MANY-ONE REDUCIBILITY WITH REALIZABILITY

TAKAYUKI KIHARA

ABSTRACT. In this article, we propose a new classification of Eg formulas
under the realizability interpretation of many-one reducibility (i.e., Levin re-
ducibility). For example, Fin, the decision of being eventually zero for se-
quences, is many-one/Levin complete among Zg formulas of the form InVm >
n.o(m,x), where ¢ is decidable. The decision of boundedness for sequences
BddSeq and for width of posets FinWidth are many-one/Levin complete among
Eg formulas of the form InVm > nVk.@(m,k,x), where ¢ is decidable. How-
ever, unlike the classical many-one reducibility, none of the above is Eg—
complete. The decision of non-density of linear orders NonDense is truly Eg-
complete.

1. INTRODUCTION

In this article, we introduce the notion of many-one reducibility for sets with
witnesses and reanalyze the arithmetical /Borel/projective hierarchy under this new
reducibility notion. In computational complexity theory, the notion of polytime
many-one reducibility for sets with witnesses (a.k.a. search problems or function
problems) is known as Levin reducibility [4], but strangely enough, it seems that its
computable analogue has never been studied.

Definition 1.1 (Levin [4]). Let X be a finite alphabet. A search problem (or a set
with witnesses) is a binary relation R C ¥* x X* and any y satisfying R(z,y) is
called a witness (or a certificate) for « € |R|, where |R| = {« : JyR(z,y)}. For a
complexity class C and search problems A and B, we say that A is C-Levin reducible
to B if there exist C-functions ¢, r_, 4 such that for any z,y, z € ¥* the following
holds:

(1) x € |A| if and only if p(x) € |B.

(2) If y is a witness for « € |A] then r_(z,y) is a witness for ¢(z) € |B].

(3) If z is a witness for p(z) € |B| then ri(x,2) is a witness for = € |A|.

As a closer look at the definition shows, Levin reducibility is nothing more than
the realizability interpretation of many-one reducibility. In this article, we intro-
duce the notion of many-one reducibility for subobjects in any category having
pullbacks, and observe that the same definition as computable Levin reducibility
is restored as many-one reducibility in the category of represented spaces. This
perspective unexpectedly connects the notion of Levin reducibility with the study
of arithmetical/Borel/projective hierarchy in intuitionistic systems.

The notion of many-one reducibility in intuitionistic/constructive systems was
first studied exhaustively by Veldman [9, 10, 12, 13] and later more recently by
[3] and others. According to Veldman, the intuitionistic Borel/projective hierarchy
behaves differently from the classical hierarchy. For instance, Veldman showed that,
under a certain intuitionistic system, the union of two II{ sets is not necessarily IT)
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FIGURE 1. The fine analysis of classical ¥9-complete sets

[9], the set Fin of all sequences which is eventually zero is not ¥9-complete [12], and
the set IFKB of all trees which is ill-founded w.r.t. the Kleene-Brouwer ordering is
not Y1-complete [13].

We see that these seemingly strange results can be clearly understood using
Levin reducibility. The category of represented spaces has the natural numbers ob-
ject w, the exponential object w®, and the interpretation of first-order logic, so one
can introduce the notion of arithmetic/Borel/projective subobjects by interpreting
their defining formulas in the internal logic. Moreover, in this category, a subobject
is nothing but a subset with witnesses. Based on these observations, for instance,
one can understand Veldman’s result as meaning that the witnessed version of Fin
is simply not Levin-complete among the witnessed X9 subsets (in classical mathe-
matics). The same applies to IFKB. In this way, even classical mathematicians can
clearly understand Veldman’s results on the intuitionistic hierarchy.

Of course, merely giving an interpretation of the existing results is not very
interesting, so we push this point of view forward with further analysis of many-
one/Levin degrees of witnessed sets. In this article, we focus in particular on 39
sets with their existential witnesses. Our results are summarized in Figure 1.

For example, Fin is many-one/Levin complete among %9 sets defined by formulas
of the form InVm > n.p(m,z), where ¢ is decidable. The decision of bounded-
ness for posets BddPO is also at the same level. The decision of boundedness for
sequences BddSeq is many-one/Levin complete among Y9 sets defined by formulas
of the form InVm > nVk.p(m, k,x), where ¢ is decidable. The decision of finite-
ness for width FinWidth and height FinHeight for posets are also at the same level.
The decision of non-density of linear orders NonDense is truly X3-complete. In this
way, the focus on (existential) witnesses leads us to the discovery of a previously
unknown classification of ¥9 sets.
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2. PRELIMINARIES

2.1. Represented space. A coding system is a set Code of symbols for coding
various mathematical objects, with a prior specification of which functions on Code
are realizable. There are three typical coding systems:

(1) Kleene’s first algebra K;: Code = w, and
realizable functions = computable functions on w.
(2) Kleene’s second algebra Ks: Code = w*, and
realizable functions = continuous functions on w®.
(3) Kleene-Vesley algebra KV: Code = w*, and
realizable functions = computable functions on w®.
Here, w denotes the set of all natural numbers.

Notation. We write p*x as the output result of feeding an input z to the realizable
function coded by p. For instance, exz in Ky stands for {e}(z) or ¢.(z) in traditional
notation.

Hereafter we assume that a coding system Code is one of Ky, Ko, or KV. Of
course, it is obviously possible to consider an arbitrary relative partial combinatory
algebra (or more) as a coding system [8]. However, in order to lower the threshold
for reading, we avoid unnecessary generalizations as much as possible.

Definition 2.1. A represented space X consists of an underlying set |X| and a
partial surjection dyx: C Code — |X|. We sometimes use the symbol p Fx x to
denote dx(p) = x, and say that p is an X-name of x or p is a name of z € X.

We sometimes use Ex () to denote the set of all names of z € X.

Example 2.2. Code itself is a represented space via the identity map id: Code —
Code.

Example 2.3. The terminal space 1 is defined as follows: The underlying set is
|1| = {e}, and any p € Code is a name of its unique element e.

Example 2.4. The space of natural numbers Nat is defined as follows: The under-
lying set is [Nat| = w. In Ky, n € w is a name of n € Nat. In K3 or KV, n0> € w¥
is a name of n € Nat, where n0> is the infinite string resulting from concatenating
n followed by the zero sequence 0°°; that is, (n0%°)(0) = n and (n0*)(k) = 0 for
any k > 0. By an abuse of notation, we often use w to denote Nat.

Example 2.5. The represented Sierpiriski space S is defined as follows:
e The underlying set is [S| = {T, L}.
e (Ky) If px 0] then pis a name of T else p is a name of L.
e (Kq or KV) The zero sequence 0% is a name of L and the other sequences
are names of T.

See also Bauer [1] for a common construction of the Sierpiriski space (a.k.a. the
Rosolini dominance) in general coding systems.

Definition 2.6. Let X and Y be represented spaces. A morphism f: X — Y is
a function f: |X| — |Y| such that there exists a partial realizable function F on
Code such that if p is a name of x € X then F(p) is a name of f(z) € Y. We often
call F' a tracker of f.
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Definition 2.7. For represented spaces X,Y, a morphism f: X — Y is mono if it
is injective on underlying sets.

3. THE STRUCTURE OF SUBOBJECTS

3.1. Witnessed subset. Our aim is to consider an arithmetic hierarchy over a
represented space. For this purpose, we carefully consider what a subset of a
represented space is.

Definition 3.1. A subspace of a represented space X is a represented space A such
that |A] C [X| and §4 = dx[|4; that is, the A- and X-names of z € |A| are the
same.

The notion of a subspace seems most appropriate when viewing a subset of a
represented space as a represented space again. However, there could be another
possibility.

Definition 3.2. A subobject of a represented space X is a represented space A
such that |A| C |X| and there exists a partial realizable function which, given an
A-name of x € |A|, returns its X-name.

A regular subobject of a represented space X is a subobject A of X such that
there exists a partial realizable function which, given an X-name of x € |A|, returns
its A-name.

Observation 3.3. A represented space A is a subobject of X iff |A| C |X| and the
inclusion map i: A — X is a morphism.

A represented space A is a reqular subobject of X iff it is a subobject of X and
the inclusion morphism i: A — X has a partial inverse morphism i~ 1:C X — A;
that is, i~ 1(i(z)) = = for any x € |A|.

The most basic relation between subsets is the inclusion relation. We introduce
the inclusion relation between subobjects as follows:

Definition 3.4. For subobjects A, B of a represented space X, we say that A is
included in B (written A C B) if |A| C |B| and the inclusion map i: A — B is a
morphism. If A C B and B C A we say that A is equivalent to B and write A = B.

Observation 3.5. A subspace of X is a regular subobject of X. Conversely, every
reqular subobject of X is equivalent to a subspace of X.

Thus, one can understand that a regular subobject is a represented space ob-
tained by taking a subset of a represented space. What then is the value of non-
regular subobjects? To answer this, it is better to think of the notion of a (non-
regular) subobject as a subset with additional information, such as a subset with
witnesses, rather than just a subset.

Definition 3.6. A witnessed subset A of a represented space X is a represented
space such that |A| C |X| and every name of x € A is a pair (w,p) of an X-name
p of x and some w € Code. In this case, w is called a witness for z € A.

One can see that a subobject of a represented space is nothing more than a
witnessed subset:

Observation 3.7. A witnessed subset of X is a subobject of X. Conversely, every
subobject of X is equivalent to a witnessed subset of X .
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Proof. For a witnessed subset A of X, the inclusion map i: A — X is clearly
tracked by the projection map 7 : (w,p) — p. Conversely, if A is a subobject of
X, that is, i: A — X is tracked by some f, then consider the following represented
space Ay: The underlying set is |Af| = |A|, and (w,p) is a name of x € Ay iff
w is a name of x € A and p = f(w). Then, Ay is clearly a witnessed subset of
X. Moreover, Ay C A is tracked by mg: (w,p) — w, and A C Ay is tracked by
w = (w, f(w)). O

Then we will quickly realize that there are numerous natural examples of non-
regular subobjects.

