever A(z) is nonempty. Such a choice function is
also called a uniformization of A. In descriptive set theory and related areas, there
are a number of important results on measuring the complexity of choice functions:
Let X and Y be standard Borel spaces. The Jankov-von Neumann uniformization
theorem (cf. [13, Theorem 18.1]) states that if A is analytic, then there is a choice
function for A which is measurable w.r.t. the o-algebra generated by the analytic
sets. The Luzin-Novikov uniformization theorem (cf. [13, Theorem 18.10]) states
that if A is Borel each of whose section is at most countable, then there is a Borel-
measurable choice function for A. Later, Arsenin and Kunugui (cf. [13, Theorem
35.46]) showed that the same holds even if each section is allowed to be o-compact.
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In our setting, (a X} definition ¢4 of) a set A C X x Y is considered to be an
instance of the “uniformization problem”, and any choice function g4 :C X - Y
for A to be a solution of the instance. Then we examine the degree of difficulty
of such a transformation ¢4 — ga. In other words, we investigate not only the
complexity of a choice function g4 itself, but also of the uniform content ¢4 — g4
of the uniformization problem. By the technique of relativization one can solve
problems in this area with results about uniform choice. Also, uniform results can
be more precise and one can wonder whether results about non-uniform choice are
still true in their uniform version.

The main tool for comparing these degrees of difficulty is Weihrauch reduction.
The notion of Weihrauch degree is used as a tool to classify certain V3-statements by
identifying V3-statements with a partial multivalued function. Informally speaking,
a (possibly false) statement S = Vz € X [Q(z) — JyP(z,y)] is transformed into
a partial multivalued function f: C X = Y such that dom(f) = {z : Q(z)} and
f(z) = {y : P(x,y)}. Then, measuring the degree of difficulty of witnessing the
truth of S is identified with that of finding a choice function for f. Here, we consider
choice problems for partial multivalued functions rather than relations in order to
distinguish the hardest instance f(x) = () and the easiest instance z € X \ dom(f).

In this article, we only consider subspaces of NV, so we can use the following
version of Weihrauch reducibility. For partial multivalued functions f,g, we say
that f is Weihrauch reducible to g (written f <w g) if there are partial computable
functions h, k such that x — k(z, G o h(z)) is a choice for f whenever G is a choice
for g. In other words,

(Vo € dom(f))(Vy) ly € g(h(z)) = k(z,y) € f(z)].

In recent years, a lot of researchers has employed this notion to measure uniform
computational strength of V3-theorems in analysis as an analogue of reverse math-
ematics. Roughly speaking, the study of the Weihrauch lattice can be thought of
as “reverse mathematics plus uniformity minus proof theory.” But this disregard
for proof theory provides us a new insight into the classification of impredicative
principles as we see in this article. For more details on the Weihrauch lattice, we
refer the reader to a recent survey article [3].

Coming back to our study of analytic axioms of choice, we write ¥1-ACy_, x
for the independent axiom of countable choice on X seen as a partial multival-
ued function. As the countable axiom of choice corresponds to countably many
independent choice, it is noted in Observation 2.1 that this/_\?\ﬁihrauch problem
corresponds to the parallelization of the ¥i single choice, ¥1-Cx. In particular,
Y1-AC; =w 2}Cy. The dependent choice $1-DCx corresponds to finding a path
through a Y1 tree, where a finite path contains the choices already made, and the
possible extensions the choices to come. For instance, we note in Observation 2.3
that ¥1-DCy =w ©1-WKL, the problem of finding an infinite path in a binary X1
tree (see Section 2.1). We have the following, proved in Proposition 2.5:

Fact 1.1. We have X1-DCy =y X1-ACy 0.

However, using the equivalences noted in the above paragraph, Lemma 4.7 in
[14] asserts:

Fact 1.2 (Kihara-Marcone-Pauly [14, Lemma 4.7]). In contrast to the previous
fact, we have ¥1-ACy_n £w £1-DCo.
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This suggests the following question about dependent and independent choice
when the objects are chosen from subsets of the integers:

Question 1.3 (Brattka et al. [2] and Kihara et al. [14, Question 4.10]). Do we

Note that this question was not asked in these terms in [2] and [14, Question
4.10], however the two formulation are equivalent by Proposition 2.2.

To negatively solve this question, we will employ the notion of a pseudo-hierarchy:
A remarkable discovery by Harrison is that some non-well-ordering < admits a
transfinite hierarchy based on an arithmetical formula. Furthermore, a basic obser-
vation is that, without deciding if a given countable linear ordering < is well-ordered
or not, one can either produce an arithmetical transfinite hierarchy along < or con-
struct an infinite <-decreasing sequence. Indeed, we will see that the degree of
difficulty of such a construction is quite close to that of uniformizing analytic sets
with compact sections, which is drastically easier than deciding well-orderedness of
a countable linear ordering.

In conclusion, we have an interesting difference between countable choice on 2
and on N: In the former, independent and dependent choices correspond, while in
the latter they differs. One can wonder when this transition happens, for various re-
strictions of the set we choose from. Many restrictions on the principle of choice on
a single set have already been studied, as for instance those defined in [3, Definition
7.4]. In this article, we will study the axioms of dependent and independent count-
able choices for the restrictions to finite, cofinite, all-or-finite, all-or-unique and
finite-or-cofinite sets of natural numbers. In summary, we will show the following
in the Weihrauch context:

e Countable choice on finite 3] sets is strictly easier than countable choice
on all-or-finite ¥} sets (Corollary 3.13).

e Countable choice on cofinite ¥} sets is incomparable with countable choice
on (all-or-)finite X1 sets (Corollary 3.19).

e Countable choice on all-or-finite 31 sets is strictly easier than countable
choice on %} sets (Corollary 3.19).

e Countable choice on finite Y] sets has the same difficulty (modulo arith-
metical equivalence) as some disjunctive form of arithmetical transfinite
recursion (Theorem 2.12).

e Countable choice on (all-or-)finite ¥} sets has the same difficulty as depen-
dent choice on (all-or-)finite ¥} sets (Theorem 3.3 and Theorem 3.10).

e Countable choice on X1 sets is strictly easier than dependent choice on %1
sets (Theorem 3.30).

1.2. Preliminaries.

Weihrauch reducibility. We use several operations on the Weihrauch lattice (see also
[3, 4]). Given a partial multivalued function f, the parallelization of f is defined as
follows:

f((xn)neN) = H f(@n) = {(Yn)nen : (V) yn € f(z0n)}

neN
If f=w f , then we say that f is parallelizable. Given partial multivalued func-
tions f and g, the compositional product of f and g (written g« f) is a function which
realizes the greatest Weihrauch degree among gg o fo for fo <w f and go <w g¢-
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It is known that such an operation * exists. For basic properties of parallelization
and compositional product, see also [4].

Analytic sets as co-enumeration. In this article, we are mainly interested in analytic
sets, in other words in sets that are X1 relative to some oracle A. It is well-known
that ¥1(A) sets can be seen as a co-enumeration process along wi' (the supremum
of all A-computable ordinals), where at each step the co-enumeration is A}(A) in
a uniform manner. This is one of the most fundamental ideas in the study of ¥}
sets; see any textbook on hyperarithmetic theory or higher computability theory,
cf. [12].

This fact essentially follows from the Spector-Gandy theorem, i.e., Il (L cx) =
1. More precisely, P C NV is 31 if and only if there is a II; formula ¢ in the
language of set theory such that X € P <= L, x[X] = ¢(X). Obviously,
this idea is uniformly relativizable to any oracle by applying the above equivalence
to a universal X1 set which parametrizes all analytic sets (and then consider its
cross-sections).

One can utilize this fact to describe a construction of a Xi(A) set as a uni-
form (co-enumeration) algorithm along an wi'-step computation. There are a lot of
recursion-theoretic frameworks to rigorously describe the idea of ordinal step com-
putations, such as admissible sets, norms, and inductive operators; see e.g. [12, 17].
In particular, we use the following notions:

A Tl -norm on a I set P C X, where X is either N or NV, is a map ¢: X —
w1 U {oo} such that Vo € X, (¢(z) < wi V ¢(z) = o0), such that P = {z € X :
¢(x) < oo} and such that the following relations <, and <, are II3:

a<,b < ¢(a) <ooand p(a) < pb),
a<,b <= ¢(a) < oo and ¢(a) < p(b).

In our case, we will focus on the case where X = N. In this case, ¢ has value in
W U {oo}. Tt is well-known that every I} set admits a II}-norm (in an effective,
uniform, manner): Consider a many-one reduction from a IIj set P to the set WO
of well orderings. Then we define P, = {n : ¢(n) < a}, which is a A} set, and if
« is limit then we have P, = U5<a Pg. If n € P,, it is natural to say that n is

enumerated into P by step . Similarly, a X1 set S can be written as the intersection
S = {S, : a < wP¥} of a decreasing sequence of Al sets, and if n & S, we say
that n is removed from S by step a. We often use some other sentences which have
similar meanings.

This argument is uniformly relativizable to any oracle by using a II} norm on a
1} set which parametrizes all coanalytic sets (cf. [17]). In particular, every ©1(A)
set can uniformly be seen as a co-enumeration of A}(A) sets, of length w{ . In the
case of a X1 sets P C N P can be seen as a coenumeration of length w;, where
an element x can only be removed before stage wf.

The reversal is also well-known (which is essentially Kleene’s HYP quantification,
whose uniform version is also clearly effective). This fact can also be presented as
an ordinal step construction as follows: If we describe a Al rule I': P, + P,,
which satisfies the property R C I'(R), then the least fixed point P of T is I}; and
indeed the iteration (I'®(0)),, always stabilizes to the fixed point at w¥ steps, i.e.,
P =U{P,: a < wf%}. Such aT is known as a A} inductive operator, which is
a fundamental notion in generalized recursion theory, cf. [12]; see also [17, Section
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7C] for uniformity. A typical example of a Al inductive operator is the standard
construction of the H-hierarchy of Turing jumps (see also Section 2.4). Similarly, if
we describe a Al rule ©: S_, — S, with O(R) C R we eventually obtain a %} set
S =N{S4 : a < wfE}. We consider S, = O%(N<N) as the stage a approzimation
of S in our Al-construction of a 31 set S. Again, this is uniformly relativizable as
above.

There is an important result of recursion theory, known as Spector’s ¥} bounding
principle (admissibility of w{¥). This theorem says that during an enumeration,
on certain conditions, an event will already happen at some stage of computation
(and not only at stage wi!, outside the scope of the enumeration).

Theorem 1.4 (Spector’s bounding principle). If f: N — O4 is a ©1(A) definable
function from N to the ordinals, then it must be bounded strictly below wi*. Here,

OA defines the set of codes for ordinals recursive in A.

We will use this way of defining 1 sets together with Spector’s bounding princi-
ple quite often in this paper. For instance, let us show that there exists a computable
function f such that f(a) is an index for a ¥} set S C N such that:

e if a is an index for a nonempty ¥} set, then S = N,
e if a is an index for an empty ¥} set, then S = (.

Indeed, let a be an index for a ¥1 set E C N, and define f(a) to be the index of
the ¥} set defined by the following co-enumeration: at stage a, do nothing if E,
(E at stage «) is not empty, and remove everything if E, = (.

Let S, be the set of index f(a). If S, is empty, then at some stage «, E, is
empty, so £ = (). Otherwise, suppose that E is empty. Then, we claim that there
must exists a stage a at which E,, is already empty: indeed, consider the function
which to n associates the stage where n is removed is X1, and by Spector’s bounding
principle (Theorem 1.4) let o < w$® be a bound to it. Then, at stage o, E, is
empty and therefore S, is also empty. So S, is empty if and only if E, is empty. To
conclude, it is clear from the definition of S, that if it is nonempty, then S, = N.

