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Abstract. In this article, we give a full description of the Wadge degrees of Borel
functions from ωω to a better-quasi-ordering Q. More precisely, for any countable
ordinal ξ, we show that the Wadge degrees of ∆0

1+ξ-measurable functions ωω → Q can
be represented by countable joins of the ξ-th transfinite nests ofQ-labeled well-founded
trees.
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1. Introduction

In his doctorate thesis [Wad83], Wadge proposed a notion of reducibility between sets
of reals that is not only natural, but also surprisingly well behaved, as opposed to most
computability theoretic reducibilities which have a rather messy structure.

Definition 1.1 (Wadge [Wad83]). Given A,B ⊆ ωω, we say that A is Wadge reducible
to B, and write A ≤w B, if there is a continuous function f : ωω → ωω such that
X ∈ A ⇐⇒ f(X) ∈ B for all X ∈ ωω.

The relation ≤w is a pre-ordering, and, as usual, it induces an equivalence ≡w and
a degree structure. Wadge showed the Wadge degrees are semi-linearly-ordered in the
sense that all anti-chains have size at most 2. Then, Martin and Monk showed they are
well-founded. (This is all assuming Γ-determinacy when dealing with sets in a pointclass
Γ.) Furthermore, each Wadge degree is in a sense natural, and can be assigned a name
using an ordinal less than Θ and a symbol from {∆,Σ,Π} ([VW78]; see also the Cabal
volume [KLS12]), a name from which we can understand the nature of that Wadge
degree. Based on this perspective, Duparc [Dup01, Dup] gave an explicit description of
each Borel Wadge degree of a subset of ωω.

The Wadge degrees were later extended in various directions. We can encapsulate all
those extensions within the following framework:

Definition 1.2. Let (Q;≤Q) be a partial ordering. For Q-valued functions A,B : ωω →
Q, we say that A is Q-Wadge reducible to B (written A ≤w B) if there is a continuous
function θ : ωω → ωω such that

(∀X ∈ ωω) A(X) ≤Q B(θ(X)).

The original Wadge degrees are the case Q = 2 in the definition above, coding sets
by their characteristic functions ωω → 2 and viewing 2 as the partial ordering with two
incomparable elements 0 and 1.

The first extension already considered by Wadge [Wad83, Section 1.E], was to partial
functions ωω → {0, 1}, or equivalently, total functions ωω → {⊥, 0, 1}, where ⊥ is
thought of as being below both 0 and 1, which are incomparable with each other. The
degree structure we obtain is also semi-well-ordered, but slightly different than the
structure of the Wadge degrees. These degrees are connected to recent work of Day,
Downey, and Westrick [DDW17], as observed by Kihara [Kih17].

Shortly after, Steel studied the Wadge degrees of ordinal-valued functions with do-
main ωω, and showed they are well-ordered (see [Dup03, Theorem 1]). Later, Steel, van
Engelen and Miller [vEMS87] employed bqo theory to unify these results, and showed
that if Q is better-quasi-ordered (bqo, see Definition 2.1), then so is the poset of the
Wadge degrees of Q-valued Borel functions. We delay the definition of better-quasi-
ordering until Definition 2.1, and for now let us just say that better-quasi-orderings are
well-founded, have no infinite antichains, and have very good closure properties. van
Engelen, Miller and Steel’s results are even more surprising than Wadge–Martin–Monk’s
semi-well-orderness of the 2-Wadge degrees: Naturally defined better-quasi-orders usu-
ally have a well-behaved, easy-to-visualize structure.

For a bqo Q, the Q-Wadge degrees are recently found to play an important role
in computability theory. In the context of uniform Martin’s conjecture, the authors
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[KM] showed that there is a natural isomorphism between the structure of Q-Wadge
degrees and that of the “natural” many-one degrees of Q-valued problems. Hence,
exploring Q-Wadge degrees is the same thing as exploring natural Q-many-one degrees1.
The objective of this paper is to describe the structure of the Q-Wadge degrees by
showing that it is isomorphic to another partial ordering that is easier to visualize and
understand.

In the last decade, Selivanov [Sel07, Sel11] started studying the case of k-partitions,
that is, the case when Q = k, the poset with k incomparable elements for finite k.
Selivanov [Sel07] gave a full description of the Wadge degrees of∆0

2 k-partitions, naming
each such degree by a k-labeled well-founded forest, in a way that the name describes
the nature of the k-Wadge degree. What he does is essentially a generalization of the
Hausdroff-Kuratowski hierarchy from k = 2 to larger k’s, where the structure becomes
much richer. More precisely, for a set Q, let Tree(Q) be the set of all Q-labeled well-
founded countable trees, and let ⊔Tree(Q) be the set of all Q-labeled well-founded
countable forests. Note that every such forest F can be thought of as a collection (or
a disjoint union) of countably many Q-labeled well-founded countable trees. Hertling
introduced a quasi-order ⊴ on ⊔Tree(k), given by S ⊴ T if there is a homomorphism
from S to T which preserves inclusion of strings (⊆) and preserves labels (as defined in
Section 3.1.1).

Theorem 1.3 (Selivanov [Sel07]). Let k ∈ ω. The Wadge degree structure of the ∆0
2-

measurable k-valued functions is isomorphic to the quotient order of (⊔Tree(k);⊴) on
well-founded k-labeled forests.

We have recently learned that Selivanov has extended his result to the class of ∆0
3

k-partitions, using forests labeled with labeled trees [Sel17a, Sel17b]. His techniques are
very different from ours.

The objective of this paper is to give a description of the Wadge degrees of Borel
functions ωω → Q, where Q is any better-quasi-ordering (bqo), generalizing Selivanov’s
results from ∆0

3 to all Borel functions and from finite k to all bqos Q.
To name the Wadge degrees of ∆0

n+1-measurable Q-valued functions, we will use
trees labeled by trees labeled by trees ... labeled by Q. That is, we will define Treen(Q)
as Tree(Tree(· · ·Tree(Q) · · · )) iterated n times, then define ⊔Treen(Q) as the disjoint
unions of these trees (see Section 3.1.2). We think of each forest T ∈ ⊔Treen(Q) as a
process of mind-changes which captures a natural class ΣT of ∆0

n+1-measurable func-
tions. Based on this viewpoint, we will then define a quasi-order ⊴ on ⊔Treen(Q) that
matches Wadge reducibility on the classes of functions described by these forests.

Theorem 1.4. Let Q be a bqo. Then, the Wadge degree structure of the ∆0
n+1-

measurable Q-valued functions is isomorphic to the quotient order of (⊔Treen(Q),⊴).

Note that the restriction of our quasi-order ⊴ to ⊔Treen(Q) is essentially equivalent
to the homomorphic quasi-order which has been studied in, e.g. [Sel07, Sel17a, Sel17b].
Using the terminology of the homomorphic quasi-order, [Sel17a, Sel17b] has proposed an

1Selivanov [Sel83, Sel95] has also looked at a notion of naturalness (which is, a priori, entirely
different from [KM]) to connect hierarchies of many-one degrees and Wadge degrees, although his
naturalness has nothing to do with Martin’s conjecture (and, in particular, with “natural” solutions to
Post’s problem).



4 TAKAYUKI KIHARA AND ANTONIO MONTALBÁN

idea of a strategy for proving Theorem 1.4 forQ = k (where the arXiv version of [Sel17a]
has appeared in 2014, which includes a few words mentioning his idea); however, the
proposed ideas are again completely different from ours. Moreover, as seen in Section
3.4, the idea of homomorphic quasi-order does not work when we move to infinite Borel
ranks, while our quasi-ordering ⊴ naturally extends to infinitary versions. To extend
Theorem 1.4 through the Borel hierarchy, we will introduce the ξ-th iterated version
⊔Treeξ(Q) for each countable ordinal ξ, and show the following transfinite version:

Theorem 1.5. Let Q be a bqo, and ξ be a countable ordinal. Then, the Wadge degree
structure of the ∆0

1+ξ-measurable Q-valued functions is isomorphic to the quotient order

of (⊔Treeξ(Q),⊴).

We deal with functions of finite Borel rank and prove Theorem 1.4 in Sections 3–5.
We will then extend those ideas to infinite Borel rank and prove Theorem 1.5 in Section
6.

The main steps for the proof are as follows. First, we need to formally define
⊔Treeξ(Q) and the ordering ⊴. Then, as suggested above, in Section 3.2, we will as-
sign a pointclass ΣT of Q-valued functions to each forest T ∈ ⊔Treeξ(Q). For instance,
Σ⟨0⟩→⟨1⟩ is the class of characteristic functions of Σ

0
1 sets, and Σ⟨0⟩→⟨1⟩→⟨0⟩ is the class of

characteristic functions of sets which are differences of two open sets.

Proposition 1.6. For every T ∈ ⊔Treeξ(Q), every function in ΣT is ∆0
1+ξ-measurable.

These pointclasses will match the ordering ⊴ on forests in the following sense:

Proposition 1.7. For S, T ∈ ⊔Treeξ(Q), S ⊴ T if and only if every ΣS function is
Wadge reducible to some ΣT function.

For a pointclass ΣT , we will define a ΣT -complete function ΩT , that is, ΩT is in ΣT

and any other function in ΣT is Wadge reducible to ΩT .

Proposition 1.8. For each T ∈ ⊔Treeξ(Q), there is a ΣT -complete function ΩT .

We can then restate Proposition 1.7 as S ⊴ T ⇐⇒ ΩS ≤w ΩT . This gives us an
embedding of ⊔Treeξ(Q) into the ∆1+ξ Q-Wadge degrees. The last step is to show that
this embedding is onto.

Proposition 1.9. Every ∆0
1+ξ-measurable function A : ωω → Q is Wadge equivalent

to a ΣT -complete function for some T ∈ ⊔Treeξ(Q).
Moreover, if A is non-self-dual (Definition 2.5), then T can be chosen from Treeξ(Q).

2. The Q-Wadge degrees

Let us start by describing what we knew about the structure of the Q-Wadge degrees.

2.1. The Borel hierarchy of functions. We should be careful here, as there are
several different definitions of the Borel hierarchy (specifically, at limit ranks). We
adopt the following definition: For α > 0, a set S ⊆ ωω is Σ0

α if S can be written
as S =

∪
n∈ω Sn where each Sn is Π0

βn
for some βn < α. Then, we define Π0

α and

∆0
α in the usual manner. For a countable ordinal ξ, and a topological space X , a

function A : ωω → X is Σ0
ξ-measurable if A−1[U ] is Σ0

ξ for each open set U ⊆ X . In
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particular: A : ωω → ωω is Σ0
ξ-measurable if A−1[σ] is Σ0

ξ for each σ ∈ ω<ω, where

[σ] = {X ∈ ωω : σ ⊆ X}; A : ωω → Q is Σ0
ξ-measurable if it is with respect to

the discrete topology on Q. If Q is a discrete space, the class of total Σ0
ξ-measurable

functions ωω → Q is the same as that of ∆0
ξ-measurable functions. Note that the range

of a Borel function from ωω to a discrete space is countable; otherwise ZFC would prove
the existence of 2ℵ1 many pairwise different Borel subsets of ωω. Thus, A : ωω → Q is
∆0

ξ-measurable if and only if the range of A is countable, and A−1[{q}] is ∆0
ξ for any

q ∈ Q. Since we will be dealing with Borel functions A : ωω → Q, they will always have
countable range. We can thus assume from the rest of the paper that Q is actually
countable, even though all the results will extend to uncountable Q for functions with
countable range.

Continuous functions are exactly the Σ0
1-measurable functions. For each continuous

function G there is a partial computable operator Φe : ω
≤ω → ω≤ω and an oracle C ∈ ωω

such that G(X) = Φe(C ⊕X) for all X ∈ ωω. Also, we will often identify a continuous
function ωω → ωω with its corresponding approximation function ω≤ω → ω≤ω.

For functions A,B : ωω → ωω, we say that A is Wadge reducible to B if there is a
continuous function θ such that A = B ◦ θ. Note that this matches Definition 1.2 if we
think of Q as ωω where every two reals are incomparable under ≤Q.

2.2. Wadge degrees and games. Wadge [Wad83, Theorem B8] introduced a perfect-
information, infinite, two-player game, known as the Wadge game, which can be used to
define Wadge reducibility. For Q-valued functions A,B : ωω → Q, here is the Q-valued
version Gw(A,B) of the Wadge game: At the n-th round of the game, Player I chooses
xn ∈ ω and II chooses yn ∈ ω ∪ {pass} (where pass ̸∈ ω). Eventually Players I and II
produce infinite sequences X = (xn)n∈ω and Y = (yn)n∈ω, respectively. Let Y p denote
the result dropping all passes from Y . We say that Player II wins the game Gw(A,B) if

Y p is an infinite sequence, and A(X) ≤Q B(Y p).

As in Wadge [Wad83, Theorem B8], one can easily check that A ≤w B holds if and
only if Player II has a winning strategy for the game Gw(A,B). We will often identify
a winning strategy with a continuous function generated by it.

2.3. Better quasi orderings. We will not use the precise definition of bqo — we will
add it for completeness. What we will use is Theorem 2.3 below that guarantees that
the Wedge degree are well-founded when Q is a bqo.

To define bqos, we need to introduce some notation. Let [ω]ω be the set of all strictly
increasing sequences on ω, whose topology is inherited from ωω. We also assume that
a quasi-order Q is equipped with the discrete topology. Given X ∈ [ω]ω, let X− denote
the result of dropping the first entry from X (or equivalently, X− = X \ {minX}, if we
think of X ∈ [ω]ω as an infinite subset of ω).

Definition 2.1 (Nash-Williams [NW65]). A quasi-order Q is a better-quasi-order (ab-
breviated as bqo) if, for any continuous function f : [ω]ω → Q, there is X ∈ [ω]ω such
that f(X) ≤Q f(X−).

The formulation of the definition above is due to Simpson [Sim85]. He also shows
that one can use Borel functions f in the definition and obtain the same notion.
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Example 2.2. For a natural number k, the discrete order Q = (k; =), denoted by k, is
a bqo. More generally, every finite partial ordering is a bqo.

Every bqo is also a well-quasi-order (often abbreviated as wqo), that is, is well-founded
and has no infinite antichain. Bqo’s were introduced by Nash-Williams to prove wqo
results, as bqo’s have better closure properties than wqo’s under infinitary operations.
For instance, Laver [Lav78] showed that if Q is a bqo, then so are Tree(Q) ordered
by ⊴, and the class of scattered Q-labeled linear orderings ordered by ≤Q-preserving
embeddability. The most relevant such result for us is the following:

Theorem 2.3 (van Engelen–Miller–Steel [vEMS87, Theorem 3.2]). If Q is a bqo, then
the Wadge degrees of Q-valued Borel functions on ωω form a bqo too.

2.4. Self-duality and join-reducibility. Two important notions when trying to un-
derstand the notion of theQ-Wadge degrees is that of σ-join-reducibility and self-duality.

Definition 2.4. We say that a Q-Wadge degree a is σ-join-reducible if a is the least
upper bound of a countable collection (bi)i∈ω of Q-Wadge degrees such that bi <w a.
Otherwise, we say that a is σ-join-irreducible.

Definition 2.5 (Louveau and Saint-Raymond [LSR90]). We say that a functionA : ωω →
Q is self-dual if there is a continuous function θ : ωω → ωω such that A(θ(X)) ̸≤Q A(X)
for all X ∈ ωω.

For example, in the case Q = 2, the ∆ Wadge degrees are the self-dual ones, and the
Σ’s and the Π’s are not. Also, each ∆ degree of successor rank is the least upper bound
of the Σ degree and the Π degree immediately below it.

Before stating the equivalence of these two notions, the following definition gives us
a useful tool to study the Wadge degree of a function A : ωω → Q. For σ ∈ ω<ω, define
the function A ↾[σ] by (A ↾[σ])(X) = A(σ⌢X) for any X ∈ ωω (see also Observations
3.5 and 3.6), where σ⌢X is the concatenation of σ and X. Notice that for each σ ∈ ω<ω,
A ↾[σ] ≤w A by essentially the identity operation. For some of these σ we will have
A ↾[σ] ≡w A and for some A ↾[σ] <w A. Define

F(A) = {X : (∀n) A ↾[X ↾n] ≡w A}.
One more definition, given An : ω

ω → Q,
⊕

n∈ωAn is defined by

(
⊕
n∈ω

An)(n
⌢X) = An(X).

Proposition 2.6. Let Q be a bqo and A : ωω → Q a Borel function. The following are
equivalent:

(1) A is σ-join-reducible.
(2) A ≡w

⊕
n∈ωAn, for some An which are σ-join-irreducible and An <w A.