Example 3.8 (K; or KV). In Ky and KV, the space w® is represented by the
identity map as in Example 2.2. Then a subobject Fin of w* is defined as follows:
e The underlying set is |Fin| = {z € w* : (In)(Vm > n) x(m) = 0}.
e A name of € Fin is a pair (n,z) of x € w* and its witness n; that is,
x(m) = 0 for any m > n.
Note that the inclusion map Fin — w® is a morphism, tracked by the projection
1 (n,x) — .

Proposition 3.9. Fin is a non-regular subobject of w®.

Proof. Suppose that Fin is regular. Then, there exists a partial realizable function
F which, given = € |Fin|, returns an Fin-name of z, say F(z) = (n,z). By the
continuity of F', the witness n is determined after reading a finite initial segment
x| s of z. Put t = max{n, s}, and consider y = (x | t)"~170%°. Then y € |Fin|, so
F(y) returns a name of y € Fin; that is, F(y) is of the form (m,y). As y extends
x | s, the first value of F(y) must be n; hence F(y) = (n,y). However, we have
t > n and y(¢) = 1, which means that (n,y) is not an Fin-name of y. O

One of the most typical ways to obtain a set is to describe a formula ¢ to define
a subset {z € X : p(x)} of X. Then, it is sometimes desirable to keep information
behind the construction of the subset, for example, a witness of an existential
quantification within ¢. In such a case, non-regular subobjects can appear, as
described above. Our goal is to classify such “subsets with witnesses”.

Remark. Let us give some more background on Definition 3.2. In the case of
sets, one can identify an injection m: S — X with its image, which is a subset of
X. Then the inclusion relation between subsets of X can be characterized using
injections as follows. A monomorphism i: A — X is included in j: B »— X if there
exists a morphism k: A — B such that ¢ = jo k. If i is included in j and vice
versa, we write ¢ = j. Formally, a subobject is the =-equivalence class of a mono.
In the category of represented spaces, any =-equivalence class of a mono contains
an inclusion map, which leads us to Definition 3.2. Similarly, a regular subobject
is the =-equivalence class of a regular mono.

Remark. One may also call a regular subobject of X a =—-closed subobject of X.
For j: P(Code) — P(Code), the j-closure A7 of a subobject A — X is defined as
follows:

|A7| = |Al, Eai(z) = j(Ea(2)) A Ex(),

where recall that E4(x) is the set of all names of © € A. A subobject A — X is
j-closed if the j-closure A7 — X is equivalent to A — X.
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Then consider ——: P(Code) — P(Code) defined by —=—U = P(Code) if U # 0;
otherwise ——U = (). One can easily see that a subobject is =—-closed iff it is regular.
To comment on the background of this notion, it is the closure by the universal
closure operator obtained from the double negation topology.

Remark. Example 3.8 gives a direct definition of the function space w*. Alterna-
tively, one may introduce w® as the exponential object NatN?t. The notion of w®
then makes sense even in K; since the category of K;-represented spaces is cartesian
closed, and in this case, NatNt is the space of all total computable functions. Then
one can formulate the definition of Fin within the system K;. In fact, Proposition
3.9 holds in K; as well. The details of this argument will be given later.

3.2. Lattice of subobjects. Next, let us go a little further into the structure of
the inclusion relation among subobjects. Let us denote by Sub(X) the set of all
subobjects of X. One can easily check the following:

Observation 3.10. (Sub(X), <) is a poset.

In fact, in the category of represented spaces, one can see that a subobject poset
is always a Heyting algebra.

Proposition 3.11. The poset (Sub(X), C) of subobjects of a represented space X
forms a Heyting algebra.

This is a consequence of the fact that the category of represented spaces is a
Heyting category, but it is important to give an explicit description of what the
lattice and Heyting operations actually are. Of course, as is well known, they are
given in a form corresponding to the realizability interpretation.

Definition 3.12. Let X,Y be subobjects of a represented space Z. Then their
witnessed union X WY is defined as follows:
e The underlying set is |[ X WY | = | X|U[Y].
e (i,p)is aname of z € X WY iff, if ¢ = 0 then p is a name of z € X else p
is a name of x € Y.

Definition 3.13. Let X,Y be subobjects of a represented space Z. Then their
witnessed intersection X MY is defined as follows:
e The underlying set is |[ X A Y| = |X|N|Y].
e (p,q) isaname of z € X AY iff p is a name of z € X and ¢ is a name of
zeyY.

Definition 3.14. Let X,Y be subobjects of a represented space Z. Then the
implication X — Y is defined as follows:

e (p,q) is aname of x € X — Y iff p is a name of z € Z, and if a is a name
of x € X then g*xaisanameof z €Y.
e The underlying set is the set of all € |Z] having (X — Y)-names.

Proof of Proposition 3.11. We show that the witnessed union & and the intersection
A give the join and the meet in any subobject poset. Let X,Y be subobjects of Z.
Then the inclusion maps X < X WY and Y — X WY are tracked by a — (0, a)
and b — (1,b), respectively. Now, let S »— Z be such that X, ¥ C S. Then the
inclusion maps X «— S and Y < S are tracked by some u and v, respectively.
Then consider the process that, given a name (i,p) of x € X WY, if ¢ = 0 then



MANY-ONE REDUCIBILITY WITH REALIZABILITY 7

returns u(p) else v(p). Note that if ¢ = 0 then p Fx x, so u(p) Fs x. Similarly,
if i # 0 then p Fy x, so v(p) Fs . Thus, in any case, the above process yields a
name of z € S. This means that X WY is included in S. Hence, X WY is the join
of X and Y in the poset of subobjects of Z.

Next, the inclusion maps XAY — X and XAY — Y are tracked by projections
mo and 7y, respectively. Now, let S — Z be such that S C X,Y. Then the
inclusion maps S — X and S — Y are tracked by some u and v, respectively.
Then p — (u(p),v(p)) tracks the inclusion map S — X MY . To see this, if pFg x
then u(p) Fx z and v(p) by z, so (u(p),v(p)) Fxmy z. This means that S is
included in X AY. Hence, X MY is the meet of X and Y in the poset of subobjects
of Z.

To see that — is the Heyting operation, for subobjects A, B, C — Z, first assume
A C B — C, which is realized by w. If (p, q) is a name of x € A B then, since p is
an A-name of z, u(p) is a (B — C)-name of x by our assumption. If u(p) is of the
form (ug(p), u1(p)), as ¢ is a B-name of x, uy(p) * ¢ is a C-name of x. This shows
AmB C C. Conversely, assume AR B C C, which is realized by u. Assume that p is
a name of x € A. As A is a subobject of Z, the inclusion map A — Z is tracked by
some i, so i(p) is a Z-name of x. If x ¢ B then anything is a (B — C)-name of z.
If ¢ is a name of z € B then (p, q) is a (AM B)-name of x, so u(p, ¢) is a C-name of
x. Hence, (i(p), A\q.u(p,q)) is a (B — C)-name of x. Note that Aq.u(p, q) is always
defined, and thus Ap.(i(p), Aq.u(p, q)) tracks the inclusion A C B — C. O

3.3. Quantifier. One of our objectives is to analyze arithmetical and Borel hierar-
chies, especially in the latter case, it is useful to have the notion of countable union
and countable intersection. If a subobject lattice were complete, we could automat-
ically obtain infinitary operations. Of course, a lattice of regular subobjects in the
category of represented spaces is always a complete Boolean algebra (since regular
subobjects are merely subsets); however, the completeness of a subobject lattice
strongly depends on what is chosen as a coding system.

Proposition 3.15 (K;). The poset (Sub(X), C) of subobjects of a represented space
X is not necessarily a o-complete lattice. Indeed, (Sub(w),C) has neither o-join
nor o-meet.

Proof. For the non-existence of o-join, for each n € w, think of the singleton {n} as
a subspace of w. Let I — w be such that {n} C I in Sub(w) for any n € w. Then
|I| = w. Let E7(n) be the set of all I-names of n € w. Since Er(n) # @ for all n € w,
take the least element s(n) € Er(n). Construct a new subobject J — w as follows:
The underlying set is |J| = w, and the only J-name of n € w is s'(n), where s’ be
the Turing jump of s. Clearly, {n} C J holds in Sub(w) for any n € w. If I C J in
Sub(w) then some computable function f tracks the inclusion I < J. Since s(n) is
an I-name of n, f(s(n)) must be a J-name of n, which means f(s(n)) = s'(n). This
implies that the jump s’ is Turing reducible to s, a contradiction. Hence, I Z J,
which shows that any I cannot be a o-join of the singletons {n}.

For the non-existence of o-meet, consider a sequence go <7 g1 <7 ..., where
<rp is Turing reducibility. For each i € w, consider a subobject A; — w such that
its underlying set is |4;] = w and g;(n) is a unique name of n € A;. Assume

that B ~— w is a subobject such that B C A; for any i € w. We construct a
subobject C' — w such that C C A; for any ¢ € w but C € B. Put |C| = w. We
inductively define an increasing sequence (n¢)ee,, With ng = 0. Assume that n.
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has already been defined. If the eth partial computable function ¢, is not total
then put ney1 = ne + 1. If ¢, is total, we claim that there exists n > n. such that
©ve((g9i(n))i<e) is not a name of n € B. This is because, since B C A.41, if one
knows a name of n € B one can compute g.+1(n). Thus, if the claim fails then we
get ger1 <7 @,<. 9 =1 ge, a contradiction. Define n.y; = n+ 1 where n is a
number in the above claim. Then declare that, if ne < n < neq1, then (g;(n))i<e is
a unique name of n € C. For almost all n, the ith coordinate of a name of n € C
yields a name of A;, so we have C' C A;. Moreover, the above construction ensures
that ¢, cannot be a tracker of the inclusion C' C B for any e, which means that
C ¢ B. Consequently, any B cannot be a o-meet of (4;);ey- O

Of course, this only states that there are no external countable operations, and
there is no problem if one uses internal countable operations or quantifiers. In fact,
the arithmetical hierarchy is usually defined as the hierarchy of number quantifiers.