An easy but important observation is that this construction is uniformly rela-
tivizable. To proceed the construction (of an inductive operator), we only need the
existence of a bound a < wi!, but do not need to know the value of such an «, and
this fact is ensured by Theorem 1.4; that is, we do not require a uniform version of
Spector’s bounding principle, although it is not hard to see that Spector’s bounding
principle is uniformly relativizable.

2. EQUIVALENCE RESULTS IN THE WEIHRAUCH LATTICE

2.1. X}-Choice Principles. One of the main notions in this article is the Xi-
choice principle. In the context of the Weihrauch degrees, the ¥1-choice principle
on a space X is formulated as the partial multivalued function which, given a code
of a nonempty analytic set A, chooses an element of A.

We fix a coding system of all analytic sets in a Polish space X, and let S, be
the analytic subset of X coded by p € NY. For instance, let S, be the projection
of the p-th closed subset of X x NN (i.e., the complement of the union of all basic
open balls of index p(n) for some n) into the first coordinate (cf. [14]). Such a p is
called an analytic code (or a ¥}-name) of S, and a coanalytic code (or a II{-name)
of the complement of .Sy,.
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The X1 -choice principle on X, £}-Cx, is the partial multivalued function which,
given a code of a nonempty analytic subset of X, chooses one element from X.
Formally speaking, it is defined as the following partial multivalued function:

dom(X}-Cx) = {pe NV: S, # 0},
S1Cx(p) = 5.

For the basics on the ¥1-choice principle on X, see also [14]. In a similar manner,
one can also consider the I'-choice principle on X, I'-Cx, for any represented space
X and any collection I of subsets of X endowed with a representation S:C NN — "
(where we write S, in place of S(p)). We first describe how this choice principle is
related to several very weak variants of the axiom of choice.

In logic, the axziom of ¥ choice, ¥-AC, is known to be the following statement:

Va3db ¢(a,b) — 3fVa p(a, f(a)),

where ¢ is a X formula. If we require ¢ € X and b € Y, the above statement is
written as ¥-ACx _,y. We examine the complexity of a procedure that, given a 1
formula ¢ (with a parameter) satisfying the premise of $1-ACx_,y, returns a choice
for . In other words, we interpret ¥1-ACx _,y as the following partial multivalued
function:

dom(X1-ACx_,y) = {p € NV : Va3b (a,b) € S,},
SI-ACx oy (p) = {f € Y™ : (Va) (a, f(a)) € Sy}

Unfortunately, this interpretation is different from the usual (relative) realizabil-
ity interpretation. However, the above interpretation of X1-ACx _,y is related to
a descriptive-set-theoretic notion known as the generalized reduction property (or
equivalently, the number uniformization property) for 31 (cf. [13, Definition 22.14]).

The equivalence $1-Cy =w $1-AC;_, x is obvious. In this article, we are mainly
interested in countable choice ¥-ACyn_, x. The countable choice principles X-ACy_,n
and 3-ACy_,yv are also known as 2-ACy o and 3-ACy 1, respectively. In the context
of Weihrauch degrees, the interpretation of the countable choice, ¥1-ACy_ x, is
obviously related to the parallelization of the ¥1-choice principle.

—

Observation 2.1. If X is an initial segment of N, then we have ¥1-Cx =w
Y1-ACNS x. O

In logic, the aziom of X1-dependent choice on X is the following statement:
Vadb p(a,b) — Va3f [f(0) = a & Vn o(f(n), f(n+1))],

where ¢ is a ¥i-formula, and @ and b range over X. It is known that dependent
choice is equivalent to the statement saying that if T is a definable pruned tree of
height w, then there is an infinite path through 7. However, this is achieved by
using dependent choice on the set of finite strings of elements of X, X<N. As this
is the principle that is actually used, and the one that makes sense for X being
finite, this is how we define %1-DCy:

dom(X1-DCx) = {p € (NV) : S, € XN is a tree with [S,] # 0},
21-DCx (p) = [S)]

Note that this formulation is different from ¥1-dependent choice on X in the con-
text of second order arithmetic. Indeed, our formulation falls between 1-dependent
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choice and strong ¥1-dependent choice (cf. Simpson [19, Definition VIL.6.1]). Now,
it is easy to see the following:

Proposition 2.2. Cyv =y 31-Cyv =w 21-DCyv =w X1-DCx.

Proof. We prove the following Weihrauch inequality, in their order from left to
rigth: E%-DCN]\' <w E%-CNN <w Gy <w Z%—DCN <w Z%-DCNN.

$1-DCyv <w X}-Cyn: The set of all solutions to an instance of ¥1-DCyn is
obviously Y1 relative to the given parameter, and one can easily find its ¥i-index.

Y1-Cyv <w Cyv: Let P C NN be a X1 set. From its index, one can compute
the index of a closed set @ C NN x NN such that the first projection of Q is P.
Thus, given an element of ), one can find an element of P by applying the first
projection, and Cyn >w 321-Cypn.

Cyv <w X1-DCy: Given a code ¢ of a closed subset Cy of NN, compute a code of
a pruned ¥ tree T such that C, = [T] (which is given by o € T iff C;, contains an
extension of o). Then, let o7 (0o, 7) be the formula expressing that 7 is an immediate
successor of o in T. Moreover, (p, ¢, ) where S, = NN and S, = {{0,7) : or(0,7)}
satisfies the premise of £1-DCy since T is pruned. Let f be a solution to this instance
of £}-DCy. Since T is pruned, f must be a path through 7.

¥1-DCy <w ¥1-DCyn: This is obvious as N can be computably embedded in
NN, O

2.2. Compact Choice Principles. According to the Arsenin-Kunugui uniformiza-
tion theorem (cf. [13, Theorem 18.10]), the choice principle for o-compact A} sets
is much simpler than the one for arbitrary A} sets. We are interested in whether
an analogous statement holds for ¥}-choice, while we know that even compact
Y1-choice does not admit a Borel uniformization.

We now consider subprinciples of the 31 choice principle by restricting its do-
main. Recall that S, is the analytic set in X coded by p € NV. Let R be a collection
of subsets of X. Define ¥1-Cx [, the Xi-choice principle restricted to sets in R,
as follows:

S1-Cx g :C NV = X,
dom(Xi-Cx [) = {peNV: S, £ 0 and S, € R},
E%-CX = () = Sp

First, we consider the ¥} choice principle restricted to compact sets, that is, we
define compact X1 -choice, ¥1-KCx, as follows:

Y1-KCx = %}-Cx [{ACX:A is compact}.

In other words, the Yi-compact choice principle, ¥£1-KCy, is the multivalued
function which, given a code of a nonempty X1 set which happens to be compact,
chooses one element from the set. As the code contains no information about
compactness, the principle of compact i choice on NN should be considered as a
Yl-version of Kénig’s lemma rather than of weak Konig’s lemma. In contrast, a
Y1-version of weak Konig’s lemma and related principles are studied in [14]; e.g.,

e The principle ©1-WKL, the weak Kénig’s lemma for Yi-trees, is the partial
multivalued function which, given a ¥1-name of a binary tree T C 2<V,
chooses an infinite path through 7.



8 PAUL-ELLIOT ANGLES D’AURIAC AND TAKAYUKI KIHARA

e The principle I1}-Sep, the problem of separating a disjoint pair of 11} sets,
is the partial multivalued function which, given a IIi-name of a pair of
disjoint sets A, B C N, chooses (the characteristic function of) a set C' C N
separating A from B, that is, A C C and BN C = 0.

Here, recall that p is called a ¥{-name of S,, and a II{-name of its complement.
Observation 2.3. ¥1-DC; =y X{-WKL. O

Note that in [14, Lemma 4.6] these principles are shown to be equivalent to the
parallelization of two-valued Y1 choice:

Fact 2.4 (Kihara-Marcone-Pauly [14]). Z/%—\Cg =w I11-Sep =y X1-WKL.

Although Konig’s lemma and weak Konig’s lemma are different in the com-
putability theoretic context, these are equivalent modulo some arithmetical power.
Using this observation, we now see that the X1 versions of Kénig’s lemma and weak
Konig’s lemma are computably equivalent, and thus, the principles mentioned in
2.4 are equivalent to ¥1-compact choice.

Proposition 2.5. Y1-KCyi =y Z1-ACy_2 =w B1-WKL =y X1-DCs.

Proof. By Observation 2.1, we have ¥1-Cy = Y1-ACy_2. By Fact 2.4, 31-ACy_.2 =w
$1-WKL. By Observation 2.3, we have ¥1-WKL =y %1-DC,.

It remains to show that these are equivalent to the ¥} compact choice principle.
First note that the reduction ¥1-WKL < X1-KCyn is obvious, as if 7' C 2N is ¥},
then [T is compact and 1. For the converse, we claim that if a set A C NV is %1
and compact then it is arithmetically isomorphic to a closed set B C 2N,

So suppose that A is ¥} and compact. First, it is clearly closed, so let T4 € N<N
be a ¥} tree such that A = [T4] and T4 has no dead-end; that is, T is defined
as o € Ty iff 3X » o with X € A. By compactness and the fact that the
tree is pruned, for every o € N<N| there exists finitely many i € N such that
07 € Ta. We define Tg by Vo € 2<N, ¢ € T if and only if 37 € T4 such that
o < 077107 ...07U7I=D1, Then, the transformation Tz — T4 is computable,
while Ty — Tp is T-computable; hence B = [Tg] is arithmetically isomorphic to
A.

In particular, B is X1, and moreover, from the above explicit definition of Tg,
one can effectively compute a ¥1-code of B from a given Yi-code of A. It is easy
to compute an element of A from a given element of B. This argument shows that
Y1WKL =y 21-KCyp. O

Next, we show that the compact $1-choice principle is also Weihrauch equivalent
to the following principles:

e The principle I1}-Toty, the totalization problem for partial 11} two-valued
functions, is the partial multivalued function which, given a ITi-name of
(the graph of) a partial function ¢: C N — 2, chooses a total extension
f:N—=2of ¢

e The principle ITI}-DNCy, the problem of finding a two-valued diagonally non-
I} function, is the partial multivalued function which, given a II}-name of a
sequence of (the graphs of) partial functions (p.)een, chooses a total func-
tion f: N — 2 diagonalizing the sequence, that is, f(e) # p.(e) whenever
©e(e) is defined.
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The latter notion has also been studied by Kihara-Marcone-Pauly [14, Section
4.2]. The former notion is easily seen equivalent to II}-Sep, which has also been
studied in [14], with the advantage of being generalizable to N. The following propo-
sition is a consequence of [14, Theorem 4.3, Proposition 4.5] and Observation 2.1:

Proposition 2.6. ©}-ACy_,o =w II}-Toty = I1}-DNC,.

A set is o-compact if it is a countable union of compact sets. By Saint Raymond’s
theorem (cf. [13, Theorem 35.46]), any Borel set with o-compact sections can be
written as a countable union of Borel sets with compact sections. In particular, a
Borel code for a o-compact set S can be computably transformed into a sequence
of Borel codes of compact sets whose union is S. However, there is no analogous
result for analytic sets (cf. Steel [21]). Therefore, we do not introduce o-compact
¥1-choice as

E%_CX F{AQX:A is o-compact}.

Instead, we directly code an analytic o-compact set as a sequence of analytic
codes of compact sets. In other words, the o-compact ¥.1-choice principle, ¥1-K,Cx,
is the partial multivalued function which, given a ¥}-name of a sequence (.S, )nen of
compact sets such that at least one is nonempty, chooses an element from ( J,, .y Sn-
Equivalently (modulo Weihrauch equivalence), one can formalize ¥1-K,Cyn as the
compositional product X1-KCyn + $1-Cy:

Lemma 2.7. 2%—KUCNN =W E%—KCNN * E%—CN.

Proof. We start by proving $1-K, Cyv <w X1-KCpnx31-Cy. Given a sequence (Sy,)
of compact X sets, first use ¥1-Cy to get n with S,, # () (as the set {n € N: 3z €
S,} is X1), and then X1-KCqyn to choose an element of S,,.