(3) F(A) is empty.
(4) A is self-dual.

Proof. The equivalence between (1) and (4) was proved by Block [Blo14, Proposition
3.5.4], and is a generalization of Steel–van Wesep’s theorem [VW78] from Q = 2 to
general Q.
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Let us prove (3)⇒(1). Suppose F(A) is empty, and let V be the set of minimal
strings in ω<ω such that A ↾[σ] <w A. Then {[σ] : σ ∈ V } is a clopen partition of ωω.
It is not hard to see that A ≡w

⊕
σ∈V A ↾[σ], and hence that A is σ-join-reducible.

For the direction (1)⇒(2), suppose that A is σ-join-reducible, and that its Wadge
degree is the least upper bound of Bi, for i ∈ ω, with Bi <w A. Since Bj ≤w

⊕
i∈ω Bi

for all j ∈ ω, we get that A ≤w

⊕
i∈ω Bi. Furthermore, since Q-Wadge degrees are bqo,

we can use transfinite induction and assume that each Bi is either σ-join-irreducible or
a sum of σ-join-irreducibles. We would then get that A is itself equivalent to a sum of
σ-join-irreducibles.

For (2)⇒(3), let θ witness that A ≤w

⊕
i∈ωAi. For each X ∈ ωω, there exists n

such that θ(X ↾n) is non-empty. If i is the first entry of θ(X ↾n)p, we then get that θ
witnesses that A ↾[X ↾n] ≤w Ai <w A. It follows that X ̸∈ F(A) and hence that F(A)
is empty. □

Note that the equivalence between (1)–(3) is the Q-version of the standard fact in
the Wadge degree theory, cf. [Dup01].

2.5. Conciliatory functions. There is another way of characterizing non-self-dual
functions, and it is using conciliatory functions. Essentially, these are functions whose
domain is ω≤ω instead of just ωω. For a Borel function A : ωω → Q, it will follow
from our results that A is non-self-dual if and only if it can be extended to a function
Ã : ω≤ω → Q that is Wadge equivalent to A (in the sense that we describe below). This
was proved by Duparc [Dup01] for Q = 2 — he actually introduced the notion of a
conciliatory set. We generalize the notion of a conciliatory set in the Q-valued setting
and prove this result as a consequence of Proposition 1.9 and Observation 3.15.

To be able to deal with Wadge reducibility and with complexity pointclasses, we will
use the following representation of conciliatory functions. Fix a symbol ‘pass’ and define

ω̂ = ω ∪ {pass}.
Given X ∈ ω̂ω, we use the notation Xp ∈ ω≤ω to denote the string obtained by removing
all pass’s from X (see also the definition of the Wadge game; Section 2.2).

Definition 2.7. A function A : ω̂ω → Q is conciliatory if

(∀X,Y ∈ ω̂ω) [Xp = Y p =⇒ A(X) = A(Y )].

A function Ψ: ω̂ω → ω̂ω is conciliatory if

(∀X, Y ∈ ω̂ω) [Xp = Y p =⇒ Ψ(X)p = Ψ(Y )p].

In other words, there are Ã : ω≤ω → Q and Ψ̃ : ω≤ω → Q such that the following
diagrams commute:

ω̂ω
A //

(·)p
��

Q ω̂ω
Ψ //

(·)p
��

ω̂ω

(·)p
��

ω≤ω
Ã

=={{{{{{{
ω≤ω

Ψ̃

// ω≤ω

Conciliatory functions are in one-to-one correspondence with functions ω≤ω → Q and
ω≤ω → ω≤ω respectively. However, when we think of their Wadge degrees and of their
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complexity, it is better to think of them as maps defined on ω̂ω. The obvious topology
to give to ω̂ω is the product topology of the discrete space ω̂, which is homeomorphic to
ωω (just because there is a bijection between ω̂ and ω). We will thus treat ω̂ω exactly
as we treat ωω when we define complexity classes of sets and functions. For instance,
a Wadge reduction between conciliatory functions A : ω̂ω → Q and B : ω̂ω → Q, would
be a continuous function θ : ω̂ω → ω̂ω which is not necessarily conciliatory. Thus, this
function θ is not necessarily well-defined as a function on ω≤ω.

Via the identification between ω̂ω and ωω, conciliatory functions are just a special
class of functions on ωω. Then, for instance, we can transform a conciliatory function
A : ω̂ω → Q into a function A : ωω → Q which is Wadge equivalent to A. Thus, the
conciliatory Wadge degrees are just a subset of the standard Wadge degrees of functions
on ωω. However, they will be very useful to us when we define the ΣT -complete functions
ΩT .

Observation 2.8. Every conciliatory function is σ-join-irreducible.

Proof. If A is conciliatory, it is easy to see that passω ∈ F(A), where passω is the infinite
sequence consisting only of pass. Thus, by Proposition 2.6, A is σ-join-irreducible. □

It is the converse direction of this observation that is hard to prove.
The following lemmas and observations will help us gain some intuition on conciliatory

functions, even though they will not be used in the rest of the paper.

Observation 2.9. Every partial computable operator Φe can be viewed as a conciliatory
function. Essentially, it just outputs passes while it is waiting either for a new value of
the oracle, or a new computation to converge. By the same reason, every continuous
function ωω → ωω can be extended to a conciliatory function as we mentioned above.

Lemma 2.10. A function G : ω≤ω → ω≤ω can be represented as a continuous concilia-
tory function ω̂ω → ω̂ω if and only if σ ⊆ τ implies G(σ) ⊆ G(τ) for every σ, τ ∈ ω<ω,
and G(X) =

∪
nG(X ↾n) for every X ∈ ωω.

Sketch of the proof. For the left-to-right implication, suppose Ĝ is a continuous concil-
iatory function such that Ĝ(X)p = G(Xp) for all X ∈ ω̂ω. Suppose τ = σ⌢γ. Every
initial segment of G(σ) must be an initial segment of G(τ) because every initial segment

of G(σ)p is contained in Ĝ(σ⌢pass pass · · · pass)p for some number of passes. Then,

G(τ) = Ĝ(σ⌢pass pass · · · pass⌢γ⌢passω)p.
It follows that G(σ) ⊆ G(τ). By the same argument, if σ ⊆ X, then G(σ) ⊆ G(X). We
leave the remaining details to the reader. □

One can show that a function G : ω≤ω → Q can be represented as a continuous
conciliatory function Ĝ : ω̂ω → Q if and only if it is constant. (Just think of Q as
ω, being the first entry of the output of a function as in the lemma.) The case of Σ0

2

functions gets more interesting.

Lemma 2.11. A function G : ω≤ω → ω≤ω can be represented as a Σ0
2 conciliatory

function if and only if for every X ∈ ωω, G(X) is the pointwise limit of G(X ↾m) in
the following sense: for every σ ∈ ω<ω,

σ ⊆ G(X) ⇐⇒ ∃n∀m > n (σ ⊆ G(X ↾m)).
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In particular, a function G : ω≤ω → Q is Σ0
2 conciliatory if and only if G(X) =

limnG(X ↾n) for every X ∈ ωω.

Sketch of the proof. For the left-to-right implication, suppose Ĝ is a Σ0
2 conciliatory

function such that Ĝ(X)p = G(Xp) for all X ∈ ω̂ω. By definition, the predicate

τ ⊆ Ĝ(X) is Σ0
2-definable with parameters. For σ ∈ ω<ω and X ∈ ωω, note that the

predicate σ ⊂ Ĝ(X)p is equivalent to the existence of τ ∈ ω̂<ω such that τ p = σ and

τ ⊆ Ĝ(X). The latter condition is also Σ0
2-definable with parameters. Thus, there is a

∆0
1 predicate R with parameters such that

σ ⊆ Ĝ(X)p ⇐⇒ ∃n∀m > n R(σ, n,m,X ↾m)

for σ ∈ ω<ω and X ∈ ω̂ω. Suppose, toward a contradiction that X ∈ ωω and σ ⊆ G(X),
but there exists k0 < k1 < · · · such that σ ̸⊆ G(X ↾ kn). We will then define Y ∈ ω̂ω

with Y p = X such that σ ̸⊆ Ĝ(Y ) = G(X). We define Y by finite approximations
Y0 ⊆ Y1 ⊆ Y2 · · · so that Yn

p = X ↾ kn. At each stage n, since σ ̸⊆ G(X ↾ kn), there
is an mn such that ¬R(σ, n,mn, Yn

⌢passk), where k is so that |Yn⌢passk| = mn. De-
fine Yn+1 to be Yn

⌢passk⌢X ↾[kn + 1, kn+1], so that Yn+1
p = X ↾ kn+1. We then have

∀n¬R(σ, n,mn, Y ↾mn), and hence that σ ̸⊆ Ĝ(Y ).
We leave the converse direction to the reader. It is a standard argument in com-

putability theory. □
The following lemma is also quite standard. It is just a uniform version of the limit

lemma.

Lemma 2.12. Every partial Σ0
2 function G : ωω → ωω can be extended to a Σ0

2 concil-

iatory function Ĝ : ω̂ω → ω̂ω, so that Ĝ(X) = G(X) for all X ∈ ωω.

2.6. Universal Σ0
2 conciliatory functions. First, let us observe that there is no

universal total Σ0
2-measurable function on ωω, as it would be ∆0

2, and there is no
greatest ∆0

2 Wadge degree. This is the main reason we need to deal with conciliatory
functions in this paper. Hereafter, for functions A,B : X → ω̂ω for X ∈ {ωω, ω̂ω}, we
write A ≡p B if A(X)p = B(X)p for all X ∈ X .

Definition 2.13. Let U : ω̂ω → ω̂ω be a conciliatory function. We say that U is
Σ0

2-universal if it is Σ
0
2-measurable, and for every Σ0

2-measurable conciliatory function
G : ω̂ω → ω̂ω, there exists a continuous function θ : ω̂ω → ω̂ω such that G ≡p U ◦ θ.

Let us define a Σ0
2-universal function U . Let {σn : n ∈ ω} be an effective enumeration

of ω<ω. Think of an input Y to U as a code for a sequence of strings σY (0), σY (1), σY (2), ...
and U(Y ) as the pointwise limit of these strings. That is, we would like to define
U(Y )(j) = limi→∞ σY (i)(j) if the limit exists, and let it be undefined otherwise, except
that we have to be a bit careful to get U to be of the right form. The actual definition
is as follows. For σ ∈ ω<ω, σ ̸= ∅,

σ ⊆ U(Y ) ⇐⇒ ∃n
(
σ ⊆ σY p(n) & ∀m > n

(
Y p(m) ↓ → σ ⊆ σY p(m)

))
,

where Y p(m) ↓ means that |Y p| > m. It is not hard to see that if τ0 ⊆ U(Y ) and
τ1 ⊆ U(Y ), then τ0 and τ1 must be compatible. We let U(Y ) be the union of all σ such
that σ ⊆ U(Y ). We let the reader verify that U is a Σ0

2-universal conciliatory function,
as it is a standard computability theoretic argument.



10 TAKAYUKI KIHARA AND ANTONIO MONTALBÁN

U has a particular property that will be quite important: the value of U(Y ) does not
depend on initial segments of Y , and only depends on the tail of Y .

Definition 2.14. A function A : ω̂ω → ω̂ω is initializable if for every τ ∈ ω̂<ω, there is
a continuous function θτ : ω̂

ω → [τ ] such that A ≡p A ◦ θτ .

Essentially the same notion has also been studied by e.g. [Dup01]. To see that our
function U is initializable, suppose 0 is the code for the empty string (i.e., σ0 = ∅), then
let θτ (Y ) = τ⌢0⌢Y . It is not hard to see that U(Y ) = U(τ⌢0⌢Y ).

We have proved the following proposition.

Proposition 2.15. There is an initializable Σ0
2-universal conciliatory function.

3. Nested labeled trees

In this section we give formal definitions of ⊔Treen(Q), ⊴, ΣT , and the ΣT -complete
function ΩT . We end the section by extending these ideas to all infinite Borel ranks.

3.1. Nested Trees. Let us first give some intuition for the connection between nested
labeled trees and Borel functions. First consider the characteristic function χU of an
open set U ⊆ ωω. Since the predicate x ∈ U can be described by an existential formula,
we have an approximation procedure which starts by guessing χU(x) = 0 until x ∈ U
is witnessed, and then changes the guess to χU(x) = 1 after seeing such a witness.
We denote the collection of all such guessing procedures, namely the pointclass Σ0

1,
by the term ⟨0⟩→⟨1⟩. We think of the term ⟨0⟩→⟨1⟩ as representing a tree with two
nodes whose root is labeled by 0, and leaf is labeled by 1. Similarly, we use the tree
⟨1⟩→⟨0⟩ (with a root note labeled 1, and a leaf node labeled 0) to name the pointclass
Π0

1, and we use trees of the form ⟨0⟩→⟨1⟩→ . . .→⟨0⟩→⟨1⟩ to name the finite levels of the
Hausdorff-Kuratowski difference hierarchy.

To represent self-dual pointclasses such as ∆0
1, we will need to consider forests rather

than trees. Given a clopen set C ⊆ ωω, one decides whether χC(x) = 0 or χC(x) = 1
at once and there is no change of mind afterwords. We represent this procedure by the
term ⟨0⟩ ⊔ ⟨1⟩, which is identified with a forest consisting of two roots labeled by 0 and
1, respectively. All levels of the Hausdorff-Kuratowski difference hierarchy (hence all
Wadge degrees of ∆0

2 subsets of ω
ω) are named by terms obtained from the operations →

and ⊔ (that is, well-founded {0, 1}-labeled trees and their disjoint unions). For instance,
a term of the form In

→ ⊔
k Ik, (where Iℓ is the chain of the form ⟨0⟩→⟨1⟩→ . . .→⟨0⟩→⟨1⟩

of length ℓ) names the (ω + n)th-level of the difference hierarchy. To represent ∆0
2 3-

partitions, Selivanov used forests labeled with {0, 1, 2} instead. The idea is the same: A
{0, 1, 2}-labeled tree guides the mind changes allowed when defining a ∆0

2 3-partitions;
since the tree is well-founded, the guessing process eventually stops.

If we want to move on to ∆0
3 functions, that is when we need to start nesting trees.

For instance, the tree ⟨T ⟩ consisting only of a root labeled by a tree T , is thought of as
the jump of the pointclass named by T . Thus, ⟨⟨0⟩→⟨1⟩⟩ is the jump of Σ0

1 — namely
Σ0

2. By using nesting of trees in this way, we will be able to climb up the Borel hierarchy.

3.1.1. Homomorphic quasi-order. For a quasi-ordered set Q, it is now easy to guess that
every Q-valued ∆0

2-measurable functions can be described as a countable Q-labeled
well-founded forest. There is a known way of comparing the complexity of Q-labeled
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forests. Formally, a Q-labeled forest is a tuple (F,⪯F , λF ) of a forest (F,⪯F ) and a
labeling function λF : F → Q. A homomorphism h between Q-labeled forests S and
T is a order-preserving ≤Q-increasing maps, that is, for any σ, τ ∈ S, σ ⪯S τ implies
h(σ) ⪯T h(τ), and λS(σ) ≤Q λT (h(σ)). Write S ⊴Q T if there is a homomorphism from
S to T .

Let Tree∗(Q) be the collection of all countable Q-labeled well-founded trees, and
⊔Tree∗(Q) be the collection of all countable forests written as a disjoint union of trees
in Tree∗(Q). Selivanov [Sel07, Sel17a, Sel17b] showed that (⊔Tree∗(k),⊴k) characterizes
the Wadge degrees of ∆0

2 k-partitions, and that (⊔Tree∗(Tree∗(k)),⊴Tree∗(k)) character-
izes ∆0

3 k-partitions. As mentioned in [Sel17a, Sel17b], it is natural to consider iterated
nesting of labeled forests and homomorphic quasi-order. However, we will see that this
approach does not extend to infinite Borel ranks (see Section 3.4). For the sake of uni-
formity, we will directly define a quasi-order ⊴ on the nested forests, which enable us to
compare functions of different Borel ranks, and is extendible directly to infinite Borel
ranks (but does not differ from the homomorphic quasi-order if restricted to forests of
nesting depth n for a fixed n ∈ ω). In order to define ⊴, we will represent trees and
forests as terms.