It is known that the existential quantifier and the universal quantifier are char-
acterized by the following adjoint rules:

A(z,y) F B(y) <= JzA(z,y) - B(y)
B(y) F A(z,y) <= B(y) + VzA(z,y)

In categorical logic, the existential quantification and the universal quantification
are introduced as follows: If A is a subobject of X x Y, then 3¥ A and VX A are
subobjects of Y such that for any subobject B ~— Y the following holds in the
subobject posets:

ACXxB «— 3XACB
XxBCA «<— BcCv¥A

As already mentioned, the category of represented spaces is a Heyting category,
so it has interpretations of the existential quantification and the universal quan-
tification. To develop our theory, it is useful to have explicit descriptions of these
notions.

Definition 3.16. Let X be a subobject of a represented space I x Z. Then its
witnessed projection 3' X — Z is defined as follows:
e The underlying set is |3/ X|={z€ Z: (Ji € I) (i,2) € X}.
e (p,q) is a name of z € 3’ X iff p is a name of some i € I and q is a name of
z € Z such that (i,2) € X.

From a practical standpoint, we also want to use the notation 342X for the
projection of X ~— I x Z into I. Then, however, the notation 3’ X for X »— I x I is
ambiguous as to what it is quantifying. In order to describe it unambiguously, we
need to specify a projection, but it is often cumbersome and unintuitive. In some
cases, rather, a collection (X;);c; of subobjects is given first, and the existential
quantification is defined as its (witnessed) union. To be more explicit:

Definition 3.17. Let I be a represented space, and for each i € I let X; be a
subobject of a represented space Z. Then their witnessed union ;. X; is defined
as follows:
e The underlying set is |, ; Xi| = U,y [ Xil-
e (u,p) is a name of x € |y;; X; iff, if u is a name of j € I then p is a name
of z € Xj.
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Note that for a subobject X — I x Z, we have 3'X =4,
subspace of I x Z whose underlying set is {z € Z : (i,2) € X}.

X;, where X; is the

Definition 3.18. Let I be a represented space, and for each i € I let X; be a
subobject of a represented space Z. Then their witnessed intersection [/, ; X; is
defined as follows:

el

e pis a name of x € [
of x € X;.
e The underlying set is the set of all 2 € |Z| having (A

ser Xi iff, if 2 is a name of ¢ € I then p* z is a name

i1 Xi-names.

These notions plays the roles of the existential quantification and the universal
quantification, respectively; that is, for any subobjects A — I X Z and B — Z,

ACIxB < |HACB
iel
IXBCA < BC mAi
i€l
where A; is the subobject of Z such that |A4;| = {z € |Z] : (i,2) € |A|} and a name
of z € A; is a name of (i,2) € A.

3.4. Reducibility. We will see later, for example, that Fin is not 39-complete. Of
course, in order to define the notion of completeness, we need a notion of reducibil-
ity, which requires some discussion.

Definition 3.19. For subsets A, B C w, we say that A is many-one reducible to
B (written A <,,, B) if there exists a computable function ¢: w — w such that for
any n € w

neA < p(n)<B.

For a collection I' of subsets of w, a set A C w is I'-hard if B <,,, A for any
B eT. If AeT also holds, then A is called I'-complete.

Definition 3.20. For subsets A, B C w“, we say that A is Wadge reducible to B
(written A <y B) if there exists a continuous function ¢: w* — w* such that for
any r € w¥

r €A < yp(x) € B.

For a collection I' of subsets of w®, a set A C w is I'-hard if B <y A for any
B eT. If AeT also holds, then A is called I'-complete.

These notions of reducibility are for subsets and can be easily extended to sub-
spaces (or regular subobjects) of represented spaces, but it is less clear how to extend
them to non-regular subobjects. After a short time of gazing at the definitions, one
may find that both definitions of reducibility can be rewritten as A = ¢~ ![B]. That
is, this is just a pullback. Using the notion of pullback, it is natural to extend the
notion of many-one/Wadge reducibility as follows:

Definition 3.21. Let XY be objec‘ps in a category C having pullbacks_. A mono
AL X s many-one reducible to B LYifAs Xisa pullback of B Ly along
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some morphism ¢: X — Y.

A—>B
]
X—Y
]
Recall an explicit description of pullback in the category of represented spaces:

Definition 3.22. For represented spaces X and Y, for a subobject B — Y and a
morphism ¢: X — Y, the pullback ©*B of B along ¢ is defined as follows:
e The underlying set is |¢*B| = ¢~ [|B|] = {z € |X| : ¢(z) € |B|}.
e A name of x € ¢*B is a pair (p,q) of a name p of z € X and a name q of
po(x) € B.
If B — Y is regular, then so is ¢*B = X, and the information of ¢ in the name
©* B is unnecessary.

The definition of many-one reducibility in the category of represented spaces can
be explicitly written as follows:

Definition 3.23. Let X and Y be represented spaces. A subobject A — X is
many-one reducible to B — Y if there exist a morphism ¢: X — Y and partial
realizable functions r_, 4 :C Code — Code such that the following hold:
(1) For any = € | X|, € |A] if and only if p(z) € |B|.
(2) If p is an A-name of x € |A| then r_(p) is a B-name of ¢(z) € |B.
(3) If p is an X-name of x € |A| and ¢ is a B-name of ¢(x) € |B| then r(p, q)
is an A-name of z € |A|.

In this case, we write A <, B. One can think of this as the realizability interpre-
tation of many-one reducibility; that is, r_ is a realizer for “z € A — ¢(z) € B”,
and ry is a realizer for “p(z) € B = z € A”.

Observation 3.24. Definition 3.23 is equivalent to Definition 3.21 in the category
of represented spaces.

Proof. Definition 3.23 states that the subobject A — X is equivalent to the pullback
©*B — X in Definition 3.22. Indeed, if u is a tracker of ¢, then p — (u(p),r_(p))
tracks A C ¢*B, and r4 tracks ¢*B C A. Thus, A — X is also a pullback of
B — Y along ¢. Conversely, if a subobject A — X is a pullback of B — Y along
©, then one can easily see that A is equivalent to ¢*B. ([l

Example 3.25. Let Rep(K;) be the category of represented spaces over Kleene’s
first algebra K;. Then many-one reducibility for regular subobjects of w in Rep(K7)
is exactly the usual many-one reducibility.

Example 3.26. Let Rep(Kz) be the category of represented spaces over Kleene’s
second algebra Ky. Then many-one reducibility for regular subobjects of w® in
Rep(K>) is exactly the Wadge reducibility.

Example 3.27. Many-one reducibility for subobjects of w in Rep(K7) can be
thought of as computable Levin reducibility (cf. Definition 1.1).

To be more explicit, a witnessed subset A — X is many-one reducible to a
witnessed subset B — Y if and only if there exist a morphism ¢: X — Y and partial
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realizable functions r_,ry such that for any name p of x € X and v,w € Code the
following holds:

(1) x € |A| if and only if p(x) € |B].

(2) If v is a witness for z € |A| then r_(v,p) is a witness for p(z) € |B|.

(3) If w is a witness for ¢(z) € |B| then ry(w,p) is a witness for = € |A|.

Next, let us discuss an alternative to the definition of many-one reducibility.
Considering the “meaning” of many-one reducibility, it might be a bit questionable
whether Definition 3.23 is appropriate. The “meaning” of many-one reducibility
A <, B is that it is sufficient to know information about B in order to compute
information about A. That is, the computationally correct understanding of A <,,
B might not be “z € A < p(x) € B,” but

o) eB = z€A; and p(z) ¢ B = z ¢ A.

The conditions (1) and (3) of Definition 3.23 reflect that meaning, but the condi-
tion (2) is the opposite. Therefore, from a computational point of view, it would be
correct to remove the condition (2). In fact, for reducibility for function problems
in computational complexity theory (e.g., the definition of FNP-completeness), this
form of reducibility is often considered instead of Levin reducibility.

Definition 3.28. We say that a subobject A — X is demi-many-one reducible to
B — Y (written A </, B) if the conditions (1) and (3) in Definition 3.23 hold.

Observation 3.29. A<, B — A<, B.

Of course, removing the condition (2) would be unnatural in the categorical
setting. Recall that the ——-closure A™™ — X of a subobject A — X as the
unique regular subobject with |[A™7| = |A|. In other words, it is the C-least regular
subobject including A.

Observation 3.30. A </ B iff there exists a morphism ¢ such that p*B C A C
(p*B)™.
Observation 3.31. If A, B — X are regular then A <., B iff A </, B.

Remark. One may notice that demi-many-one reducibility closely resembles Weihrauch
reducibility [2], which has been studied in depth in computable analysis. In fact,
demi-many-one reducibility corresponds to Weihrauch reducibility for “hardest to-
talizations”. Here, the hardest totalization F* of F: C X =2 Y is the totalization

of F such that if 2 ¢ dom(F) then F"*(x) = (.

3.5. Structure. Let us analyze the structure of many-one reducibility.
Observation 3.32. <, and </, form preorders.

Proof. The proof for the many-one case follows from a general argument, but we
give an explicit description applicable to the demi-many-one case. Reflexivity is
trivial. For transitivity, for subobjects A, B,C of X,Y,Z, assume A <., B via
o, r—,ry and B <., C via 9,s_,s;. Only an outer reduction is nontrivial. Let
p be a tracker of ¢. Given a name a of x € X we know that p x a is a name of
o(x) € Y. Thus, given a name c of 1)(p(x)) € C, sT(p*a,c) is a name of ¢(z) € B,
and 7" (a,sT(p * a,c)) is a name of x € A. This process gives an outer reduction
for A <, C. This actually shows that </ is a preorder. O
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The poset reflections of <., and </ are called the many-one degrees and the
demi-many-one degrees, respectively. It is easy to show the following property
similar to many order degree structures.

Proposition 3.33. The (demi-)many-one degrees on represented spaces form an
upper semilattice.

Proof. Again, the proof for the many-one case follows from a general argument, but
we give an explicit description applicable to the demi-many-one case. We construct
a join of subobjects A »— X and B »— Y. The coproduct X + Y of represented
spaces X and Y are defined as follows:
e The underlying set is [ X + Y| ={(0,2) :x € X} U{(L,y):y € Y}.
e (i,p) is a name of (4, z) iff ¢ = j and if ¢ = 0 then p is a name of z € X else
pis a name of z € Y.