For the converse direction, let ((S,)nen, P) be an instance of $1-KCyn % 31-Cy,
that is, for any n S, is a X1 set which is non-empty and compact whenever n € P.
Let S, be the X! set defined by € S, if and only if n € P and 2 € S,,. The
collection (S‘n)neN is an instance of E%—KUCNN, and any solution for it is a solution
for the initial instance (S, )nen, P- O

2.3. Restricted Choice Principles. Next, we consider several variations of the
axiom of choice for ¢:

(1) The axiom of unique choice: If for any a € X, {b: ¢(a,b)} is a singleton,
then there is a choice function for ¢, that is, 3fVa ¢(a, f(a)).

(2) The axiom of finite choice: If for any a € X, {b: ¢(a,b)} is nonempty and
finite, then there is a choice function for ¢, that is, fVa p(a, f(a)).

(3) The axiom of cofinite choice: If for any a € X, {b: ¢(a,b)} is nonempty
and cofinite, then there is a choice function for ¢.

(4) The axiom of finite-or-cofinite choice: If for any a € X, {b : p(a,b)} is
nonempty and either finite or cofinite, then there is a choice function for ¢.

(5) The axiom of all-or-finite choice: If for any a € X, {b: p(a, b)} is nonempty
and is either equal to X, or finite, then there is a choice function for ¢.

(6) The axiom of all-or-unique choice: If for any a € X, {b : ¢(a,b)} is
nonempty and is either equal to X, or a singleton, then there is a choice
function for .

(7) The axiom of total unique choice: There is a function such that whenever
{b: p(a,b)} is a singleton, for a € X, we have ¢(a, f(a)).
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The last notion is a modification of a variant of hyperarithmetical axiom of
choice introduced by Tanaka [22] in the context of second order arithmetic, where
the original formulation is given as follows:

32vn 3 Xe(n,X) — o(n, Z,)],

where ¢ is a X1 formula. We will only consider the above principles restricted to
countable domains; that is, the principles of countable choice.

2.3.1. Restricted single choice. As in Observation 2.1, we may interpret these ax-
ioms of countable choice as parallelization of partial multivalued functions. To do
so, we define:

$1-UCx = S1-Cx [{acx:jaj=1}
$1-C = 21-Cx
$1-C¥ = 5]-Cx

{ACX:A is finite}

{ACX:A is cofinite}s

1_cfoc 1
El'c = 21‘CX r{AgX:A is finite or cofinite}s

1_caof 1
Y1-CX'= X1-Cx [{ACX:A=X or A is finite}»

B1-CR" = S1-Cx [{ACX:A=X or |A|=1}.

Note that the all-or-unique choice is often denoted by AoUCx instead of C3Y,
cf. [15]. In order to interpret the axiom of total unique choice as a multivalued
function, we introduce the totalization of the ¥.1-choice principle (restricted to R)
on X. Recall that S, is the analytic set in X coded by p € NN. Then we define

Y1.Cet IR as follows:
»i-C¥ g NV = N,
dom(X1-C%t [z) = NN,

S if S, eR
ZI—CtOt _ i4 i4 )
17CX = (P) {X otherwise.

Roughly speaking, if a given ¥} set S is nonempty and belongs to R, then any
element of S is a solution to this problem as a usual choice problem, but even if a
set S is either empty or does not belong to R, there is a need to feed some value,
although any value is acceptable as a solution.

In second order arithmetic, the totalization of dependent choice is known as
strong dependent choice (cf. Simpson [19, Definition VII.6.1]). Here we consider the
totalization X1-UC'Y" of 21-UCyw, which can be viewed as the multivalued version
of the axiom of total unique choice mentioned above:

S1-UCR' = B1-C% Tscmmys|=1}

2.3.2. Restricted countable choice. Hereafter, we will consider several restrictions
of ¥} countable choice and ¥} dependent choice for numbers. Recall from Obser-
vation 2.1 that ¥1-ACy_,y can be identified with the parallelization of ¥}-Cy, and
from Proposition 2.2 that X1-DCy can be identified with 31-Cy.

Definition 2.8. We define several versions of axiom of choice where the set we
have to choose from are restricted to special kinds:

E%'ACIXIAN = E/%_C\Izl
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where V € {fin, cof, foc, aof , aou} respectively corresponding to “finite”, “cofinite”,
“finite or cofinite”, “all or finite” and “all or unique”. We will also consider the
Dependent Choice with the same restricted sets:

$1-DCY = 31-Cr [{(7):voeT, {nio~neT} is v} -

where v € {fin, cof, foc, aof,aou} has the same meaning. For any o € N<N a string
corresponding to a choice for the previous sets, {n : ¢”n € T} corresponds to the
next possible choice, and this set has to satisfy the condition specified by V. Note
that it corresponds to a particular formulation of 1 dependent choice, as explained
just before Proposition 2.2.

In the following, we will say that a tree T' is homogeneous if the set [T] of all
infinite paths through 7' is equal to some [], o\ A, that is [T] is truly an instance
of the axiom of choice. In other words, a homogeneous tree T is a tree where the set
{n € N:o"n € T} depends only on |o| when ¢ € T. Note that if T is homogeneous
then the set H := [T satisfies the following property: We have h € H iff Vi € N,
3f € H with h(i) = f(3).

2.3.3. Weihrauch equivalences. Among others, we see that “all-or-unique” choice is
quite robust. Recall from Proposition 2.6 that the IT}-totalization principle ITi-Toty
and the IIi-diagonalization principle IT3-DNCy restricted to two valued functions
are equivalent to the ¥} compact choice principle. We now consider the N-valued
versions of the totalization and the diagonalization principles:

e The principle ITi-Toty, the totalization problem for partial 11} functions, is
the partial multivalued function which, given a II3-name of (the graph of)
a partial function ¢:C N — N; chooses a total extension of .

e The principle II}-DNCy, the problem of finding a diagonally non-II3 func-
tion, is the partial multivalued function which, given a Il}-name of a se-
quence of (the graphs of) partial functions (¢e)een, chooses a total function
f: N — N diagonalizing the sequence, that is, f(e) # p.(€) whenever ¢, (e)
is defined.

It is clear that II3-DNCy <w II}-DNCy =w II}-Tot, <y II}-Toty. One can
easily see the following.

Proposition 2.9. X1-ACY"  =w 11} -Toty.

Proof. The argument is almost the same as Proposition 2.6. Given a II}-name of
a partial function ¢, define S, = {a : ¢(n) | = a = p(n)}, which is uniformly
Y1 (relative to the given name). Clearly, either S,, = N or S, is a singleton.
Hence, the all-or-unique choice principle chooses an element of S,,, which produces
a totalization of ¢.

Conversely, we first claim that for a ¥ set S = {5, : @ < WX} (which is
induced from a given II} norm as explained in Section 1.2), if S is a singleton, say
S = {n}, then there is a < w{¥ such that S, = {n}. This is because, for any
m # n, we have m € S = [, Sa, so there is a smallest a(m) < w{™ such that
m & Sa(m)- As ais a Al function, by Spector bounding (Theorem 1.4), we must
have o = sup, , 4, a(m) < w{’®. Then S, = {n}, which verifies the claim.

Now, for the n-th ¥} set S,, C N with a A}l-approximation (S, )
define a Al sequence (f,) of partial functions on N. First, let fo be the empty
function, and then wait until S,, , becomes a singleton (which is a A} property as

a<wCK, we
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Sn.o is Al) at some stage a < wlK, say S, o = {s,}. If it happens, we define
fa(n) {= sp; otherwise fq(n) 1. We eventually obtain (an index of) a partial
function f with a II} graph (i.e., a partial II1 function), which satisfies f(n) = s,
whenever S,, = {s,,} by the above claim. In particular, for any total extension fof
f, we have f(n) € S, whenever S, = N or S, is a singleton.

Now, the construction (i.e., the inner reduction) from S to f is clearly uniform,
and relativizable (see also the argument in Section 1.2). The outer reduction is
trivial. Therefore, these give a Weihrauch reduction. O

We now show that all-or-unique choice is also Weihrauch equivalent to total
unique choice.

Proposition 2.10. Let X be a Al subset of N. Then, $1-UCY =y X1-C3u.

Proof. We start by proving that $1-UC'Y" <w X1-C3. Consider the following
computable inner reduction, which given an index for a X} set S = ({Ss : @ <
w{E}, output an index for the following i set R C X (that we describe as a
co-enumeration along w{X): First R does nothing until an ordinal stage where
(the co-enumeration of) S is a singleton; that is, for each stage a@ < w{¥, check
if the A} set S, is a singleton or not (which is a Al property). If it happens, R
removes all integers so that R, = S,; if not, we keep R, = X. Since either R = X
or R is a singleton, R is an instance of £1-UC". By the claim in the proof of
Proposition 2.9, if S is a singleton then it is witnessed at some stage before w$¥ and
so R = S; therefore, the identity map trivially gives an outer reduction. Moreover,
the construction is effective; that is, given a Y1-code of S, one can effectively find
a Li-index of R.

We now prove that $1-C34 <\, Z1-UCY'. Every instance of %1-C3¢" is an in-
stance of £1-UC'Y" with the same solution, so this is trivial. O

In particular, the totalization of two-valued unique choice is equivalent to the
compact choice.

Corollary 2.11. X1-UCY* =y 21-KCyn.

Proof. Tt is clear that $1-C3° = X1-Cy, so X1-C3% =y 21-C, =w L1-ACy,2 by
Observation 2.1. Thus, the assertion follows from Fact 2.4 and Proposition 2.5 O

2.4. Arithmetical Transfinite Recursion. In reverse mathematics, the axiom of
Y1-choice is known to be weaker than the arithmetical transfinite recursion scheme
ATRg (cf. [19, Section VIIL.4]). However, an analogous result does not hold in
the Weihrauch context. The purpose of this section is to clarify the relationship
between the ¥}-choice principles and the arithmetical transfinite recursion principle
in the Weihrauch lattice.

Kihara-Marcone-Pauly [14] first introduced an analogue of arithmetical transfi-
nite recursion, ATRg, in the context of Weihrauch degrees, and studied two-sided
versions of several dichotomy theorems related to ATRg, but they have only con-
sidered the one-sided version of ATRj. Then, Goh [9] introduced the two-sided
version of ATR( to examine the Weihrauch strength of Konig’s duality theorem for
infinite bipartite graphs. Roughly speaking, the above two Weihrauch problems are
introduced as follows:
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e The one-sided version, ATR, by [14] is the partial multivalued function
which, given a countable well-ordering <, returns the jump hierarchy for
<

e The two-sided version, ATRz, by [9] is the total multivalued function which,
given a countable linear ordering <, chooses either a jump hierarchy for <
or an infinite <-decreasing sequence.

Here, a jump hierarchy for a partially ordered set (P, <p) is a sequence (Hp)pep
of sets satisfying the following property: For all p € P,

Hy= @ Hy,
q<pp
where @,, S,, denotes the usual Turing join (i.e., the coproduct) defined by @,, S, =
{(n,z) : x € S,,}, and H' denotes the Turing jump of H. Note that the definition
of a jump hierarchy is clearly described by an arithmetical condition. For more
details, see also Sacks [18, Section II.4].

Even if < is not well-founded, some solution to ATR3(=<) may produce a jump
hierarchy for < (often called a pseudo-hierarchy) by Harrison’s well-known result
that there exists pseudo-well-orders which admit a jump hierarchy (but in this
case the jump hierarchy is not necessarily unique). Regarding ATRy, we note that,
sometimes in practice, what we need is not a full jump hierarchy for a pseudo-
well-ordering, but a jump hierarchy for an initial segment of < containing its well-
founded part. Therefore, we introduce another two-sided version ATRs: as follows:

Let L be a linearly ordered set. The well-founded part of L is the largest initial
segment of L which is well-founded. We say that an initial segment I of L is large
if it contains the well-founded part of L.