3.1.2. Language and terms. All Q-valued Borel functions of finite rank will be described
using terms (identified with forests) in the language consisting of constant symbols
(corresponding to elements in Q), and three function symbols: → (concatenation), ⊔
(disjoint union), and ⟨·⟩ (labeling). To represent Q-valued Borel functions of infinite
rank, we will need to add symbols representing transfinite jump operations ⟨·⟩ωα

.
We formally describe the collections Tree(Q) and ⊔Tree(Q) of countable well-founded

Q-labeled trees and their countable disjoint unions (i.e., forests) in the following induc-
tive manner:

(1) If T ∈ Tree(Q), then T ∈ ⊔Tree(Q).
(2) For each q ∈ Q, the term ⟨q⟩ is in Tree(Q). It represents the tree with only one

node labeled q.
(3) For any countable collection {Ti}i∈I in Tree(Q), where ∅ ̸= I ⊆ ω, the term

⊔iTi is in ⊔Tree(Q). Terms of the form ⊔iTi will be called ⊔-type terms, and
represent forests obtained as the disjoint union of trees Ti.

(4) For any q ∈ Q and ⊔-type term T ∈ ⊔Tree(Q), the term ⟨q⟩→T is in Tree(Q).
It represents the tree obtained by joining to a root labeled q all the components
of the forest T .

Note that Tree(Q) consist of the non-⊔-type terms in ⊔Tree(Q). Then, define Tree0(Q) =
Q, Treen+1(Q) = Tree(Treen(Q)), and ⊔Treen+1(Q) = ⊔Tree(Treen(Q)).

The way they are defined, Treem(Q) and Treen(Q) are disjoint whenever m < n.
However, we will later see that every tree is Treem(Q) is equivalent to one in Treen(Q)
(Observation 3.2).

Note that Tree(Q) and ⊔Tree(Q) corresponds to the Q-labeled trees and forests in
the sense of Section 3.1.1. For instance, the term ⟨q⟩→ ⊔i∈ω ⟨pi⟩ represents an infinitely
branching tree of height 2 whose root is labeled by q, and whose ith immediate successor
is labeled by pi.
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3.1.3. Quasi-ordering nested trees. In this section, we introduce a quasi-order ⊴ on
⊔Tree<ω(Q), which we will show is isomorphic to the Wadge quasi-ordering of Q-valued
functions of finite Borel rank. To simplify our notation, we always identify ⟨T ⟩ with
⟨T ⟩→⊔iO, where O is the empty forest, which we think of as an imaginary least element
with respect to the quasi-order ⊴, that is, O ⊴ T for any T ∈ ⊔Treen(Q). By permitting
the use of O, one can also assume that an index set I in (3) is always ω.

Definition 3.1. We inductively define a quasi-order⊴ on
∪
nTree

n(Q) as follows, where
the symbols p and q range over Q, and U , V , S, and T range over

∪
nTree

n(Q):

p ⊴ q ⇐⇒ p ≤Q q,

⟨U⟩ ⊴ ⟨V ⟩ ⇐⇒ U ⊴ V,

and if S and T are of the form ⟨U⟩→ ⊔i Si and ⟨V ⟩→ ⊔j Tj, respectively, then

S ⊴ T ⇐⇒

{
either U ⊴ V and (∀i) Si ⊴ T,

or U ̸⊴ V and (∃j) S ⊴ Tj.

This pre-ordering induces an equivalence as usual: let S ≡ T if S ⊴ T and T ⊴ S. For
p ∈ Q, we let p ≡ ⟨p⟩ ≡ ⟨⟨p⟩⟩ ≡ · · · , allowing us to compare trees of different levels.
However, note that T ̸≡ ⟨T ⟩ when T ̸∈ Q.

Finally, ⊴ is uniquely extended to a quasi-order on
∪
n
⊔Treen(Q) by interpreting ⊔

as a countable supremum operation:

⊔iSi ⊴ ⊔jTj ⇐⇒ (∀i)(∃j) Si ⊴ Tj.

Observation 3.2. For every T ∈ ⊔Tree≤n(Q), there is S ∈ ⊔Treen(Q) such that S ≡ T .

Proof. By induction on the rank of the trees. Assume that m ≤ n and T ∈ ⊔Treem(Q).
Then, consider the term ι(T ) = T [⟨q⟩n−m/q]q∈Q obtained by substituting all occurrences
of q ∈ Q by ⟨q⟩n−m, where ⟨q⟩0 = q and ⟨q⟩k+1 = ⟨⟨q⟩k⟩. Note that ι(T ) ∈ ⊔Treen(Q),
and it is clear that T ≡ ι(T ). □
Observation 3.3. If we identify a term in ⊔Treen(Q) with the corresponding Treen−1(Q)-
labeled forest, then it is not hard to see by induction on the rank of the trees that the
quasi-order ⊴ restricted to ⊔Treen(Q) is exactly the same as the homomorphic quasi-
order in Section 3.1.1.

Theorem 3.4 (Laver [Lav78]). For n ∈ ω, if Q is better-quasi-ordered, then so is
⊔Tree≤n(Q).

This is a consequence of Laver’s results, together with closure properties of the class
of bqos. Laver showed that if Q is a bqo, so is Tree(Q) for an even stronger notion of
reducibility.

3.2. The associated pointclasses. As we mentioned before, each forest T ∈ ⊔Treen(Q)
defines a pointclass ΣT . For instance, if Q = 2, then

Σ⟨0⟩⊔⟨1⟩ = ∆0
1, Σ⟨0⟩→⟨1⟩ = Σ0

1, Σ⟨1⟩→⟨0⟩ = Π0
1, Σ⟨⟨0⟩→⟨1⟩⟩ = Σ0

2, and so on.

The following observations will simplify our definitions.

Observation 3.5. Let F be a nonempty closed subset of ωω. Then, for every function

A : F → Q there is a function Â : ωω → Q which is Wadge equivalent to A.
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Proof. By zero-dimensionality of ωω, there is a retraction ρF : ωω → F (that is, ρF is

continuous and ρF ↾F is identity). Define Â = A ◦ ρF . Then, we have Â ≤w A via ρF ,

and A ≤w Â via the identity map.
The definition of this retraction is quite standard: Let T ⊆ ω<ω be a tree without dead

ends such that F = [T ]. We define ρF : ω<ω → T by induction: ρF(σ
⌢n) = ρF(σ)

⌢m
where m ∈ ω is the closest to n such that ρF(σ)

⌢m ∈ T . (By closest we mean such that
|m+ 1

3
− n| is least, for instance.) We then extend ρF to ωω to F by continuity. □

Observation 3.6. Let V be a nonempty open subset of ωω. Then, for every function

A : V → Q there is a function Â : ωω → Q which is Wadge equivalent to A.

Proof. Let V = {τ0, τ1, ...} ⊆ ω<ω be a generator of V . That is, V is so that {[τ ] : τ ∈ V }
is a partition on V in clopen sets. Then the bijection n⌢X 7→ τn

⌢X : ωω → V induces

a function Â : ωω → Q Wadge equivalent to A □

From now on, whenever we encounter a Q-valued function whose domain is an either
open or closed subset of ωω, we identify it with the corresponding function of domain
ωω.

Definition 3.7. For each T ∈
∪
n
⊔Treen(Q), we inductively define the class ΣT of

Q-valued functions on ωω as follows:

(1) Σq consists only of the constant function X 7→ q : ωω → Q.
(2) If T is of the form ⊔iSi, then A ∈ ΣT if and only if there is a clopen partition

(Ci)i∈ω of ωω such that A ↾ Ci ∈ ΣSi
for each i ∈ ω.

(3) A ∈ ΣT→S if and only if there is an open set V ⊆ ωω such that A ↾(ωω \ V) is in
ΣT and A ↾V is in ΣS.

(4) A ∈ Σ⟨T ⟩ if and only if there is a Σ0
2-measurable function D : ωω → ωω and a

ΣT -function B : ωω → Q such that A = B ◦ D.

We say that a function A : ωω → Q is ΣT -complete if A ∈ ΣT and every ΣT -function
B is Wadge reducible to A.

Observation 3.8. Let T ∈ ⊔Treen(Q) be a forest, and θ : ωω → ωω be a continuous
function. If A : ωω → Q is in ΣT , then so is A ◦ θ. This can be easily shown by
induction on T as a term.

To prove Proposition 1.6 for functions of finite Borel rank, we check measurability of
ΣT -functions. We denote by ∆0

ξ the set of all ∆0
ξ-measurable functions.

Lemma 3.9. Let S, T be terms and ξ be a countable ordinal.

(1) ΣT ,ΣS ⊆ ∆0
2+ξ implies ΣT→S ⊆ ∆0

2+ξ.

(2) ΣT ⊆ ∆0
1+ξ implies Σ⟨T ⟩ ⊆ ∆0

2+ξ.

Proof. To see (1), let A be a ΣT→S-function. Then, there is an open set V such that
A ↾(ωω \ V) can be extended to a total ΣT -function A0, and A ↾V can be extended to
a total ΣS-function A1 as in Observations 3.5 and 3.6. Thus, for any q ∈ Q, we have

A−1[q] = (A−1
0 [q] \ V) ∪ (A−1

1 [q] ∩ V)
A−1[q]c = (A−1

0 [q]c \ V) ∪ (A−1
1 [q]c ∩ V)
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This gives Σ0
2+ξ-definitions of A−1[q] and A−1[q]c since A0 and A1 are ∆

0
2+ξ-measurable,

and V is open. Consequently, A is ∆0
2+ξ-measurable.

For (2), note that the composition B ◦ D of a ∆0
1+ξ-measurable function B and a

Σ0
1+η-measurable function D is always ∆0

1+η+ξ-measurable. This is because, one can

see that if S ⊆ ωω is Σ0
1+ξ then D−1[S] is Σ0

1+η+ξ by induction on Borel rank. Now,

every A ∈ Σ⟨T ⟩ is given by the composition of the ΣT -function B and the Σ0
2-measurable

function D. This implies that B ◦D is ∆0
2+ξ-measurable since B is ∆0

1+ξ-measurable by
our assumption. □

In particular, if T ∈ ⊔Treen(Q), then every ΣT -function is ∆0
n+1-measurable. As a

consequence, this verifies Proposition 1.6 for functions of finite Borel rank.

3.3. ΣT -complete functions. For Q = 2, Duparc [Dup01] defined complete sets Ων ⊆
ω≤ω for the different levels of the 2-Wadge hierarchy. For Q = k ∈ ω, Selivanov [Sel07]
defined complete ∆0

2 functions µT : ω
ω → k for each forest T ∈ ⊔Tree(k) based on similar

ideas. In this section we extend Duparc and Selivanov’s definition to all bqos Q and
nested forests T ∈ ⊔Treen(Q), and later on throughout the Borel hierarchy.

The complete functions we will define are conciliatory; see Section 2.5.

3.3.1. Difference hierarchy and mind-change operation. The Hausdorff-Kuratowski dif-
ference hierarchy (and the Ershov hierarchy) can be understood using the notion of a
mind-change. That is, a subset A of ωω is in the nth-level of the difference hierarchy if
and only if the characteristic function of A is approximated by a continuous function
with n mind-changes.

We want to define an operation A→B for A,B : ω̂ω → Q which represents a function
that could act as A, but at any time could change its mind and act as B. To make
it easier to describe such a process, we introduce notations representing this kind of
approximation procedure. Suppose we first want to output a sequence and after ℓ steps,
after having defined a sequence Y ∈ ωℓ, we change our mind and we want to output a
new sequence Z ∈ ω≤ω. We will encode this by the following real:

Y →Z := ⟨2Y (0), 2Y (1), . . . , 2Y (ℓ− 1), 2Z(0) + 1, Z(1), Z(2), . . . ⟩.

We want to define this procedure on ω̂ω as follows, where we will require that the first
entry of the second sequence Z is not pass, that is, Z ∈ ω × ω̂ω.

Notation 3.10. Given Y ∈ ω̂ℓ of length ℓ ∈ ω ∪ {ω} and Z ∈ ω× ω̂ω, we define Y →Z as
follows:

Y →Z(n) =


2Y (n), if n < ℓ and Y (n) ̸= pass,

pass, if n < ℓ and Y (n) = pass,

2Z(0) + 1, if n = ℓ,

Z(n− ℓ+ 1), if n > ℓ.

Observation 3.11. The map (Y, Z) 7→ Y →Z admits a conciliatory inverse. Indeed, there
uniquely exist conciliatory continuous functions π0 and π1 such that for any X ∈ ω̂ω,

X = π0(X)→π1(X).
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We hereafter fix such functions π0, π1. Note that π1(X)p is nonempty if and only if
X has changed his mind at some point. In other words, if π1(X)p is empty, then the
sequence given by X is π0(X), and if π1(X)p is nonempty, X has already deleted the
former sequence π0(X), and now proposes π1(X).

Notation 3.12 (see also [Dup01, Definition 6] for Q = 2). Let A and B be functions
whose domains are subsets of ω̂ω. We define a function A→B : ω̂ω → Q as follows:

(A→B)(X) =

{
A(π0(X)) if π1(X) is empty,

B(π1(X)) otherwise.

It is easy to check that the operation → can also be seen as an operation on the
Wadge degrees:

Observation 3.13. Let A,B, C,D be functions whose domains are subsets of ω̂ω. If
A ≤w C and B ≤w D then A→B ≤w C→D.

3.3.2. ΣT -complete functions. We now inductively assign a function ΩT to each forest
T ∈ ⊔Treen(Q), and we will show that ΩT is ΣT -complete. Recall that T is a tree if
and only if the outermost function symbol is not the disjoint union ⊔, and thus, ΩT is
defined by the construction in (1), (3), or (4) of Definition 3.7. If T is a tree, ΩT will be a
conciliatory function from ω̂ω to Q. If T is not a tree, ΩT will be a function from ω× ω̂ω
to Q, which is almost conciliatory, that is, Xp = Y p implies ΩT (n

⌢X) = ΩT (n
⌢Y ) for

any n ∈ ω. (Think of almost conciliatory functions as having domain ω≤ω \ {∅}.)

Definition 3.14. Let T ∈ ⊔Treen(Q). We inductively define ΩT as follows:

(1) Suppose that T is of the form ⟨q⟩ for some q ∈ Q. Then define Ω⟨q⟩ : ω̂
ω → Q as

the constant function X 7→ q, that is,

(∀X ∈ ω̂ω) Ω⟨q⟩(X) = q.

We sometimes abbreviate Ω⟨q⟩ to Ωq.
(2) Suppose that T is of the form

⊔
n Tn, where each Tn is a tree. Then define

ΩT : ω × ω̂ω → Q as follows:

Ω⊔
n Tn

(X) =
⊕
n∈ω

ΩTn(X)

(3) Suppose that T is of the form ⟨S⟩→F , where S is the label on the root of T
(thus S ∈ Treen−1(Q)), and F is a forest. Then,

Ω⟨S⟩→F = Ω⟨S⟩
→ΩF .

(4) Suppose that T is of the form ⟨S⟩ for some tree S. Then define ΩT : ω̂
ω → Q as

follows:
Ω⟨S⟩ = ΩS ◦ U ,

where U is a fixed Σ0
2-universal initializable conciliatory function as in Proposi-

tion 2.15.

Observation 3.15. If T ∈ Treen(Q), then ΩT is conciliatory. If T is a ⊔-type term, ΩT

is almost conciliatory. The proof is an easy induction on the term T .

Observation 3.16. For every T ∈ ⊔Treen(Q), the function ΩT is in ΣT .
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Proof. This is obvious if T is constructed from (1), (2) or (4). Thus, it suffices to
show that ΩT→S ∈ ΣT→S. Recall that every X ∈ ω̂ω is of the form π0(X)→π1(X) by
Observation 3.11. Let V be an open set consisting of all sequences X such that π1(X)
is nonempty (which indicates that X has changed his mind at some point). It is clear
that ΩT→S ↾(ωω \ V) = ΩT ◦ π0 ↾(ωω \ V), and ΩT→S ↾V = ΩS ◦ π1 ↾V . By induction
hypothesis and by Observation 3.8, the former function is in ΣT and the latter function
is in ΣS. This concludes that ΩT→S ∈ ΣT→S. □
Lemma 3.17. For every T ∈ ⊔Treen(Q), the function ΩT is ΣT -complete.

