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Abstract

We present three different perspectives of oracle. First, an oracle is a blackbox;

second, an oracle is a tool to change the way we access mathematical objects; and

third, an oracle is a factor that causes a change in truth values. Formally, the second

perspective advocates that an oracle is an endofunctor on the category of coded sets

(preserving underlying sets) – we associate it with a universal closure operator. The

third perspective advocates that an oracle is an operation on the object of truth

values – we associate it with a Lawvere-Tierney topology. These three perspectives

create a link between the three fields, computability theory, synthetic descriptive

set theory, and effective topos theory.
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1 Introduction

As the subtitle suggests, this article is closely tied to an earlier article by the author,

“Lawvere-Tierney topologies for computability theorists [53]”, but it is not a sequel and

does not assume knowledge of that work. Rather, this article lays the foundation for the

previous work and is intended to be read prior to [53].

1.1 Three perspectives of oracle

“Oracle” is a fundamental notion in the theory of computation/computability, originating

in Turing’s notion of O-machine [91]. In this article, let us reconsider what an oracle is.

At least three different perspectives of oracle can be presented.

Perspective I

The first perspective is the most standard one, which is to think of an oracle as a “black-

box”, represented as a set, a function, an infinite string, a stream, etc. If we think of

a blackbox as just a container to store an input data (whose data type is stream), as

some people say, an oracle is merely an input stream. Such a view is also quite standard

nowadays.

Perspective II

The second perspective is based on a recent approach concerning “change of coding”.

In modern computation theory, one can discuss computability for various mathematical

objects, including those of continuous datatypes. The basic idea is to access an abstract

mathematical object via a coding system (e.g., a numbering [32], a represented space

[16], an assembly [97], etc.), and then reduce the discussion on computability regarding

mathematical objects to computability regarding codes. In this setting, in general, an

element x in a set may not have a computable name (with respect to a given coding

system), but such an element can still have a computable name relative to some oracle α.

This means that by going through the oracle α, we have access to that element x. In this

way, an oracle α is considered to be a functor that allows us to change the way we access

mathematical objects.
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In computability analysis, this idea was first introduced as the notion of “jump of

representation [100, 23]” and later used by de Brecht and Pauly [75] to develop synthetic

descriptive set theory. As explained above, an oracle induces a “change of coding (jump of

representation)”, which gives an arrow from one coding system to another. To be precise,

an oracle yields a (set-preserving) endofunctor on the category of coded sets (which could

be numbered sets, represented spaces, or assemblies); see Section 4 for the details. This is

also related to Longley’s notion of applicative morphism [62], which yields a set-preserving

regular functor on coding systems (assemblies); see Section 4.4.

Perspective III

The third perspective of oracle is the one that we promote in this article. In this third

perspective, we consider an oracle to be an “operation on truth-values” that may cause

a transformation of one world into another: A mathematical statement φ may be false

in computable mathematics, but φ can be true in computable mathematics relative to

an oracle α. This means that the oracle α caused a change in the truth value of the

statement φ, and also caused a change from the computable world to the α-relative

computable world.

For a better understanding of this idea, let us consider two major semantics of intu-

itionistic logic, the Kripke semantics and Kleene’s realizability interpretation (the seman-

tics in computable mathematics). The factor that causes the change in Kripke semantics

is the notion of Grothendieck coverage (on a poset) or equivalently, nucleus [8] (see also

Section 3.1), while the factor that causes the change in Kleene realizability is the notion

of oracle, as described above. Remarkably, as we give a detailed analysis in this article,

the two factors are essentially identical, differing only in the underlying toposes on which

they act. The former is the topos of presheaves on a poset, and the latter is the effective

topos. In both cases, the factor that causes the change from some topos to another topos

is Lawvere-Tierney topology (which is formally some kind of closure operator on truth

values).

It was Hyland [47] that linked a Turing oracle to a Lawvere-Tierney topology, and

this connection was subsequently investigated in several articles, including [34]. However,

Turing oracles occupy only a small part of the topologies on the effective topos. The

analysis of the overall structure of the topologies was carried out by Lee and van Oosten

[60], and later by the author [53], who presented a novel notion of oracle that fully

correspond to the Lawvere-Tierney topologies, giving a complete third perspective on

oracle.

One might say that this third perspective is based on the idea that there is a correspon-

dence between “computations using oracles” and “proofs using non-constructive axioms”.
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A related idea is partially used as a very standard technique in, for example, classical

reverse mathematics [86]: It is common practice to extend a model consisting only of

computable entities, by adding a solution to an algorithmically undecidable problem as

an oracle, to a model that satisfies a non-constructive axiom (see also [85]).

Our approach is similar, but with a newer perspective that deals more directly with

operations on truth-values. Using our approach (in combination with a result in [46]),

the above idea of ω-model construction in classical reverse mathematics can also be in-

corporated into the idea of using an operation on the truth-values. The author’s idea

was derived in an attempt [52] to generalize Lifschitz realizability in order to separate

non-constructive principles in constructive reverse mathematics (i.e., reverse mathemat-

ics based on intuitionistic logic; see [26, 27]). Interestingly, the attempt to generalize

Lifschitz realizability was also independently studied by Rathjen-Swan [79] as a factor to

decorate Kripke semantics. See Section 5.5 for a detailed discussion of the results outlined

in this paragraph.

Summary

In this article, we clarify the connection between these three perspectives of oracle, and

in particular gives a detailed analysis of the third perspective described above. In this

way, we attempt to bridge the gap between computability theory, synthetic descriptive

set theory, realizability theory and effective topos theory.

This article uses only elementary notions that require little prior knowledge (except for

elementary computability theory) and does not make unnecessary generalizations (when-

ever possible). The intended audience for this article is not only experts on realizability

theory, but also a wide range of logicians, theoretical computer scientists, and mathe-

maticians, including all computability theorists. The most important thing is to lower

the barriers to entry to our research. Less prior knowledge is preferred over generality. In

the words of Hyland, quoted in the Preface to the book [97], “One good example is worth

a host of generalities.”

1.2 Computability-Theoretic Background

1.2.1 Oracle and Turing reducibility

One of the most important subjects of study in computability theory is the structure of

degrees of (algorithmic) unsolvability. The notion of degrees of unsolvability is defined

via the notion of relative computation with oracles. Historically, it was Turing [91] who

first introduced the concept of oracle computation. From a modern perspective, an oracle

computation is merely a computation that accepts data of type nat -> nat, or alterna-
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tively, stream (i.e., a possibly infinite sequence of symbols) as input, and any such data

is traditionally called an oracle. Formally, an oracle machine is a Turing machine with

an extra input tape for writing data of stream type sequentially over time, or a standard

computer program with variables of type nat -> nat, which is a finitistic device with a

finite description: At each step of the oracle computation, the input stream is only read

up to a finite number of digits; therefore, each oracle computation is always performed

using only a finite amount of information.

Let us now consider any program φ(f, n) that accepts data f of type nat -> nat (or

stream) and data n of type nat (i.e., a natural number) as input. Any function g : N → N
can be input to this program as an oracle (stream data type). Then, a function h : N → N
is said to be computable relative to oracle g if

(∃φ program)(∀n ∈ N) φ(g, n) = h(n).

In this case, it is also said that a function h : N → N is Turing reducible to g (written

f ≤T g). By currying, the type NN×N → N of φ is often identified with NN → NN; that is,

one may consider an oracle program φ as a partial function on NN, where φ(g) is defined as

λn.φ(g, n). Then h ≤T g if and only if φ(g) = h for some program φ. This preorder≤T can

be thought of as providing a measure for comparing the computability-theoretic strength

of functions on natural numbers. The preorder ≤T induces an equivalence relation ≡T ,

each equivalence class of which is called a Turing degree. From Turing’s time to the

present, the structure of Turing degrees has been investigated to an extremely deep level.

As a result, a vast amount of research results are known (see e.g. [28, 42, 89] for the tip

of the iceberg).

1.2.2 Mass problems

In the theory of computation, two-valued functions on N (or subsets of N) are often called

decision problems. There are other types of problems in computability theory whose

algorithmic unsolvability is explored in depth, one of which is called a mass problem.

This is a problem with possibly many solutions, and we usually discuss the difficulty of

finding any one of them. A mass problem is identified with the set of its solutions; for

example, an empty set is considered a mass problem without a solution. In some setting,

we consider a mass problem whose solutions are functions on N, and thus a mass problem

is introduced as a set of functions, P ⊆ NN. For mass problems P,Q ⊆ NN, P is Medvedev

reducible to Q (written P ≤M Q) if

(∃φ program)(∀g ∈ Q) φ(g) ∈ P.

Historically, Medvedev [65] used this notion to give an interpretation of intuitionistic

propositional calculus (IPC), and later Kuyper [58] extended Medvedev’s interpretation



Rethinking the notion of oracle 6

to first-order predicate logic (IQC) using Lawvere’s notion of hyperdoctrine. The in-

terpretation of IPC/IQC using mass problems is also important as one of the rigorous

implementations of Kolmogorov’s “calculus of problems” [57] (see e.g. [58, 3] for detailed

discussion). Another type of reducibility for mass problems is Muchnik reducibility, a

non-uniform version of Medvedev reducibility (which induces the domination preorder

on the opposite of the Turing preoreder). Simpson (e.g. [87]) pointed out the connec-

tion between this reducibility and the study of ω-models in classical reverse mathematics

[86], leading to a revival of the study of mass problems from a contemporary perspective.

Simpson et al. [88, 3] also discuss the foundational importance of Medvedev and Muchnik

degrees.