We consider a variant of the arithmetical transfinite recursion ATRs/, which
states that for any linear order <, coded by «x, one can find either a jump hierarchy
for a large initial segment of <, or an infinite <, -decreasing sequence:

ATRy/(x2) = {07 H : H is a jump hierarchy for a large initial segment of <}
U {17p: p is an infinite decreasing sequence with respect to <, }.

Seemingly, ATRy: is completely unrelated to any other choice principles. Sur-
prisingly, however, we will see that the parallelization of ATRy is arithmetically
equivalent to the choice principle for ¥}-compact sets. We say that f is arithmeti-
cally Weihrauch reducible to g (written f <&, g) if we are allowed to use arithmetic
functions H and K (i.e.,, H, K <w 1lim™ for some n € N) in the definition of
Weihrauch reducibility.

Theorem 2.12. ATRy =G YLKy =G, D1-ACKY =6, S1-ACK .
We divide the proof of Theorem 2.12 into two lemmas.

Lemma 2.13. ATRy <@ 31-KCyn.

—

Proof. By Corollary 2.11, it suffices to prove ATRy <, ¥1-UCY". Fix z a code for
a linear order. Given n € N, let JH,, be the set of jump hierarchies for <[, (where
=<l is the restriction of <, up to {y : y <, n}). Note that {(n,H) : H € JH,} is
arithmetical (since the definition of a jump hierarchy is described by an arithmetical
condition as mentioned above). For a,k € N, if a <, n then we consider the set
Sty of all possible values of H,(k), the k-th value of the a-th level of H, for some
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jump hierarchy H € JH,, ie., Sy, = {Ha(k) : H € JH,}. If a A, n then
put S, = {0}. Clearly, Sy g is Y1 uniformly in n,a, k, and therefore there is a
compufable function f such that S is the f(n,a, k)-th X1 set. Note that if <./, is
well-founded, then the product S™ :=[] (a,k) Sk essentially’ consists of the unique

a
jump hierarchy for <,[,,. In particular, S is a singleton for any a <, n and k € N
whenever <[, is well-founded.

Given p ok € Y1-UCY*(f(n,a,k)) (that is, pnax € St whenever S, is a
singleton), define H,, = ®{<a7k>:a<mn} Dn.,ak- Note that if n is contained in the
well-founded part of <., then H, must be the jump hierarchy for <,[,,. By using
arithmetical power (being a jump hierarchy is a IS statement), first ask if H,, is
a jump hierarchy for <[, for every n. If yes, @, H, is a jump hierarchy along
the whole ordering <,. In particular, the whole ordering includes the well-founded
part of <., and therefore is large.

If no, we claim that there is no < -least n such that H,, is not a jump hierarchy
for <,[,. Indeed, suppose there exists one, then obviously n is not contained in the
well-founded part of <,. Hence, <,[, is a large initial segment of <,. Moreover,
by minimality of n, every H; for j <, n is a jump hierarchy, so by definition of a
jump hierarchy, {H} : j <, n} is the jump hierarchy for <,[,,. But then, none
of the S, are empty, and H, must be a jump hierarchy for <,[,, a contradiction
proving the claim.

Let jo be the <y-least number such that Hj, is not a jump hierarchy for <[},
and jni1 <z Jn be the <y-least number such that Hj,  , is not a jump hierarchy
for <4|;,.,. Finding such a sequence is A%, so one can arithmetically find such an
infinite sequence (j,)nen, which is clearly decreasing with respect to <. O

Lemma 2.14. ¥1-C3f <g ﬁR\Ql

Proof. First, consider a computable instance S of ¥1-C2f. Let <,, be a linear order
on an initial segment L, of N such that n € S iff <,, is ill-founded. Let H,, be a
solution to the instance <, of ATRy/. Ask the arithmetic question whether there
exists n such that H,, is an infinite decreasing sequence w.r.t. <,. If so, one can
computably find such an n, which belongs to S. Otherwise, each H,, is (essentially)
a jump hierarchy along a large initial segment J,, of L,. In an arithmetical way, one
can obtain J,,. Then ask if L, \ J,, is nonempty, and has no <,-minimal element.
If the answer to this arithmetical question is yes, we have n € S.

Thus, we are left with the case where for any n either L,, = J, holds or L, \ J,
has a <,-minimal element. In this case, if n € S then J, is ill-founded. This is
because if J,, is well-founded, then J,, is exactly the well-founded part of L,, since J,,
is large, and thus L, \ J, is nonempty and has no <,-minimal element. Moreover,
since J,, admits a jump hierarchy while it is ill-founded, J, is a pseudo-well-order;
hence H,, computes all hyperarithmetical reals (see [6]). Conversely, if n ¢ S then
H,, is a jump hierarchy along the well-order J,, = L,,, which is hyperarithmetic.

Now, ask if the following (H,,),ecn-arithmetical condition holds:

(1) (30)(Vj) H; 1 Hj.

By our assumption that S # 0, there is k € S, so that H; computes all hyper-
arithmetic reals. Therefore, if (1) is true with witness ¢, the hierarchy H; cannot

11t coincides in the domain of <z[n, however for a Az n, we have S(’;k = {0}.
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be hyperarithmetic; hence i € S. Then one can arithmetically find such an 4. If (1)
is false, for any ¢ there is j such that H; <¢ H;. In this case, start from i :=%k € S,
and obtain an infinite sequence jo, j1, j2,... such that Hy <7 Hj, <¢ Hj, < ....
Since Hj computes all hyperarithmetical sets, H;,_ is not hyperarithmetical for any
n, i.e., j, € S. This implies that S is an infinite set. However, by our assumption,
if S is infinite, then S = N. Hence, any i is solution to S.

Finally, one can uniformly relativize this argument to any instance of Z%—Cf\?f. O

Proof of Theorem 2.12. By Lemma 2.13, /ﬁR\g/ < E%N. By Corollary 2.11,

Y1-KCxw =w T1-UCKY* =y 21-UCY* = 21-KCxn. By Proposition 2.10 and Defini-
tion 2.8, 1-UCY* =y $1-C3" =y S1-ACKY .
Clearly, D1-ACX  <w Z1-AC¥' ., as witnessed by the identity reductions. By
Definition 2.8 and Lemma 2.14, £1-ACZ | = £1-C2f <¢ ATRy = ATRy.
(Il

One can also consider a jump hierarchy for a partial ordering. Then, we consider
the following partial order version of Goh’s arithmetical transfinite recursion. Let
(<z) be a coding system of all countable partial orderings.

ATRY°(z) = {0 H : H is a jump hierarchy for <, }

U {17p: p is an infinite decreasing sequence with respect to <, }.

Note that ATR5(x) is an arithmetical subset of NY. Obviously,

ATR <w ATRy <w ATR, <y ATR® <y Z1-Cyr.

This version of arithmetical transfinite recursion directly computes a solution to all-
or-finite choice on the natural numbers without using parallelization or arithmetical
Weihrauch reductions.

Proposition 2.15. $1-C3f <,y ATRE®.

Proof. Let S be a computable instance of $1-C3f. Let T}, be a computable tree
such that n € S iff T}, is ill-founded. Define

T=00U, T, ={{),(0),(00)} U{{00n)o : 0 € T}, }.

Let i”H be a solution to the instance 7' (ordered by reverse inclusion) of ATRE®.
If i =1, i.e., if H is an infinite decreasing sequence w.r.t. T', then this provides an
infinite path p through 7. Then, choose n such that 00n < p, which implies T;, is
ill-founded, and thus n € S. Otherwise, ¢ = 0, and thus H is a jump hierarchy for
T. We define H}; = H o). Note that if n ¢ S then H}; is hyperarithmetic, and if
n € S then H} computes all hyperarithmetical reals. By the definition of a jump
hierarchy, we have (H})” <7 H. Thus, the following is an H-computable question:

(2) (30)(Vj) Hi #£r Hj.

As in the proof of Lemma 2.14, one can show that if (2) is witnessed by ¢ then
i € S, and if (2) is false then any ¢ is a solution to S. As before, one can uniformly
relativize this argument to any instance S. ]

Question 2.16. ATR; ={, ATRy =5, ATR®?
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3. AN ANALYSIS OF THE ANALYTIC AXIOMS OF CHOICE AND DEPENDENT CHOICE

In this section, we investigate the structure of different restrictions of the axiom of
analytical choice under the Weihrauch reducibility. We compare the dependent and
independent axiom of choice for the various restrictions, and the relative strength
of the restrictions.

We show both Weihrauch reductions and non reductions. A powerful tool for
proving the latter is Medvedev reduction, introduced in [10] to classify problems
according to their degree of difficulty, as for Weihrauch reducibility. However, when
Weihrauch reducibility compare problems that have several instances, each of them
with multiple solutions, Medvedev reducibility compare “mass problems”, which
correspond to problems with a single instance. A mass problem is a set of functions
from natural numbers to natural numbers, representing the set of solutions. For
two mass problems P,Q C NN, we say that P is Medvedev reducible to Q if every
solution for ) uniformly computes a solution for P.

Definition 3.1 (Medvedev reduction). Let P,@Q C NN be sets. We say that P
is Medvedev reducible to @, written P <j,; @Q if there exists a single computable
function f such that for every z € Q, f(x) € P.

If P:C X = NV is now a Weihrauch problem, that is a partial multivalued
function, then for any instance x € X, one can consider the mass problem P(z)
(the set of all solutions of the z-th instance of P). Then, if P <y @, then for
every computable instance x of P, there is a computable instance y of @) such that
P(z) <p Q(y). Using Medvedev reducibility, we are able to compare the degree
of complexity of different instances of the same problem, and we will be interested
in the structural property of their complexity: Given a Weihrauch problem P, we
define the Medvedev partial order of P to be the partial order of Medvedev degrees
of P(z) for all computable instances « € dom(P), under the Weihrauch reduction.
We will see below Definition 2.8 that when P corresponds to a restriction of the
axiom of choice, the corresponding partial order is an upper semi-lattice, while when
it corresponds to a restriction of the axiom of dependent choice, the corresponding
partial order is a lattice. For instance, P = X1-DCy yields the Medvedev lattice of
Y1-closed sets, which is interesting in its own right.

We will be mainly interested in the existence of maximal elements of Medvedev
semi-lattices of P, for P being various choice problems, as it can be used to
Weihrauch-separate two problems. Suppose that P <y @ and the Medvedev
semi-lattice of () has no maximal element, while the Medvedev semi-lattice of P
has one. Then, we have P <y @Q: Let € dom(P) be any computable instance
realizing a maximal Medvedev degree in P, and take y € dom(Q) computable such
that P(x) <pr Q(y) (as P <y @). By the fact that @ has no maximal element, let
z € dom(Q) be computable and such that Q(z) > Q(y). Then, it cannot be that
there is t € dom(P) computable such that P(t) > Q(z), as it would contradict
maximality of x. Therefore, z is a witness that P <y Q.

Throughout this section, we use the following abuse of notation.

Notation. Given a Weihrauch problem P, we abuse notation by writing “A € P”
or “A in P” to mean that A is a computable instance of P, that is, A = P(z) for
some computable x € dom(P).

Given V € {fin, cof, foc, aof,aou}, the partial order on the computable instances
of £1-ACY_,y under Medvedev reducibility form an upper semi-lattice. Indeed, if
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A=T], A, and B = [[,, B,, are two computable instances of £1-ACy_,y, then C =
[L, Cn where Cs, = A, and Cs,41 = B,, is a computable instance of E%—ACKMN
which is a least upper bound of A and B. Similarly, the partial order on the
computable instances of ©}-DCy, under Medvedev reducibility form a lattice: If A
and B are instances of ¥1-DCY, then C = {r e NN . g5 : n > 7(2n) € AN oy :
n + 7(2n + 1) € B} is a computable instance of ¥}-DCY which is a least upper
bound of A and B, and for v € {fin,foc,aof} (respectively V € {cof,aou}) the
set D =0"AU1"B (respectively D = |J,,(2n"A) U (2n + 17 B)) is a computable
instance of ¥1-DCy| which is a greatest lower bound for A and B.