Proof. First assume that T is of the form ⊔iTi, and let A be a ΣT -function. Then there
is a clopen partition (Ci)i∈ω such that A ↾ Ci is in ΣTi for any i ∈ ω. By induction
hypothesis, we have a continuous function θi witnessing A ↾ Ci ≤w ΩTi for every i ∈ ω.
Thus, to see A ≤w ΩT , given X ∈ ωω one can continuously find iX ∈ ω such that
X ∈ CiX , and then we have A(X) ≤Q ΩT (iX

⌢θiX (X)).
Next, let A be a function in ΣT→S . Then, there is an open set V such that A ↾V is

in ΣS and A ↾(ωω \ V) is in ΣT . Recall that the former condition means that there is a
generator V of V such that A ↾[σ] ∈ ΣS for any σ ∈ V . By induction hypothesis, we have
continuous functions θ witnessing A ↾(ωω \ V) ≤w ΩT , and γσ witnessing A ↾[σ] ≤w ΩS

for every σ ∈ V . To see A ≤w ΩT→S, given X ∈ ωω, we first follow θ until we see
X ↾ s ∈ V for some s (if ever). If we see X ↾ s ∈ V , then we change our mind (that is,
delete the former sequence θ(X ↾ s−1)), and now follow γX ↾ s. Recall that, in the latter
case, this process is coded as θ(X ↾ s− 1)→γX ↾ s(X). This witnesses A ≤w ΩT→S.

Let A be a Σ⟨T ⟩-function. Then, there are a Σ0
2-measurable function D and a ΣT -

function B such that A = B◦D. By induction hypothesis, we have a continuous function
θ : ωω → ω̂ω witnessing B ≤w ΩT . Thus, A(X) ≤Q ΩT ◦θ◦D(X). Since θ◦D is Σ0

2, and
U is universal, there is a continuous function Ψ: ωω → ω̂ω such that θ ◦D ≡p U ◦Ψ(X).
Then, since ΩT is conciliatory by Observation 3.15,

A(X) = B(D(X)) ≤Q ΩT (θ ◦ D(X)) = ΩT (U ◦Ψ(X)) = Ω⟨T ⟩(Ψ(X)).

Consequently, the continuous function Ψ witnesses A ≤w Ω⟨T ⟩. □
Lemma 3.18. For S, T ∈ ⊔Treen(Q), if S ⊴ T , then ΩS ≤w ΩT .

Proof. We show the assertion by induction on the definition of ⊴ in Definition 3.1. First,
it is clear that Ωp ≤w Ωq if and only if p ⊴ q. Next suppose that we have ⟨U⟩ ⊴ ⟨V ⟩
(where U and V are not of ⊔-type), which is equivalent to U ⊴ V by definition. By the
induction hypothesis, we have a Q-Wadge reduction θ : ω̂ω → ω̂ω witnessing ΩU ≤w ΩV .
By the Σ0

2 universality of U , there exists a continuous Φ: ω̂ω → ω̂ω such that θ ◦ U ≡p

U ◦ Φ. Since ΩV is conciliatory by Observation 3.15, we have that for every X ∈ ω̂,

Ω⟨U⟩(X) = ΩU(U(X)) ≤Q ΩV (θ(U(X))) = ΩV (U(Φ(X))) = Ω⟨V ⟩(Φ(X)).

Thus Φ witnesses that Ω⟨U⟩ ≤w Ω⟨V ⟩.
Now, consider S = ⟨U⟩→

⊔
i Si and T = ⟨V ⟩→

⊔
j Tj. First consider the case that

⟨U⟩ ⊴ ⟨V ⟩. In this case, by the definition of ⊴ under the assumption that ⟨U⟩ ⊴ ⟨V ⟩,
we have that Si ⊴ T for any i ∈ ω. By the induction hypothesis, ΩSi

≤w ΩT via
a continuous function θi for any i, and Ω⟨U⟩ ≤w Ω⟨V ⟩ via τ . The idea to define the
reduction is as follows: Given X ∈ ωω, while X does not change its mind, use the
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reduction τ : Ω⟨U⟩ ≤w Ω⟨V ⟩. If X changes its mind and moves into some Sk, then we
need to use the reduction θk : ΩSk

≤w ΩT . Since we have already taken some steps
within the domain of ⟨V ⟩, we need to use the initializability of Ω⟨V ⟩ to start over with
the reduction to ΩT .

More formally: By the initializability of Ω⟨V ⟩ (see Definition 2.14), for any σ, there is
a continuous function ησ witnessing Ω⟨V ⟩ ≤w Ω⟨V ⟩ ↾[σ]. We can then extend this map to
a Wadge reduction ΩT ≤w ΩT ↾[σ→∅], where σ→∅ represents the string in the domain
of ΩT for which we haven’t changed our mind yet, and we are still computing Ω⟨V ⟩.
For each σ, let η̂σ be such that ΩT (Y ) ≤Q ΩT (σ

→η̂σ(Y )), witnessing such reduction.
A given X can be written as π0(X)→π1(X) by Observation 3.11. If π1(X) is empty
(that is, X never changes his mind), then note that ΩS(X) = Ω⟨U⟩(π0(X)). In this
case, return τ(π0(X))→∅. Let X be a sequence such that π1(X) is nonempty (that
is, X has changed his mind at some point). Put k = π1(X)(0). Note that ΩS(X) =
Ω⊔

i Si
(π1(X)) = ΩSk

(π1(X)−), where π1(X) = k⌢π1(X)−. Then change our guess to
η̂τ(π0(X)) ◦ θk(π1(X)−). We thus get

ΩS(X) = ΩSk
(π1(X)−) ≤Q

ΩT (θk(π1(X)−)) ≤Q ΩT (τ(π0(X)) → η̂τ(π0(X))(θk(π1(X)−))).

Putting these two cases together, we have a Wadge reduction from ΩS to ΩT .
We now assume that ⟨U⟩ ̸⊴ ⟨V ⟩. In this case, by definition, S ⊴ T if and only if

S ⊴ Tj for some j ∈ ω. By induction hypothesis ΩS ≤w ΩTj for some j. Clearly, this
condition implies ΩS ≤w ΩT . □

We will prove the reverse direction, that ΩT ≤w ΩS ⇒ T ⊴ S, in Subsection 4.3. We
need to wait until then, because we need the jump inversion operator for the proof.

3.4. Infinite Borel ranks. We now extend our ideas from Section 3.1 to infinite Borel
ranks. The reader who is only interested in Borel functions of finite rank can skip
Section 3.4.

We first describe a naive idea using homomorphic quasi-order in Section 3.1.1, and
we will see that the naive approach does not work. For a countable ordinal ξ, one
may think that it is natural to define the trees Treeξ∗(Q) of the ξth nesting rank as
Tree∗(

∪
η<ξ Tree

η
∗(Q)). Then it is straightforward to extend Definition 3.14 to define

ΩT for T ∈ Treeξ∗(Q). However, it is not hard to see that ΩT is still ∆0
ω-measurable

whatever ξ is.
This failed approach corresponds to a known fact for Q = 2: It is known that the

Wadge rank of a Σ0
n-complete set is ω1 ↑↑ n (i.e., the nth level of the super-exponential

hierarchy of base ω1) and thus smaller than the (ω1 +1)st epsilon number εω1+1 (which
is the same as the first fixed point of the exponential of base ω1). One may guess
that the height of the Wadge degrees of ∆0

ω sets is εω1+1; however, it is wrong. As
calculated by Wadge [Wad83], the correct height of ∆0

ω sets is the (ω1 · 2)nd epsilon
number εω1·2 (which is the same as the ω1th fixed point of the exponential of base ω1).
This observation reveals the existence of a long hierarchy of ∆0

ω sets which are not of
finite Borel rank, and one can now see that (Treeξ∗(2))ω≤ξ<ω1 only describes such sets,
i.e., the sets of Wadge rank between εω1+1 and εω1·2.



18 TAKAYUKI KIHARA AND ANTONIO MONTALBÁN

On the other hand, our quasi-ordering ⊴ in Section 3.1.3 is significantly different from
the homomorphic quasi-order when considering the nesting of unbounded depth. For
a fixed n, ⊔Tree≤n(Tree(Q)) is isomorphic to ⊔Treen+1(Q) (which is also isomorphic to
the quotient order under the homomorphic quasi-ordering on ⊔Treen+1

∗ (Q)), and under
a natural isomorphism ι : ⊔Tree≤n(Tree(Q)) ≃ ⊔Treen+1(Q), each tree T ∈ Tree(Q) is
interpreted as ι(T ) = ⟨T ⟩n. However, if we move to the nesting of unbounded depth,
we observe that ⊔Tree<ω(Tree(Q)) and ⊔Tree<ω(Q) are not necessarily isomorphic: An
intended interpretation of T ∈ Tree(Q) in the former ordering is more complex than
⟨T ⟩n for any n ∈ ω, which does not live in the latter ordering.

For instance, observe that if Q = 2 and T = ⟨0⟩→⟨1⟩ (which is in Tree(Q)), then
T ̸≡ ⟨T ⟩ in ⊔Tree<ω(Q) since T and ⟨T ⟩ represent Σ0

1 and Σ0
2 respectively, but T ≡ ⟨T ⟩

in ⊔Tree<ω(Tree(Q)). Note that this strange phenomenon is simply caused by abuse of
notation (that is, we should have distinguished two labeling functions for inner trees
Tree(Q) and outer forests ⊔Tree<ω(·)).

To avoid the notational confusion, let ⟨·⟩∗ be a new function symbol, and for a quasi-
ordering P, define the new quasi-ordering ⟨P⟩∗ as follows:

⟨P⟩∗ = {⟨p⟩∗ : p ∈ P} ordered by ⟨p⟩∗ ≤ ⟨q⟩∗ ⇐⇒ p ≤P q.

Trivially, P ≃ ⟨P⟩∗, and thus ⊔Tree<ω(Tree(Q)) ≃ ⊔Tree<ω(⟨Tree(Q)⟩∗). This indi-
cates that T ≡ ⟨T ⟩ in the former ordering should be understood as ⟨T ⟩∗ ≡ ⟨⟨T ⟩∗⟩.
The latter equivalence is not very surprising. (Note that the rank of ⟨⟨0⟩→⟨1⟩⟩∗ in
⊔Tree<ω(⟨Tree(2)⟩∗) is εω1+1.)

Now let ⊔Treeω(Q) be the set of all terms in the language introduced in Section 3.1.2.
It is straightforward to extend the domain of our quasi-ordering ⊴ in Definition 3.1
to ⊔Treeω(Q). Later we will show that the Q-valued ∆0

ω-functions are exactly those
represented by the terms in ⊔Treeω(Q). Then we will let ⊔Treeω+1(Q) be isomorphic
to ⊔Treeω(Tree(Q)), but to avoid the notational confusion, we will introduce a new
symbol ⟨·⟩ω, and define ⊔Treeω+1(Q) = ⊔Treeω(⟨Tree(Q)⟩ω). Similarly, for instance,
⊔Treeω·3+6(Q) will be defined as follows:

⊔Treeω·3+6(Q) = ⊔Treeω(⟨Treeω(⟨Treeω(⟨Tree6(Q)⟩ω)⟩ω)⟩ω)
≃ ⊔Treeω(Treeω(Treeω(Tree6(Q)))).

In this way, by using Q, →, ⊔, ⟨·⟩, and ⟨·⟩ω, one can define ⊔Treeξ(Q) for all ξ ≤ ω2.

Then, ⊔Treeω
2+1(Q) = ⊔Treeω

2

(⟨Tree(Q)⟩ω2
) ≃ ⊔Treeω

2

(Tree(Q)), where ⟨·⟩ω2
is a new

symbol. To introduce ⊔Treeξ(Q) for all ξ < ω1 we need a function symbol ⟨·⟩ωα
for each

α < ω1 as described below.

3.4.1. Language and terms (infinite Borel rank). Given a set Q, let L(Q) be the lan-
guage consisting of constant symbols q for each q ∈ Q, an ω-ary function symbol ⊔,
a two-ary function symbol →, and a unary function symbol ⟨·⟩ωα

for every countable
ordinal α < ω1.

We define ⊔Treeω
α

(Q) as the set of all L(Q)-terms of rank below ωα as follows:

Definition 3.19 (Terms of Rank below ωα). We inductively define the sets Treeω
α

(Q)
and ⊔Treeω

α

(Q) consisting of L(Q)-terms as follows:

(1) If β ≤ α and T ∈ Treeω
β

(Q) then T ∈ Treeω
α

(Q) and T ∈ ⊔Treeω
α

(Q).
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(2) If q ∈ Q then ⟨q⟩ ∈ Tree1(Q) (where note that ω0 = 1), and call it ⟨⟩-type.
(3) If β < α and T ∈ Treeω

α

(Q) then ⟨T ⟩ωβ ∈ Treeω
α

(Q), and call it ⟨⟩-type.
(4) If Ti ∈ Treeω

α

(Q) for every i ∈ ω, then ⊔iTi ∈ ⊔Treeω
α

(Q), and call it ⊔-type.
(5) For any ⟨⟩-type term T ∈ Treeω

α

(Q) and ⊔-type term S ∈ ⊔Treeω
α

(Q), the term
T→S is in Treeω

α

(Q).

We define Treeω1(Q) =
∪
αTree

ωα

(Q) and ⊔Treeω1(Q) =
∪
α
⊔Treeω

α

(Q).
For instance, ⊔Treeω(Q) can be viewed as the closure of Q under the operations

⟨·⟩, ⊔, and →. Notice that this is far larger than
∪
n
⊔Treen(Q) (even with respect

to ⊴) because a term in ⊔Treeω(Q) can contain unbounded applications of the labeling
function ⟨·⟩, e.g., ⊔n⟨0→1⟩n. This reflects the fact that the pointclass∆0

ω is strictly larger
than

∪
n<ω∆

0
n. On the other hand, the function ⟨·⟩ω would take us out of ⊔Treeω(Q),

reflecting that the conciliatory Σ0
ω universal function is not ∆0

ω.
For a set R of L(Q)-terms and an ordinal α, we define:

⟨R⟩ωα

= {⟨T ⟩ωα

: T ∈ R}.

We then inductively define the set Treeω
α·k(Q) ⊆ Treeω

α+1

(Q) of L(Q)-terms (of rank
< ωα · k for 1 ≤ k < ω) as follows:

Treeω
α·1(Q) = Treeω

α

(Q), Treeω
α·(k+1)(Q) = Treeω

α

(⟨Treeωα·k(Q)⟩ωα

).

In general, recall that every countable ordinal ξ can be written as ωα + β for some
β < ωα+1. Then we define Treeξ(Q) and ⊔Treeξ(Q) as follows:

Treeω
α+β(Q) = Treeω

α

(⟨Treeβ(Q)⟩ωα

), ⊔Treeω
α+β(Q) = ⊔Treeω

α

(⟨Treeβ(Q)⟩ωα

).

Note that one can also decompose ξ as ξ = ωα · k+ γ for k < ω and γ < ωα to define
Treeξ(Q) in a straightforward manner, but it gives the same definition as above.

3.4.2. Quasi-ordering nested trees (infinite Borel rank). In this section, we extend the
domain of the quasi-order ⊴ to ⊔Treeω1(Q). As in Section 3.1.3, we first inductively
define a quasi-order ⊴ on Treeω1(Q), and then, ⊴ is uniquely extended to a quasi-
order on ⊔Treeω1(Q) by interpreting ⊔ as a countable supremum operation. Recall the
convention from Section 3.1.3 that we always identify p ∈ Q with ⟨p⟩, and ⟨T ⟩ with
⟨T ⟩→ ⊔i O, where O is the empty forest, viewed as an imaginary least element w.r.t.
the quasi-order ⊴, that is, O ⊴ T for any T ∈ Treeω1(Q). We also identify p ∈ Q with
⟨p⟩ωα

for any α < ω1.

Definition 3.20. We inductively define a quasi-order ⊴ on
∪
nTree

ω1(Q) as follows,
where the symbols p and q range over Q, and U , V , S, and T range over range over
Treeω1(Q):

p ⊴ q ⇐⇒ p ≤Q q,

⟨U⟩ωα ⊴ ⟨V ⟩ωβ ⇐⇒


U ⊴ V if α = β,

⟨U⟩ωα ⊴ V if α > β,

U ⊴ ⟨V ⟩ωβ
if α < β.
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and if S and T are of the form ⟨U⟩ωα→ ⊔i Si and ⟨V ⟩ωβ→ ⊔j Tj, respectively, then

S ⊴ T ⇐⇒

{
either ⟨U⟩ωα ⊴ ⟨V ⟩ωβ

and (∀i) Si ⊴ T,

or ⟨U⟩ωα ̸⊴ ⟨V ⟩ωβ
and (∃j) S ⊴ Tj.

We now assign a class ΣT to each forest T ∈ ⊔Treeω1(Q) as follows:

Definition 3.21. For α > 0, A ∈ Σ⟨T ⟩ωα if and only if there is a Σ0
1+ωα-measurable

function D : ωω → ωω and a ΣT -function B : ωω → Q such that A = B ◦ D. The other
cases are as in Definition 3.7.