1.2.3 Search problems

A mass problem is considered to be a special kind of search problem. A more general

search problem is given by a multi-valued function on N˜ (i.e., a P(N˜ )-valued function;

see also Section 1.4), where N˜ is either N or NN. Each multi-valued function f represents

a collection of problems, where f(x) is the solution set for the x-th problem. There are

various known methods for comparing algorithmic unsolvability of search problems (multi-

valued functions), so let us start with the simplest ones. For this purpose, we first recall

the definition of many-one reducibility for decision problems. For decision problems, i.e.,

two-valued functions f, g : N˜ → 2, f is many-one reducible to g if there exists a program

φ such that g ◦ φ = f holds.

The notion of many-one reducibility for multivalued functions is defined by replacing

the equality relation in the usual many-one reducibility with the refinement relation: For

multi-valued functions f and g on N˜ , we say that g refines f (written g ⪯ f) if for any

x, x ∈ dom(g) implies x ∈ dom(f) and g(x) ⊆ f(x). Then we say that f is many-one

reducible to g (written f ≤m g) if there exists a program φ such that g ◦ φ ⪯ f . In other

words, for any x and y,

x ∈ dom(f) =⇒ φ(x) ∈ dom(g); and y ∈ g(φ(x)) =⇒ y ∈ f(x)

While a many-one reduction only transforms the input data, there is a reducibility

notion that also transforms the output data: f is strong Weihrauch reducible to g (written

f ≤sW g) if there exist programs φ− and φ+ such that for any x and y,

x ∈ dom(f) =⇒ φ−(x) ∈ dom(g); and y ∈ g(φ−(x)) =⇒ φ+(y) ∈ f(x)

A similar notion is called a generalized Galois-Tukey connection in the study of cardinal

invariants (see e.g. Blass [10, Section 4]).
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The most important reducibility in this paper is the following: f isWeihrauch reducible

to g (written f ≤W g) if there exist programs φ− and φ+ such that for any x and y,

x ∈ dom(f) =⇒ φ−(x) ∈ dom(g); and y ∈ g(φ−(x)) =⇒ φ+(x, y) ∈ f(x)

Although seemingly technical, it is in fact a quite natural concept, corresponding to a

relative computation that makes exactly one query to the oracle. This reducibility notion

has become one of the most important research topics in modern computable analysis

and related areas. For the origin of Weihrauch reducibility, see Brattka [11]. Also, see

the survey [15] for the basic results on Weihrauch degrees. A similar notion has been

introduced in Hirsch [45] in a more abstract setting.

1.2.4 Reverse mathematics and logic

Often, partial multi-valued functions are identified with ∀∃-statements (see also Section

1.4), and through this identification, the classification of partial multi-valued functions by

Weihrauch reducibility is sometimes regarded as a handy analogue of reverse mathemat-

ics; see e.g. [12, 37, 55, 15]. Here, reverse mathematics [86] is a branch of mathematical

logic that aims to classify mathematical theorems in algebra, geometry, analysis, combi-

natorics, etc. by measuring their logical strength, while Weihrauch degrees can classify

mathematical theorems (of the ∀∃-forms) by measuring their computational strength. For

example, some researchers have established the following Weihrauch-style classification of

mathematical theorems:

“The intermediate value theorem” <W “the Brouwer fixed point theorem”

<W “the Radon-Nikodym theorem” <W “the Bolzano-Weierstraß theorem”

under appropriate formalizations. For example, the fixed point theorem is formalized as

“the problem of searching for a fixed point”; see [15].

Weihrauch-style reverse mathematics is sometimes considered to be a refinement of

one aspect of ordinary reverse mathematics (or constructive reverse mathematics [26, 27]),

specifically, it is different from ordinary reverse mathematics in that it is resource-sensitive.

It should be noted, however, that this is only a refinement of one aspect of reverse mathe-

matics, and many important aspects (such as measuring consistency strength) have been

ignored. For detailed discussions of the relationship between Weihrauch reducibility and

(constructive) reverse mathematics, see e.g. [36, 92].

Another logical aspect of the Weihrauch lattice is its relation to linear logic, which is

also frequently discussed due to its resource-sensitive nature; see e.g. [18, 13, 92]. In a

related vein, the similarity between Weihrauch reducibility and the Dialectica interpreta-

tion is also frequently pointed out; see e.g. [15, 92]. These relationships are implicit in
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Blass [9], albeit in a slightly different context. Like Medvedev and Muchnik reducibility,

the notion of Weihrauch reducibility is also closely related to Kolmogorov’s “calculus of

problems”; therefore, Weihrauch reducibility is also of at least as foundational importance

as Medvedev and Muchnik reducibilities. For the relevance of Kolmogorov’s “calculus of

problems”, the Dialectica interpretation and so on, see also de Paiva-da Silva [25].

1.2.5 Turing-like reducibility for search problems

Weihrauch reducibility is defined in terms of a resource-sensitive oracle-computation for

search problems, but there is also a reducibility notion for search problems that is not

resource-sensitive (like Turing reduction). This notion is usually referred to as generalized

Weihrauch reducibility [46]. However, this should be the most standard reducibility for

search problems (multi-valued functions), and a complex name like this is not desirable.

The definition of this reducibility is exactly the same as that of Turing reducibility, except

that a partial multi-valued function g is used as an oracle. A finitistic device called an

oracle machine is exactly the same as in Turing reducibility, except that the behavior when

g(z) is accessed during the computation is different: If g(z) is undefined (i.e., z ̸∈ dom(g)),

the computation will never terminate. If g(z) has more than one value, the computation

will branch into several, resulting in a non-deterministic computation.

Roughly speaking, this notion is a fusion of Weihrauch reducibility and Turing re-

ducibility, so this article will refer to this reducibility as Turing-Weihrauch reducibility

instead of generalized Weihrauch reducibility. To be more precise, we say that f is Turing-

Weihrauch reducible to g (written f ≤TW g) if, in a g-relative computation φg as described

above, if x ∈ dom(f) then, along any path of the nondeterministic computation φg, the

computation halts and outputs a solution for f(x). For the details of the definition, see

e.g. [46, 53] and Definition 2.15. The importance of this concept will be discussed later.

1.2.6 Related notions in other areas

Although we have discussed reducibility notions in computability theory, similar reducibil-

ity notions have of course been studied in computational complexity theory, for exam-

In the case where g is a partial single-valued function, essentially the same model of relative com-

putation has been studied, e.g. by Sasso [82], Goodman [40], and van Oosten [97, Section 1.4.5]. Note

that this relative computation model performs “serial” computations (i.e., no parallel computations are

allowed when accessing the oracle g).

If f and g are partial single-valued functions on N, note that f is Turing-Weihrauch reducible to

g if and only if f can be extended to a partial function which is Turing reducible to g in the sense of

Sasso [82]. It might be better to call this “f is Turing sub-reducible to g”, as suggested by Madore

[64]. Essentially the same reducibility notion (on any partial combinatory algebra) has also been studied,

e.g. in van Oosten [96].
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ple, polynomial-time Turing reduction is known as Cook reduction and polynomial-time

many-one reduction as Karp reduction. Reducibility for search problems has also been

studied in computational complexity theory; for instance, one of the conditions required

for Levin reduction is precisely polynomial-time Weihrauch reduction. For reducibilities

in complexity theory, see e.g. [38]. Kawamura-Cook [50] also introduced polynomial-time

Weihrauch reducibility on continuous objects, which has since been widely used in the

study of computational complexity in analysis.

This article also focuses on oracle relativization and reducibility in descriptive set

theory. The parallels between descriptive set theory and computability theory have long

been noted. For instance, it was in the 1950s that Addison [1] pointed out the now well-

known similarity between the (hyper-)arithmetical hierarchy and the Borel hierarchy.

Later in this field, Wadge [98] introduced a continuous version of many-one reducibility,

known as Wadge reducibility, which led to a surprisingly deep theory, unimaginable given

the brevity of the definition; see e.g. [51]. This reducibility is defined in the definition

of many-one reducibility above as a reduction φ being a continuous function rather than

a program, where N˜ = NN (endowed with the standard Baire topology). Similarly,

in computable analysis, strong Weihrauch reducibility and Weihrauch reducibility with

continuous functions φ− and φ+ have also been studied. These reducibility notions are

also related to Pauly-de Brecht’s synthetic descriptive set theory [75], as we will see later.

Synthetic descriptive set theory can be interpreted as a framework for treating several

notions of descriptive set theory as oracle relativization, and since this is one of the

subjects of this article, it will be carefully explained step by step in the later sections.

1.2.7 Topos theory

One of the aims of this article is to unify these notions using a topos-theoretic notion

called Lawvere-Tierney topology, which can be viewed as a generalization of Grothendieck

topology [63]. Various toposes associated with computability theory have been studied,

including the effective topos [47], realizability toposes [97], the recursive topos [69], the

Muchnik topos [3], and sheaf toposes for realizability [2]. The first topos, the effective

topos, is often considered to be the world of computable mathematics, where every func-

tion is computable, and every property is computably witnessed. The second topos is a

generalization of the first topos, and this article also mentions a further generalization,

relative realizability toposes (e.g., the Kleene-Vesley topos [97]). The first two (and its

relatives) are quite natural toposes based on Kleene’s realizability interpretation (i.e., an

interpretation of intuitionistic arithmetic using computable functions; see e.g. [90, 95])

and are the most deeply studied of these; see also [97].