This structural difference imply that no matter the restriction on analytical AC
and DC, the corresponding semi-lattices will always be different under Medvedev
reducibility, as there exists two homogeneous sets whose product is not Medvedev
equivalent to a homogeneous set.

Proposition 3.2. For every v € {fin, cof, foc, aof ,aou}, there exists A € %1-DCY]
such that there is no B € X}1-AC{_,y with A =y B.

Proof. Simply take A and A; in 1-AC", o with are not Medvedev equivalent,
and consider C' = 0" AyU1" A4, which is in Z%—DCRI". Now, toward a contradiction,
suppose also that there exists H in E%—AC%LN (actually there is no need for H to
be 1) such that C =p; H. Let ¢ and 1 be witness of this, i.e ¢ (resp. 1) is total
on C (resp. H) and its image is included in H (resp. C).

Now, we describe a way for some A; to Medvedev compute A;_;: Let i € 2 and
o be extendible in H such that ¢7(0) = 1 —i. Given = € A;, apply ¢ on i"z to
obtain an element y of H. Define y to be y with its beginning replaced by . Then,
by homogeneity, ¥ is still in H, so ¢(y) has to be in (1 —i)"A;_;.

For other values of V, the proof is exactly the same or very similar. O

Note that the above proof used the fact that there always exists infimum in
»1-DCyY while this is not clear in X1-ACY_y-

3.1. Axioms of finite analytic choice. We already have defined Y1-KCy in
Section 2.2, which is clearly the same problem as E%—DC{\'{' up to the coding of the
instance. Using our previous work, we show that the finite choice can always be

weakened to independent choice over 2 possibilities:
Theorem 3.3. Y1-AC, =, 21.DC" =, B1-WKL.

Proof. First, it is clear that we have »1-ACi, | <w 21-DCEM. Up to the coding of
the instance, we also have ©1-DCR" =\ $1-KCy. By Proposition 2.5, Y-KCyw =w
1-ACx_2 =w Z1-WKL. But clearly, 21-ACy_» <w Z1-ACH .

O

In the following, we are interested in a finer analysis of $1-ACR", \ and $1-DCf
using Medvedev reducibility. In particular, we show that both of these semi-lattices
admit a maximal element: Indeed, we show that there is a single nonempty compact
homogeneous Y set coding all information of nonempty compact X1 sets. This
can be viewed as an effective version of Dellacherie’s theorem (cf. Steel [21]) in
descriptive set theory.

Theorem 3.4. There exists a mazimum in the Medvedev semi-lattices of $1-ACR,
and X1-DCAN,
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Proof. To construct a greatest element in E%—DCK{’, by Proposition 2.5, we only
need to enumerate all nonempty compact X} subsets of 2V. Let S, be the e-th X1
subtree of 2<N. Then, consider a Al co-enumeration (S, ,) cx of Se (induced
from a IIi-norm, as explained in Section 1.2). If [S,] is empty, by compactness, S,
is finite.

If S, is finite, we claim that there is o < w{¥ such that S, is finite, and
the least such « is a successor ordinal. To see this, first note that for each o €
2<N\ S, there is a(0) < w® such that 0 & S, o(s). Now, 2<N\ S, is cofinite,
and in particular, computable, so by Spector bounding (Theorem 1.4), we have
a = sup{a(o) : 0 € 2N\ S} < w{K. For the second assertion of our claim, by
minimality of «, we have [S. 5] # 0 for any 8 < «, and moreover, if « is a limit
ordinal, then [S, o] = ([Sc,am]- However, by compactness, this intersection is
nonempty, which contradicts our choice of a.

Now we construct a uniform A} approximation of a sequence (T}).cn of nonempty
Y1 sets such that if [S.] # 0 then T, = [S.]. Define T, o = 2%, and for any a > 0,
Teo = [Sea] if [Sea] # @ (which is a I19(S, ) property by compactness, so in
particular A}). If & > 0 is the first stage such that [S. o] = 0, then, by the above
claim, « is a successor ordinal, say &« = 8+ 1. In this case, define T, ., = T, g for
any v > «, and end the construction. By minimality of «, we have T, g # () since
B < . Then consider T, = [, T¢,a, and it is not hard to check that the sequence
(T%:)cen has the desired property. It is easy to check that this argument is uniformly
relativizable to any oracle. .

As a maximal instance of $1-DCHM it suffices to take the one consisting of the
product of all T,.. Note that by Theorem 3.3 this also shows the maximality result
for ©1-ACH . 0

a<w

As a special property of ] compact sets, we have the following analog of the
hyperimmune-free basis theorem. For p,q € NN we say that p is higher Turing
reducible to q (written p <,r q) if there is a partial IT3-continuous function ®: C
NN — NN such that ®(g) = p (see Bienvenu-Greenberg-Monin [1] for more details).
Here, ® is IIj-continuous if ®(q)(n) J= m is a I} relation.

Lemma 3.5. For any X1 compact set K C NY there is an element p € K such that
every f <pr p is majorized by a A} function.

Proof. Let (¢.) be a list of higher Turing reductions. Let Ky = K. For each e, let
Qen ={z € NN : 2 (n) 1}. Then Q. , is a X1 closed set. If K. NQ.., is nonempty
for some n, define K11 = K. N Qe for such n; otherwise define K.y, = K.. Note
that if K. N Q. is nonempty for some n, then 92 is not total for any x € K.
If Ko N Qe is empty for all n, then 9. is total on the ¥{ compact set K., one

can find a A} function majorizing % for all z € K, (cf. the proof of [I4, Lemma
4.7]). Define K, = ,, K, which is nonempty since K, is compact. Then, for any
p € Ko, every f <,r p is majorized by a A} function. O

Note that continuity of higher Turing reduction is essential in the above proof.
Indeed, one can show the following:

Proposition 3.6. There is a nonempty X1 compact set K C NN such that for any
p € K, there is f <p p’ which dominates all Al functions.

Proof. Let (p¢) be an effective enumeration of all partial IT] functions ¢.:C N — 2.
As in the argument in Proposition 2.6 or Proposition 2.9, one can see that the set
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S, of all two-valued totalizations of the partial IT} function ¢, is nonempty and
¥{. Then the product K = [], S is also a nonempty X} subset of 2V. It is clear
that every p € K computes any two-valued total A} function, so (non-uniformly)
computes any total Al function on N. Let BB be a total p’-computable function
which dominates all p-computable functions. In particular, BB <7 p’ dominates
all Al functions. O

3.2. Axioms of all-or-finite and all-or-unique analytic choice. We now dis-
cuss choice when the sets from which we choose can be either everything, or finite.
We will show that under the Weihrauch scope, this principle is a robust one, in the
sense of having multiple characterization, that is strictly above E%—DCR{’. It also
share with the latter that dependent and independent choice are equivalent and the
existence of a maximal element containing all the information, with very similar
proof as for L1-DC".

In Proposition 2.9, we hinted that ©}-AC{" is robust. We give two other
evidences of this in the following theorems.

Theorem 3.7. E%—ACR&N =w 2{-ACY N

Proof. Tt is clear that S1-ACZ’ > D1-ACE 4, by the identity function. It re-
mains to prove $1-ACY, v <w T1-ACy. Let A =], A, € 21-ACY' . We define
uniformly in A the set B =[], ,, By' such that A <)/ B and B € S-AC -
We will ensure that there exists a single computable function ® such that for any
m and X € [[,, B™ we have ®X € A,,.

We first describe the co-enumeration of B)'. Let (A,.q)

mation of A,, C N (induced from a IT}-norm, as explained in Section 1.2). First,
wait for the first stage where A,, is finite (if this never happens then B]* = N).
Here note that if A,, is finite then its finiteness is witnessed at some stage before
wiE by Spector bounding (Theorem 1.4) as seen in the proof of Theorem 3.4. If
it happens, wait for exactly n additional elements to be removed from A,,. If this
happens, let B/ = {c¢} where ¢ is the code for the finite set A,, at this stage a,,.
More formally, we suppose that in the co-enumeration of A,, at most one element
is removed at each stage, and we let oy be the least stage such that A,, o, is finite,
and ap41 be the least stage such that Ay, o, ., € Am,a, if it exists. Then, let D,
be the finite set coded by e, and set B = {c¢} with D, = A, a,,-

Now, we describe the function ®. Given X, find the first ¢ such that we do not
have the following: Dx(;y 2 Dx(i4+1) # 0. Note that X (0) codes a finite set, so the
length of the chain Dx )y 2 Dx(1) 2 ... has to be finite. Therefore, there exists
such an i. Then, output any element ®X from Dx@. it X € L, B, whenever
we reach stage ay,, we have Dx(,) = An.a,, and thus i > n. Assume that oy
is the last stage such that some element is removed from A,,. Then, k < i and
Dx ) = Am,a), = Am 2 Dx(;y. This implies that if X € [[, B, then the chosen

n

a<wCK be an approxi-

element ®X is contained in A,,, as required. (I

We have seen by combining Proposition 2.6, Theorem 3.3 and Proposition 2.5
that £1-ACT",  is Weihrauch equivalent to IT}-Toty and I1}-DNC,. Moreover, we
have also shown in Proposition 2.9 that 31-AC{Yy is Weihrauch equivalent to
I1i-Toty. Recall from Section 2.3 we have introduced the I} -diagonalization prin-
ciple II}-DNCy, which is a special case of the cofinite ¥1-choice principle. For this

principle, we know in advance a bound of the number of elements removed by a
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cofinite set. Such a principle is bounded by the following principle for ¢ € N:
21-CM = 21-Cx Tacxxa<ey -

Namely, we have IT13-DNCy <w 2%-c§’;“. One can consider the coproduct of

(E%—C;})W)KN and call it strongly-cofinite choice on X. One can show that this
principle is strictly weaker than the cofinite choice (Proposition 3.8 and Theorem
3.17 below). Even more generally, we consider finite-or-strongly-cofinite choice,
denoted Z%—ACIf@iN, which accepts an input of the form (p, ), where for any n € N,
p(n) is a code of a X1 subset Sp(n) of N such that either Sy,) is nonempty and
finite, or [N\ S,y | < 9(n). If (p,¢) is an acceptable input, then wLACls  chooses
one element from [],, Spn).-

We show that all-or-unique choice is already strong enough to compute finite-
or-strongly-cofinite choice:

Proposition 3.8. $1-AC = D1-ACY .

Proof. First, it is clear that ©1-ACP% >\ BI-AC, | as witnessed by the indentity
function. It remains to prove X}-AC, <w S1-ACH| .. Let A =[], A, with a
bound ¢ given. We will construct a uniformly 1 sequence (B}, )m<uy(n) of subsets of
N. We use By, BY, ..., Bg(n)_l to code information which element is removed from
A,, whenever A, is cofinite, and use Bg(n) to code full information of A,, whenever
A,, is finite. If ag is the first element removed from A,,, then put By = {ag}, and
if a1 is the second element removed from A,,, then put Bf = {a;}, and so on. If
A, becomes a finite set, then Bz(n) just copies A,,, otherwise BZ(n) = N. One
can easily ensure that for any n € N and m < ¢(n), if A, is finite, then B}, is
a singleton disjoint from A,; otherwise B]}, = N. Moreover, we can also see that
either Bg(n) is nonempty and finite or Bﬁ(n) =N.

Now, assume that X € [, ,, By, is given. If X(n,¢(n)) & {X(n,i) : i <(n)},
then put Y(n) = X(n,%(n)). Otherwise, choose Y(n) ¢ {X(n,i) : i < 3(n)}.
Clearly, the construction of Y from X is uniformly computable.

If A, becomes a finite set, the first case happens, and Y(n) = X(n,¢¥(n)) €
By, = An. If A, remains cofinite, it is easy to see that N\ A, C {X(n,i) :i <
¥(n)}, and therefore Y(n) € A,,. Consequently, Y € A. O

Corollary 3.9. Y1-AC", =w D1-ACY,  =w D1-AC<,.