We check measurability of ΣT -functions.

Lemma 3.22. Let T be an L(Q)-term and ξ be a countable ordinal. Then, ΣT ⊆ ∆0
1+ξ

implies Σ⟨T ⟩ωα ⊆ ∆0
1+ωα+ξ.

Proof. One can use a similar argument as in Lemma 3.9 (2). □

By combining Lemmas 3.9 and 3.22, we obtain the direction from (2) to (1) in Propo-
sition 1.8 for infinite Borel rank, that is, that if T ∈ ⊔Treeξ(Q), then ΣT ⊆ ∆0

1+ξ.

3.4.3. ΣT -complete functions (infinite Borel rank). Now we introduce a ΣT -complete
function ΩT for each forest T ∈ ⊔Treeω1(Q). To achieve this, we need a universal
function at transfinite Borel ranks. Again, recall that every Σ0

1+ξ-measurable function
is coded by a real (for instance, we can use Fact 6.2 below).

Definition 3.23. We say that Uξ : ω̂ω → ω̂ω is Σ0
ξ-universal if it is Σ0

ξ-measurable,

and for every conciliatory Σ0
ξ-measurable function Ψ: ω̂ω → ω̂ω, there is a continuous

function θ such that Ψ = Uξ ◦ θ.

To show the existence of a ΣT -complete function, we need to extend Proposition 2.15
to infinite Borel ranks.

Proposition 3.24. For any countable ordinal α, there is an initializable Σ0
1+ωα-universal

conciliatory function.

We prove this proposition in Section 6.
We now introduce ΩT for each term T ∈ ⊔Treeω1(Q). It suffices to describe how to

define Ω⟨T ⟩ωα , as the rest is as in Definition 3.14.

Definition 3.25 (Complete Function). Let α be a countable ordinal, and let T be a
tree in Treeω1(Q). Then we define the conciliatory function Ω⟨T ⟩ωα : ω≤ω → Q as follows:

Ω⟨T ⟩ωα = ΩT ◦ Uωα ,

where Uωα is a fixed initializable Σ0
1+ωα-universal conciliatory function as in Proposition

3.24.

It is not hard to prove the transfinite versions of 3.15, 3.16, 3.17, and 3.18 namely
that ΩT is ΣT -complete, and that if S ⊴ T , then ΩS ≤w ΩT .
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4. The jump operator and its inversion

The goal of this section is to define an inverse of the operation B 7→ B ◦ U . (Recall
that Ω⟨T ⟩ was defined as ΩT ◦ U .) This operation will be denoted by A̸∼, and we will
prove that (A◦U )̸∼ ≡w A for every Q-valued function A. Furthermore, we will get that
(A̸∼) ◦ U ≡w A if we also assume A is initializable. The key technical notions are the
Turing jump operator via true stages from computability theory and a uniform version
of the Friedberg jump inversion theorem. The use of this jump operator is one of the
aspects of our proof that makes it easier than Duparc’s work for Q = 2.

4.1. Turing jump operator. The Turing jump operator is one of the most basic
notions in computability theory. For our proof, we need a version of this operator with
nicer properties than the standard jump operator X 7→ X ′. The jump operator via
true stages J : ωω → ωω introduced by Marcone and Montalbán [MM11, Mon14] is
exactly what we need. Marcone and Montalbán also defined its approximation on finite
strings J : ω<ω → ω<ω. Putting these together, what they defined was a Σ0

2 conciliatory
function J : ω≤ω → ω≤ω. The properties we need are the following:

(1) (Σ0
2-universality from the right.) For every Σ0

2 operator G : ωω → ω̂ω, there is a
computable θ : J [ωω] → ω̂ω such that G ≡p θ ◦ J (recall the definition of ≡p in
Section 2.6). Furthermore, if G is Σ0

2 relative to an oracle C, then we can still
find θ computable so that, for every X ∈ ωω, G(X)p = θ(J (C ⊕X))p.

(2) The image ωω under J , namely J [ωω], is a closed subset of ωω. Furthermore,
J is one-to-one, and its inverse J −1 : J [ωω] → ωω is continuous.

(3) (Denseness of forcing.) For every string γ ∈ ω<ω, there is a string σ ⊇ γ, σ ∈ ω<ω

which forces the jump in the following sense: We say that σ ∈ ω<ω forces the
jump, if for every τ ⊇ σ, J (τ) ⊇ J (σ).

For (1), note that if the range of G is contained in ωω, one can find θ : J [ωω] → ωω

such that G = θ◦J . The relativized version also holds. These properties are immediate
from the definitions in Marcone and Montalbán [MM11, Mon14]. The last property (3)
requires a minute of thought, though it is quite standard.

Notice that for the usual Turing jump operator X 7→ X ′, the image is not closed.
Another advantage of J is that its finite approximation can be easily iterated, allowing
us to keep the denseness of forcing when we consider transfinite iterates of the jump.

We use J C to denote the operator X 7→ J (C ⊕X). It satisfies the same properties
of J we mentioned above. Let J n,C be the n-th iterate of the jump operator relative
to C, that is, put J 1,C = J C and J n+1,C = J C ◦ J n,C . We also use the symbol J −1,C

to denote (J C)−1. The Σ0
2 universality of J can be iterated through the finite levels of

the Borel hierarchy.

Fact 4.1. For every Σ0
n+1-measurable function A : ωω → ω̂ω, there are C ∈ ωω and a

computable Φ: ωω → ω̂ω such that A ≡p Φ ◦ J n,C.

Duparc [Dup01, Definition 25] introduced an operation ̸∼ on subsets of ωω. We
extend Duparc’s operation ̸∼ to Q-valued functions, but our definition is quite different
from Duparc’s, which is rather hard to understand.
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Definition 4.2. For any A : ωω → Q and any oracle Z ∈ ωω we introduce the Z-jump
inversion of A, A ̸∼Z : J Z [ωω] → Q, as follows:

A ̸∼Z(Y ) = A(J −1,Z(Y )),

Note that the domain of A ̸∼Z is the range of J Z , which is closed as mentioned above,
and therefore one can think of A ̸∼Z as a function on ωω by Observation 3.5, where we
composed A ̸∼Z with a continuous retraction η : ωω → J Z [ωω].

Remark 4.3. We also apply the operator ̸∼ to a conciliatory function A : ω̂ω → Q.
In this case, via a computable homeomorphism I : ω̂ω → ωω, we identify A with
A ◦ I−1 : ωω → Q. Clearly, A is Wadge equivalent to A ◦ I−1. Then, if the domain
of A is ω̂ω, the actual definition of A̸∼Z is A ◦ I−1 ◦ J −1,Z , and the domain of A ̸∼Z is
J Z [ωω]. Note that A = A ̸∼Z ◦ J Z ◦ I. We should be careful as the domain of A ̸∼Z is a
subset of ωω even if A has the domain ω̂ω.

Observation 4.4. Let A be any partial Q-valued function, and Y, Z ∈ ωω be oracles.
Then

Y ≤T Z ⇒ A ̸∼Y ≥w A ̸∼Z .

Proof. The map X 7→ J Y (X) is Σ0
2 relative to Y , and hence in particular Σ0

2 relative to
Z. Therefore, there is a computable function Φ so that Φ ◦ J Z = J Y . This witnesses
that A̸∼Z ≤w A̸∼Y as follows: For J Z(X) ∈ J Z [ωω],

A̸∼Z(J Z(X)) = A(X) = A ̸∼Y (J Y (X)) = A ̸∼Y (Φ(J Z(X))). □
Recall that ifQ is bqo, then so are the Wadge degrees ofQ-valued functions (Theorem

2.3). In particular, there is no infinite decreasing chain of the Wadge degrees. Thus,
Observation 4.4 implies that, for any sufficiently powerful oracle Z ∈ ωω, we have
A ̸∼Z ≤w A ̸∼Y for any other oracle Y ∈ ωω.

Notation 4.5. If A is a Q-valued function for a bqo Q, we hereafter use the notation
A ̸∼ to denote a representative of the minimum one among Wadge degrees of {A ̸∼Z :
Z ∈ ωω}, that is,

A̸∼ ≡w A̸∼Z for some Z ∈ ωω, and A ̸∼ ≤w A ̸∼Y for all Y ∈ ωω.

Here are some basic properties of the jump inversion operator. In particular, (2) of
the next lemma shows that ̸∼ is well-defined on Q-Wadge degrees.

Lemma 4.6. For any A,B : ωω → Q, the following holds.

(1) If A is Σ0
n+1-measurable, then A ̸∼ is Σ0

n-measurable.
(2) If A ≤w B, then A ̸∼ ≤w B ̸∼.
(3) If either A ̸∼ or B ̸∼ is non-self-dual, then A̸∼ ≤w B ̸∼ implies A ≤w B.

Proof. (1) Since A is Σ0
n+1, there is a ∆0

0 formula φ in the language of second-order
arithmetic and a Z ∈ ωω such that

A(X) = q ⇐⇒ (∃a0)(∀a1) . . . (Q̌an−1)(Qan) φ(q, a0, . . . , an, X, Z),

where Q is the existential quantifier if n is even; and Q is the universal quantifier if n is
odd, and Q̌ is the other way around. Clearly, there is a ∆0

0 formula ψ such that

A(X) = q ⇐⇒ (∃a0)(∀a1) . . . (Q̌an−1) ψ(q, a0, . . . , an−1, J
Z(X)).
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Consequently, A̸∼Z is Σ0
n. The same argument works for any C ≥T Z, and thus A̸∼ is

Σ0
n too.
(2) Assume that A ≤w B via a continuous function θ. Then θ is C-computable for

some oracle C. Let D be such that A̸∼ ≡w A ̸∼D and B ̸∼ ≡w B ̸∼D. Then, by the
universality of J D from the right, there is a continuous function θ′ such that θ′ ◦ J D =
J D◦θ sinceD ≥T C. As seen in the following diagram, this θ′ witnesses thatA ̸∼ ≤w B ̸∼.

JD[ωω]
θ′ //

J−1,D

##H
HH

HH
HH

HH

A̸∼D

..

JD[ωω]
J−1,D

{{vvv
vv
vv
vv

B ̸∼D

pp

ωω
θ //

A   A
AA

AA
AA

A ωω

B~~}}
}}
}}
}}

Q
More formally: For any Y ∈ J D[ωω], and X = J −1,D(Y ),

A̸∼D(Y ) = A(X) ≤Q

B(θ(X)) = B ̸∼D(J D(θ(X))) = B ̸∼D(θ′(J D(X))) = B ̸∼D(θ′(Y )).

(3) If A ̸≤w B, then Player I has a winning strategy in the game Gw(A,B), that
is, there is a C-computable Lipschitz function θ such that A(θ(X)) ̸≤Q B(X). By the
same argument as above, let D be such that A ̸∼ ≡w A ̸∼D and B ̸∼ ≡w B ̸∼D, and then,
there is a continuous function θ′ such that A̸∼D(θ′(Y )) ̸≤Q B ̸∼D(Y ) for all Y ∈ J D[ωω].
However, if A ̸∼D ≤w B ̸∼D via a continuous function η, we would have the following:

A ̸∼D(Z) ≤Q B ̸∼D(η(Z)) ̸≥Q A̸∼D(θ′ ◦ η(Z)),
B ̸∼D(Z) ̸≥Q A̸∼D(θ′(Z)) ≤Q B ̸∼D(η ◦ θ′(Z)).

Thus both A̸∼D and B ̸∼D are self-dual, which contradicts our assumption since A̸∼ ≡w

A ̸∼D and B ̸∼ ≡w B ̸∼D. □
4.2. The operation ̸∼ inverts the jump. We now prove a key result which is that
̸∼ is the inverse of B 7→ B ◦ U . This is somewhat an analogue of [Dup01, Propositions
29 and 30], which roughly says that the jump inversion operator ̸∼ bridges Treen(Q)

and Treen+1(Q): namely that Ω̸∼
⟨T ⟩ ≡w ΩT .

Recall from Remark 4.3 that Ω̸∼
⟨T ⟩ = ΩT ◦ U ◦ I−1 ◦ J −1,C , where I : ω̂ω → ωω is a

computable homeomorphism. The proof of the following lemma shows how U and J C

interact: U ◦ I−1 ◦ J −1,C is Wadge-equivalent to the identity function.

Lemma 4.7. Let A : ω̂ω → Q be conciliatory. Then,

(A ◦ U )̸∼ ≡w A.

In particular, if T ∈ Treen(Q), then Ω̸∼
⟨T ⟩ ≡w ΩT .

Proof. First observe that (A ◦ U )̸∼ = A ◦ U ◦ I−1 ◦ J −1,C for some oracle C. Since
U ◦ I−1 : ωω → ω̂ω is Σ0

2-measurable, there is a computable Φ: ωω → ω̂ω such that
U ◦ I−1 ≡p Φ ◦ J C . Then, U ◦ I−1 ◦ J −1,C ≡p Φ on its domain. Then (A ◦ U )̸∼ ≤w A
via Φ because A is conciliatory.
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To prove the other direction we need the Friedberg jump inversion theorem [Fri57].
The standard proof of the Friedberg jump inversion theorem (relative to C) gives a
C ′-computable function ψ such that for any X,

X ⊕ C ′ ≡T ψ(X)⊕ C ′ ≡T (ψ(X)⊕ C)′ ≡T J C(ψ(X)).

By carefully checking the standard proof of the Friedberg jump inversion theorem, one
can see the following uniform version: There is a C ′-computable function ψ : ωω → ωω

such that, for every X ∈ ωω, J C(ψ(X)) is uniformly Turing equivalent to X ⊕ C ′.
That is, there is a computable operator θ0 : ω

ω → ωω and a C ′-computable operator
θ1 : ω

ω → ωω such that, for every X ∈ ωω,

θ0 ◦ J C ◦ ψ(X) = X and θ1(X) = J C ◦ ψ(X).

Then, by universality of U we get a C-computable function Φ2 such that I−1 ◦ θ0 ◦
J C ≡p U ◦ Φ2, i.e., (·)p ◦ I−1 ◦ θ0 ◦ J C = (·)p ◦ U ◦ Φ2. Moreover, by universality of J ,
we also get a computable function θ2 such that J C ◦ I ◦ Φ2 = θ2 ◦ J C . We now obtain
the following commutative diagram:

ωω
θ1 --

ψ
((RR

RRR
RRR

RRR
RRR

RRR
R

I−1

��1
11
11
11
11
11
11
11

J C [ωω]
θ2 //_______

θ0

ll J C [ωω]

J−1,C

��

(A◦U )̸∼

qq

ωω

JC

OO

Φ2 //____ ω̂ω

U
��

ωω
I−1

oo

ω̂ω
(·)p //

A

��8
88

88
88

88
88

88
88

ω≤ω

Ã

���
�
�
�
�
� ω̂ω

(·)poo

A

����
��
��
��
��
��
��
�

Q

This commutative diagram shows that A ≤w (A◦U) ̸∼ is witnessed by the continuous
function θ2 ◦ θ1 ◦ I.

For the second part just notice that Ω ̸∼
⟨T ⟩ = (ΩT ◦ U )̸∼ ≡w ΩT . □

The operation ̸∼ is not one-to-one on Q-Wadge degrees. But it is if we restrict it to
initializable degrees. We first need to prove the following lemma, which is where the
denseness of forcing of J is needed.

Definition 4.8. For a function A : ωω → Q, we say that A is initializable if for every
σ ∈ ω<ω, A ≤w A ↾[σ].

That is, A is initializable if and only if F(A) = ωω. Recall the definition of F from
Section 2.4. Also recall from Proposition 2.6 that A is non-self-dual if and only if F(A)
is non-empty.

Notice that this definition matches Definition 2.14 for the case Q = ωω were all
elements are ≤Q-incomparable.

Lemma 4.9. If A is initializable, then A̸∼ is non-self-dual.
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Proof. Let C be an oracle which computes Wadge reductions A ≤w A ↾[τ ] for all τ . We
say that σ forces its jump relative to C if for any τ ⊇ σ, JC(τ) ⊇ JC(σ) holds. We
claim that for such σ, we have

A ̸∼C ≤w A ̸∼C ↾[JC(σ)].
To prove this, let θ be C-computable such that X 7→ σ⌢θ(X) is a Wadge reduction
A ≤w A ↾[σ]. Then, using the universality of J C from the right, we have a computable
function θ′ such that θ′ ◦J C(X) = J C(σ⌢θ(X)) for all X ∈ ωω. Since σ forces its jump
relative to C, we have

J C(σ) ⊆ J C(σ⌢θ(X)) = θ′(J C(X)).