All others are Grothendieck toposes, the third [69] is the sheaf topos over the canonical
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Grothendieck topology on the monoid of total computable functions on N, the fourth [3]

is on the poset of Muchnik degrees (the frame of Alexandrov open sets on the poset of

Turing degrees), and the fifth [2, Definition 2.13] (see also [4, Section 4.3]) can be seen as

a good combination of the third and fourth ones. So, these are easy to define, but it seems

difficult to precisely relate Grothendieck topologies to computability-theoretic notions like

oracles. Nevertheless, it is possible to outline our idea in terms of Grothendieck topology,

and it may be useful to do so:

Each Grothendieck topology J specifies a notion of covering, and the first key point is

to notice the similarity between the properties of the statements “a sieve U is a J-cover

of an object S” and “one can solve a problem U using an algorithm S with the help of

an oracle J”. For these statements, it is not possible to give an exact correspondence in

terms of Grothendieck topology, but we will see that it is possible in a sense to give an

exact correspondence in terms of Lawvere-Tierney topology on the effective topos or its

generalizations.

1.2.8 Degree theory encounters with topos theory

There are several precedents for the study of the relationship between oracles and Lawvere-

Tierney topologies on the effective topos. In fact, in the paper [47] in which Hyland first

introduced the effective topos, it has already been shown that the poset of the Turing

degrees can be embedded in the poset of the Lawvere-Tierney topologies on effective

topos; see also [78, 76]. In a related vein, computability relative to partial Turing oracles

in the context of realizability has been studied, e.g. in [96, 34].

However, these results are only relativization to partial Turing oracles, and as we

mentioned above, there are various other reducibility notions in computability theory.

As an example of an encounter with another reducibility notion in realizability theory,

Bauer and Yoshimura analyzed in detail a typical derivation method of implication in

constructive reverse mathematics, and found that an extension of Weihrauch reducibility

emerges when it is analyzed with a relative realizability topos such as the effective topos

and the Kleene-Vesley topos. Bauer [6] formalized it as extended Weihrauch reducibility,

and Kihara [53] pointed out that this notion can be understood as incorporating non-

uniform computations into Weihrauch reductions, like advice strings in computational

complexity theory, and presented a computation with a random oracle as such an example.

One attractive interpretation of the statement “U J-covers S” in the context of logic could be “under

a theory (or logic) J , one can prove a formula S using an additional set U of assumptions”. It is

then tempting to think that U corresponds to an algorithm and S corresponds to a problem to be solved.

However, the Kripke-Joyal semantics leads us to a somewhat dual interpretation “under J , every sentence

provable in any φ ∈ U is also provable in S” (e.g., [22]). The latter seems more compatible with our

point of view.
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For the details of extended Weihrauch reducibility, see also Section 5.1.

The relationship between this reducibility notion and Lawvere-Tierney topology is not

obvious, but a concrete presentation of a Lawvere-Tierney topology on the effective topos

by Lee-van Oosten [60] serves as a tool to bridge them. Using this concrete presentation,

Kihara [53] introduced the notion of LT-reducibility, a common extension of Turing-

Weihrauch reducibility and extended Weihrauch reducibility, and in this sense revealed

that there is a one-to-one correspondence between extended oracles and Lawvere-Tierney

topologies on the effective topos.

One benefit of this correspondence is that the topos-theoretic aspect of Lawvere-

Tiernery topology, that is, interpreting intuitionistic higher-order logic, has led to a more

direct connection between Weihrauch degree theory (Weihrauch-style reverse mathemat-

ics) and constructive reverse mathematics. Another (and most) important point is that

this correspondence has led to novel concrete objects of study and results in classical

computability theory on the natural numbers [53]. One of the goals of this article is to

explore the details of this one-to-one correspondence and to better clarify the meaning of

this correspondence.

1.3 Overview

In Section 2, we give an abstract definition of the notion of oracle computation, based on

our second perspective of oracle (inspired by synthetic descriptive set theory). Formally,

we analyze various properties on multivalued functions, e.g., being

computably transparent, inflationary, and idempotent,

and link these properties to the way we access oracles. In computability theory, there are

various notions of oracle computation, each of which is determined by fixing a reducibil-

ity notion that specifies how to access oracles. Well-known reducibility notions include

Turing reducibility and many-one reducibillity [21, 80, 89], but in this article we also deal

with Medvedev reducibility [65], Weihrauch reducibility [15], etc. Then, for example, we

show that being computably transparent, inflationary, and idempotent correspond to the

notions of universal oracle computation with exactly one query (Weihrauch reducibility),

at most one query (pointed Weihrauch reducibility), and finitely many queries (Turing-

Weihrauch reducibility), respectively.

In Section 3, we revisit this idea in the context of operations on the object Ω of

truth-values. There are various additional properties of such operations, such as being

monotone, inflationary, and idempotent,
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and various other preservation properties. Monotone, inflationary, and idempotent oper-

ations correspond to what is known as Lawvere-Tierney topologies (also known as local

operators, geometric modalities, and internal nuclei) [48, 63, 60]. We link these properties

to the above notions of multivalued functions. Through that link, we show, for example,

the following correspondences:

• Many-one degrees (for partial single-valued functions) correspond to
∪
,
∩
-preserving

operations on Ω in the effective topos.

• Turing degrees (for partial functions) correspond to
∪
,
∩
-preserving Lawvere Tier-

ney topologies on the effective topos.

• Medvedev degrees correspond to open Lawvere-Tierney topologies on the Kleene-

Vesley topos.

• Weihrauch degrees correspond to
∩
-preserving monotone operations on Ω in the

Kleene-Vesley topos.

• Pointed Weihrauch degrees correspond to
∩
-preserving monotone, inflationary, op-

erations on Ω in the Kleene-Vesley topos.

• Turing-Weihrauch degrees correspond to
∩
-preserving Lawvere-Tierney topologies

on the Kleene-Vesley topos.

Here, both the effective topos and the Kleene-Vesley topos can be treated as worlds of

computable mathematics, but the former uses coding by natural numbers, while the latter

uses coding by streams (potentially infinite sequences of symbols in a fixed alphabet); see

e.g. [97]. Also, if we consider the realizability topos obtained from Kleene’s second algebra

(i.e., the world of continuous mathematics), Wadge degrees (for functions) correspond

to
∪
,
∩
-preserving operations on Ω, continuous Weihrauch degrees correspond to

∩
-

preserving monotone operations, and so on.

In summary, various notions of oracle computation (or reducibility) which have been

studied in depth in computability theory and related areas can thus be characterized

surprisingly neatly in the context of operations on truth-values.

By recasting the oracle-computability notions in terms of operations on the truth

values, it now becomes clear that there are hidden oracle-computability notions corre-

sponding to operations that do not preserve
∩
, which have not been treated in classical

computability theory. These hidden oracle-computability notions were first dealt with in

Bauer [6] and Kihara [53], and this paper explains them more closely to the traditional

computability theory setting.
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To do so, Section 4 introduces the notion of (multi-)represented space, which plays

a central role in computable analysis and realizability theory. Section 4 also provides a

systematic study of “change of coding (jump of representation)” and links this to the

notion of universal closure operator (a notion related to Lawvere-Tierney topology).

In Section 5, we show that reducibility notions on multi-represented spaces allow us

to correspond oracle-computability notions to operations on truth values precisely. For

example, the following correspondences are shown.

• Weihrauch degrees on multi-represented spaces correspond to monotone operations

on Ω in the Kleene-Vesley topos.

• Pointed Weihrauch degrees on multi-represented spaces correspond to monotone,

inflationary, operations on Ω in the Kleene-Vesley topos.

• Turing-Weihrauch degrees on multi-represented spaces correspond to Lawvere-Tierney

topologies on the Kleene-Vesley topos.

In Section 6, we give results suggesting the existence of a wealth of concrete examples.

In particular, we present various natural examples of (type-two) oracles and relative partial

combinatory algebras (PCAs) from descriptive set theory.

1.4 Preliminaries

In this article, we assume that the reader is familiar with elementary facts about com-

putability theory. We refer the reader to [21, 73, 80, 89] for the basics of computability

theory; [68] for descriptive set theory; [16] for computable analysis; [97, 101] for realiz-

ability theory; and [4] for the relationship between computable analysis and reallizability.

We denote a partial function from X to Y as f : ⊆ X → Y . The image of A ⊆ X

under f is written as f [A] whenever dom(f) ⊆ A. We use the symbol P(Y ) to denote

the power set of a set Y . In this article, a partial function f : ⊆ X → P(Y ) is often

called a partial multi-valued function (abbreviated as a multifunction or a multimap),

and written as f :⊆ X ⇒ Y . In computable mathematics, we often view a ∀∃-formula

S as a partial multifunction. Informally speaking, a (possibly false) statement S ≡
∀xX [Q(x) → ∃yY P (x, y)] is transformed into a partial multifunction fS : ⊆ X ⇒ Y

such that dom(fS) = {x ∈ X : Q(x)} and fS(x) = {y ∈ Y : P (x, y)}. Here, we

consider formulas as partial multifunctions rather than relations in order to distinguish

a hardest instance fS(x) = ∅ (corresponding to a false sentence) and an easiest instance

x ∈ X \ dom(fS) (corresponding to a vacuous truth). In this sense, a relation does

not correspond to a partial multifunction. More to the point, the category of partial

multifunctions and that of relations have different morphism compositions [74]. For partial
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multifunctions f :⊆ X ⇒ Y and g :⊆ Y ⇒ Z, the composition g ◦ f :⊆ X ⇒ Z is defined

as follows: x ∈ dom(g ◦ f) if x ∈ dom(f) and y ∈ dom(g) for any y ∈ f(x); and then

g ◦ f(x) =
∪
{g(y) : y ∈ f(x)}.

2 Abstract characterization of universal oracle com-

putation

Notation. We use the symbolN˜ to denote either N or NN. To be precise, we consider

one of the following systems:

1. First system K1: The basic object is N˜ = N, and

• computable functions on N˜ = computable functions on N.

• continuous functions on N˜ = computable functions on N.

2. Second system Keff
2 : The basic object is N˜ = NN, and

• computable functions on N˜ = computable functions on NN.

• continuous functions on N˜ = topologically continuous functions on NN.