One can think of A+ B as a subobject of X+Y. Clearly, A, B <., A+ B. Assume
that C'is a subobject of Z such that A <, C'viap,r_,ry and B <., C' viat,s_,s4.
Let [p,%]: X4+Y — Z be a morphism such that, for any (i,x) € X4V, if ¢ = 0 then
(o, ¥](i, ) = p(z) else [p,¥](i,z) = ¥(x). Given (i,u) Farp (i,x), if i = 0 then
r_(u) Fo p(z) = [, ¥](i,z) else s_(u) Fo ¥(z) = [@, ¥](i,z). Given (i,u) Fxiy
(4,2) and ¢ ¢ [p, ], ), if ¢ = 0 then [p,¢](i,2) = p(x), so 74 (u,c) Fa x; thus
0,74 (u,¢)) Farp (i,2). Similarly, if ¢ # 0 then (1,74 (u,¢)) Fatp (i,2). This
shows A + B <., C. By a similar argument, one can show that </ also yields an
upper semilattice. O

The many-one degree structure has the following good property that other degree
structures do not have very often.

Theorem 3.34. The (demi-)many-one degrees on represented spaces form a dis-
tributive lattice.

Proof. First consider </,. Given subobjects A — X and B — Y, we define the
space A ® B of common information of A and B as follows: First consider the
subspace C(A, B) of Code such that (p,q,n) € |C(A, B)| iff
Gz, y) [(pxnibx z) & (gxnlby y) & (z € |A] <= ye|B|)]
Then the equivalence relation ~ on C(A, B) is defined as follows:
(p.a,n) ~ (p,q;m) <= dx(p*n)=0x(pxm) & dy(q*n) =y (q*m).
Then let A ® B be the quotient space C(A, B)/~; that is, an (A ® B)-name of
a ~-equivalence class [p, g, n] is of the form (p,q,m) for some (p,q,m) € [p,q,n].
Then we define a subobject Am B — A ® B as follows:
e [p,q,n] € |[AmB|iff [p,q,n] € |A® B| and dx(pxn) € |A].
e (i,u,v) is a name of [p,q,n] € AM B iff u is a name of [p,q,n] € A® B and
if i = 0 then v is a name of dx (p*n) € A else v is a name of dy (¢*n) € B.
To see that AMB </ A, consider ¢: [p,q,n] — dx(p+n), which is well-defined. If
[p.q,n] € |A® B then ¢([p,q,n]) | € X since (p,q,n) € C(A, B). Thus, [p,q,n] €
|Am B| iff ¢([p,q,n]) € |A]. Moreover, if (p,q,m) is a name of [p,q,m] € A® B
and v is a name of ¢([p,q,n]) € A then (0,p, ¢, m,v) is a name of [p,q,n] € Am B.
Similarly, to see that AmB </ B, consider ¢: [p,q,n] — Jdy (g*n), which is well-
defined. If [p, q,n] € |A® B| then ¢([p, ¢,n]) | € Y. By definition, [p,q,n] € |AMDB|
iff 6x(p+n) € [A], if o([p,q,n]) = dx(qxn) € |B| since (p,q,n) € C(A,B).
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Moreover, if {p, g, m) is a name of [p, ¢,m] € A®B and v is a name of ¢([p, ¢, n]) € B
then (1,p,q,m,v) is a name of [p,q,n] € Am B.

For a subobject C' — Z, if C </, A, B then there are p,1 such that, for any
x €1Z|, z € |C| iff p(x) € |A] and (x) € |B|. We also have r, s such that if u is a
name of ¢(x) € A then r * u is a name of z € C, and if v is a name of ¢¥(z) € B
then s * v is a name of x € C.

To show C </, Am B, let p and g be trackers of ¢ and 1, respectively. Then
if k is a name of some z € Z, then k Fz z € |C| iff pxk | Fx o(x) € |4] iff
gxk |y ¥(z) € |B|. Hence, [p,q,k] € |A©® B|, and moreover, k -z x € |C| iff
[p,q,k] € |Am B|. Moreover, if k and ¢ are names of x € Z, then dx(p * k) =
ox(px L) = p(x) and dy (¢ x k) = dy(q * £) = ¥(x); hence [p,q,k] = [p,q,].
Therefore, k — (p, q, k) tracks some morphism 6: Z — A ® B such that x € |C| iff
[p,q,k] € |Am B|. Given a name (i,u,v) of [p,q,k] € Am B, if i = 0 then v is a
name of 0x (pxk) = p(x) € A, so r+visanameof x € C. If i # 0 then v is a name
of 6y (¢ x k) = ¢p(x) € B, so s*v is a name of 2 € C'. This completes the proof.

The proof for <,, is almost the same, but the construction is a little more com-
plicated. Counsider the subspace D(A, B) of Code such that (p,q,a,b,c,d,n) €
|D(A, B)| iff (p,q,n) € |C(A, B)| and the following hold:

e If v is a name of dx(p*n) € A then a * (c*v) is a name of dx(p*n) € A
and b * (c*v) is a name of 0y (g *n) € B.

e If v is a name of dy (¢ *n) € B then a * (d *v) is a name of dx(p*n) € A
and bx* (d *v) is a name of dy (¢ *n) € B.

The construction after this is exactly the same as in the previous one, except for
the additional information o = (a, b, ¢, d).

To see that AMB <., A, consider ¢: [p, ¢, a,n] — dx (p*n), which is well-defined.
If [p,q,a,n] € |A® B| then ¢([p,q,a,n]) | € X since (p,q,n) € C(A, B). Thus,
[p,q,a,n] € |[Am B| iff p([p, ¢, a,n]) € |A|. Moreover, if (p,q,®, m) is a name of
[p,q,,m] € A® B and v is a name of ¢([p, q,a,n]) € A then (0, p, q,a,m,v) is a
name of [p,q,a,n] € Am B. Conversely, assume that (0,p,q, &, m,v) is a name of
[p,q,a,n] € Am B. If i = 0 then v is a name of dx(p*n) € A. If i = 1 then v is
a name of dy (¢ *n) € B, so a* (dxv) is a name of dx(p*n) € A. By the same
argument, one can also show Am B <, B.

For a subobject C' — Z, if C' <, A, B then there are ¢, such that, for any
x € |Z|, x € |C] iff ¢(z) € |A| and ¥(x) € |B|. Let p and g be trackers of ¢
and 1, respectively. Then if k is a name of some & € Z, then k bz = € |C] iff
pxklbx o) € |Al iff ¢gxk | by ¥(x) € |B|. We also have a,b,¢,d such that
v Fa o(z) implies ¢ * v Fo x; v Fp ¥(z) implies d *x v F¢ x; and v F¢ x implies
axv b4 @(x) and bxv Fp ¥(x). In particular, v 4 ¢(x) implies a x (cxv) F4 ()
and bx(cxv) Fp (), and v F g 1 (x) implies ax(d*v) F4 p(x) and bx(d+v) Fp ¥ (z).
As p(x) = 0x(p* k) and ¥ (x) = dy (¢ * k), this implies (p, q,,n) € D(A, B). The
rest of the proof of C <,, AM B is the same as before.

To show distributivity, first consider </,. For subobjects A, B,C of X,Y, Z, it
suffices to show (A+ B)m (A+ C) </, A+ (BmC). We construct a reduction ¢
as follows: Given [p,q,n] € |[(A+ B) ® (A+ C)|, assume that p*n and ¢ * n are of
the forms (i, u) and (4, v), respectively. If i = 0 then define ¢([p, ¢, n]) = (0, dx (u))
else if j = 0 then ¢([p,q,n]) = (0,0x(v)). For instance, if i = 1 and j = 0 then
Oy (u) € |B| iff dx (v) € |A|; hence [p,q,n] € [(A+ B)m (A + C)| iff éx(v) € |4] iff
o([lp,¢q,n]) = (0,dx(v)) € [A+ (BmC)|. If i # 0 and j # 0 then let p; and ¢; be
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such that p; xn = u and ¢ *n = v and then define p([p, ¢, n]) = (1, [p1, ¢1,n]). As
Oy (u) € |B| iff §z(v) € |C| iff [p1,q1,n] € |BMC|iff ¢([p,q,n]) € |A+ (BMC)|. For
an outer reduction, given a name (p,q,m) of [p,q,n] € (A+B)©®(A+C) and a name
(k,w) of p[p,q,n] € A+(BMC), if i =0 or j =0 then k = 0 and w is an A-name of
0x (u) or 0x(v), so one can compute a name of [p,q,n] € (A+B)M(A+C). If i #0
and j # 0 then w is of the form (¢, p1,q1,m’, z), where if £ = 0 then z Fp Jdy (u) else
z FC 52(’0). Thus, if £ =0 then <].,Z> FAJ,-B (1,5y(u)) else <1,Z> FA-{—C (1,5z(1})),
so one can compute a name of [p,q,n] € (A+ B)m (A+ C).

For <, if i # 0 and j # 0 then transform a = (a,b, ¢, d) into o’ = (d’,¥,c, d’),
where o/ = Az.mi(axx), b = Az (bxx), ¢ = Ax.e(l,2) and d’ = Az.d(1,z). Then
define ¢([p,q, o, n]) = (1,[p1,q1,¢’,n]). The rest of the discussion is the same as
above. O

However, if one focuses only on subobjects of a single represented space, it is
generally not a lattice.

Proposition 3.35 (K;). Both (Sub(w), <m) and (Sub(w), <l.) do not have binary
meet.

Let us prepare a lemma to prove this. A general argument shows that regular
subobjects are <;,-downward closed.

Lemma 3.36. If a mono i: A — X is many-one reducible to a regular mono
j:B—Y, theni: A— X is also a reqular mono.

Proof. Regular monos are stable under pullback. O

This can also easily be shown using explicit descriptions. In fact, explicit de-
scriptions lead us to more than that.

Lemma 3.37. If a mono i: A — X is demi-many-one reducible to a reqular mono
j:B—Y, theni: A — X is also a regular mono.