Thus θ′ gives a Wadge reduction from A̸∼C to A ̸∼C ↾[JC(σ)] as follows: Given Y ∈
J C [ωω] and X = J −1,C(Y ),

A̸∼C(Y ) = A(X) ≤Q

A(σ⌢θ(X)) = A ̸∼C(J C(σ⌢θ(X))) = A(θ′(J C(X))) = A(θ′(Y )).

Now, we say that X ∈ ωω forces its jump relative to C if there are infinitely many
n ∈ ω such that X ↾n forces its jump relative to C. Using the density of forcing, one
can easily construct such an X. Let t0 < t1 < t2 < · · · be such that X ↾ ti forces its
jump relative to C. We then get that J C(X ↾ ti) ⊆ J C(X) for all i, and furthermore,
every initial segment of J C(X) is an initial segment of some J C(X ↾ ti). It follows that
for every initial segment τ ⊆ J C(X), A̸∼C ≤w A̸∼C ↾[τ ]. Therefore, J C(X) ∈ F(A̸∼C)
as desired. □

4.3. Preservation of ordering. By a quite straightforward inductive proof, we are
now ready to show Proposition 1.7 for finite Borel rank. Here, by Lemma 3.17, it
suffices to show that ΩS ≤w ΩT if and only if S ⊴ T for any S, T ∈ ⊔Treen(Q). Recall
that we have already proved the right-to-left direction in Lemma 3.18.

Proof of Proposition 1.7. We show the assertion by induction on the terms S and T .
Assume ΩS ≤w ΩT .

First, it is clear that Ωp ≤w Ωq if and only if p ⊴ q. Suppose now that Ω⟨U⟩ ≤w Ω⟨V ⟩.

By Lemma 4.7, Ω ̸∼
⟨U⟩ ≡w ΩU and similarly for V . We thus get ΩU ≤w ΩV by Lemma 4.6

(2). Hence, by the inductive hypothesis, U ⊴ V and ⟨U⟩ ⊴ ⟨V ⟩.
Now, consider S = ⟨U⟩→

⊔
i Si and T = ⟨V ⟩→

⊔
j Tj. Let us first consider the case that

⟨U⟩ ⊴ ⟨V ⟩. In this case, by the definition of ⊴, under the assumption that ⟨U⟩ ⊴ ⟨V ⟩,
S ⊴ T if and only if Si ⊴ T for any i ∈ ω. We get this from the induction hypothesis,
as clearly ΩS ≤w ΩT implies ΩSi

≤w ΩT for any i.
Let us now assume that ⟨U⟩ ̸⊴ ⟨V ⟩. By induction hypothesis, we have Ω⟨U⟩ ̸≤w Ω⟨V ⟩.

In this case, by definition, S ⊴ T if and only if S ⊴ Tj for some j ∈ ω. We thus need
to show that ΩS ≤w ΩTj for some j.

Assume that ΩS ≤w ΩT via a continuous function θ. There must be a sequence X
such that π1(X) is empty, but π1◦θ(X) is nonempty (that is, X never changes his mind,
whereas θ(X) changes her mind at some point): This is because if not, π0 ◦ θ would
give a reduction from Ω⟨U⟩ to Ω⟨V ⟩, which contradicts our assumption. Now, let n be
the point where θ(X ↾n) changes her mind, and let k be the first entry of π1 ◦ θ(X ↾n).
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Then π1 ◦ θ ↾[X ↾n] gives a reduction from ΩS ↾[X ↾n] to Tk. We now need a reduction
from ΩS to ΩS ↾[X ↾n].

Since Ω⟨U⟩ is initializable, for any σ, there is a continuous function ησ witnessing
Ω⟨U⟩ ≤w Ω⟨U⟩ ↾[σ]. It is not hard then, to use ησ to build a reduction from ΩS to
ΩS ↾[σ→∅]. This concludes the proof since π1(X) is empty, and thus X ↾n is of the form
σ→∅. □

We have just proved that the map T 7→ ΩT is an order-preserving embedding of
⊔Treen(Q) into the Q-Wadge degrees of ∆n+1-measurable functions. What is left to do
is to show this embedding is onto.

4.4. Another construction of a Σ0
2-universal function. We end this section by

giving a second construction of an initializable Σ0
2-universal conciliatory function. The

reason we prove this again is that the following proof can be easily extended through
the transfinite, once we define the transfinite jump operation in Section 6.1. Recall that
our first construction of a conciliatory Σ0

2-universal function in Section 2.6 was direct
and did not use J .

Second proof of Proposition 2.15. Let {Φe : e ∈ ω} be a computable enumeration of all
computable operators : ωω → ω≤ω. By the universality of J from the right, we know
that for every Σ0

2 operator G : ωω → ω≤ω, there is an e ∈ ω and a C ∈ ωω such that
G = Φe ◦ J C , where Φe is the e-th partial computable function. It is not hard to see
that the map

e⌢C ⊕X 7→ Φe ◦ J C(X)

is Σ0
2 universal (from the left). However, we need U to also be initializable, so we need

to tweak this definition a bit.
For Z ∈ ω̂ω, let Z+1(n) = Z(n) + 1 if Z(n) ̸= pass, and Z+1(pass) = pass. We define

U as follows

U(Y ) =

{
Φe ◦ J C(X) if Y = σ⌢0⌢Z+1 and Z = e⌢C ⊕X

∅ if Y has infinitely many 0’s and is not of the form σ⌢0⌢Z+1

It is clear that U is still Σ0
2 universal. It is also easily seen to be Σ0

2 itself, as deciding
in which case we are and where to split σ and Z is Σ0

2, but then recovering e, C and X
is computable. It is clearly initializable as U(X) = U(σ⌢0⌢X) for every σ and X. □

5. Proof of ontoness (finite Borel rank)

Recall that we divided Theorem 1.4 into Propositions 1.6, 1.7, 1.8 and 1.9, and the
only one that is left to prove is the latter one. This whole section is dedicated to
proving Proposition 1.9 for finite rank, that is, that given a ∆0

1+n-measurable function
A : ωω → Q, we need to show that there is T ∈ ⊔Treen(Q) such that A ≡w ΩT .
Furthermore, we will show that if A is non-self-dual, then T will be a tree, while if T is
self dual, T will be a ⊔-type term.

The proof is by induction on ≤w, which we know is well-founded (even bqo). We
divide the proof in various cases depending on the properties of A.

Case 1, Constant. If A is Wadge equivalent to a constant function, then it is clearly
equivalent to Ω⟨q⟩ for some q ∈ Q.
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Case 2, Self Dual. If A is self dual, we proved in Proposition 2.6 that A ≡w

⊕
i∈ωAi

where each Ai is non-self-dual and Ai <w A. By the induction hypothesis, there exists
trees Ti ∈ Treen(Q) such that Ai ≡w ΩTi . It then follows that A ≡w Ω⊔iTi .

These covers the continuous case, as any continuous function is a clopen sum of
constant functions.

Case 3, Initializable. Suppose now that A is initializable. We first claim that
A ̸∼ <w A. That A̸∼ ≤w A follows from the fact that J −1,C is continuous. Suppose n
is the least such that A is Q-Wadge equivalent to a ∆0

n+1 function. Since A̸∼ is ∆0
n by

Lemma 4.6, it is not Q-Wadge equivalent to A.
Also recall from Lemma 4.9 that A ̸∼ is non-self-dual. By the induction hypothesis,

we then have that there is T ∈ Treen−1(Q) such that A ̸∼ ≡w ΩT . Moreover, by Lemma

4.7 applied to ΩT , we get ΩT ≡w Ω̸∼
⟨T ⟩, and thus A ̸∼ ≡w Ω ̸∼

⟨T ⟩. Therefore, by Lemma 4.6

(3), we obtain A ≡w Ω⟨T ⟩.

Observation 5.1. Let us comment on the case when the domain of A is closed subset
F ⊆ ωω. In this case we say that A is initializable if for every σ ∈ ωω extendible in F ,
A ≤w A ↾[σ]. In Observation 3.5, we notice we could view such a map as a map defined
on ωω by composing with a retraction ρF . One can show that for the retraction defined
there, the map we get is also initializable.

Case 4, Non-self-dual and not initializable. Suppose now that A is non-self-dual and
not Wadge equivalent to any initializable function. The following is the Q-version of
the basic property of initializability.

Lemma 5.2. If F(A) ̸= ∅, then A ↾F(A) is initializable.
Furthermore, if A is Wadge equivalent to an initializable function, then A ≡w A ↾F(A).

Proof. Let
F = {σ ∈ ω<ω : A ≤w A ↾[σ]}.

Then F is a tree without dead ends whose paths are exactly F(A). (We will sometimes
write σ ∈ F(A) to mean σ ∈ F .) We need to show that for each σ ∈ F , there is a
continuous reduction A ↾F(A) ≤w A ↾F(A) ∩ [σ]. Since σ ∈ F , there is a continuous
reduction θ : A ≤w A ↾[σ]. Think of θ as a function : ω<ω → ω<ω. We claim that
θ[F ] ⊆ F , hence obtaining a reduction A ↾F(A) ≤w A ↾F(A)∩ [σ] as wanted. Suppose
not, and that for some τ ∈ F , θ(τ) ̸∈ F . We then get a continuous reduction of A ↾[τ ]
to A ↾[θ(τ)]. But A ↾[τ ] ≡w A while A ̸≤w A ↾[θ(τ)], getting the desired contradiction.

For the second part of the lemma, one needs to observe that if A ≡w B, then
A ↾F(A) ≡w B ↾F(B). The reason is that if θ is a reduction A ≤w B, then for ev-
ery σ ∈ F(A), θ(σ) must be in F(B) as B ≤w A ≤w A ↾[σ] ≤w B ↾[θ(σ)]. Now, if B is
initializable, F(B) = ωω, and hence A ↾F(A) ≡w B ↾F(B) = B ≡w A. □

Let V be the set of all minimal strings leaving from F(A), and then let {σn}n∈ω be
an enumeration of V . Then consider B = A ↾F(A) and C =

⊕
n(A ↾[σn]). One can

easily check that B and C are ∆0
1+n-measurable whenever A is.

We first see that B, C <w A. It is easy to check that B, C ≤w A. By Lemma 5.2, B
is initializable, and therefore not Wadge equivalent to A. To see C <w A, we note that
A ↾[σ] <w A for all σ ∈ V . Therefore, if C ≡w A then it would imply that A is σ-join-
reducible, which contradicts our assumption that A is non-self-dual by Proposition 2.6.
Thus, we get that B, C <w A.
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By the induction hypothesis, we get U ∈ Treen−1(Q) and S ∈ ⊔Treen(Q) such that
B ≡w Ω⟨U⟩ and C ≡w ΩS.

Finally, we claim that A ≡w B→C. This would give us that A ≡w Ω⟨U⟩→S. It is
straightforward to see that A ≤w B→C. To see B→C ≤w A, construct a continuous
reduction as follows: Take X ∈ ωω, which we write as π0(X)→π1(X). While we are
reading π0(X) we stay inside F(A) using the continuous retraction ρF(A). If we ever
change our mind, B→C(X) = C(π1(X)). We still have that ρF(A)(π0(X)) is a finite
string which is extendible in F(A), and we so can use the reductions C ≤w A ≤w

A ↾[ρF(A)(π0(X))].
More formally: For each τ ∈ F(A), let ητ be a Wadge reduction A ≤w A ↾ τ . Let

θC : C → A. Then

X 7→
(
ρF(A)(π0(X))⌢ηρF(A)(π0(X))(θC(π1(X)))

)
is a reduction B→C ≤w A.

6. Infinite Borel rank

We now start to deal with functions of infinite Borel rank.

6.1. Transfinite jump operator. We now need to consider α-th Turing jump for
transfinite α. We again use the machinery developed in [MM11, Mon14]. There, the
ω-th Turing jump is defined by taking the first bit of each of the finite jumps:

J ω(X) = ⟨J (X)(0),J 2(X)(0),J 3(X)(0), . . . ⟩.
Because of the way these operators are defined in [MM11, Mon14] taking one bit from
each jump is enough to code the whole sequence {J n(X) : n ∈ ω}. The reason is that
J n(X)(0) codes at least two bits of J n−1(X), and at least three bits of J n−2(X),...,
and at least n bits of J (X). See [MM11, Mon14] for more details.

The definition of the ωα-th jump is similar, taking one bit from a sequence of jumps
that converges to ωα. To make this precise, we need to assign to each countable
ordinal α a fundamental sequence (α[n])n∈ω which is a non-decreasing sequence with
α = supn(α[n] + 1). When α = β + 1, we just define α[n] = β, and when α is a
limit, (α[n])n∈ω is any increasing sequences with limit α. Notice that in either case
ωα =

∑
n ω

α[n]. The constructions in [MM11, Mon14] required fundamental sequences
with particular properties, but we do not need to get into that now.

Something we need in this paper but that was not necessary in [MM11, Mon14] is
relative transfinite Turing jump operators. If all we needed to do was relativize the
whole construction, that would not be any harder. The problem is that we need to
consider transfinite jumps, which are built by iterating jump operators that use different
oracles. For instance, If we deal with the ω-th Turing jump, we shall consider a sequence
C = (Cn)n∈ω of oracles to compute the different values J n,Cn(X)(0). We call such a
sequence an ω-oracle.

In general, we define an ωα-oracle as a sequence C = (Cn)n∈ω of ωα[n]-oracles. To
define the notion of a ξ-oracle for ordinals that are not of the form ωα, note that every
ordinal ξ can be written as ξ = ωα + β for some unique α and β < ωα+1 (consider
the Cantor normal form). Then we define a ξ-oracle as a pair C = (C0, C1) of an ω

α-
oracle and a β-oracle. Note that for each countable ordinal ξ, there is a well-founded
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tree Λξ ⊆ ω<ω such that each ξ-oracle C can be thought of as a Λξ-indexed collection
(Cσ)σ∈Λξ

. Given ξ-oracles C and D, we write C ≤T D if If Cσ ≤T Dσ uniformly holds
for any σ ∈ Λξ.

To introduce the transfinite jump operator, for an ωα-oracle C = (Cn)n∈ω, we use the
following abbreviations:

J ωα,C
[0,n) = J ωα[n−1],Cn−1 ◦ J ωα[n−2],Cn−2 ◦ · · · ◦ J ωα[0],C0 ,

Jω
α,C

[0,n) = Jω
α[n−1],Cn−1 ◦ Jωα[n−2],Cn−2 ◦ · · · ◦ Jωα[0],C0 .

Definition 6.1 (Montalbán [Mon14]). For any countable ordinal α and ωα-oracle C,
define the ωα-th jump operation J ωα,C and its approximation Jω

α,C as follows:

J ωα,C(Z)(n) = J ωα,C
[0,n+1)(Z)(0),

Jω
α,C(σ)(n) = Jω

α,C
[0,n+1)(σ)(0).

If a countable ordinal ξ is of the form ωα + β for some β < ωα+1, for a ξ-oracle
C = (C0, C1), we define J ξ,C = J β,C1 ◦ J ωα,C0 and Jξ,C = Jβ,C1 ◦ Jωα,C0 . We also use
J −ξ,C to denote (J ξ,C)−1.

The property mentioned in the first paragraph in Section 6.1, J ξ,C(Z) is Turing
equivalent to the usual ξth Turing jump of C ⊕ Z (which computes all ∆0

1+ξ(C ⊕ Z)
sets), and the equivalence is uniform. This implies the following well-known fact which
connects the transfinite jump operation and the Borel hierarchy.

Fact 6.2 (Universality from the right). If A : ωω → ω̂ω is Σ0
1+ξ-measurable relative to

C, then there is a computable function θ such that A ≡p θ ◦ J ξ,C.

This is because the ξ-th Turing jump of X ⊕ C can computably figure out the value
of A(X).

(Recall that we write A ≡p B if A(X)p = B(X)p for all X ∈ X .) By using Fact 6.2, it
is not hard to construct a Σ0

1+ξ-universal initializable conciliatory function (Proposition
3.24) by a similar argument as in Section 4.4.

Proof of Proposition 3.24. By Σ0
1+ξ-universality of J ξ from the right (Fact 6.2), it is

obvious that e⌢C ⊕ X 7→ Φe ◦ J ξ,C(X) is Σ0
1+ξ-universal from the left. As in the

proof of Proposition 2.15 (see Section 4.4), by modifying this function, one can obtain
a Σ0

1+ξ-universal initializable conciliatory function. □
We now introduce the transfinite version of the jump inversion operator.

Definition 6.3. For any A : ωω → Q and any oracle C we introduce the ωα-th jump
inversion of A, A ̸∼ωα,C : J ωα,C[ωω] → Q as follows:

A̸∼ωα,C(X) = A ◦ J −ωα,C(X).