If the reader is only interested in computability on natural numbers, just consider the

system K1; that is, the reader may proceed by replacing all N˜ in the following with N
and all “continuous” with “computable” (no distinction in made between “continuous”

and “computable” in this case).

Modern computability theorists would also like to consider type two computations,

i.e., computations whose input/output types are nat -> nat. In this case, consider the

system Keff
2 : The set NN of all functions on the natural numbers is equipped with the

usual Baire topology, i.e., the product of the discrete topology on N. A partial continuous

function f on NN is determined by a monotone function on N∗ (the set of finite strings

of natural numbers) and any function on N∗ can be coded as an element αf in N˜ = NN

(since a finite string can be coded as a natural number).

We call such an αf a code of f , and let φα denote the partial continuous function on

N˜ coded by α ∈ N˜ .

2.1 Universal machine

Let us begin by reinterpreting de Brecht-Pauly’s approach [23, 75] as an abstraction of

oracle computation. In order to do so, we need to clarify what a universal machine is. Let

Uα be a universal machine relative to an oracle α. Universality means that the α-relative
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computation of any machine can be simulated by taking its code as input; that is, for any

α-computable function fα there exists a code ef such that Uα(ef , n) ≃ fα(n) for all n.

Here, note that α-computability is equivalent to computability relative to Uα, so fα can

be replaced with f ◦Uα for a computable function f . By putting F (n) = (ef , n), the last

equality becomes Uα ◦ F = f ◦ Uα. In conclusion:

if U is a universal oracle computation then for any computable function f :⊆ N → N
one can find a computable function F : N → N such that U ◦ F = f ◦ U .

In the case of a universal machine constructed in the standard manner, f 7→ F is in

fact computable (i.e., given a code of f one can effectively find a code of F ).

In [23], de Brecht introduced its topological version (i.e., a type-two version). The

following is a topological version of the above property of universal computation.

Definition 2.1 (de Brecht [23]). A nonempty partial map U :⊆ N˜ → N˜ is transparent

if for any continuous function f :⊆ N˜ → N˜ there exists a continuous function F :⊆ N˜ →
N˜ such that U ◦ F = f ◦U . If such f 7→ F is computable (i.e., given a code of f one can

effectively find a code of F ), we say that U is computably transparent.

For such a U , a partial map g :⊆ N˜ → N˜ is U-continuous if there exists a continuous

function G :⊆ N˜ → N˜ such that g = U ◦ G. If such G is computable, we say that g is

U-computable.

N
∼

f // N
∼

N
∼ F

//

U

OO

N
∼

U

OO
N
∼

g //

G
$$J

JJ
JJ

JJ
JJ

JJ
JJ

N
∼

N
∼

U

OO

Note that g is U -continuous if and only if g is Wadge reducible (i.e., continuously

many-one reducible) to U . Similarly, g is U -computable if and only if g is many-one

reducible to U (in the sense of Section 1.2).

Example 2.2 (when N˜ = NN). The limit operator lim:⊆ N˜ N → N˜ is computably

transparent (via the identification N˜ N ≃ N˜ ). Moreover, a map g : ⊆ N˜ → N˜ is lim-

continuous if and only if g is Σ˜ 0
2-measurable [23].

Remark. A transparent map is always surjective; consider a constant function f that

takes a given value.

Remark. In the original terminology by de Brecht [23], a transparent map is referred

to as a jump operator. The term transparent was coined in [14].
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So the notion of universal oracle computation can be neatly abstracted in this way, but

the notion becomes more interesting when we consider multivalued oracles. Transparency

for multimaps is defined in the same way as for single-valued maps. We use the refinement

relation ⪯ introduced in Section 1.2.

Definition 2.3. A nonempty partial multimap U : ⊆ N˜ ⇒ N˜ is transparent if for

any continuous function f :⊆ N˜ → N˜ there exists a continuous function F :⊆ N˜ → N˜
such that U ◦ F ⪯ f ◦ U . If such f 7→ F is computable, we say that U is computably

transparent.

For such a U , a partial multimap g : ⊆ N˜ ⇒ N˜ is U-continuous if there exists a

continuous function G :⊆ N˜ → N˜ such that U ◦G ⪯ g. If such G is computable, we say

that g is U-computable.

Note that the only difference between these definitions for multivalued maps and those

for single-valued maps is that the equality relation is replaced by the refinement relation

⪯. To be explicit, U is transparent iff for any continuous f there exists a continuous F

such that U(F (x)) ⊆ f [U(x)] for any x ∈ dom(U), and g is U -continuous iff there exists

a continuous G such that G(x) ∈ dom(U) and U(G(x)) ⊆ g(x) for any x ∈ dom(g). As

before, g is U -computable if and only if g is many-one reducible to U (in the sense of

Section 1.2).

In computability theory, multifunctions are used to represent problems that can have

many solutions. An example of a tool that can be used to measure the complexity of a

problem with many possible solutions is the notion of Medvedev reducibility [65]; see also

Section 1.2.2. For P,Q ⊆ N˜ (which are considered to be solution sets of some problems),

recall that P is Medvedev reducible to Q (written P ≤M Q) if there exists a computable

function which, given a solution of Q, returns a solution of P ; that is, there exists a partial

computable function φ on N˜ such that Q ⊆ dom(φ) and φ[Q] ⊆ P .

Example 2.4 (Medvedev oracle). For a set Q ⊆ N˜ , the universal computation relative

to the Medvedev oracle Q, MedQ :⊆ N˜ ⇒ N˜ , is defined as follows:

dom(MedQ) = {τ ∈ N˜ : Q ⊆ dom(φτ )}
MedQ(τ) = φτ [Q]

Then, MedQ is computably transparent. To see this, note that, given codes σ, τ of

continuous functions, one can effectively find a code bσ,τ of the composition φσ ◦φτ . Then

we have φσ[MedQ(τ)] = φσ ◦ φτ [Q] = MedQ(bσ,τ ).

Moreover, the constant multimap x 7→ P ⊆ N˜ is MedQ-computable if and only if

P ≤M Q. This is because x 7→ P is MedQ-computable if and only if MedQ(τ) ⊆ P for some

computable τ ∈ N if and only if P ≤M Q via φτ .
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As a useful tool for comparing multifunctions, the most used in modern computable

analysis is the notion of Weihrauch reducibility [15]; see also Section 1.2.3. For partial

multifunctions f, g :⊆ N˜ → N˜ , recall that f is Weihrauch reducible to g (written f ≤W g)

if there exist computable functions h, k : ⊆ N˜ → N˜ such that, for any x ∈ dom(f),

h(x) ∈ dom(g) and for any solution y ∈ g(h(x)), k(x, y) ∈ f(x). Simply put, it states

that, during a process solving f(x), values of the oracle g can be accessed only once.

Example 2.5 (Weihrauch oracle). For a partial multifunction g : ⊆ N˜ ⇒ N˜ , the

universal computation relative to the Weihrauch oracle g, Weihg :⊆ N˜ ⇒ N˜ , is defined

as follows:

dom(Weihg) = {(h, k, x) ∈ N˜ : φh(x) ∈ dom(g)

and φk(x, y) ↓ for all y ∈ g(φh(x))}
Weihg(h, k, x) = {φk(x, y) : y ∈ g(φh(x))}

Then, Weihg is computably transparent. This is because we have φℓ[Weihg(h, k, x)] =

{φℓ ◦ φk(x, y) : y ∈ g(φh(x))} = Weihg(h, bℓ,k, x), where bℓ,k is a code of φℓ ◦ φk.

Moreover, f : ⊆ N˜ ⇒ N˜ is Weihg-computable if and only if f ≤W g. This is be-

cause f ≤W g via h, k if and only if, for any x ∈ dom(f), (h, k, x) ∈ dom(Weihg) and

Weihg(h, k, x) ⊆ f(x) if and only if f is Weihg-computable via x 7→ (h, k, x). Conversely,

if f is Weihg-computable via x 7→ (h(x), k(x), z(x)) then f ≤W g via x 7→ φh(x)(z(x)) and

(x, y) 7→ φk(x)(z(x), y).

Remark. One might think that the universal computation relative to a strongWeihrauch

oracle could be defined in a similar way. However, for SWeihg defined in a straightforward

manner, it is not possible to show the equivalence of SWeihg-computability and strong

Weihrauch reducibility to g. The computational understanding of strong Weihrauch re-

duction (generalized Galois-Tukey connection) leads to the peculiar situation that certain

information (input data) once obtained is lost in the middle of the computation, and is

not accessible at the stage of computing an output; so it seems difficult to treat it as a

type of oracle computation in our framework.

With respect to Weihrauch reducibility, in general, statements such as id ≤W g or g ◦
g ≤W g are not always true. It is convenient to give special names to oracle computations

that have these properties.

Definition 2.6. A transparent multimap U :⊆ N˜ ⇒ N˜ is inflationary if the identity

map is U -computable, and U is idempotent if U ◦ U is U -computable.

Observe that if U is an inflationary computably transparent map, then every contin-

uous function is U -continuous. Moreover, if U is idempotent, then the composition of
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two U -continuous functions is also U -continuous. For instance, the limit operation, lim,

is inflationary, but not idempotent. This is because lim ◦ lim-continuity is known to be

equivalent to Σ˜ 0
3-measurability [23] while lim-continuity is equivalent to Σ˜ 0

2-measurability

as mentioned above.

How these notion are used in synthetic descriptive set theory and how they relate to

the second perspective on oracles (i.e., “oracles change the way we access spaces”) will be

explained in Section 4.1.