Proof. Assume A </, B via p,ry. Given an X-name p of z € |A|, using a tracker
of ¢, one can find an X-name of p(x) € |B|. As B is regular, we get a B-name ¢
of o(z). Then r4(p,q) is an A-name of z. Thus, A is regular. d

Proof of Proposition 3.35. For the non-existence of meet, it is known that every
increasing sequence of many-one degrees has an exact pair [5, Theorem VI.3.4];
that is, for any sequence Ay <,, A1 < ... of subsets of w there exists B,C C w
such that A <, B,C if and only if A <,,, 4; for some ¢ € w, where <,,, is many-
one reducibility in the classical sense (Definition 3.19). Now note that if R, S are
regular subobjects of w then R <., S iff R </, S iff |R| <,,, |S|. For each i € w,
let us think of A;, B, C as regular subobjects of w. We claim that B and C' do not
have meet. If A </, B,C then, by Lemma 3.37, A is also regular. Thus, the above
property shows A <, A; for some ¢ € w. Then we get A <, A;+1 <m B,C, which
means that A is not a meet of B and C. O

4. HIERARCHY

4.1. Sierpiniski dominance. Our objective is to analyze the arithmetical/Borel
hierarchy in the category of represented spaces. For this, we first need to define the
notion of ¥ and IIY subobjects. Let us first explain these notions for subobjects
of w* in Ky or KV, followed by the general definitions.
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Definition 4.1 (Kz or KV). A subobject A — w* is open or Y if there exists a
morphism ¢: w¥ X w — w such that A is equivalent to the following subspace E,
of wv:

E,={z cw”: (In € w) p(x,n) # 0}.

Similarly, a subobject A — w* is closed or I1{ if there exists a morphism ¢: w* x
w — w such that A is equivalent to the subspace of w* whose underlying set is
w* \ Ey.

Via currying, a 39 subobject is a subspace of the form {z € w¥ : p(z) # 0=},
and a IIY subobject is a subspace of the form {z € w* : p(z) = 0°}. We would
like to consider a similar notion for Ki, but we need to give a formal definition of
w¥ in Kj.

Definition 4.2. By an abuse of notation, we use w* to denote the exponential
object NatN*. To be more explicit:
e In Ky and KV, the underlying set |[Nat™*"| is the set of all functions on N.
A name of f € Nat™*® is f itself (as in Examples 2.2 and 3.8).
e In Ky, the underlying set |NatNat| is the set of all total computable functions
on N. A name of f € Nat™et is any program p € Code computing f.

Nat

By adopting this definition, Definition 4.1 makes sense for K; as well. Since
most of the concrete examples in this article are subobjects of w®, it is sufficient
to understand the above as definitions of open and closed subobjects. However, for
the sake of uniform discussion, we also give general definitions.

Definition 4.3. A subobject A — X is open or ¥ if there exists a partial realizable
function F' such that A is equivalent to the following subspace Efr of X:

x € |Er| < if p is an X-name of  then F(p) is an w*-name of 0°°,

x ¢ |Ep| < if p is an X-name of z then F(p) is an w*-name of some a # 0°°.

Similarly, a subobject A »— w® is closed or I1Y if there exists a partial realizable
function such that A is equivalent to the subspace of X whose underlying set is
X\ [Er|.

Let us explain the general theory behind this definition. Recall from Example
2.5 that S is the represented Sierpiriski space. Here, (an w*-name of) the sequence
0°° is a name of T € S and any other sequence is a name of L € S.

It is well-known that an open set in a topological space can be identified with a
continuous map to the (topological) Sierpiriski space S, which consists of the open
point T and the closed point 1. To be precise, an open subset A of a topological
space X is exactly a set of the form ¢~1{T} for some continuous map ¢: X — S.
This idea can be generalized as follows:

Definition 4.4. A subobject A — X is open if it is a pullback of T: 1 — S
along some morphism ¢: X — S. Similarly, a subobject A — X is closed if it is a
pullback of L: 1 — S along some morphism ¢: X — S.

To be more explicit, the pullback ¢*T can be written as follows:
e The underlying set is |[p*T|={z € X : p(z) = T}.
e A name of x € ¢*T is a name of z € X.
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Note that fixing a name of T € S in advance makes it possible to omit the
information on a name of T form the above description of ¢*T. By definition of
the representation of S, it is easy to verify that this definition is consistent with
Definition 4.3. Also note, by definition, that A — X is open iff A <, (T: 1 —S),
and A — X is closed iff A <, (L:1—S).

Observation 4.5. An open subobject is regular. Similarly, a closed subobject is
regular.

Proof. This is because an open subobject is a pullback of a regular subobject
T:1 — S. The same applies to a closed subobject. See also the above explicit
description of the pullback. |
Example 4.6.

(1) In Ki: An open subobject of w is exactly a X¢ subset of w, and a closed
subobject of w is exactly a I1Y subset of w.

(2) In KV: An open subobject of w® is exactly a X9 subset of w*, and a closed
subobject of w* is exactly a II{ subset of w®.

(3) In Ky: An open subobject of w* is exactly an open subset of w*, and a
closed subobject of w* is exactly a closed subset of w®.

One can generalize these equivalences to (computable) Polish spaces and more,
under appropriate (admissible) representations.

4.2. Arithmetical hierarchy. One of the main ingredients of the theory of hier-
archies is the extraction of subsets using formulas. This idea is common to both
arithmetic and Borel hierarchies.

Let T be a class of subobjects. A sequence (A;);er of subobjects of X is uniformly
I" if there exists a I'-subobject A — I x X such that A; is the ith projection of A
for each 7 € I.

Definition 4.7. Let A be a subobject of a represented space X.

(1) A subobject A is XY if it is an open subobject of X.

(2) A subobject A is I if it is a closed subobject of X.

(3) A subobject A is ¥9 , if there exists a uniformly II9 sequence (B,,),e. Of
subobjects of X such that A =4, Bn.

(4) A subobject A is I, if there exists a uniformly X9 sequence (Bj,)new Of
subobjects of X such that A =, ., Bn-

In K5, this definition coincides with the standard definition of the Borel hierarchy.
In Ky, this is the arithmetical hierarchy with witnesses.

Example 4.8. Recall from Example 3.8 that Fin is the subobject of w* consisting
of sequences which are eventually zero. Then Fin is a ¥9 subobject of w®.

This is because F' = {(n,z) € wxw* : (Vm > n) z(m) = 0} is a closed subobject
of w x w*; hence Fin = 3F =4, ., F, is X9.

Observation 4.9. Every 119 subobject of a represented space X is regular.

Proof. Every II3 subobject A »— X is of the form A,co Bn for some open subobject
B — w x X. By Observation 4.5, B is regular, so a name of (n,z) € B is just the
pair of n € w and an X-name of . By definition, a name of x € A is a name of
a function that, given n € w, returns an name of (n,z) € B. In particular, if p is
a name of x € X then the constant function n — p gives a name of z € A. This
means that A — X is regular. ([l
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4.3. Internal logic. It is also useful to introduce a method of defining a subobject
of a represented space using a first order formula. It is often easier to read the
meaning of a construction of a subobject by using a formula than by combining set
operations.

Definition 4.10. Given a sequence (X;);<n of represented spaces, let x; be a
variable symbol of type X;. Put a subobject R; — X; as a relation symbol of type
X; in our language. Then inductively define a subobject [Z : ¢(Z)] of X1 x---x X,
as follows:

(1) [[(:ch...,mn) : Rz(xz)]] =Xi x---xX;_1 X R; x _XiJrl X oo X X,

(2) [z:0(@) vo@)] =[z:e@)] @[z : ()]

(3) 17 : o(@) Np(@)] = [7: p(@)] M [7 : $(2)].

(4) [z:0(@) = P@)] = [7: (@)] = [z : ¥(@)].

Moreover, for a represented space I,

(6) [z:3Fiel.p(i,z)] =07 : @i, 2)].

(6) [7:Vielp(i,2)] =M, 1T : e, 2)].

Thereafter, a relation symbol R(z) in a formula is sometimes abbreviated to
x € R. Also, we sometimes use a notation such as s(z) = t(y) in a formula, which
determines the subspace whose underlying set is {(z,y) : s(z) = t(y)}.

Hereafter, we mainly focus on the subobjects of w®. As already noted, in Ky and
KV, the object w* literally means the set of all infinite sequences of natural numbers,
while in K7, the exponential object w® is the space of all total computable functions.
Thus, our theory on many-one reducibility for subobjects of w* in Ky correspond to
the witnessed version of many-one reducibility for index sets within Tot in classical
terms, where Tot is the set of all indices of total computable functions on w.

5. THE STRUCTURE OF %9 SETS

5.1. Union of closed sets. According to Veldman [9], in certain intuitionistic
systems, interestingly, the union of two 11{ sets is not necessarily I1]. We first see
that this strange phenomenon can be given a clear interpretation even in classical
logic by using reducibility for non-regular subobjects.

Example 5.1. Let I be a represented space, and X,Y C I be its subspaces. Then
the tartan Wy(X,Y) is defined as the witnessed union (X x I) W (I x Y). In other
words, Wy (X,Y) = [(z,y) : X(z) VY ()]

Example 5.2. For the closed subspace {0} C w“, consider the tartan L =
Wee ({0}, {0°°}). In other words, L = [(z,y) : £ = 0% V y = 0°].

Let X,ur be the class of subobjects which can be written as a witnessed union
of two IIY sets.

Observation 5.3. L € ¥, ,.

A typical way to show the non-regularity of a subobject in Ky or KV can be to
use the following notion.

Definition 5.4. For a subobject A — X, we say that x € A is non-regular if, for
some ¢ € w, for any A-name p of x and X-name ¢ of x, there exists a sequence
(Yn)new of points in A such that

(1) p I ¢ cannot be extended to an A-name of y, for any n € w.



18 TAKAYUKI KIHARA

(2) for any m, ¢ [ m can be extended to an X-name of y,, for some n € w.

Example 5.5. L has a non-regular point. We claim that z = (0°°,0%) is a
non-regular point of L. To see this, note that a name of z € L is of the form
¢ = (i,0°,0%°) for some i < 2. Then, put £ = 1, 3% = (0™1%,0°) and
yt = (0°°,0m1>°). Then g; | ¢ cannot be extended to an L-name of yi for each
i < 2, while z [ m can be extended to X-names of both y%, and y. .