As before, the domain of A̸∼ωα,C is closed. If the domain of A is ω̂ω, then A ̸∼ωα,C is
defined by A ◦ I−1 ◦ J −ωα,C, where I : ω̂ω → ωω is a homeomorphism. The following
transfinite version of Observation 4.4 is also straightforward.

Observation 6.4. Let A be any partial Q-valued function, and Y and Z be ξ-oracles. If
Z ≥T Y , then A̸∼ξ,Z ≤w A̸∼ξ,Y .
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Thus, there is C such that A̸∼ωα,C ≤w A ̸∼ωα,D for any D by well-foundedness of the
Wadge degrees of Q-valued functions (Theorem 2.3). Thus we use A̸∼ωα

to denote such
A ̸∼ωα,C. By Observation 6.4, C can be chosen as a constant sequence, that is, Cσ = C
for any σ ∈ Λωα . If C is a constant sequence consisting of C ∈ ωω, we simply write it as
C instead of C. We now see the transfinite version of Lemma 4.6.

Lemma 6.5. For any A,B : ωω → Q, the following holds.

(1) If A is Σ0
1+ωα+β-measurable, then A̸∼ωα

is Σ0
1+β-measurable.

(2) If A ≤w B then A ̸∼ωα ≤w B ̸∼ωα
.

(3) If either A ̸∼ωα
or B ̸∼ωα

is non-self-dual, then A ̸∼ωα ≤w B ̸∼ωα
implies A ≤w B.

Proof. For (1), let C be such that A̸∼ωα ≡w A̸∼ωα,C . If A is ∆0
1+ωα+β-measurable, then

there is D ≥T C such that A = Φe ◦ J β,D ◦ J ωα,D by Fact 6.2. Then we also have
A ̸∼ωα ≡w A ̸∼ωα,D, and moreover, A̸∼ωα,D = Φe◦J β,D, which is clearly∆0

1+β-measurable.
It is straightforward to show (2) and (3) by using the same argument as in the proof of
Lemma 4.6. □

To get the transfinite version of Lemma 4.7, we use the transfinite version of the
Friedberg jump inversion theorem [Mac77]: There exists a C(ωα)-computable function
ψ such that

X ⊕ C(ωα) ≡T ψ(X)⊕ C(ωα) ≡T (ψ(X)⊕ C)(ω
α) ≡T J ωα,C(ψ(X))

holds uniformly in X. Here, as usual, Z(ξ) denotes the ξ-th Turing jump of Z. As
in the proof of Lemma 4.7, there are a computable operator θ0 : ωω → ω̂ω and a
C(ωα)-computable operator θ1 : ω

ω → ω̂ω such that for every X ∈ ω̂ω,

θ0 ◦ J ωα,C ◦ ψ(X) = X and θ1(X) = J ωα,C ◦ ψ(X).

Corollary 6.6. Ω ̸∼ωα

⟨T ⟩ωα ≡w ΩT .

Proof. As in the proof of Lemma 4.7, it follows from the above formula. □
6.2. Generalization of initializability.

Definition 6.7. For a countable ordinal α, we say that A is α-stable if A is Wadge
equivalent to an initializable function, and A̸∼ωβ ≡w A holds for any β < α.

By Lemma 6.5 (2), if B is Wadge equivalent to A and if A is α-stable, then so is B.
Lemma 6.8. For any T ∈ Treeω1(Q) and countable ordinal α, Ω⟨T ⟩ωα is α-stable.

Proof. First note that, for any countable ordinal α, Ω⟨T ⟩ωα is initializable since Ω⟨T ⟩ωα =
ΩT ◦ Uωα for an initializable function Uωα . Fix β < α. We show that Ω⟨T ⟩ωα is Wadge

reducible to Ω̸∼ωβ ,C

⟨T ⟩ωα . Let ψ : ωω → ωω be the ωβ-th jump inversion map relative to C,

that is, there are a computable operator θ0 : ω
ω → ωω and a C(ωβ)-computable operator

θ1 : ω
ω → ωω such that for every X ∈ ωω,

θ0 ◦ J ωβ ,C ◦ ψ(X) = X and θ1(X) = J ωβ ,C ◦ ψ(X).

Since β < α, the map J ωα,C ◦ θ0 ◦ J ωβ ,C is still Σ0
1+ωα relative to C. By universality of

J ωα
from the right (Fact 6.2), there is a computable function θ2 such that

θ2 ◦ J ωα

= J ωα,C ◦ θ0 ◦ J ωβ ,C .
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Then, recall that I : ω̂ω → ωω is a computable homeomorphism. Since I ◦ Uωα ◦ I−1

is Σ0
1+ωα-measurable, by universality of J ωα

from the right (Fact 6.2), there is Φ such
that

I ◦ Uωα ◦ I−1 = Φ ◦ J ωα,C .

Clearly, I−1 ◦ Φ ◦ θ2 ◦ J ωα,C (hence, its restriction up to ωω) is Σ0
1+α relative to

C, and therefore, by universality of Uωα from the left, there is a continuous function
θ3 : ω

ω → ω̂ω such that

Uωα ◦ θ3 ≡p Uωα ◦ I−1 ◦ Φ ◦ θ2 ◦ J ωα,C .

By our explicit construction of Uωα and C(ωβ)-computability of ψ, one can assume that
θ3 is C(ωβ)-computable. By universality of J ωβ

from the right, there is a computable
function θ4 such that

θ4 ◦ J ωβ ,C = J ωβ ,C ◦ I ◦ θ3.
We now obtain the following commutative diagram:

ω̂ω

Uωα

��

Ω⟨T ⟩ωα

++

ωω

ψ
**UUU

UUUU
UUUU

UUUU
UUUU

UUUU
U

I−1
oo

J ωα,C

��

θ1 -- J ωβ ,C [ωω]
θ4 //_______

θ0

mm J ωβ ,C [ωω]

J−ωβ,C

��

Ω ̸∼ωβ,C

⟨T ⟩ωα

oo

ωω

J ωβ,C

OO

θ3 //_____

J ωα,C

��

ω̂ω

Uωα

��

ωω
I−1

oo

J ωα,C [ωω]

Φ
���
�
�

J ωα,C [ωω]
θ2

oo_ _ _ _ _ _ _ _

ω̂ω

(·)p

%%LL
LLL

LLL
LLL

LLL
LLL

LLL
LLL

LL

ΩT

  B
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

I // ωω

ω̂ω

(·)p

ttiiii
iiii

iiii
iiii

iiii
ii

ΩT

yysss
sss

sss
sss

sss
sss

sss
sss

ss

ω≤ω

Ω̃T

���
�
�

Q

This commutative diagram shows that

Ω⟨T ⟩ωα ≡p Ω
̸∼ωβ ,C

⟨T ⟩ωα ◦ θ4 ◦ θ1 ◦ I.

Consequently, the continuous function θ4 ◦θ1 ◦ I gives a Wadge reduction from Ω⟨T ⟩ωα

to Ω ̸∼ωβ ,C

⟨T ⟩ωα . □

The purpose of this section is to prove the following transfinite version of Lemma 4.9.

Lemma 6.9. If A is α-stable, then A ̸∼ωα
is σ-join-irreducible.

Before proving Lemma 6.9 we first check that this Lemma immediately implies our
main theorems.
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Proof of Proposition 1.7 from Lemma 6.9. We only show that Ω⟨U⟩ωα ≤w Ω⟨V ⟩ωβ if and

only if ⟨U⟩ωα ⊴ ⟨V ⟩ωβ
. For the other cases, we can use a similar argument as in the

proof of Proposition 1.7 for finite Borel rank. To verify the above equivalence, by
Lemma 6.6, we have Ω ̸∼ωα

⟨U⟩ωα ≡w ΩU . Since Ω⟨U⟩ωα is α-stable by Lemma 6.8, Ω ̸∼ωα

⟨U⟩ωα is

σ-join-irreducible by Lemma 6.9, and thus non-self-dual by Proposition 2.6. Thus, if
α = β, by Lemma 6.5,

Ω⟨U⟩ωα ≤w Ω⟨V ⟩ωβ ⇐⇒ ΩU ≡w Ω̸∼ωα

⟨U⟩ωα ≤w Ω ̸∼ωα

⟨V ⟩ωβ ≡w ΩV .

This ensures the desired assertion by induction hypothesis. If α > β, then, since Ω⟨U⟩ωα

is α-stable by Lemma 6.8, we have Ω ̸∼ωβ

⟨U⟩ωα ≡w Ω⟨U⟩ωα , and therefore,

Ω⟨U⟩ωα ≤w Ω⟨V ⟩ωβ ⇐⇒ Ω⟨U⟩ωα ≡w Ω ̸∼ωβ

⟨U⟩ωα ≤w Ω̸∼ωβ

⟨V ⟩ωβ ≡w ΩV .

This ensures the desired assertion by induction hypothesis. The same argument works
in the case α < β. □
Proof of Proposition 1.9 from Lemma 6.9. Fix a ∆0

ξ-measurable function A. Let δ be
the smallest ordinal such that A is not (γ + 1)-stable for some γ < δ. If δ = 0, then A
is not Wadge-initializable, and we can use the same argument as in the proof in Section
5 of Proposition 1.9 for functions of finite Borel rank.

Suppose that δ > 0. Then, note that δ must be a successor ordinal, say δ = α+1, and
thus A is α-stable. Let β be a unique ordinal that ξ = ωα+β. By Lemma 6.5 (1), A̸∼ωα

is ∆0
β-measurable. Moreover, by minimality of α, we have A ̸∼ωα

<w A and A ̸∼ωα
is non-

self-dual by Lemma 6.9 and Proposition 2.6. By induction hypothesis, A ̸∼ωα ≡w ΩT

for some tree T ∈ Treeβ(Q). Then we have A̸∼ωα ≡w Ω̸∼ωα

⟨T ⟩ωα by Lemma 6.6. Note that

ΩT is σ-join-irreducible by Observations 3.15 and 2.8 since T is a tree, and therefore
non-self-dual by Proposition 2.6. Therefore we get A ≡w Ω⟨T ⟩ωα by Lemma 6.5 (3). We
claim that

⟨T ⟩ωα ∈ ⟨Treeβ(Q)⟩ωα ⊆ Treeξ(Q).

It is clear if β < ωα+1 by definition. If β ≥ ωα+1, then we must have β = ξ. Recall
that ξ is of the form ωγ + δ for some γ < ω1 and δ < ωγ+1. We then have α < γ. Thus,
if T ∈ Treeξ(Q) = Treeβ(Q), then ⟨T ⟩ωα ∈ Treeξ(Q). This concludes the proof. □

6.3. Proof of Lemma 6.9. It remains to show Lemma 6.9. The statement of this
lemma resembles Lemma 4.9, that is, it looks like a transfinite version of Lemma 4.9.
Nevertheless, our proof requires a very different argument. The notation for the proof
get a bit more complicated than in Lemma 4.9, as one needs to keep track of ω-iterations
of the jump. However, it still is much simpler than Duparc’s [Dup] proof for Q = 2.

6.3.1. Proof of Lemma 6.9 (for α ≤ 1). Throughout this subsection, for notational
simplicity, we always assume that B ̸∼ ≡w B ̸∼∅ for any function B. We will deal with
nonempty oracles in the next Section 6.3.2.

We first consider the base case α = 0. Recall that A is 0-stable if and only if it
is Wadge equivalent to an initializable function. Lemma 4.9 states that if A is 0-
stable, then A ̸∼ is σ-join-irreducible. In the proof of Lemma 4.9 we showed that if B
is actually initializable and σ ∈ ω<ω forces its jump, then B ̸∼ ≤w B ̸∼ ↾ J(σ), and that
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if X ∈ ωω forces its jump, then J (X) ∈ F(B ̸∼). Since every string can be extended
to one that forces its jump, the set of X ∈ ωω which force their jump is dense. We
thus get that the set of X such that J (X) ∈ F(B ̸∼) is dense. In the case when A is
not actually initializable, but Wadge equivalent to an initializable, recall from Lemma
5.2 that A ≡w A ↾F(A). (Recall Observation 3.5 for how to deal with functions whose
domain is a closed set as if their domain was all of ωω.)

Then, the proof of Lemma 4.9 actually implies that

if A is 0-stable, then {X : J (X) ∈ F((A ↾F(A)) ̸∼)} is dense in F(A).(1)

In the rest of this section, we give a proof of Lemma 6.9 for α = 1, that is, if A is
1-stable, then A ̸∼ω is σ-join-irreducible. By definition, A is 1-stable if and only if A
is Wadge equivalent to an initializable function and A ̸∼ ≡w A. The latter condition is
equivalent to A̸∼n ≡w A for any natural number n ≥ 1. Given a 1-stable function A,
we inductively define a Q-valued function An by

A0 = A and An+1 = (An ↾F(An))
̸∼.

Observation 6.10. If A is 1-stable, then A ≡w An for any n ∈ ω.

Proof. Recall that by Lemma 5.2, a function B is Wadge equivalent to an initalizable
function if and only if B ≡w B ↾F(B). Fix n, and inductively assume that A ≡w An.
Therefore, we have A ↾F(A) ≡w An ↾F(An). Since A is 1-stable, in particular, A is
Wadge equivalent to an initializable function. Then, A ≡w A ↾F(A), and therefore,
An ↾F(An) is 1-stable. Thus, An+1 ≡w An ↾F(An), and therefore An+1 ≡w A. □

In particular, An is initializable for any n ∈ ω. Thus, the property (1) implies that

if A is 1-stable, then {X : J (X) ∈ F(An+1)} is dense in F(An) for any n ∈ ω.(2)

For notational convenience, we define

Fn,n = F(An) and Fn+1,n = dom(An+1) = J [Fn,n].

Note that Fn+1,n is the domain of An+1,n+1, and Fn,n and Fn+1,n are closed sets (since
J −1 is continuous). In the following diagram, the arrow ↪→ indicates the inclusion map.

F0,0
� � //

J
��

ωω

A0

��)
))
))
))
))
))
))
))
))
))
))
))
))

F1,1
� � //

J
��

F1,0

A1

��@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@

F2,2
� � //

J��

F2,1

A2

**UUU
UUUU

UUUU
UUUU

UUUU
UUUU

UUU

. .
.

Q
We also define F0,1 = J −1[F1,1] which is included in F0,0, and in general Fn,n+1 =

J −1[Fn+1,n+1], which is not necessarily closed. By using these notations, the property
(2) can be rephrased as: If A is 1-stable, then Fn,n+1 is dense in Fn,n. Therefore, we
have the following commutative diagram.
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Fn,n+1
� � dense // Fn,n

J
��

� � // Fn,n−1
An // Q

Fn+1,n+2
� � dense // Fn+1,n+1

J−1

OO

� � // Fn+1,n

An+1

33hhhhhhhhhhhhhhhhhhhhhhhhhh

Generally, form < n, we define Fm,n = J −1[Fm+1,n]. In particular, F0,n = J −n[Fn,n].
This gives a decreasing sequence (F0,n)n∈ω. Define F0,ω =

∩
n∈ω F0,n. In other words,

F0,ω = {X ∈ ωω : (∀n ∈ ω) J n(X) ∈ Fn,n}.
Then we define Fω,ω = J ω[F0,ω].

F0,ω
� � //

J ω

��

· · · · · · · · · � �dense // F0,2
� � dense // F0,1

� � dense // F0,0
� � //

J
��

ωω

A0

��)
))
))
))
))
))
))
))
))
))
))
))
))

· · · · · · · · · � �dense // F1,2
� � dense //

J−1

OO

F1,1
� � //

J
��

J−1

OO

F1,0

A1

��@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@

· · · · · · · · · � �dense // F2,2
� � //

J��

J−1

OO

F2,1

A2

**UUU
UUUU

UUUU
UUUU

UUUU
UUUU

UUU

. .
.
. .
.

. .
. // Q

Fω,ω
� � // F(A̸∼ω)

A̸∼ω

22

We devote the rest of this section to prove the following claim:

If A is 1-stable, then {X : J ω(X) ∈ F(A ̸∼ω)} is dense in F(A).(3)

(Recall that F(A) = F0,0.) Clearly, the claim (3) entails Lemma 6.9 for α = 1 as it
implies that F(A̸∼ω) ̸= ∅. Our strategy has two steps: First is to prove that F0,ω is dense
in F(A). Second to prove that (J ω)−1[F(A̸∼ω)] ⊇ F0,ω by showing that Fω,ω ⊆ F(A ̸∼ω)
and using that (J ω)−1[Fω,ω] = F0,ω.