Remark (Lifschitz realizability). Aside from synthetic descriptive set theory, Kihara

[52], for example, also focuses on these three basic concepts (computable transparency,

being inflationary, and idempotence) for multifunctions. The reason for focusing on these

concepts was to extract the conditions for why Lifschitz realizability (realizability with

bounded Π0
1 sets; [61, 94, 20]) works. To be more precise, computable transparency

corresponds to [61, Lemma 4], [94, Lemma 5.7], and [20, Lemma 4.4], being inflationary

corresponds to [61, Lemma 2], [94, Lemma 5.4], and [20, Lemma 4.2], and idempotence

corresponds to [61, Lemma 3], [94, Lemma 5.6], and [20, Lemma 4.5]. For Lifschitz

realizability, see also Section 5.5.

2.2 Computability as an algebraic system

Let us organize the current setup. We have a basic object N˜ . Moreover, we have an

indexed family (φx : x ∈ N˜ ) of partial continuous functions on N˜ . In such a case, one

may define a partial binary operation ∗ :⊆ N˜ 2 → N˜ by x∗y = φx(y) for any y ∈ dom(φx).

For simplicity, we also use the notation x ∗ y ∗ z to denote (x ∗ y) ∗ z, and x ∗A to denote

φx[A] for A ⊆ N˜ .

Moreover, continuous functions are encoded by elements of N˜ , but computable func-

tions may be encoded by only elements of a small part N ⊆ N˜ . For instance, one may

consider the following three systems:

1. The system K1: The basic objects are N = N˜ = N, and (φe)e∈N is the standard

indexing of all partial computable functions on N.

2. The system K2: The basic objects are N = N˜ = NN, and (φe)e∈NN is the standard

indexing of all partial continuous functions on NN.

3. The system Keff
2 : The baldface object N˜ is the set NN, the lightface object N is the

set of all computable elements in NN, and (φx)x∈NN is the standard indexing of all

partial continuous functions on the Baire space NN. In this case, (φx)x∈N provides

an indexing of all partial computable functions on NN.
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From top to bottom, the triple (N,N˜ , ∗) is known as the Kleene first algebra, the

Kleene second algebra, and the Kleene-Vesley algebra. Our definition can be generalized

as follows:

Definition 2.7. Given a triple (N,N˜ , ∗), one may define φx :⊆ N˜ → N˜ by φx(y) =

x ∗ y if x ∗ y is defined (written x ∗ y ↓). A partial function f :⊆ N˜ → N˜ is said to be

continuous if there exists e ∈ N˜ such that f(x) = φe(x) for any x ∈ dom(f); and f is

computable if such an e can be chosen from the lightface part N.

Example 2.8. In the Kleene first algebra, continuity and computability are equivalent,

and both coincide with computability in the standard sense. In the Kleene second algebra,

continuity and computability are equivalent, and both coincide with topological continuity

(on Baire space). In the Kleene-Vesley algebra, continuity coincides with topological

continuity, and computability coincides with computability in the standard sense.

Most of the results in this article hold if a triple (N,N˜ , ∗) satisfies the condition known

as a relative partial combinatory algebra (see [97] and also Definition 4.26). However, the

three algebras mentioned above are the main ones used in applications in this section

(although many natural and important examples of relative PCAs are known; see e.g. [97]

and also Section 6.2). To lower the barrier to entry into our research, we emphasize ease

of understanding over generality. Once understood, generalization is easy. For now, let

us proceed with the above three algebras in mind.

First, it is useful to rephrase Definitions 2.3 and 2.6 using these terms.

Observation 2.9. Let U :⊆ N˜ ⇒ N˜ be a partial multimap.

• U is computably transparent if and only if there exists u ∈ N such that for all

f, x ∈ N˜ , whenever f ∗ U(x) is defined (i.e., x ∈ dom(U) and f ∗ y is defined for

any y ∈ U(x)),

u ∗ f ∗ x ∈ dom(U) and U(u ∗ f ∗ x) ⊆ f ∗ U(x).

• U is inflationary if and only if there exists η ∈ N such that for all x ∈ N˜ ,

η ∗ x ∈ dom(U) and U(η ∗ x) ⊆ {x}.

• U is idempotent if and only if there exists µ ∈ N such that for all x ∈ dom(U ◦ U),

µ ∗ x ∈ dom(U) and U(µ ∗ x) ⊆ U ◦ U(x).
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2.3 Universal machine as a reflector

From this point forward, we will discuss the exact relationship between computable trans-

parency and universal computation. For f, g :⊆ N˜ ⇒ N˜ , recall that f is many-one re-

ducible to g (written f ≤m g) if there exists a computable function φ such that g ◦ φ
refines f ; that is, for any x ∈ dom(f), φ(x) is defined and g(φ(x)) ⊆ f(x).

Definition 2.10. Let MRed be the set of all partial multimaps on N˜ preordered by

many-one reducibility ≤m. The restriction of this preordered set to those that are com-

putably transparent, inflationary, and idempotent, respectively, is expressed by decorating

it with superscripts ct, η, and µ, respectively.

Recall the notion of universal computation Weihf relative to a Weihrauch oracle f

introduced in Example 2.5. As we have seen, the construction Weih : g 7→ Weihg yields

a computably transparent map from a given multimap. Moreover, it is easy to see that

f ≤m g implies Weihf ≤m Weihg. Hence, Weih can be viewed as an order-preserving map

from MRed to MRedct. The following guarantees that Weih(f) = Weihf is the ≤m-least

computably transparent map which can compute f .

Proposition 2.11. The order-preserving map Weih : MRed → MRedct is left ad-

joint to the inclusion i : MRedct ↣ MRed. In other words, for any f, g :⊆ N˜ ⇒ N˜ , if

g is computably transparent, then f ≤m g if and only if Weih(f) ≤m g.

Proof. Obviously, Weih(f) ≤m g implies f ≤m g. For the converse direction, if f ≤m

g then Weih(f) ≤m Weih(g) by monotonicity; hence it suffices to show that Weih(g) ≤m g.

Given h, k, x ∈ N˜ , note that y ∈ g(h ∗ x) implies k ∗ ⟨x, y⟩ ∈ Weihg(h, k, x). Put k′ =

λxy.k∗⟨x, y⟩. As g is computably transparent, there exists u ∈ N such that g(u∗(k′ ∗ x)∗
(h ∗ x)) ⊆ (k′ ∗ x) ∗ g(h ∗ x). Note that any element of (k′ ∗ x) ∗ g(h ∗ x) is of the form

k′ ∗ x ∗ y for some y ∈ g(h ∗ x). We also have k′ ∗ x ∗ y = k∗⟨x, y⟩ ∈ Weihg(h, k, x). Hence,

we get g(u∗(k′ ∗ x)∗(h ∗ x)) ⊆ Weihg(h, k, x), so the term λhkx.u∗((a∗k)∗x)∗(h∗x) ∈ N

witnesses Weihg ≤m g, where a ∈ N is a computable element such that a ∗ k = k′.

This implies that the notions of many-one reducibility and Weihrauch reducibility

coincide on computably transparent multifunctions.

Corollary 2.12. The poset of many-one degrees of computably transparent, partial

multimaps on N˜ is isomorphic to the Weihrauch degrees.

Proof. We first claim that if g is computably transparent, then f ≤m g if and only

if f ≤W g. The forward direction is obvious. For the backward direction, first note

that f ≤W g if and only if f ≤m Weihg as seen in Example 2.5. By Proposition 2.11,

Weihg ≤m g since g is computably transparent. Hence, f ≤m g. This claim ensures
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that the identity map is an embedding from the poset reflection of MRedct into the

Weihrauch degrees. For surjectivity, we have f ≡W Weihf as seen in Example 2.5, and

Weihf is computably transparent.

Remark. By Proposition 2.11, the notion of Weihrauch reducibility automatically

appears when we have the notions of computable transparency and many-one reducibility,

so in fact, there is no need to defineWeihrauch reducibility. More precisely, any left-adjoint

W of the inclusion i : MRedct ↣ MRed can be seen as a universal Weihrauch machine

since W(g) ≡m Weih(g), so f ≤W g if and only if f ≤m W(g). The point is that W has no

meaning a priori; nevertheless W somehow automatically recovers the notion of Weihrauch

reducibility.

The question then naturally arises as to what corresponds to being inflationary or

idempotent. First, let us consider the notion corresponding to being inflationary. Recall

that the notion of Weihrauch reduction requires that exactly one query to an oracle must

be made during the computation. Let us weaken this condition so that it is not necessary

to make a query to an oracle. That is, it is a relative computation with at most one

query to an oracle. When no query is made to an oracle, it is a bare computation without

an oracle. Formally, if an oracle g is given, this relative computability notion would be

equivalent to making exactly one query to the oracle id ⊔ g. Here,

dom(f ⊔ g) = {⟨0, x⟩ : x ∈ dom(f)} ∪ {⟨1, x⟩ : x ∈ dom(g)}

(f ⊔ g)(i, x) =

f(x) if i = 0,

g(x) if i = 1.

For f, g : ⊆ N˜ ⇒ N˜ , we say that f is pointed Weihrauch reducible to g (written

f ≤pW g) if f ≤W id ⊔ g; see also [43]. Moreover, the universal computation relative

to the pointed Weihrauch oracle g is defined by pWeih(g) := Weih(id ⊔ g). Note that

pWeih(g) is inflationary, so pWeih can be viewed as an order-preserving map from MRed
to MRedct,η. The following guarantees that pWeih(f) is the ≤m-least computably trans-

parent, inflationary, map which can compute f .

Proposition 2.13. The order-preserving map pWeih : MRed → MRedct,η is left

adjoint to the inclusion i : MRedct,η ↣ MRed. In other words, for any f, g :⊆ N˜ ⇒ N˜ ,

if g is computably transparent and inflationary, then f ≤m g if and only if pWeih(f) ≤m g.