In the following we will only consider all-or-finite choice, by convenience. We
now prove that dependent choice does not add any power, and the existence of an

instance that codes all the other, with very similar proofs as in the Z%—DCR{‘ case.

Theorem 3.10. ©1-AC¥", =y Z1-DC¥'.

Proof. Tt is clear that X1-AC', <w 21-DC¥'. The argument for 1-DC¥F <\
Z%—ACR?LN is similar to the finite case (Theorem 3.4). If T is a ¥} tree, for every
o define T, by the following X1 procedure: First, put 7, = N, and then wait for
sucer(o) :={n:0"n € T} to be finite but nonempty. As in the proof of Theorem
3.4, if sucer (o) is finite, its finiteness is witnessed at some stage < w$¥ by Spector
bounding (Theorem 1.4). For the first such stage « (which is not necessarily a
successor ordinal), if succr(o) becomes empty, we just keep T, = N, and end
the construction. If succr(o) turns out to be finite but nonempty, at every stage
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after « define T, to be succy (o) except if this one becomes empty. Note that if
succr (o) becomes a finite set at some stage «g, but an empty set at a later stage
a7y, then the least such stage a; must be a successor ordinal, and therefore we can
keep T, being nonempty (see also the proof of Theorem 3.4). Clearly, T, is either
finite or N. If T is an instance of $1-DC¥, then T, = succr (o) and therefore
[loen<n To = [T]. O

The absence of a maximal element in the Medvedev semi-lattice of the axiom
of choice on “all-or-finite” sets would allow us to Weihrauch separate it from its
“finite” version. However, L1-ACZ',; does also have a maximum element.

Theorem 3.11. There exists a single mazimum Medvedev degree in $1-ACY',

and $1-DC'.

Proof. The argument is again similar to Theorem 3.4, even though we have no
compactness assumption.

By Theorem 3.10 that $1-ACX, = T1-DCY, it suffices to prove the result
for one of the functions, let us say L1-AC. . Let A, = ], S¢ be the e-th $1
homogeneous set. We set A, = IL, 55 to be defined by the following X1 procedure:
First, set S¢ = N, and then wait for some S¢ to become finite and nonempty. If
this happens, define 55 =S¢ until it removes its last element. At this point, leave
gfl nonempty, which is possible since it can happen only at a successor stage (this
is because S¢ has already become a finite set at some previous stage). Then, one
can see that A, is in B1ACPT ., and if A, is also an instance of L1-ACX'  then
A = A..

Then (A.)cen is an enumeration of all nonempty elements of E%—ACR?LN. Define
the maximum to simply be [, [T, S¢. O

We now prove that the relaxed constraint on the sets that allows them to be full
does increase the power of the choice principle, making ©1-AC, | strictly above
S1-ACE, . We use the fact that the semi-lattice of $1-ACT', has a maximal
element (Theorem 3.4), and we show that it must be strictly below some instance

of LI-ACXT ..

Theorem 3.12. For every A € S1-ACT, . there exists B € S1-ACY', such that
A<y B.

Proof. We will find C' = [],, C,, € £1-AC¥', such that C' £, A. Then, B = AxC
will witness the theorem.

Now, let us describe the co-enumeration of C,,. First, wait for z — ®Z(n) to
be total on A, where ®,, is the n-th partial computable function: More precisely,
as ®Z(n) | is XY, the formula Vz(z € A — ®%(n)) is II}. Hence, if it holds, it is
witnessed at some stage before w{¥ (via a II} norm assigned to this formula). Next,
since A is compact and @ is continuous, ® takes only finitely many values on A; that
is, ®2(n) := {®%(n) : z € A} is finite. Clearly, ®:1(n) is X1, and therefore, again,
as in the proof of Theorem 3.4, the finiteness of ®2(n) is witnessed at some stage
a before wX. At this point, remove everything from C,, except max @ﬁja(n) +1,
where ‘I’ﬁ,a(”) is the stage o approximation of ®2(n).

We have that C,, is either N if the co-enumeration is stuck waiting for  — ®F (n)
to be total on A, or a singleton otherwise. Also, it is clear that for any n, ®,, cannot
be a witness that C' <p; A, so C £y A. O
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Corollary 3.13. We have S1-ACI .« <y B1-ACY', .
Proof. By Theorem 3.12 and Theorem 3.4. O

One can also use the domination property to separate the all-or-finite choice
principle and the (o-)compact principle.

Proposition 3.14. There exists A € S1-ACY . such that every element p € A
computes a function which dominates all Al functions.

Proof. Let (pe)een be an effective enumeration of all partial I3 functions on N.
Define Ay € N for k,e € N as follows. Begin with Ay = N. Wait until we
see ¢ (k) |. If it happens, set A py = {©c(k)}. Define A =[], A,. Then define
UP(k) =3, p((e, k), which is clearly computable in p. It is easy to see that U?
dominates all A} function whenever p € A. d

This shows that all-or-finite 31-choice is not Weihrauch-reducible to o-compact
¥1-choice.

Corollary 3.15. Z1-ACY  Zw 1-K,Cy.

Proof. Recall that a computable instance of %1-K,Cyn is a countable union of
compact Y1 sets. Thus, by Lemma 3.5, there is a solution p to any given computable
instance of ¥1-K,Cxyn such that any function which is higher Turing reducible to p
is majorized by a A}l function. However, by Proposition 3.14, there is a computable
instance of X1-AC{™  whose solution consists of Al dominants. O

Corollary 3.16. ©1-K,Cyn is not parallelizable, and 31 -KCxn <y $1-K, Cyp.

Proof. Clearly, $1-ACy_y (and therefore $1-AC¥', ) is Weihrauch reducible to
the parallelization of ¥1-K,Cyn. Therefore, by Corollary 3.15, ¥1-K,Cyn is not
parallelizable. By definition, any $1-ACY_, is parallelizable, and so is ¥1-KCyr by
Proposition 2.5. O

3.3. Axioms of cofinite analytic choice. The choice problem when all sets are
cofinite is quite different from the other restricted choices we study. It is the only
one that does not include $}-ACH, .

Let us fix an instance A = [], A, of $1ACE' . For every n, A, is cofinite,
so there exists a,, such that for any i > a,, we have i € A,. Now, call f the
function n — a,. We have that f € A, and for every g pointwise above f, we
must have g € A. So we clearly have A <y {g € NV : Vi f(i) < g(i)} = Ay. This
essential property of Z}—ACCNOLN prevents an instance to have more computational
power than Ay for some f € NV,

The cofiniteness still allows some more power, as we will prove in this section
that ©1-ACET,; is Weihrauch incomparable with both $1-ACE",  and S1-ACY, .
Theorem 3.17. There exists A € L1-ACS', such that for any B € L1-ACY'
ALy B.

Proof. We use the existence of a maximum all-or-finite degree of Theorem 3.11 to
actually only prove
VB e 21-ACY¥ (34 € SLACY' A £ B.
Fixa B = HnEN B,,, with B,, C N being either N or finite. We will construct A =
[I.cn Ae; and use A, to diagonalize against . being a witness for the reduction, by
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ensuring that either ®. is not total on B, or 3k € N, 0 € [],, ., Bn with ®Z(e) |&
A.. Here is a description of the construction of A, along with sequences of string
(on) and (75,):

(1) First, A. = N. Wait for a stage where B C dom(®.), that is ®, is total on
the current approximation of B. Define oy = € = 79, and move to step (2).

(2) Let n be the maximum such that 7, is defined. Find 0,41 > 7, in the
current approximation of B such that ®¢"*'(e) |. Take o,.1 to be the
leftmost such, and remove ®¢"**(e) from A.. Move to step (3).

(3) Wait for some stage where ®Z(e) := {®X(e) : X € B} C A.. If it happens,
wait again for the current approximation of B to be “all or finite”, which
will happen. Take 7,11 to be the greatest prefix of o, still in B, and

return to step (2).

As in the proof of Theorem 3.12, the property B C dom(®,) is I3, so it is witnessed
at some stage < wK. Let us prove that A is cofinite. If the co-enumeration of A,
stays at step (1), then A. = N is cofinite. Otherwise, let us prove that there can
only be finitely many 7,, defined.

Suppose all 7,, are defined. Then, the pointwise limit of the 7, must be defined:
Let ¢ be an integer such that (7,,(¢'))nen stabilizes for big enough n, for all ¢/ < £.
Start from a stage ng where they have stabilized. For n > ny, if 7,,41(¢) changes,
that is 7,41 (€) # 7, (£), it must be that 7,,(¢) has been removed from By. But then,
By will become finite before the co-enumeration continues, and 7,,(¢) can only take
values in B, and never twice the same. Therefore, (7,,(¢)), becomes constant at
some point. Now, let X € NV be the limit of (7,). As X(¢) € B, for every ¢, we
have X € B. Since B C dom(®,) is already witnessed at some previous stage, and
this is a positive property, we must have X € dom(®.). Thus, there is 0 < X such
that ®7(e) J. Let s be such that o < 7 for any ¢t > s. However, our algorithm can
reach step (2) at most once after s: This is because, as ¢ < 75 < 0441, We must
have ®¢°*" (e) = ®7(e), which is removed from A, at step (2). This ensures that
DX (e) = ®7(e) € A, s0 B (e) C A, is never witnessed, and thus 74,1 is undefined.

Hence, there is an ng such that 7, is defined only for n < ng, and thus o, can
be defined only for n < ng, therefore by construction at most ng + 1 elements are
removed from A., and thus A, is cofinite.

It remains to prove that A £, B. Suppose ®. is a witness for the Medvedev
reduction. ®, must be total on B, so we get past step (1) in the definition of A..
Then, as only finitely many 7,, are defined, the co-enumeration has to be stuck at
some step, waiting for something to happen. It cannot be stuck in step (2), as @, is
total on B, and any finite sequence 7 € ], <lo| B,, can be extended in an element
of B by homogeneicity. This means that the co-enumeration is stuck at step (3),
waiting for ®Z(e) C A, to never happen. This leaves us with ®Z(e) € A,, so there
is X € B such that ®X(e) € A., and so ®X & A. O

Theorem 3.18. For any A € £1-ACY . and B € S1-AC , if A <y B, then A
contains a Al path.

Proof. Assume that A <,; B via some partial computable function ®, and A and
B are of the forms [[, A, and [], By, respectively. We describe the Al procedure
to define C' € A:

Given n, in parallel, wait for n to be enumerated in one of those two I1} sets:
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(1) If n is enumerated in {n : 3k € N,Vf € NN 30 > f, ®7(n) = k}, define
C(n) to be one of these k.
(2) If n is enumerated in {n : Vf € NN, Vk, 3k’ > k,3o > f such that &7 (n) =
k'} then define C'(n) = 0.
Here, 0 > f denotes the pointwise domination order, that is, o(n) > f(n) for all
n < |o|. As the items (1) and (2) are both II3, it is easy to check that C is Al.

We claim that one of the two options will happen. Assume that case (2) fails.
Then, there are f € NN and k € N such that for any o > f, if ®°(n) | then 7 (n) <
k. If moreover (1) fails, then for any ¢ < k, there is f; such that if ¢ > f; and
&7 (n) | then ®°(n) # (. We define g € NY by g(j) = max{f(7), folj),- .- fs(7)}
for any j. Then we have g > f, fo,..., fx, and therefore, if 0 > g then ®7(n)
cannot take any value. Hence, as B; is cofinite for any j, there is b; € N such that
[bj,00) C B;. As @ is total on B, if h(j) € B; for every j then ®"(n) is defined for
any n. However, if we define h(j) = max{g(j),b;} then h(j) € B; and therefore
®"(n) |, a contradiction. This verifies our claim.