Hereafter, we identify the closed set Fn,n with the pruned tree whose infinite paths
are exactly the elements of Fn,n.

Lemma 6.11. If A is 1-stable, then F0,ω is dense in F0,0.

Proof. Fix σ ∈ F0,0 and put σ0 = σ. We will construct a sequence (σn)n∈ω of finite
strings such that σn ∈ Fn,n, and

(J n−m)−1(σn) ⊆ (J n−m+1)−1(σn+1) ∈ Fm,m

for any m ≤ n. Then we will define X :=
∪
n(J n)−1(σn) and ensure that X ∈ F0,ω,

that is, J n(X) ∈ Fn,n for all n. Given n, inductively assume that σn ∈ Fn,n. Now, by
the property (2), Fn,n+1 is dense in Fn,n for any n ∈ ω. Since Fn,n+1 = J −1[Fn+1,n+1],
there is Y ∈ Fn+1,n+1 such that

σn ⊂ J −1(Y ) ∈ Fn,n.
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Since J −1 is continuous, we can find an initial segment σn+1 ⊂ Y such that σn ⊆
J −1(σn+1). Clearly σn+1 ∈ Fn+1,n+1. For every m ≤ n, by continuity of (J n−m)−1, we
also have

(J n−m)−1(σn) ⊆ (J n−m)−1 ◦ J −1(σn+1) = (J n−m+1)−1(σn+1)

and (J n−m)−1(σn) is extendible in (J n−m)−1[Fn,n] = Fm,n ⊆ Fm,m, that is, (J n−m)−1(σn) ∈
Fm,m as wanted.

For X =
∪
n(J n)−1(σn), we claim that Jm(X) = Ym :=

∪
n≥m(J n−m)−1(σn). This is

because we have

(Jm)−1(Ym) =
∪
n

(Jm)−1 ◦ (J n−m)−1(σn) =
∪
n

(J n)−1(σn) = X.

The first equality is due to continuity of (Jm)−1 and the property that ((J n−m)−1(σn))n≥m
is increasing. Therefore Jm(X) = Ym. Since (J n−m)−1(σn) ∈ Fm,m, and Fm,m is closed,
we have Jm(X) ∈ Fm,m for all m ∈ ω, and therefore σ ⊆ X ∈ F0,ω. This shows that
F0,ω is dense in F0,0. □

Lemma 6.12. If A is 1-stable, then Fω,ω ⊆ F(A̸∼ω).

Proof. Take Z ∈ Fω,ω; we want to show that Z ∈ F(A ̸∼ω). Given n ∈ ω, we will define
a continuous function η : J ω[ωω] → J ω[ωω] ∩ [J ω(X) ↾n] witnessing that A̸∼ω ≤w

A ̸∼ω ↾[Z ↾n].
Let X = J −ω(Z) ∈ Fω,0. Note that J ω(X) ↾n = ⟨J (X) ↾ 1, . . . ,J n(X) ↾ 1⟩. Recall

that J ω(X) ∈ Fω,ω if and only if J n(X) ∈ Fn,n = F(An) for all n ∈ ω. Therefore,
there is a continuous reduction

θn : A̸∼n ≤w An ↾[J n(X) ↾ 1]
since A ̸∼n ≤w A ≤w An ≤w An ↾[J n(X) ↾ 1], using Observation 6.10. We assume that
θn is computable (as mentioned before, we will describe how to deal with oracles in the
next Section 6.3.2). Since J ω ◦ J −n ◦ θn ◦ J n is clearly Σ0

ω-measurable, by universality
from the right (Observation 6.2), we have η ◦ J ω = J ω ◦ J −n ◦ θn ◦ J n. Thus we get
the following diagram:

J ω[ωω]
η //____________________________

J−ω

##G
GG

GG
GG

GG

A̸∼ω

..

J ω[ωω]

J−ω

{{ww
ww
ww
ww
w

A̸∼ω

qq

ωω

A

$$J
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
J J n[ωω]

θn //J−n
oo

A̸∼n

��7
77

77
77

77
77

77
7

Fn,n−1
J−n

//

An

����
��
��
��
��
��
��

ωω

A

zzuuu
uu
uu
uu
uu
uu
uu
uu
uu
uu
u

Q

This shows that A̸∼ω(Z) ≤Q A̸∼ω ◦ η(Z). More formally:

A̸∼ω(J ω(Y )) = A(Y ) = A̸∼n(J n(Y )) ≤Q A ̸∼n(θn ◦ J n(Y ))

= A(J −n ◦ θn ◦ J n(Y )) = A̸∼ω(J ω(J −n ◦ θn ◦ J n(Y ))) = A̸∼ω(η(J ω(Y ))).
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Since θ(Z) extends J n(X) ↾ 1 for any Z ∈ J n[ωω], we have J ω(J −n ◦ θ(Z))(n) =
J n(X) ↾ 1. Thus, J ω(J −n ◦ θ(Z)) extends J ω(X) ↾n (see the first paragraph in Sec-
tion 6.1), and so does η(J ω(Y )) for any Y ∈ ωω. Hence, η witnesses that A̸∼ω ≤w

A ̸∼ω ↾[J ω(X) ↾n]. □

This concludes the proof of Lemma 6.9 for α = 1.

6.3.2. Proof of Lemma 6.9 (for general α). In this section, we describe the proof of
Lemma 6.9 for general α, which will be almost no different from the proof for α = 1.
This section is just for the sake of completeness. We also explicitly describe how to deal
with oracles.

Now, fix a countable ordinal α. By induction, we assume that we have already shown
the following claim for any β < α: If A is β-stable, then for any oracle D, there is an
ωβ-oracle C ≥T D such that

{X : J ωβ ,C(X) ∈ F((A ↾F(A)) ̸∼ω
β ,C)} is dense in F(A).(4)

We now fix an α-stable function A. We will define oracles (Cn)n∈ω. Then, for nota-
tional simplicity, we will use the following notations:

Jn = J ωα[n],Cn , B ̸∼n = B ̸∼ωα[n],Cn .

As in the precious section, we inductively define a Q-valued function An and a closed
set Fn,n as follows:

A0 = A, F0,0 = F(A).

An+1 = (An ↾Fn,n)̸
∼n , Fn+1,n+1 = F(An+1).

To define An+1, we need to specify oracles (Cm)m≤n. Before defining these oracles,
we introduce several notations. We define

J[m,n) = Jn−1 ◦ Jn−2 ◦ · · · ◦ Jm+1 ◦ Jm,
B ̸∼
[m,n) = ((. . . (B ̸∼m )̸∼m+1 . . . )̸∼n−2 )̸∼n−1 .

Note that the sequences defined in the previous section satisfy An = A ̸∼n ↾Fn,n−1.

Now, in our new definition, A ̸∼n is replaced with A ̸∼
[0,n), that is,

An = A ̸∼
[0,n) ↾Fn,n−1, where Fn,n−1 = J [Fn−1,n−1].

We now start to define a sequence (Cn)n∈ω of oracles. Let C−1 be an oracle such
that A ̸∼ωα ≡w A ̸∼ωα,C−1 . Define A0 = A, and assume that (Cm)m<n are defined, and
A ≡w An as in Observation 6.10. In particular, An is α-stable. Then, by induction
hypothesis (4), and initializability of An, there is an oracle C ≥T Cn−1 such that

(a) (An ↾Fn,n)̸
∼ωβ[n],C ≡w (An ↾Fn,n)

̸∼ωβ[n]
.

(b) (J ωβ[n],C)−1[F((An ↾Fn,n)
̸∼ωβ[n],C)] is dense in Fn,n.

(c) For any σ ∈ Fn,n, there is a C-computable Wadge-reductionA ̸∼
[0,n) ≤w An ↾Fn,n∩

[σ] (recall our proof of Lemma 6.12).
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Define Cn = C for such C, and then define C = (Cn)n∈ω. We also define (Fm,n)m,n∈ω
as in the previous section. Then, for instance, the above condition (b) can be rephrased
as: Fn,n+1 is dense in Fn,n. We then get the following commutative diagram:

· · · �
� // Fn,n+1

� � dense // Fn,n

Jn

��

� � // Fn,n−1

GF EDAn

��

Jn

��

� � // · · · � � // J[0,n)[ω
ω]

Jn

��

A ̸∼
[0,n) // ωω

· · · �
� dense // Fn+1,n+1

J−1
n

OO

� � // Fn+1,n@A BC
An+1

OO

� � // Fn+1,n−1
� � // · · · � � // J[0,n+1)[ω

ω]

A ̸∼
[0,n+1)

66mmmmmmmmmmmmmmm

Define F0,ω =
∩
n∈ω F0,n. In other words,

F0,ω = {X ∈ ωω : (∀n ∈ ω) J [0,n)(X) ∈ Fn,n}.
Then we define Fω,ω = J ω[F0,ω]. As in the previous section, we will show the following

claim:

(J ωα,C)−1[F(A ̸∼ωα,C)] is dense in F(A).(5)

The claim (5) entails that F(A ̸∼ωα,C) is nonempty, and therefore A ̸∼ωα,C is σ-join-
irreducible by Proposition 2.6. Here, since C ≥T C−1, we have that A̸∼ωα,C ≡w A̸∼ωα

.
Therefore, the claim (5) implies that A ̸∼ωα

is σ-join-irreducible as desired. Hence, it
suffices to show the claim (5) to prove Lemma 6.9. We will use almost the same strategy
as in the previous section.

Lemma 6.13. F0,ω is dense in F0,0.

Proof. Fix σ ∈ F0,0 and put σ0 = σ. We will construct a sequence (σn)n∈ω of finite
strings such that σn ∈ Fn,n, and

J −1
[m,n)(σn) ⊆ J −1

[m,n+1)(σn+1) ∈ Fm,m

for any m ≤ n. Then we will define X :=
∪
n J

−1
[0,n)(σn) and ensure that X ∈ F0,ω,

that is, J[0,n)(X) ∈ Fn,n. Given n, inductively assume that σn ∈ Fn,n. Now, by the
property (b), Fn,n+1 is dense in Fn,n for any n ∈ ω. Since Fn,n+1 = J −1

n [Fn+1,n+1], there
is Y ∈ Fn+1,n+1 such that

σn ⊂ J −1
n (Y ) ∈ Fn,n.

Since J −1
n is continuous, we can find an initial segment σn+1 ⊂ Y such that σn ⊆

J −1
n (σn+1). Clearly σn+1 ∈ Fn+1,n+1. For every m ≤ n, by continuity of J −1

[m,n), we also

have

J −1
[m,n)(σn) ⊆ J −1

[m,n) ◦ J
−1
n (σn+1) = J −1

[m,n+1)(σn+1)

and J −1
[m,n)(σn) is extendible in J −1

[m,n)[Fn,n] = Fm,n ⊆ Fm,m, that is, J −1
[m,n)(σn) ∈ Fm,m

as wanted.
For X =

∪
n J

−1
[0,n)(σn), we claim that J[0,m)(X) = Ym :=

∪
n≥m J −1

[m,n)(σn). This is

because we have

J −1
[0,m)(Ym) =

∪
n≥m

J −1
[0,m) ◦ J

−1
[m,n)(σn) =

∪
n

J −1
[0,n)(σn) = X.
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The first equality is due to continuity of J −1
[0,m) and the property that (J −1

[m,n)(σn))n≥m

is increasing. Therefore J[0,m)(X) = Ym. Since J −1
[m,n)(σn) ∈ Fm,m, and Fm,m is closed,

we have J[0,m)(X) ∈ Fm,m for all m ∈ ω, and therefore σ ⊂ X ∈ F0,ω. This shows that
F0,ω is dense in F0,0. □

For notational simplicity, we use the following notations:

Jω = J ωα,C, A ̸∼
ω = A ̸∼ωα,C.

Lemma 6.14. If A is α-stable, then Fω,ω ⊆ F(A̸∼
ω ).

Proof. Fix X ∈ ωω such that Jω(X) ∈ Fω,ω. Given n ∈ ω, we will define a continuous
function η : Jω[ωω] → Jω[ωω] ∩ [Jω(X) ↾n] witnessing that A ̸∼

ω ≤w A ̸∼
ω ↾[Jω(X) ↾n].

Note that Jω(X) ↾n = ⟨J[0,1)(X) ↾ 1, . . . ,J[0,n)(X) ↾ 1⟩. Note also that Jω(X) ∈ Fω,ω if
and only if J[0,n)(X) ∈ Fn,n for all n ∈ ω. By the condition (c), there is a Cn-computable

Wadge reduction θn : A̸∼
[0,n) ≤w An ↾[J[0,n)(X) ↾ 1]. We let η be a continuous function

such that for any k,

η(Jω(Y ))(k) = J[0,k)(J −1
[0,n) ◦ θn ◦ J[0,n)(Y )) ↾ 1.

In other words, η(Jω(Y )) = Jω(J −1
[0,n) ◦ θn ◦ J[0,n)(Y )). Consequently,

A̸∼
ω (Jω(Y )) = A(Y ) = A̸∼

[0,n)(J[0,n)(Y )) ≤Q A ̸∼
[0,n)(θn ◦ J[0,n)(Y ))

= A(J −1
[0,n) ◦ θn ◦ J[0,n)(Y )) = A̸∼

ω (Jω(J −1
[0,n) ◦ θn ◦ J[0,n)(Y ))) = A̸∼

ω (η(Jω(Y ))).

Since η(Jω(Y )) extends Jω(X) ↾n, this witnesses that A ̸∼
ω ≤w A ̸∼

ω ↾[Jω(X) ↾n]. □
This concludes the proof of Lemma 6.9.
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[KLS12] Alexander S. Kechris, Benedikt Löwe, and John R. Steel, editors. Wadge degrees and pro-
jective ordinals. The Cabal Seminar. Volume II, volume 37 of Lecture Notes in Logic. Asso-
ciation for Symbolic Logic, La Jolla, CA; Cambridge University Press, Cambridge, 2012.

[KM] Takayuki Kihara and Antonio Montalbán. The uniform Martin’s conjecture for many-one
degrees. to appear in Trans. Amer. Math. Soc.

[Lav78] Richard Laver. Better-quasi-orderings and a class of trees. In Studies in foundations and
combinatorics, volume 1 of Adv. in Math. Suppl. Stud., pages 31–48. Academic Press, New
York-London, 1978.



THE WADGE DEGREES OF BOREL FUNCTIONS 39

[LSR90] Alain Louveau and Jean Saint-Raymond. On the quasi-ordering of Borel linear orders under
embeddability. J. Symbolic Logic, 55(2):537–560, 1990.

[Mac77] John M. Macintyre. Transfinite extensions of Friedberg’s completeness criterion. J. Symbolic
Logic, 42(1):1–10, 1977.

[MM11] Alberto Marcone and Antonio Montalbán. The Veblen functions for computability theorists.
Journal of Symbolic Logic, 76(2):575–602, 2011.

[Mon14] Antonio Montalbán. Priority arguments via true stages. J. Symb. Log., 79(4):1315–1335,
2014.

[MW85] Richard Mansfield and Galen Weitkamp. Recursive aspects of descriptive set theory. Oxford
University Press, New York, 1985. with a chapter by Stephen Simpson.

[NW65] C. St. J. A. Nash-Williams. On well-quasi-ordering infinite trees. Proc. Cambridge Philos.
Soc., 61:697–720, 1965.

[Sel83] V. L. Selivanov. Hierarchies of hyperarithmetic sets and functions. Algebra i Logika,
22(6):666–692, 720, 1983.

[Sel95] Victor L. Selivanov. Fine hierarchies and Boolean terms. J. Symb. Log., 60(1):289–317, 1995.
[Sel07] Victor L. Selivanov. Hierarchies of ∆0

2-measurable k-partitions. MLQ Math. Log. Q., 53(4-
5):446–461, 2007.

[Sel11] Victor Selivanov. A fine hierarchy of ω-regular k-partitions. In Models of computation in
context, volume 6735 of Lecture Notes in Comput. Sci., pages 260–269. Springer, Heidelberg,
2011.

[Sel17a] Victor Selivanov. Towards a descriptive theory of cb0-spaces. Mathematical Structures in
Computer Science, 27(8):1553–1580, 2017.

[Sel17b] Victor L. Selivanov. Extending Wadge theory to k-partitions. In Unveiling Dynamics and
Complexity - 13th Conference on Computability in Europe, volume 10307 of Lecture Notes
in Computer Science, pages 387–399. Springer, 2017.

[Sim85] Stephen G. Simpson. Bqo-theory and Fräıssé’s conjecture. Chapter 9 of [MW85], 1985.
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