Proof. As in the proof of Proposition 2.11, it suffices to show that pWeih(g) ≤m g

for any computably transparent, inflationary, multimap g. This is equivalent to say that

Weih(id⊔g) ≤m g. By Proposition 2.11, we have already shown that Weih(id⊔g) ≤m id⊔g.
Thus, it suffices to show that id ⊔ g ≤m g. The following process gives such a reduction:
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Given (i, x), if i = 0 then return η ∗ x, where η is a witness that g is inflationary. If i = 1

then return x. This process is computable, and witnesses id ⊔ g ≤m g.

Corollary 2.14. The poset of many-one degrees of computably transparent, infla-

tionary, partial multimaps on N˜ is isomorphic to the pointed Weihrauch degrees.

Proof. For g ∈ MRedct,η, we claim that f ≤m g if and only if f ≤pW g. This is

because the latter is equivalent to f ≤W id⊔g, and by Proposition 2.11, this is equivalent

to f ≤m Weih(id⊔g) = pWeih(g) ≤m g, where the last inequality follows from Proposition

2.13 since g is inflationary. This claim ensures that the identity map is an embedding.

The surjectivity of the identity map follows from the fact that pWeih(g) is computably

transparent and inflationary, and pWeih(g) ≡pW g.

Next, let us discuss the idempotent version of Weihrauch reducibility, which is a re-

ducibility notion that, like Turing reducibility, allows multiple access to the oracle. This

is usually defined by what is called a reduction game.

Definition 2.15 (see e.g. [46, Definitions 4.1 and 4.3]). For multifunctions f and g,

let us consider the following perfect information two-player game G(f, g):

Oracle Computer

z0 ∈ dom(f)

Query : x0 ∈ dom(g)

z1 ∈ g(x0)

Query : x1 ∈ dom(g)

z2 ∈ g(x1)
...

...

Query : xn ∈ dom(g)

zn+1 ∈ g(xn)

Halt : xn+1 ∈ f(z0)

Game rules: Here, the players need to obey the following rules.

• First, Oracle chooses z0 ∈ dom(f).

• At the nth round, Computer reacts with yn = ⟨An, xn⟩.

– The choice An = Query (coded by 0) indicates that Computer makes a new

query xn to g.

– The choice An = Halt (coded by 1) indicates that Computer declares termina-

tion of the game with xn.
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• At the (n + 1)st round, Oracle responds to the query made by Computer at the

previous stage. This means that zn+1 ∈ g(xn).

Then, Computer wins the game G(f, g) if either Oracle violates the rule before Computer

violates the rule, or Computer obeys the rule and declares termination with xn ∈ f(z0).

Strategies: Computer’s strategy is a partial map τ :⊆ N˜ <ω → 2×N˜ . Computer’s strategy

is always computable or continuous, coded in the lightface part N for the former case

and in N˜ for the latter. On the other hand, Oracle’s strategies are any partial functions

(which are not necessarily computable).

If σ and τ are strategies of Oracle and Computer, respectively, then the play that follow

these strategies are defined as follows: Oracle’s first move is z0 := σ(), and (n + 1)th

move is zn+1 := σ(x0, . . . , xn). Computer’s nth move is ⟨An, xn⟩ := τ(z0, . . . , zn). Here,

“undefined” counts as a rule violation.

An Computer’s strategy τ is winning if, as long as Computer follows the strategy τ ,

Computer wins the game, no matter what Oracle’s strategy σ is.

Definition 2.16. Let f and g partial multifunctions. We say that f is Turing-

Weihrauch reducible to g (written f ≤TW g) if Computer has a computable winning

strategy for the game G(f, g).

Remark. Note that f is Weihrauch reducible to g if and only if Computer has a com-

putable “exactly one-query” strategy for the game G(f, g); that is, A1 = Halt. Similarly,

f is pointed Weihrauch reducible to g if and only if Computer has a computable “at most

one-query” strategy for the game G(f, g); that is, Ai = Halt for some i < 2.

Remark. This idempotent version of Weihrauch reducibility is usually called gen-

eralized Weihrauch reducibility [46]. As explained in Section 1.2, this reducibility can

be viewed as a fusion of Weihrauch reducibility and Turing reducibility. Therefore, from

this perspective, this article will refer to this reducibility as Turing-Weihrauch reducibility

(and use the symbol ≤TW ) rather than generalized Weihrauch reducibility.

The idea of describing the process of Turing-like reduction using a game has some

precedents, e.g., a dialogue [96, 35]. A notion essentially almost equivalent to Turing-

Weihrauch reducibility has been studied by Lee-van Oosten [60] (see also [53, Remark

2.15]) in an intricate tree form (dealing with a more general setting) rather than in game

form. It was Hirschfeldt-Jockusch [46, Definitions 4.1 and 4.3] who gave a very clear and

intuitive formulation of this notion in game form. One of their aims was to give a clear

computability-theoretic characterization of ω-model separation of Π1
2 principles in second-

order arithmetic [46, Proposition 4.2]. Neumann-Pauly [72] gave another formulation

using register machines.
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How to introduce a universal computation for Turing-Weihrauch reducibility has been

also studied in depth: The universal computation relative to a partial Turing oracle (in a

more general setting) is formulated as a dialogue [96, 35], and the universal computation

relative to a Turing-Weihrauch oracle g has a machine formulation [72, 99], denoted g♢,

and a game formulation [52, 53], denoted g⅁, which are essentially equivalent.

Note that the rule of the game G(f, g) does not mention f except for Player I’s first

move. Hence, if we skip Player I’s first move, we can judge if a given play follows the rule

without specifying f . Such a restricted game is denoted by G(g).

Definition 2.17 (see e.g. [53, Definition 2.20]). Given a partial multifunction h, let

us define the new partial multifunction g⅁ as follows: An input for g⅁ is a Computer’s

continuous strategy τ .

• h⅁(τ) is defined only if, along any play in G(g) following the strategy τ , either

Oracle violates the rule before Computer violates the rule, or Computer obeys the

rule and declares termination, whatever Oracle’s strategy is.

• u ∈ g⅁(τ) if and only if there is a play in G(g) that follows the strategy τ such that

Computer declares termination with u at some round, where all players obey the

rule.

The idea of the definition of g♢ is essentially the same. Note, however, that in

Westrick’s definition [99], computable transparency is lost because all the information

in a run of computation (or history of a play in the game) is taken as output. Replacing

g♢ with Weih(g♢) solves this problem. Other definitions [72, 53] do not cause this prob-

lem. In the following, we alway adopt a computably transparent version of ♢ (e.g., take

♢ := ⅁ as above).

The following observations are only outlined here, as we will give a proof for the

more general case in Section 5.2. For the basic property of the diamond operator, the

definition in [72] (or in [52, 53]) ensures that f ≤TW g if and only if f ≤m g♢ (see [52]).

Moreover, as observed in [52], g♢ is computably transparent, inflationary, and idempotent,

and g♢ ≡TW g (this is a Turing-Weihrauch version of the property mentioned in Example

2.5). In particular, the diamond operator ♢ : g 7→ g♢ can be viewed as an order-preserving

map from MRed to MRedct,η,µ.
Conversely, the result by Westrick [99, Theorem 1] implies that if g is computably

transparent, inflationary, and idempotent, then g♢ ≤W g. By Proposition 2.12, this is

equivalent to g♢ ≤m g. Therefore:

Fact 2.18 (essentially byWestrick [99]). The diamond operator ♢ : MRed→ MRedct,η,µ

is left adjoint to the inclusion i : MRedct,η,µ ↣ MRed.
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Corollary 2.19. The poset of many-one degrees of computably transparent, inflation-

ary, idempotent, partial multimaps on N˜ is isomorphic to the Turing-Weihrauch degrees.

Proof. For g ∈ MRedct,η,µ, we claim that f ≤m g if and only if f ≤TW g. This is

because we have f ≤TW g if and only if f ≤m g♢ ≤m g by Fact 2.18. This claim ensures

that the identity map is an embedding. The surjectivity of the identity map follows from

the fact that g♢ is computably transparent, inflationary, and idempotent, and g♢ ≡TW g

as mentioned above.

In this way, various oracle-computability notions (degree notions) can be recast as

properties of multimaps.

MRedct ≃ the Weihrauch degrees

(oracle computability with exactly one query)

MRedct,η ≃ the pointed Weihrauch degrees

(oracle computability with at most one query)

MRedct,η,µ ≃ the Turing-Weihrauch degrees

(oracle computability with finitely many queries)

Since a preordered set can be thought of as a category, one can organize the above

results using the language of category theory. If an inclusion functor ι : C ↪→ D between

categories has a left adjoint, then C ↪→ D is called a reflective subcategory, and such a

left adjoint is called a reflector. That is, MRedct,η,µ ↪→ MRedct,η ↪→ MRedct ↪→ MRed
are reflective subcategories, and corresponding universal oracle relativization functors are

reflectors.

Similar results hold when restricted to single-valued functions. Here, the restriction of

Turing-Weihrauch reducibility to total single-valued functions in the Kleene first algebra

corresponds to ordinary Turing reducibility by definition. Hereafter, we refer to the

restriction of Turing-Weihrauch reducibility to partial single-valued functions as subTuring

reducibility. Note that, as mentioned in Section 1.2, our subTuring reducibility for partial

functions is Turing sub-reducibility in the sense of Sasso [82] and Madore [64]. Under this

terminology, it is straightforward to see the following:
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Corollary 2.20. The poset of many-one degrees of computably transparent, infla-

tionary, idempotent, partial single-valued maps on the Kleene first algebra is isomorphic

to the subTuring degrees of partial functions.