Lemma 5.6. If a subobject A — X has a non-regular point, then A is not reqular.

Proof. Assume that A — X is regular. Then the inclusion map A — X has a
partial left-inverse morphism, so let r be its tracker. That is, if ¢ is an X-name of
x € |A|, then r(g) is an A-name of z. Now, suppose that A has a non-regular point
x € A, and let ¢ be a length for its non-regularity. For an X-name ¢ of = and an
A-name r(q) of x, we get a witness (y¢)tc. for non-regularity. By continuity, after
reading some m bits of ¢, the first £ bits of r(q) are determined. Then ¢ [ m can be
extended to an X-name ¢’ of y; € |A|, so r(¢') must be an A-name of y;. However,
r(q’) extends r(q) | ¢, which cannot be an A-name of y;. O

Corollary 5.7. A union of two I1{ subobjects of w* is not necessarily 119. Indeed,
L is not 113, and thus X ., € 119.

Proof. By Lemma 5.6 and Example 5.5, L is not regular. However, by Observation
4.9, every 119 subobject is regular. Hence, L is not I19. O

5.2. Non-complete X sets. Classically, it is well-known that Fin = {z € w* :
(3n)(Ym > n) x(m) = 0} is X9-complete. Surprisingly, Veldman [12] showed that
this does not hold in certain intuitionistic systems. His insightful work suggests
that its witnessed counterpart is not ¥9-complete in our setting.

Fin := [z € w* : (3n)(Ym > n) z(m) = 0] = |4 (A {z € v : z(m) =0}
new m>n
For the explicit description, recall Example 3.8. Our first goal is to show the
following:

Theorem 5.8. Fin is not ¥9-complete; indeed, L £, Fin.

To prove this, let us introduce a few notions. We say that a subobject A — Z
is almost 119 if it is a finite witnessed union of I1{ subobjects of Z. We say that
a subobject A — Z is amalgamable if there exists A’ = A and there exists a
partial realizable function F' that, given a Z-name of x € |A’| and a finite sequence
(p1,-..,Pn), returns a name of € A’, whenever there exists ¢ < n such that p; is
a name of x € A’.

Proposition 5.9. Fin is an amalgamable subobject of w*.

Proof. Let x € |Fin| and (p1,...,p,) be given. Assume that p; is a name of = € Fin
for some ¢ < n. As a name of an element of Fin is of the form (s, z), it does not
lose generality to assume that each p; is of the form (s;, z;). By our assumption,
at least one of these is a correct name of « € Fin, so it is of the form p; = (s;, x)
for some j. Here, recall that (s;,z) is a name of « € Fin if and only if z(t) = 0
for any ¢ > s;. Note that, if we put m = max;<y, s;, then (m,z) is also a name of
x € Fin. This is because we have s; < m, which implies z(t) = 0 for any ¢ > m.
In summary, F(x,p1,...,pn) = (maxX;<, mo(p;), ) gives a name of = € Fin. Hence,
Fin is amalgamable. ([l
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Lemma 5.10. If an almost 119 subobject A — X is many-one reducible to an
amalgamable subobject B — Y, then A is reqular.

Proof. Assume that A <., B is witnessed by ¢: X — Y and r_,r;. To show that
A — Z is regular, suppose that an X-name p of z € |A] is given. Since A is almost
IIY and any IIY subobject is regular, we may assume that a name of x € A is of
the form (k,p) for some k < n. Then (r_(k,p))rk<n is a sequence of candidates of
names of p(z) € B. That is, since (k,p) is a correct name of x € A for some k < n,
r_(k,p) must be a correct name of ¢(x) € B. Here, note that r_(k,p) may be
undefined, but the condition z € |Ag| is II{(p), so once we see that this is refuted,
we modify it to output some value. In this way, we can assume that r_(k,p) is
defined.

A tracker of ¢ transforms an X-name of z into an Y-name of (z), which,
together with the above candidates, can be used to obtain a correct B-name g of
©(x) by the assumption that B is amalgamable. Then, r(p,q) is an A-name of
x € A. This concludes that A is regular. |

Proof of Theorem 5.8. By Proposition 5.9, Fin is amalgamable. Obviously, L is
almost I19. Hence, by Lemma 5.10, if L <., Fin then L is regular, which is impossible
by Lemma 5.6 and Example 5.5. O

As in classical reducibility, one can see that Fin is £9-complete w.r.t. demi-many-
one-reducibility.

Observation 5.11. For any 39 subobject A — w®, we have A </, Fin.

Proof. The argument is similar to the classical ¥9-completeness proof of Fin. Let
A = [z : InvYmb(n,m,x)] be given, where 6 is decidable. Given x, we construct
©(x). In order to determine the value of ¢(x)(s), we first calculate the largest
ns < s fulfilling the following condition: For any k& < ng there exists m < s — n,
such that =0(k,m,z). If ny, > ns_; then put ¢(z)(s) = 1; otherwise ¢(z)(s) = 0.
Note that if x € A and if n is the least witness for x € A, then we have ng; < n for
any s. Hence, for the least s such that ngy = n, the value s + 1 must be a witness
for ¢(x) € Fin. Conversely, if s is a witness for ¢(x) € Fin, then n; = n, for any
t > s. Then it is easy to see that ng + 1 is a witness for z € A. |

The above proof shows that given the least witness for € A, one can compute a
witness for ¢(z) € Fin. Of course, there may also be a non-least witness for = € A,
but if it is always possible to obtain the least witness for any = € A, this suggests
that A be many-one reducible to Fin. Let us explore this idea further.

5.3. Classification of X9-complete sets. A closer look at classical X3-complete
sets reveals that there are in fact various qualitative differences among them. A X
set is a countable union of I1Y sets, but there are various types of “countable union,”
such as separated union, disjoint union, increasing union, and ordinary union. In
classical theory, separated union (coproduct) and ordinary union are distinguished,
but others are not.

This situation can also be understood as a classification of X9 formulas. First
note that Fin is defined by a £ formula of the form InVm > n.p(m, z), where ¢ is
decidable. For such a formula, if a witness n is given, one can effectively find the
smallest witness ng by checking ¢(m, x) holds for any ng < m < n. This means that
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such a formula can be replaced with a X9 formula 3Ini(n,r) having the following
“unique witness property”:

Iny(n,z) <= Iny(n,z).

Also, many XY sets can be written as an increasing union of II9 sets. Expressed
as a formula Ini(n, x), this means that they have the following “increasing witness
property”:

m<n&pim,z) = P(n,x).

Of course, having the increasing witness property is precisely being defined by a
%9 formula of the form InVm > n.o(m, x), where ¢ is a IIY formula.

The notion of classical ¥9-completeness makes no distinction between these spe-
cial and general ¥9-formulas. The notion of many-one reducibility for nonregular
subobjects helps to clarify these qualitative differences.

Definition 5.12. Let A — X be a X9 subobject.

(1) A has the unique witness property iff there exists a uniformly II{ sequence
(A;)new of subobjects of X such that A =4 __ A, and |A,|N[A,| =0
whenever n # m.

2) A has the increasing witness property iff there exists a uniformly II9 se-
1
quence (A, )new of subobjects of X such that A = |4, . A, and |4,| C
|Ap| whenever n < m.

new

ncw

Observation 5.13. Let A — X be a ©9 subobject such that A = [z € X : In¥m >
n. f(m,xz) = 1] for some morphism f: wx X — 2. Then A has the unique witness
property.

Proof. Define A, =[x € X : Vm > n.f(m,z) = 1 A f(n — 1,2) = 0]. Then,
(Ap)new is a uniform IIY sequence, and |A,| N |A,,| = @ for n # m. Clearly, we
have ¢, A, € A. Tosee A C |, Ay, if n is a witness for z € A, then search for
the least ng < m such that f(m,z) = 1 for any nyp < m < n. By our assumption
on n, one can see that ng is the least witness for x € A. Therefore, z € A,,. As
n +— ng is computable, we have A C 4, A4,,. O

Observation 5.14. A X9 subobject A — X has the increasing witness property iff
there exists a 119 subobject P~ wx X such that A =[x € X : In¥m > n. P(m, z)].

Proof. For the forward direction, x € A iff z € A, for some n, and for such
n, x € Ay, for any m > n. For the backward direction, consider A, = [#,,~,, P,
where P,, — X is the mth projection of P. Then (A, )necw is a uniform I1{ sequence,
and |A,| C |A,,| whenever n < m. Note that n is a witness for x € A iff z € A,
so it is also a witness for x € l§),,c,, An. Thus, A =14, .., An- g

new

Observation 5.15. Let A — X and B — Y be £9 subobjects such that A <., B.

(1) If B has the unique witness property, so does A.
(2) If B has the increasing witness property, so does A.

Proof. (1) Assume B =4, ., Bn. If A < B via ¢ then we have A = ¢*B. Note
that ¢*(14),, Bn) = ), 9" By. Hence, |B,| N |By,| = 0 implies [¢*B,| N [¢*B,y,| =
e H|Bull N |Bnll = ¢ M| Bn| N |Bi|] = 0. Thus, ¢*(l4),, Bn) has the unique
witness property. Now, B = 4),, B,, implies A = ¢*B = ¢*(|#,, Bn); hence, A also
has the unique witness property.
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(2) Note that |B,| C [By,| implies [¢*B,| = ¢ '[|Bnl] € ¢ [|Bul] = |¢*Buml-
Thus, by the same argument as above, one can see that A has the increasing witness
property. ([l

Proposition 5.16. If a X9 subobject A — X has the unique witness property then
it has the increasing witness property.