As before, by cofiniteness, there exists b € NV such that g > b implies g € B.
Fix n. In case (1), for k = C(n), there is ¢ > b such that ®?(n) = k. Therefore,
C(n) € ®B(n) := {®¥X(n) : X € B}, and moreover ®5(n) C A,, since ® witnesses
A <y B and A =[], A,. Hence we get C(n) € A,. In case (2), there are
infinitely many k and there is o > b such that ®°(n) = k. This means that ®(n)
is infinite, and therefore A,, is infinite since ®(n) C A,, as above. Hence A4, = N
and C(n) € A,. Consequently, we obtain C € A. O

Corollary 3.19. We have both $1-ACS', Zw T1-ACK. and D1-ACR. Zw
SLACE ..

Proof. The first part is implied by Theorem 3.17 (see the argument in the paragraph
below Definition 3.1). The second part is implied by Theorem 3.18 and the fact that

there exist X1 finitely branching homogeneous trees with no Al member (cf. [14,
Theorem 4.3 and Lemma 4.4]). O

We now show that E%—AC%"LN does not admit a maximal element, using a proof
similar to the one of Theorem 3.17.

Theorem 3.20. For every B € 1-ACS,\, there exists A € $1-AC', such that
A £ B. Thus, S2-ACS'  does not have a mazimal element.

Proof. Fix a B = [], cy Bn, with each B,, C N cofinite. We will construct A =
[I.cn Ae, and use A, to diagonalize against ®. being a witness for the reduction, by
ensuring that either ®. is not total on B, or 3k € N, o € [],, ., Bn with ®Z(e) |&
A,. Here is a description of the construction of A., along with sequences of string
(on) and (7,):

(1) First, A. = N. Wait for a stage where B C dom(®.), that is ®, is total on
the the current approximation of B. Define 0y = € = 79 and move to step
(2).

(2) Let n be the maximum such that 7, is defined. Find 0,41 > 7, in the
current approximation of B such that ®¢"*'(e) |. Take o,.1 to be the
leftmost such, and remove ®¢"" (e) from A.. Move to step (3).

(3) Wait for some stage where ®Z(e) C A,. Take 7,11 to be the greatest prefix
of 0,41 still in B, and return to step (2).
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Let us prove that A, is cofinite. If the co-enumeration of A, stays at step (1), then
A. = N is cofinite. Otherwise, let us prove that there can only be finitely many 7,
defined, just as in Theorem 3.17.

Suppose infinitely many (7,,) are defined. Then, this must have a limit: Let ¢ be
a level such that (7,(¢')), stabilizes for all £/ < ¢. Start from a stage where they
have stabilized. From this stage, if 7,,(¢) changes, it must have been removed from
By. But that can happen only finitely many times, as By is cofinite. Therefore,
(7(£)) becomes constant at some point. However, this is impossible:Let X € NN
be the limit of (7,,). As X (¢) € By for every ¢, we have X € B. Since B C dom(®.)
is already witnessed at some previous stage, and this is a positive property, we
must have X € dom(®,). Thus, there is 0 < X such that ®J(e) J. Let s be such
that ¢ < 7 for any ¢ > s. However, our algorithm can reach step (2) at most
once after s: This is because, as 0 < 7, < 0441, we must have ®¢°*'(e) = ®9(e),
which is removed from A, at step (2). This ensures that ®X(e) = ®(e) € A., so
®B(e) C A, is never witnessed, and thus 7,4 is undefined. Hence, there is an ng
such that 7, is defined only for n < ng, and thus ¢,, can be defined only for n < ny,
therefore by construction at most ng + 1 elements are removed from A., and thus
A, is cofinite.

Hence, there is an ng such that 7, is defined only for n < ng, and thus o, can
be defined only for n < ng, therefore by construction at most ng + 1 elements are
removed from A., and thus A, is cofinite.

It remains to prove that A £,; B. Suppose @, is a potential witness for the
inequality. FEither ®. is not total on B, or we get stuck at some step in the co-
enumeration of A., waiting for ®Z(e) C A. to never happen, leaving us with
®B(e) Z A, so there is X € B such that ®X(e) € A,, and so ®X & A.

We now prove the last assertion: Z%—/—\CE?LN does not have a maximal element.
Let B =[], B, € Z1-ACE, . Let A =[], A, given by the first part of the proof.

Then, C' =[], An x [1,, Bm € S1-ACE., i and A, B <p; C so B <y C. O

We here also note some domination property of the cofinite choice. The following
fact is implicitly proved by Kihara-Marcone-Pauly [14, Lemma 4.7] to separate

Y 1-WKL and ¥1-Cy.

Fact 3.21 ([11]). There exists 4 € BI-ACP', such that every element p € A
computes a function which dominates all A} functions.

Therefore, as in the proof of Corollary 3.15, we can observe the following.
Corollary 3.22. ©1-AC®f ¢,y 21K, Cy.

3.4. Axioms of finite-or-cofinite analytic choice. In this part, we study the
weakened restriction to sets that are either finite, or cofinite. This restriction
allows any instance from the stronger restrictions, thus $1-AC' ., ©1-Acfr,
and Y1-ACS,  are Weihrauch reducible to $1-ACR, ; (and similarly for dependent
choice). It is the weakest form of restriction other than “no restriction at all” that
we will consider. However, we don’t know if this restriction does remove some
power and is strictly below ©1-ACy_,y or not, as asked in Question 3.24.

In the following, we will show that £1-ACRS, , £1-DCP and $1-ACy_,y, 1-DCy
do not admit a maximal computable instance. We will give several different proofs
of this result. Theorem 3.23 is an attempt to answer Question 3.24 positively, but
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the conclusion turns out to be too weak, by lacking the effectivity required for a
diagonalization.

Theorem 3.23. For every A € E%—AC{{?;N, there exists B € X1-ACy_,y such that
B £y A.

Proof. We will build B =[], B, € £1-ACy_,y by defining B, in a uniform £} way,
such that if @, is total on A, then ®(e) Z B,.

Fixe € N, and A =[], A, € B1-AC?, . In our definition of the co-enumeration
of B, along the ordinals, there will be two main steps: The first one forces that if
®4(e) C B, then for every 1, |<I>fr§"(e)| < w where Aj<; = {o € NSl : [0] N A # (0}
The second step will force that if ®2(e) C B, then A is empty or ®, is not total
on A.

In order to conduct all these steps, we will need to remove several times an
element of B, but we do not want it to become empty. This is why in parallel of
removing elements from B, we also mark some as “saved for later”, so we know
that even after infinitely many removals, B, is still infinite.

We now describe the first part of the co-enumeration. For clarity, we use the
formalism of an infinite time algorithm, that could easily be translated into a X1
formula.

for | € Ndo
Mark a new element of B, as saved;
while ®.1<'(¢) is infinite do
for i € Ndo

Mark a new element of B, as saved;
Remove from B, the first element of .= (e) that is not saved, if
it exists. Otherwise, exit the loop;
Wait for ®(e) C Be;
end
Wait for every A, with n <1 to be finite or cofinite;
Unmark the elements marked as saved by the “for i € N” loop;
end

end

Let us first argue that for a fixed [, the “while” part can only be executed a finite
number of times. At every execution of the “for i € N” loop, either one element of
A< is removed, or ;"= (¢) is finite and we exit the while loop (this is because at
every step, only finitely many elements are marked as saved). But this means that
if a “for” loop loops infinitely many times, by the pigeon hole principle there must
exists a specific level [y < such that A;, went from cofinite to finite. But this can
happen only [ 4+ 1 times, and the “while” loop can only run [ 4+ 1 many times.

Let us now argue that at every stage of the co-enumeration, including its end,
every B, is infinite. Fix a level [, and suppose that at the beginning of the corre-
sponding “while” loop, B, is infinite. As after every loops of the “for i € N” loop
one element is saved, it means that after all these infinitely many loop, B. contains
infinitely many elements. This will happen during only finitely many loops of the
“while” loop, so at the beginning of level [ 4+ 1, B, is infinite. A similar argument
with the elements saved by the first “for [ € N” loop shows that if the first part of
the co-enumeration ends, B, is still infinite.
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Now we split into two cases. If the first part of the co-enumeration never stops,
as the “while” loop is in fact bounded, it means that the co-enumeration is forever
stuck waiting for ®4(e) C B.. But as this never happens, B, has the required
property. Otherwise, the first part of the co-enumeration ends, and we are at a
stage where for every I, ®.'<' () is finite, but B, is infinite. We now continue to
the second part of the co-enumeration of B,:

for | e Ndo

Remove from B, all the elements of &< (e);
Wait for ®2(e) C Be;

end

We argue that this co-enumeration never finishes. Let z € A, and ¢ < x such
that ®7(e) = k. The co-enumeration will never reach the stage where [ = |o + 1],
as it cannot go through [ = |o|: If it reaches such stage, it will remove k from B,
and never have ®4(e) C B.. So, the co-enumeration has to stop at some step of
the “for” loop, waiting for ®2(e) C B, never happening. As B, is infinite, it has
the required property. O

In order to Weihrauch-separate £1-ACPC, from the unrestricted £1-ACy .y,

one would need a stronger result with a single B € £1-ACy_,y not Medvedev re-
ducible to any A € B1-ACYS . We could try to apply the same argument to
define Hwe) Bin,ey, this time diagonalizing against an enumeration (S¢)cen of
S¢ =TI, 5¢ € B-ACy_,n. If S is not in R}-ACTS , the co-enumeration will
be stuck somewhere in the co-enumeration of some level, with no harm to the
global diagonalization.

However, if some particular S¢ is empty, we could end up with some By, .y = 0,
making B empty. Indeed, suppose we reach the second part of the co-enumeration.
Then, the malicious S¢ can make sure that every step of the second loop are
achieved, by removing from S¢ all strings ¢ such that ®7(e) ¢ By, at every
stage of the co-enumeration. As a result, both S¢ and By, ., will become empty.

Question 3.24. Do we have 21-ACRC, | <y B1-ACy ,y?

We now give a stronger result with a much simpler, but not effective, proof. As
a corollary, we will obtain the fact that ¥1-ACy_,y and £}-DCy do not admit a
maximal computable instance.

Theorem 3.25. For every A € $1-DCy, there exists B € %1-ACy_,y such that
B £y A.

Proof. We first claim that there is no enumeration of all nonempty elements of
¥1-ACy_,y. More than that, we will prove that there is no [, .oy S5 € 2i-ACy_y
uniformly X such that for every B =[], B, € X]-ACy_,y, there exists an e such
that [, S¢ C B. Let (S%)ncen be any uniformly ¥{ enumeration. We construct
(Be)een, a witness that this enumeration is not a counterexample to our claim. We
define B, by stages: At stage «, Be[a] is equal to the open interval | min(S¢[a]); oo],
where S¢[a] is the stage a approximation of S¢. Then B, = (), Bc|a] defines a X}
set. We have [[,, B, 2 [1,, 5S¢ for every e € N and the claim is proved.

Now, suppose that there exists A € X}-DCy such that for every B € £{-ACy_,y,
we have B <j; A. Let us define S, by

m eS¢ <= 3IX € A[®X(n) l=m or O, is not total on A.
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Here, it is easy to check that non-totality of ®, on the X1 set A is a X1 property
(see also the proof of Theorem 3.12). Hence, (S¢) is ¥} uniformly in e and n. Given
any B € L1-ACy_,n, as B <j; A, fix a witness ®,. Then ®, is total on A, and
therefore S¢ = ®4(n) := {®X(n) : X € A}. By our choice of ®., we also have
@2 =[], ®2(n) C B, and as B is homogeneous we obtain [] S¢ C B. Then,
(S5 )e,nen would be a contradiction to our first claim. |

Corollary 3.26. Neither ¥1-ACy_,y nor £1-DCy admits a mazimal element.