One might think that considering total single-valued functions, one would obtain a

similar result for ordinary Turing reducibility; however usually a universal machine (even

relative to a total oracle) cannot be total. In other words, in general, computable trans-

parency and totality seem incompatible. Whether or not the characterization of ordinary

Turing reducibility can be made is a subject for future work (see also Question 2 below).

We will see in Section 3 that via these translations of oracle-computability notions

into multimap properties, it is possible to understand oracle-computations as operations

on truth values.

3 Oracles as operations on truth-values

Next, let us explain the third point of view, which is to think of oracles as operations on

truth-values. In this section, we analyze this third view by comparing it to the second view

introduced in Section 2. For this purpose, we translate the notions around transparent

maps into the language regarding truth-values.

3.1 Realizability and modality

Before we begin, let us discuss a factor that changes truth values. As described in Section

1.1, a factor that causes a change in Kripke semantics (see also [8]) is a coverage. In the

usual intuitionistic Kripke semantics, in order to claim that φ∨ψ is valid at a state p, one

must determine whether φ or ψ is valid at the state p, as in the usual BHK interpretation.

However, it is also useful to have a semantics that does not immediately decide which

is valid, but rather postpones the decision of which is valid. The notion of (abstract)

coverage is used to realize various types of “postpone”. If there is a notion of covering

of a state p, one can consider a modified semantics of the form that φ ∨ ψ is valid at a

state p if there exists a cover U of p such that either φ or ψ holds locally in each state

q ∈ U (which may be different for each q). In this way, one can use a notion of covering

to change the interpretation of the Kripke semantics.

Abstract covering relation: Here are some typical properties of the covering relation A ⊆∪
U (read that A is covered by U) for a set A and family U of sets: (monotone) Whenever

U ⊆ V , if A is covered by U then A is covered by V ; (inflationary) If A ∈ U then A is covered

by U ; (idempotent) If A is covered by U and all B ∈ U is covered by V then A is covered

by V ; (local) A is covered by U if and only if A is covered by U|A := {U ∩ A : U ∈ U}.
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Letting j(U) be the set of all A covered by U , the above property can be rewritten

as follows: (monotone) U ⊆ V implies j(U) ⊆ j(V); (inflationary) U ⊆ j(U); (idempotent)

j ◦ j(U) ⊆ j(U); (local) A ∈ j(U) if and only if A ∈ j(U|A).

Observation 3.1. (local) is equivalent to say that U|A = V|A implies j(U)|A = j(V)|A.

Proof. If U|A = V|A then U|U∩A = V|U∩A for any U , so locality implies U ∩A ∈ j(U)
iff U ∩A ∈ j(U|U∩A) iff U ∩A ∈ j(V|U∩A) iff U ∩A ∈ j(V), which means j(U)|A = j(V)|A
since j(U) and j(V) are ⊆-downward closed. Conversely, we have U|A = U|A|A, so we get

j(U)|A = j(U|A)|A, which clearly implies A ∈ j(U) iff A ∈ j(U|A).

Note that the ⊆-downward closed families form a complete Heyting algebra, and the

above characterization of (local) can be rewritten as (U ] V) ⊆ (j(U) ] j(V)), where _
is the Heyting operation on the ⊆-downward closed families.

This leads us to the following definition: Let Ω be a complete Heyting algebra. An

operation j : Ω → Ω is a nucleus [77] if the following conditions hold: (monotone) p ≤ q

implies j(p) ≤ j(q); (inflationary) p ≤ j(p); (idempotent) j ◦ j(p) ≤ j(p); (local) (p ] q) ≤
(j(p) ] j(q)). By combining monotonicity and locality, a nucleus actually satisfies the

condition (local monotone) (p _ q) ≤ (j(p) _ j(q)); see e.g. [77, Proposition I.5.3.1].

As the discussion above suggests, this notion of coverage/nucleus provides a factor

that causes a change in Kripke semantics [8] (that is, Kripke-Joyal semantics [63, The-

orem VI.7.1]). The semantics of intuitionistic logic that is as important as Kripke se-

mantics is Kleene’s realizability interpretation [90, 95]. Obviously, an oracle can be a

factor that causes a change in Kleene realizability, but what does this have to do with

coverage/nucleus? To investigate this relationship, let us first bring the notion of nucleus

into the context of realizability.

According to the realizability interpretation, the set of truth values on the stage we

are considering now is Ω = P(N˜ ). Indeed, the morphism tracked by true : 1 → P(N˜ ),

where true(∗) = N˜ , is a subobject classifier in the corresponding realizability topos (see

also [97]).

Definition 3.2 (Kleene realizability [90, 95]). For Ω = P(N˜ ), we introduce binary

operations ∧,∨,_ : Ω2 → Ω as follows:

p ∧ q := {⟨a, b⟩ : a ∈ p and b ∈ q},
p ∨ q := {⟨0, a⟩ : a ∈ p} ∪ {⟨1, b⟩ : b ∈ q},
p _ q := {x ∈ N˜ : p ⊆ dom(φx) and φx[p] ⊆ q}.

For e ∈ N˜ and p ∈ Ω, we say that e realizes p if e ∈ p. Moreover, we say that p is

realizable if such an e can be chosen from the lightface part N of the algebra (N,N˜ , ∗).
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For a collection (p(x))x∈I , we also say that ∀x ∈ I. p(x) is realizable if there exists e such

that e realizes p(x) for all x ∈ I.

Definition 3.3 (see also [60]). For an operation j : Ω → Ω, consider the following

formulas:

1. (local monotone) ∀p, q ∈ Ω [(p _ q) _ (j(p) _ j(q))],

2. (inflationary) ∀p ∈ Ω [p _ j(p)],

3. (idempotent) ∀p ∈ Ω [j(j(p)) _ j(p)].

If (1) is realizable, j is called (computably) monotone; if (2) is realizable, j is called

inflationary; and if (3) is realizable, j is called idempotent.

Remark. Consider (1′) ⊤ _ j(⊤) and (2′) ∀p, q ∈ Ω [j(p ∧ q) ] j(p) ∧ j(q)]. Then,
one can check that, for an operation j : Ω → Ω, (1), (2) and (3) are realizable if and only

if (1′), (2′) and (3) are realizable; see [60].

In topos-theoretic language, an operation j such that (1), (2) and (3) are realizable is

called a Lawvere-Tierney topology [63] or a local operator [48, 97] (on the corresponding

realizability topos). In the context of frames and locales [77], it is an (internal) nucleus.

As it is an operation on truth-values, some people think that such a notion is a kind of

modal operator. For this reason, this notion is sometimes referred to as a (geometric)

modality.

Some prefer the terms coverage or local operator, arguing that the term Lawvere-

Tierney topology is inappropriate because this notion has nothing to do with topology in

the classical sense. However, these terms would still be inappropriate anyway, since this

notion, when considered in a realizability topos, has no more to do with cover or locality

than topology. It appears that modality is the most appropriate term.

Example 3.4 (see also [77]). Define ¬p = p _ ∅ for p ∈ Ω. It is easy to see that

¬¬p = N˜ if p ̸= ∅; otherwise ¬¬p = ∅. Then ¬¬ : Ω → Ω is a Lawvere-Tierney topology,

which is known as the double negation topology.

For p, q ∈ Ω, define jq(p) = q _ p. Then jq : Ω → Ω is a Lawvere-Tierney topology.

Such a topology determines an open sublocale of Ω (internally).

For p, q ∈ Ω, define jq(p) = p ∨ q. Then jq : Ω → Ω is a Lawvere-Tierney topology.

Such a topology determines a closed sublocale of Ω (internally).

We now explain how transparent maps can be regarded as operations on truth-values.

Definition 3.5. For a multifunction U :⊆ N˜ ⇒ N˜ , define an operation jU : Ω → Ω

as follows:

jU(p) = {x ∈ dom(U) : U(x) ⊆ p}.
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Note that if U is single-valued, then jU(p) = U−1[p]. In the context of coverage, one

sometimes interprets x ∈ j(p) as “p is a j-cover of x”, but the idea here is to read the

expression x ∈ jU(p) as “To solve the problem p, just run the algorithm x with the oracle

U (more precisely, just enter the code x into the universal oracle computation U and run

it)”.

Theorem 3.6. Let U :⊆ N˜ ⇒ N˜ be computably transparent. Then, jU is monotone.

Moreover, if U is inflationary, so is jU ; and if U is idempotent, so is jU .

Proof. Let U be computably transparent. To see that jU is monotone, assume that

a realizes p _ q. Given x ∈ jU(p), by the definition of jU , we have U(x) ⊆ p. Hence,

a ∗ U(x) ⊆ q. By computable transparence, U(u ∗ a ∗ x) ⊆ a ∗ U(x) ⊆ q. Again,

by the definition of jU , we have u ∗ a ∗ x ∈ jU(q). Hence, λax.u ∗ a ∗ x ∈ N realizes

(p _ q) _ (jU(p) _ jU(q)).

Let U be inflationary. In this case, x ∈ p implies U(η ∗x) ⊆ {x} ⊆ p. By the definition

of jU , we have η ∗ x ∈ jU(p). Therefore, λx.η ∗ x ∈ N realizes p _ U(p).

Let U be idempotent. If x ∈ jU(jU(p)) then U(x) ⊆ jU(p) by the definition of jU .

Thus, for any y ∈ U(x), we have y ∈ jU(p), which implies that y ∈ dom(U) and U(y) ⊆ p

by definition. By the former property, we have U(x) ⊆ dom(U), so x ∈ dom(U ◦ U).
Hence, by the latter property, we have U ◦ U(x) =

∪
{U(y) : y ∈ U(x)} ⊆ p. As U is

idempotent, we get U(µ ∗ x) ⊆ U ◦ U(x) ⊆ p. This implies µ ∗ x ∈ jU(p) by definition.

Hence, µ ∈ N realizes jU(jU(p)) _ jU(p).