Proof. Assume A = 4, .., Ay, and consider A}, = ), ., Ax. Obviously, m < n
implies |A/,| C [A,|. One can see A =, Al,. This is because, if (n,p) is a
name of x € ), ., An then (n,n,p) is a name of v € ¥, ¥, ,,, Ax, and if (m, k, p)
is a name of = € W), W, .., Ax then (k,p) is a name of z € |4, , A,

Now note that, in general, even if A,, is I1{ for each n, A/, is not necessarily I19.
However, the unique witness property solves this problem. In this case, we claim
that A/ is equivalent to a subspace B, of X whose underlying set is |A! |. Clearly,
Al C B,,. Given a name p of z € By, by the unique witness property, there exists
a unique k < m such that x € A;. Now wait for x € A, to be recognized for
all n < m except one k. By continuity of trackers of co-characteristic functions of
A,’s, one can recognize this after reading a finite initial segment on p. Then we
must have z € Ai. Now, as p is an X-name of x, by regularity, one can recover its
Ajp-name py. Then (k,py) is a name of z € A] .

It remains to check that B, is a II{ subobject of X. This is because p is not a
name of an element of B, iff p; is not a name of an element of Ay for any k < m,
which is recognizable. 0

As an argument for modifying a given formula, let us introduce Veldman’s notion
of “perhaps” [11, 12]. Given a 9 formula ¢» = 3aVb6(a, b, x), consider the following:

Perhaps(¢) := [z € w” : Ja[Vb (—0(a, b, ) — IcVdb(c, d, x)]]

Note that the above has the same many-one degree as [z : Ja[n(a, z) — Fb—-n(b, 2)]],
where n(a, ) = 32—6(a, z,2). Veldman [11, Theorem 3.8] proved that Perhaps(Fin)
is 3 but not I3, and in particular, it jumps out of 3. Here, we consider its
totalized version that falls into the framework of ¥9.

Half(y) := [z € v : 3a,bn(a, 2) = —n(b, z)]]

To be more explicit, for a ©9 formula ¢ = 3aV¥20(a, z, ), the subobject Half(¢)) ~—

“ is given as follows:

w

e The underlying set is {z € w* : ¥(z)}.
e (a,b,x) is a name of x € Half(¢)) iff either Vz0(a, z, x) or Vz0(b, z, z) holds.

Definition 5.17. A subobject A — w is half ¥9-hard if Half (1)) <, A for any 39
formula .

Later we will show that no half ¥9-hard subobject has the increasing witness
property.

5.4. Examples. We give some natural examples of witnessed sets whose underlying
sets are classically ¥9-complete. The examples listed below seem to fall into four
groups.
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5.4.1. Unique witness property. The first group consists of examples of the “unique
witness” type.

Example 5.18. A binary relation R C w X w is coded by its characteristic function
XRr € 29%%. Let (P, <,) € PO denote the partial order coded by x € w*, where
P, ={a € w:a <, a}. In this way, the space PO of partial orders on a subset of
w can be introduced as a II{ subspace of 2@*%. Consider the following subobject
POtop of w®:
e The underlying set is the set of all partial orders having greatest elements;
that is, |POtop| = {z € w*¥ : (Ja € P,)(Vb € P,) b <, a}.
e (a,p) is a name of v € POy, iff p = = and a is the greatest element in
(Po, <o),

Since the greatest element is unique if it exists, it is obvious that it has the
unique witness property.

Proposition 5.19. Fin =5 POyp.

Proof. POop <m Fin: Given P = P,, consider P[s] = {p < s : p <p p}. If
max P[s] = max P[s + 1] then put ¢(z)(s) = 0; otherwise p(z)(s) = 1. If p is
the <p-greatest element, then we have p = max P[p] = max P, so ¢(z)(s) = 0 for
any s > p. Hence, p is a witness for ¢(x) € Fin. Conversely, if s is a witness for
@(x) € Fin, then ¢(z)(t) = 0 for any ¢ > s. This means max P[s] = max P, so
compute the <p-greatest element p among the finite set P[s]. Then p is a witness
for € POxqp.

Fin <m POip: Given z € w®, we construct a poset P = P,,). Whenever
x(s) # 0 happens, we add a new top element to P; that is, if z(s) # 0, put
t <p s <p s for any t < s; otherwise we do not add anything to P. If s is a
witness for x € Fin then search for the <p-greatest element p among the finite set
{t € P :t < s}. Since nothing is added to P after stage s, this p remains the
<p-greatest element in P, so p is a witness for ¢(z) € POp. Conversely, if p is the
<p-greatest element in P then there is no s > p such that x(s) # 0. Otherwise,
we add a new top element s >p p, which is impossible. Thus, p is a witness for
x € Fin. (]

Of course, partial orders may be changed to linear orders, and top elements
may be changed to bottom elements. This means that the decision of boundedness
BddPO of posets is also m-equivalent to Fin. Here are some other examples.

Example 5.20. Consider the following subobject Conv of w®:

e The underlying set is the set of all convergent sequences on w; that is,
|Conv| = {z € w* : lim,,_,oc z(n) exists}.
e (s,p) is a name of x € Conv iff p = = and z(t) = x(s) for all ¢ > s.

Example 5.21. We consider a decision problem for real numbers, where a real
number is presented by accuracy-guaranteed rational approximations, so we deal
with a decision problem for such rational approximations. A pre-real is a rational
sequence (¢n)new such that |g, — ¢n| < 27" for any m > n. Here, rational numbers
are coded by natural numbers in an obvious manner, so we can consider Ry to be
a I1Y subobject of w®. In the following, we often identify a pre-real (¢,)nec. with
the real number lim,,_, g,,. If the limit is rational, we say that it is a pre-rational.
Consider the following subobject Qpre 0f Rpye:
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e The underlying set is the set of all pre-rationals.
e (m,n,p) is a name of & € Qpre iff p is an Rye-name of z, and x = % where
m € w\ {0}, and n is a Z-name of k.

Here, for example, although there can be more than one witness % for z € Qpyre,
if restricted to only irreducible fractions, the witness for x € Qpre is unique. Thus,
Qpre ™ Rpre can be described by a formula with the unique witness property without
changing the intrinsic complexity. In this sense, Qpre ™ Ry is an object of the
unique witness type.

The case of Conv is a little more difficult. At first glance, Conv appears to be
of the increasing type, but closer analysis reveals that it is in fact of the unique
witness type. We will discuss this in detail later, but first let us see the following;:

Observation 5.22. Fin =, Conv =4 Qpre.

Proof. Conv <, Fin: Given z € w¥, define p(z) € w* as follows: If z(s+1) # z(s),
put ¢(x)(s) = 1; otherwise ¢(x)(s) = 0. Note that s is a witness for x € Conv iff
x(t+1) = z(t) for any t > s iff p(z)(t) = 0 for any t > s iff s is a witness for
©(x) € Fin. Thus, using r_(s,z) = s and 4 (s,z) = s work.

Fin <m Qpre: For f(n) = n?, the sum Z?:o 2-/(") is irrational. Given z € w¥,
consider () 1= >, ) 20 2-f(") Note that x € Fin iff the binary expansion of o(z)
is eventually periodic iff ¢(x) is rational. Given a witness s for « € Fin, the value
¢(z) can be written as Y, . 2/()=F(") /2f() The denominator and numerator are
both natural numbers, so the pair is a witness for ¢(z) € Qpe. Conversely, if ¢(x)
is of the form a/b, the denominator b must be a multiple of some 2(5). If 2(t) # 0
for some t > s, then 2=/(*) is added to ¢(z), which makes it impossible to express
@(x) as a multiple of 277(). Thus, s + 1 is a witness for 2 € Fin.

Qpre <m Conv: Given x € Ry, we first get its rational approximation with
accuracy 1, from which we can compute a positive integer b that is an upper bound
of |z|, so we get y = z/b € [—1,1]. We define p(z)(s) as the prediction of the
denominator of y at stage s; that is, the current prediction is n iff the prediction
that y = k/n for some —n < k < n is not refuted at that stage. Here, the
prediction that y = k/n is refuted at stage s means that |¢gs — k/n| > 27° is
confirmed by looking at the information on a rational approximation ¢, of y with
accuracy 27°. If the prediction n is refuted at s, change the prediction at stage
s+1top(z)(s+1)=n+1.

If x is a rational number of the form a/b, then rewrite this into irreducible fraction
k/n. One can see that the denominator n is equal to lims_,+ ¢(x)(s). We search for
the first s such that ¢(x)(s) = n. This s is a witness for ¢(x) € Conv since p(x) is
monotone. Conversely, if s is a witness for ¢(x) € Conv, then compute ¢(z)(s) = n.
By our construction,  must be of the form k/n for some —n < k < n. Looking at
an approximation of x with accuracy 27", the equation = = k/n is refuted except
for one k, so the last remaining & is the numerator of z. (]

The reason why we introduced the notion of pre-real here is in the proof of
Qpre <m Conv. By our definition, a many-one reduction ¢ must be well-defined
on represented spaces; however, observe that there are few morphisms R — w®,
while there are many morphisms Ry — w*. In the context of Wadge reducibil-
ity (topological many-one reducibility; Definition 3.20), the difference between the
structures of R and w* is examined in depth [7]. If we change the definition to a form
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that allows a many-one reduction ¢ on the name space Code, as in Pequignot-style
Wadge reducibility [6] or Weihrauch reducibility [2], there is no need to introduce
the notion of pre-real.

5.4.2. Increasing witness property. Next, let us discuss examples that are of the
“increasing” type.

Example 5.23. Consider the following subobject BddSeq,, of w*:
e The underlying set is the set of all bounded sequences on w; that is,
|BddSeq,,| = {z € w¥ : (3b)(Vn) z(n) < b}.
e (b,p) is a name of z € BddSeq,, iff p =  and z(n) < b for all n.
BddSeqg — Q* and BddSeqg ~— R* can be defined in a similar manner.

It is not difficult to verify that these examples can be written as increasing
sequences of T1Y sets.

Observation 5.24. BddSeq,, = BddSeqp = BddSeqg.

Proof. A natural number is clearly a rational number, which is clearly a real num-
ber. Given an upper bound b of a sequence (z,)new of real numbers, first extract
a rational approximation m/n of b with precision 27!, Then the natural number
|m| + 1 is an upper bound of (2, )new- O

An example other than decision problems on sequences is the decision that a
partial order has a finite height /width. Here, the height (width, resp.) of a poset P
is the supremum of the cardinality of chains (antichains, resp.) in P.