Proof. Let A = [], A, € X}-ACy_n. By Theorem 3.25, let B = [], B, €
${-ACy_,y such that B £y A. Then, C = [], A, X [],, Bn € £{-ACy_y is
such that A <p; C. A similar argument works for Z%—DCN. O

There is another non-effective proof showing that 31-DCy does not have a maxi-
mal element (but the proof does not work for ¥1-ACy_,y). Indeed, remarkably, the
result shows that there is no greatest nonempty %1 closed set even with respect
to hyperarithmetical Muchnik degrees. We say that A C NN is hyperarithmetically
Muchnik reducible to B C NN (written A <HYP B) if for any x € B there is y € A
such that y <, x, that is, y is hyperarithmetically reducible to z.

Fact 3.27 (cf. Gregoriades [11, Theorem 3.13]). If P is a Al closed set with no Al
element, then there exists a clopen set C such that PN C # () and P <YP PN C.

Proof. This is what Gregoriades essentially obtained in the proof of [I 1, Theorem
3.13]. If P = [T] for a computable tree T, the “key remark” in the proof of [11,
Theorem 3.13] gives us a clopen neighborhood C' = [u] of some v € P such that
Al(y)NPNC =0,50 0#PNC £HYP L4} C P. The tree T can be replaced with
a Al tree since the “key remark” follows from the equivalence (1) in the proof of
[11, Theorem 3.13], as it gives an implicit ¥1 definition of the leftmost path oy, of
P, which leads to a contradiction. Observe that, even if we replace T' with a A}
tree, the condition is still ¥1, which concludes the proof. ([l

Note that any P satisfying the conclusion of the above fact cannot be homo-
geneous since if P is homogeneous, C is clopen, and P N C is nonempty, then we
always have PN C =j; P. So, Fact 3.27 does not imply Theorem 3.25.

Corollary 3.28. For any nonempty $1 set A C NN, there is a nonempty 11J set
B C NN such that A <ZYP B.

Proof. For any nonempty 1 set A, it is easy to see that there is a nonempty I19 set
A* such that A <p; A*. If A* has a A} element, then the assertion is clear as any
119 set B with no A}l element is such that A* <HYP B. If A* has no A} element,

by Fact 3.27, there is clopen C such that A <,; A* <Z')YP A*NC. O
In [5], Cenzer and Hinman showed that the lattice of I1{ classes in Cantor space

is dense. Here we already showed the lack of maximal elements, we now prove the
lack of minimal elements:

Theorem 3.29. For every A € %}1-DCy with no computable member, there exists
B >y NY in 21.DCy such that

NY <y AUB <,/ A.



A COMPARISON OF VARIOUS ANALYTIC CHOICE PRINCIPLES 29

Proof. We first reduce the problem to finding a non-computable hyperarithmetical
real X such that A contains no X-computable point. If such an X exists, then we
have NN <M AU{X} <um A.

It suffices to show that ®X & A for any e, and () <7 X. The latter condition is
ensured by letting X be sufficiently generic. To describe a strategy for ensuring the
first condition, fix a pruned ¥} tree T such that [T4] = A. There are two ways
for ®. to not be a witness that A has a X-computable element: either ®7 ¢ T4 for
some 0 < X, or X ¢ dom(®,.). Let us argue that we have the following: For any
e € N and o € N<N there exists a finite string 7 extending o such that

(3) either ®7 & T4 or [r] N dom(P.) =

Indeed, if it were not the case for some e € N, we would have a string ¢ such that
for every 7 extending o, ®7 € T4 and there exists an extension p > 7 such that ®#
strictly extends @7, allowing us to compute a path of T4, which is impossible as
A > NN,

Begin with the empty string og = (). For e let D, be the e-th dense X set
of strings. Given o., in a hyperarithmetical way, one can find a string o} € D,
extending o.. Now, we have a II] function assigning e to the first 0.y, extending
o we find verifying (3). This function is total, and then Al. Moreover, it is clear
that ®X does not define an element of A for any X extending o... O

3.5. Axiom of choice versus dependent choice. H. Friedman showed that the
axiom of Yi-dependent choice is strictly stronger than the axiom of ¥i-choice in
the context of second order arithmetic (cf. [19, Corollary VIIL.5.14]). Although
the Weihrauch degrees of the principles ¥1-DCyv and X}-ACy_,yv are the same
(Observation 2.1 and Proposition 2.2), we will see that 31-DCy is strictly stronger
than ©1-ACn_,y, which finally solves Question 1.3:

Theorem 3.30. ATRy £w X1-ACy_,y; hence £1-ACy_y <w X1-DCy.

Proof. Let A, be the set of solutions to the e-th computable instance of ATRs, that
is, 0" H € A, if and only if H is a jump hierarchy for the e-th computable linear
order <., and 17p € A, if p is an infinite decreasing sequence w.r.t. <.. Suppose for
the sake of contradiction that A =[], A. is Medvedev reducible to a homogeneous
Y1 set S. Let B be the set of all indices e € N such that the set of all infinite
decreasing sequences w.r.t. <. is not Medvedev reducible to S, and let C' be the set
of all indices e € N such that the set of all jump-hierarchies for <. is not Medvedev
reducible to S. Note that B and C are X}.

Moreover, we claim that B and C' are disjoint. To see this, let ® be a continuous
function witnessing A <j; S. If there is X € S such that ®X(0) is i then, by
continuity of ®, there is a finite initial segment o of X such that ®¥ (0) = i for any
Y extending 0. However, by homogeneity of S, SN[o] is Medvedev equivalent to S.
This means that, for any e, S Medvedev bounds either the set of infinite paths or
the set of jump-hierarchies for the e-th computable tree. This concludes the proof
of the claim.

Let WO be the set of all indices of well-orderings, and NPWO be the set of all
indices for computable linear orderings with infinite hyperarithmetic decreasing se-
quences (i.e., linear orderings which are not pseudo-well-ordered). Clearly, WO is
contained in B. Moreover, by H. Friedman’s theorem [7] saying that a computable
linear order which supports a jump hierarchy cannot have a hyperarithmetical de-
scending sequence (see also Friedman [3] for a simpler proof based on Steel’s result
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[20]), NPWO is contained in C. Since B and C' are disjoint 3} sets, by the effective
version of the Lusin separation theorem (cf. [17, Exercise 4B.11]), there is a Al
set A separating B from C. This contradicts (Goh’s refinement [10, Theorem 3.3]
of) Harrington’s unpublished result, which states that if a X1 set separates WO
from NPWO, then it must be Xi-complete. So A cannot be Medvedev below a
homogeneous set, and thus ATRy £w S1-ACy_ -

Clearly, ATRy <y ¥1-Cyv since being a jump hierarchy and being an infinite
decreasing sequence are arithmetical properties. Since ¥}-Cyn is Weihrauch equiv-
alent to ¥1-DCy by Proposition 2.2, we obtain X1-ACy_,y <w 31-DCy. O

Finally, we decompose the axiom of countable 1 choice into finite 31 choice
and cofinite %} choice.

Theorem 3.31. B1-ACy_y <w Z1-ACH,  x Z1-ACE, .

Proof. Given a homogeneous ¥} tree T C N<N_ let fr be the leftmost path through
T. Then fr has a finite-change higher approximation, i.e., there is a Al sequence
approximating f with finite mind-changes (cf. [1] for the definition). Let mz(n)
be the number of changes of the approximation procedure for fr [ n 4+ 1. One can
assume that fr(n) < mg(n). Then, one can effectively construct a i sequence
(Sn)nen of cofinite subsets of N such that m € S,, implies m > my(n). In particular,
any element g € [], S, majorizes mr, and thus fr. Use 21-ACE,  to choose such
a g, and consider the X1(g) tree T9 = {o € T : (Vn < |o]) o(n) < g(n)}. Then
T9Y is a finite branching infinite tree since fr € [TY9]. Therefore, as in the proof of
Proposition 2.5, one can effectively covert T into a ¥1(g) infinite binary tree T*.
Use S1-WKL (which is Weihrauch equivalent to $1-ACE", . as seen in Theorem 3.3)
to get an infinite path p through 7*. From p one can easily construct an infinite
path through 79 C T. O

3.6. Summary of this section. In summary, we obtain the following:
Theorem 3.32. We have
21-DCy —— 21-DCRC ——= %} -DCFf —— »1-DCIY
S1-ACyy — B1-ACRS y == B1-ACH. y = B1-ACH
\ >‘< X/
v
£1-ACR

Here, arrows — and = denote >w and >, respectively. See also Figure 1.

A few questions about X1-ACRC,  remain open:
Question 3.33. Is ©1-ACTS,  <w B1-DCR? Is R1-ACPS, , <w Z1-ACy ,n?

We also do not know if the dependent and independent choice for cofinite sets
coincide.

Question 3.34. Is ©1-ACY, <w 21-DCP™?
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Closed choice: Cyn, Z%—DCN

!

X E% homogeneous choice: E%—ACN N

ATR: .
ATR) | - - +f SLACT . TIl-Toty

E% compact choice: E%—KCNN, E%—AC%"_}N, E%—WKL, Hi—SEP

!

Unique choice: UCy, A%—CA7 E%—SEP

FIGURE 1. Key principles between UCyn and Cyn (where dashed
lines denote parallel arithmetical Weihrauch reducibility)

We solved the main question by showing ©1-ACy_, <w X1-DCy (Theorem 3.30),
but it is just a computable separation. Therefore, it is natural to ask if $1-ACy_,y
and X1-DCy can be separated even in the hyperarithmetical sense. In other words,
the following is one of the most important open questions, where UCyr is the unique
choice principle (or equivalently, the choice principle for %} singletons; cf. [14]).

Question 3.35. Is UCyn x L1-ACy_y <w %1-DCy?

We also ask a question purely on the structure of Medvedev degrees for finite
axioms of choice. Define more generally $1-ACE .\ to be £1-ACy_, where the set
from which we choose have to be taken from P. For instance, if P = {A CN: |A] <
w}, then L1-ACE L = B1-ACh, .

Question 3.36. Let P={A CN: A C2}and Q={A4A CN: |A4| < 2}. Is every
element of E%-Acg _,n Medvedev equivalent to some element of SLACE L y?

We are also interested in comparing various kinds of arithmetical transfinite
recursion.

Question 3.37. ATR, =§, ATRy =, ATR}’?

Finally, we mention a few descriptive set theoretic results deduced from our
results. For a set A C NYx NN each A, = {y € NV : (z,y) € A} is called a section.
If the section A, is nonempty for each 2 € NY then A is called total. Below, we use
<{y to denote the continuous version of Weihrauch reducibility; see [3].

Theorem 3.38. (1) There is a total analytic set A with compact homoge-
neous sections such that any total analytic set with compact sections is
<{y-reducible to A.

(2) For any total analytic set A with closed sections, there is a total analytic
set with homogeneous sections which is not <{,-reducible to A.

(3) There is a total F,5 set with G5 sections which is not =, -equivalent to any
analytic set with closed sections.

(4) There is a total closed set which is not <{,-reducible to any total analytic
set with homogeneous sections.
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Proof. (1) follows from the relativization of Theorem 3.4 since LI-ACH, . =y

$1-KCyw by Proposition 2.5 and Theorem 3.3. (2) follows from the relativization
of Theorem 3.25. For (3), let S be the set of pairs (z,y) with y €7 . Then S is
F,s, and each S(z) = {y : y £7 x} is co-countable; hence Gs. Suppose that S is
={y-equivalent to an analytic set A with closed sections. In particular, there are -
computable functions hg, hq such that S(z) <%, A(ho(z)) <%; S(h10ho(z)), where
<%, indicates the Medvedev reducibility relative to x. By definition of S, z <7 z
implies S(z) 2 S(x), so S(z) <pr S(z). Hence, S(hioho(z)) <pr S(x), and thus, we
have S(x) =%; A(ho(z)). Since A(ho(z)) is closed, one can apply (a relativization
of) Theorem 3.29 to get a ¥i(z) closed set B such that N <%, B <% A(hy(x)).
However, this implies N¥ <% B <% S(z), which is impossible by definition of S.
Finally, (4) follows from the relativization of Theorem 3.30. O
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