If one attempts to describe finiteness of the size of something by a ¥9-formula, it
is natural to write it as the existence of a finite upper bound of the size. Therefore,
it is appropriate to consider the witness of this formula as the value of an upper
bound of the size.

Example 5.25. Recall that P, is the poset coded by z € w®. Consider the
following subobjects FinHeight and FinWidth of w®:

|[FinHeight| = {z € w* : the height of P, is finite}.

|[FinWidth| = {z € w* : the width of P, is finite}.

(b, p) is a name of x € FinHeight iff p = z and the height of P, is at most b.
(b, p) is a name of x € FinWidth iff p = 2 and the width of P, is at most b.

Observation 5.26. BddSeq,, =, FinHeight =, FinWidth.

Proof. FinHeight, FinWidth <., BddSeq,: Given P = P,, consider the cardinality
©(z)(n) of a maximal chain or antichain in the finite set P[n] = {p < n:p <p p}.

BddSeq,, <m FinHeight: Given x € w®, we construct a poset P = P, ;). When-
ever a previously unseen large value appears in x, we add a new top element to P.
To be precise, let the underlying set of P be {(n,t) : 2(t) > n and Vs < t. z(s) < n}.
Here, n < m implies (n,t) <p {m,s) for any s,t. Note that for each n, P has at
most one element of the form (n,t).

If b is a witness for x € BddSeq,,, then z(t) < n for any ¢. Thus, (m,s) € P
implies m < n. Then P can contain at most n + 1 elements as noted above, so the
height of P is at most n + 1. Therefore, n + 1 is a witness for ¢(z) € FinHeight.
Conversely, if n is a witness for p(z) € FinHeight then we claim that n is a witness
for z € BddSeq,,. Otherwise, there exists ¢ such that z(t) > n. Hence, for any
m > n, let t(m) be the least number such that z(t(m)) > n. By definition, we
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have (m,t(m)) € P. In particular, (aﬁm))mg,b is a chain of length n + 1; thus the
height of P is at least n 4+ 1. This contradicts our assumption, so n is a witness for
x € BddSeq,,.

BddSeq,, <m FinWidth: Given z € w*, we construct a poset P = P,). The

underlying set is the same as above. Now we declare that all distinct elements in
P are incomparable. The rest of the proof is exactly the same as above. ([

5.4.3. Half ¥9-hard. Let us discuss X9 subobjects that are half X9-hard. Obvi-
ously, there exists a subobject of w® which is complete w.r.t. the ones of the form
Half (1)) » w® for some X9 formula 1. To see this, just take a universal ¥9 formula

.
Example 5.27. Consider the following subobject HaIfTruthEg — WY
e The underlying set is {(Zn)new € (W*)* : (In € W) z,, = 0°}.
e (n,m,p) is a name of x = (,)new € DisConn iff p = = and either x,, = 0>
or x,, = 0 holds.

Observation 5.28. HalfTruthyy is half ¥9-hard.

However, this is just a meta-mathematical example of a half ¥9-complete subob-
ject. A natural example of a half ¥9-hard subobject may be presented from graph
theory.

There are two ways to formalize the notion of a graph. One is to introduce
edges as pairs of vertices. That is, a directed graph is a pair G = (V, E) satisfying
E C V2. We call this a subset presentation of a directed graph.

The other is to treat edges as data with specified source and target vertices. In
other words, a directed multigraph is a map (d,c): E — V2, where d(e) denotes
the source vertex (tail) of edge e and c¢(e) denotes the target vertex (head) of edge
e. This is also a very standard way of presenting a directed multigraph, which we
call a function presentation of a graph. We sometime use the symbol v — v to
denote an edge e with d(e) = u and c(e) = v.

From here on, we only deal with undirected graphs. In the case of a presentation
of an undirected graph, we consider E C [V]? and v: E — [V]?2. Here, [V]? =
{(u,v) € V2 :u < v} for V C w, and each (u,v) € [V]? is often written as {u,v} or
{v, u}; that is, we do not distinguish between {u,v} and {v,u} as usual.

Note that subset and function presentations (even restricted to undirected simple
graphs) are not computability-theoretically equivalent in a certain sense, but they
are equivalent as far as the following disconnectedness problem is concerned.

Example 5.29. A subset presentation of a graph G = (V, E) with V' C w and
E C [V]? is coded as their characteristic functions xy € 2 and xg € 2(&?) ~ 9w,
Let G, = (V,, E;) be the subset presentation of the graph coded by z. Consider
the following subobject DisConn of w®:
e The underlying set is the set of all subset presentations of disconnected
graphs; that is, 2 € |DisConn| iff not every two vertices are connected by a
finite path in G,.
e (a,b,p) is a name of x € DisConn iff p = x and a,b € V,, are not connected
by any finite path in G,.

Example 5.30. A function presentation of a graph v: E — [V]? with V C w and
E C w is coded as the triple (v, xv,xz). Let v.: E, — [Vi]? be the function
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presentation of the graph coded by x. Consider the following subobject DisConngy,
of w*:
e The underlying set is the set of all function presentations of disconnected
graphs; that is, « € |DisConng,,| iff not every two vertices are connected by
a finite path in ~,.
e (a,b,p) is a name of z € DisConng,, iff p = z and a, b € V,, are not connected
by any finite path in ~,.

These are clearly X9 subobjects of w®. A function presentation of a graph may
appear, for example, in the context of group actions.

Example 5.31. An action a: G x § — S of a countable group G C w on a set
S C w is coded via their characteristic functions, where a code of G C w also
involves the operation * € w**“ and the inverse o~ € w*. Let (G, S,, a,) denote
the countable group action coded by = € w*. Consider the following subobject
Ol’bitzg of w:

e The underlying set is the set of all countable group actions on subsets of
w; that is, x € |Orbit>s| iff oy : G4 x Sy — Sy has at least two orbits.

e (a,b,p) is a name of z € DisConng,, iff p = z and a,b € S, belong to
different orbits; that is, there is no g € G, such that «,(g,a) = b.

When a group action « is given, a(g, a) is often abbreviated as ¢ - a.
Proposition 5.32. DisConn =, DisConng,n =, Orbit>s.

Proof. DisConn <., DisConng,,: It is obvious since any subset £ C [V]? can be
thought of as an inclusion map E — [V]?.

DisConngyn <m DisConn: Let a function presentation of a graph v: E — [V]? is
given. For each v € V, put 2v € V'. If vy(a) = {u,v} then put {2u,2(u,v,a) +
1},{2(u,v,a) + 1,2v} € E’. Note that the graph ¢(y) = (V', E’) is the result of
adding one vertex to the midpoint of each edge of the graph (V, E). For the for-
ward reduction, clearly {u,v} is disconnected in (V, E) iff {2u, 2v} is disconnected
in (V',E’). For the backward reduction, assume that {2u,2(v,w,a) + 1} is dis-
connected in (V’, E’). By definition, 2v is adjacent to 2(v,w,a) + 1, so {2u,2v}
must also be disconnected; hence {u,v} is disconnected in (V, E). Similarly, if
{2(u,v,a) + 1,2(u/,v',a’) + 1} is disconnected in (V', E’), so is (2u,2u’); hence
(u,u’) is disconnected in (V, E).

Orbit>g <, DisConngy,: Given a group action G xS — S, consider the (directed)
graph v: G x S — S? defined by v(g,a) = (a, g - a). Intuitively, v consists of edges
of the form a -2+ ¢ - a, but this must be distinguished from b -+ ¢ - b for b # a,
so we add the information on tails to the names of these edges; that is, the name
of the former is (g,a) and the latter is (g,b). Now every g € G is invertible, so we
have v(g~!,g-a) = (g - a,a). As the information of o~! is contained in a code of
G, given an edge u — v in 7, one can always effectively find an edge v — u in ;
that is, if e = (g, a) then ¢ = (g7, g-a). Hence y can be modified to an undirected
graph 7/: G x S — [S]%. Now, it is easy to see that a,b € S belong to the same
orbit iff @ and b are connected by a finite path in +/.

DisConngyn, <m Orbit>2: Given a function presentation of a graph v: £ — [V]Q,
consider the free group Fg over the set . Then define the Fg-action on V as
follows: For a € E, if v(a) = {u,v} then put ¢ - v = v and a-v = u. For
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w € V\ {u,v}, put a-w =w. Then a and b are connected by a finite path in ~ iff
a,b € S belong to the same orbit. (I

Interestingly, as we will see later, DisConn is half $9-hard, but not %9-complete.

5.4.4. ¥9-complete. The last group conmsists of “genuine” Y9-complete sets. Of
course, a meta-mathematical example of a %9-complete subobject of w* is [z €
w¥ : Ja € wvb € wh(a,b, x)], where 3a¥bf(a, b, z) is a universal X9 formula. This is
equivalent to the following:

Example 5.33. Consider the following subobject Truthgy — w®:

e The underlying set is {(Zn)new € (W*)* : (In € W) z,, = 0°}.
e (n,p) is a name of © = (z,)new € Truthgg iff p =2 and x,, = 0°° holds.

Observation 5.34. Truthzg is complete w.r.t. 9 subobjects of w®.

Next, we give some order-theoretic examples of ¥9-complete subobjects.

Example 5.35. The space of linear orders LO on a subset of w is a IIY subspace
of 29*%  Let (L,,<,) € LO denote the linear order coded by =z € w*, where
L,={a €w:a<, a}. Consider the following subobject NonDense of w*:

e The underlying set is the set of all non-dense linear orders; that is, |[NonDense| =
{rew:=(Va,be L) [a<zb— (Fc € Ly) a <y c<yall

e (a,b,p) is a name of z € NonDense iff p = x, a <, b and for any ¢ € P,
either ¢ <, a or b <, ¢ holds.

Example 5.36. A bottomed poset is a tuple (P, <p, L p), where (P, <p) is a poset,
and L p is the least element in P. An atom of a bottomed poset P is an element
which is minimal among non-bottom elements in P. For P C w, a bottomed poset
(P, <p, L p)is coded by the pair of the characteristic function of <p and the natural
number 1 p € P C w. In this way, the space of botto