A natural question to ask is whether a converse of Theorem 3.6 holds in some sense.

However, one can observe that there is a rather strong restriction on operations on Ω

obtained from transparent maps, as follows.

Proposition 3.7. For any partial multimap U :⊆ N˜ ⇒ N˜ , the operation jU : Ω → Ω

preserves arbitrary intersection:

jU

(∩
i∈I

pi

)
=
∩
i∈I

jU(pi).

Moreover, if U is single-valued, jU preserves arbitrary union:

jU

(∪
i∈I

pi

)
=
∪
i∈I

jU(pi).

Proof. By the definition of jU , we have that x ∈ jU
(∩

i∈I pi
)
if and only if U(x) ⊆∩

i∈I pi. Clearly, the latter condition is equivalent to that U(x) ⊆ pi for any i ∈ I. By the

definition of jU again, this is equivalent to that x ∈
∩

i∈I jU(pi). If U is single-valued, as

jU(p) = U−1[p], it is clear that jU preserves arbitrary union.
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Remark. This is actually a strong restriction. There are many operations on Ω

that do not preserve arbitrary intersection in any sense, for example, consider the double

negation topology ¬¬ : Ω → Ω. There are also natural operations on Ω that preserve

arbitrary intersection but not union. For example, one can easily see that the topology

jq : Ω → Ω for an open sublocale introduced in Example 3.4 is such an operation.

Remark. Note that if j : Ω → Ω preserves arbitrary union, then j preserves the

bottom element, i.e., j(∅) = ∅. Indeed, U is ¬¬-dense (see [6] and Section 4.3 below)

if and only if U(p) ̸= ∅ for any p ∈ dom(U) if and only if jU(∅) = ∅. Note also that

jU(N˜ ) = dom(U) for a partial multimap U . Thus, if U is total, then jU preserves the top

element, i.e., jU(N˜ ) = N˜ .

Now, let us consider the possibility of a certain backwards assertion of Theorem 3.6.

In other words, let us consider how to obtain a partial multimap on N˜ from an operation

on Ω.

Definition 3.8. For an operation j : Ω → Ω, define a partial multifunction Uj : ⊆
N˜ ⇒ N˜ as follows:

dom(Uj) =
∪

{j(p) : p ∈ Ω}, Uj(x) =
∩

{p ∈ Ω : x ∈ j(p)}.

Example 3.9. For q ∈ Ω, let jq : Ω → Ω be the topology for an open sublocale

introduced in Example 3.4. Note that dom(Ujq) =
∪
{q _ p : p ∈ Ω} = q _ N˜ , which

is the set of all e ∈ N˜ such that q ⊆ dom(φe). Moreover, Ujq(x) =
∩
{p : x ∈ q _ p} =

x ∗ q = φx[q]. Observe that this is exactly the universal computation Medq relative to the

Medvedev oracle q introduced in Example 2.4, i.e., Ujq = Medq.

The transformation j 7→ Uj is the inverse of the transformation U 7→ jU in the following

sense:

Theorem 3.10. Let j : Ω → Ω be an operation preserving arbitrary intersection.

Then, jUj
= j and UjU = U . If j is monotone, Uj is computably transparent; if j is

inflationary, so is Uj; and if j is monotone and idempotent, so is Uj. Moreover, if j

preserves arbitrary union, then Uj is single-valued.

Proof. As j preserves arbitrary intersection, we have, for any x ∈ dom(Uj),

x ∈
∩

{j(p) : x ∈ j(p)} = j
(∩

{p : x ∈ j(p)}
)
= j(Uj(x)).

Combining the above equality and the definition of Uj, it immediately follows that

Uj(x) is the least p such that x ∈ j(p). In other words,

x ∈ j(p) ⇐⇒ Uj(x) ⊆ p(3.1)
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Therefore, we get jUj
(p) = {x ∈ dom(Uj) : Uj(x) ⊆ p} = j(p)∩dom(Uj) = j(p). Here,

the last equality follows from j(p) ⊆ dom(Uj). Hence, we obtain jUj
= j.

Next, let U : N˜ ⇒ N˜ be given. Then, we have dom(UjU ) =
∪

p jU(p) = dom(U) by

the definitions of UjU and jU , and the observation that x ∈ dom(U) implies x ∈ jU(U(x)).

Since jU preserves arbitrary intersection by Proposition 3.7, we again have the equivalence

(3.1) for jU , so UjU (x) ⊆ p if and only if x ∈ jU(p), which is equivalent to U(x) ⊆ p by

definition. This implies UjU = U .

Assume that j is monotone, realized by u ∈ N. To show that Uj is computably

transparent, let f, x ∈ N˜ be given. First note that f clearly realizes Uj(x) _ f ∗ Uj(x).

By monotonicity, u ∗ f realizes j(Uj(x)) _ j(f ∗ Uj(x)). By the definition of Uj, we have

x ∈ j(Uj(x)), so we get u ∗ f ∗ x ∈ j(f ∗ Uj(x)). By the equivalence (3.1) again, this is

equivalent to that Uj(u∗f∗x) ⊆ f∗Uj(x), which means that Uj is computably transparent.

Assume that j is inflationary, realized by η ∈ N. In particular, η realizes {x} _
j({x}), so we have η ∗ x ∈ j({x}). By the equivalence (3.1), this is equivalent to that

Uj(η ∗ x) ⊆ {x}, which means that Uj is inflationary.

Assume that j is idempotent, realized by µ ∈ N. In particular, µ realizes j ◦ j(Uj ◦
Uj(x)) _ j(Uj ◦Uj(x)). Note that from the definition of composition of multifunctions, if

x ∈ dom(Uj ◦ Uj) then Uj(x) ⊆ dom(Uj); that is, z ∈ Uj(x) implies z ∈ dom(Uj). Then,

for such x and z we have Uj(z) ⊆ Uj ◦Uj(x) by the definition of composition. This implies

z ∈ j(Uj ◦Uj(x)) by the equivalence (3.1). Hence, Uj(x) ⊆ j(Uj ◦Uj(x)); therefore, a code

i of the identity function realizes Uj(x) _ j(Uj ◦ Uj(x)). Then, by monotonicity, u ∗ i
realizes j(Uj(x)) _ j ◦ j(Uj ◦ Uj(x)). By the equivalence (3.1), we have x ∈ j(Uj(x));

therefore u ∗ i ∗ x ∈ j ◦ j(Uj ◦ Uj(x)). Hence we obtain µ ∗ (u ∗ i ∗ x) ∈ j(Uj ◦ Uj(x)). By

the equivalence (3.1) again, we get Uj(µ ∗ (u ∗ i ∗ x)) ⊆ Uj ◦Uj(x). Thus, λx.µ ∗ (u ∗ i ∗x)
witnesses that Uj is idempotent.

Finally, assume that j preserves arbitrary union. Given x ∈ N˜ , if there exists p ∈ Ω

such that x ∈ j(p), then let us consider an enumeration {yi}i∈I of all elements of p. As

j preserves arbitrary union, we have x ∈ j(p) = j(
∪

i∈I{yi}) =
∪

i∈I j({yi}). Therefore,

x ∈ j({yi}) for some i ∈ I. As noted above, preservation of arbitrary union also implies

j(∅) = ∅, so we have Uj(x) = {yi} by the equivalence (3.1). This means that Uj is

single-valued.

By Theorems 3.6 and 3.10 and Proposition 3.7, we obtain the correspondences be-

tween partial multifunctions on N˜ and
∩
-preserving operations on Ω; and between par-

tial (single-valued) functions on N˜ and
∪
,
∩
-preserving operations on Ω. Moreover,

computable transparency corresponds to monotonicity. Being inflationary and idempo-

tent are also preserved by this correspondence; see Table 1. Similarly, by Example 3.9,

Medvedev oracles correspond to open topologies. Here, Lawvere-Tierney topologies for
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multifunction operation on truth-values

computably transparent ⇐⇒ monotone

(∀f)(∃F ) U ◦ F ⪯ f ◦ U (p → q) → (j(p) → j(q))

inflationary ⇐⇒ inflationary

id ≤m U p → j(p)

idempotent ⇐⇒ idempotent

U ◦ U ≤m U j(j(p)) → j(p)

Table 1: The correspondence between oracles (multifunctions) and
∩
-preserving opera-

tions on truth-values.

which internal nuclei yield open sublocales of Ω are called open topologies; see e.g. [48,

Section A.4.5].

3.2 Reducibility

Let us formulate more rigorously the meaning of the correspondences in the previous

section.

Definition 3.11. Given partial multifunctions f, g :⊆ N˜ ⇒ N˜ , we say that a com-

putable element e ∈ N is an m-morphism from f to g if, for any x ∈ dom(f), φe(x) is

defined and g(φe(x)) ⊆ f(x). Given operations j, k : Ω → Ω, we say that a computable

element e ∈ N is an r-morphism from j to k if e realizes ∀p ∈ Ω.j(p) _ k(p).

Note that e is an m-morphism from f to g if and only if g ◦ φe refines f . Using the

terminology of Definition 2.3, for e ∈ N to be an m-morphism from f to g means that f

is g-computable via φe, or equivalently, φe is a many-one reduction witnessing f ≤m g.

Proposition 3.12. For any partial multifunctions f, g :⊆ N˜ ⇒ N˜ , an m-morphism

e : f → g can be thought of as an r-morphism e : jf → jg. Conversely, for any
∩
-

preserving operations j, k : Ω → Ω, an r-morphism e : j → k can be thought of as an

m-morphism e : Uj → Uk.

Proof. Assume that e is an m-morphism from f to g. Then g(φe(x)) ⊆ f(x) for

any x ∈ dom(f). Therefore, by definition, we have x ∈ jf (p) iff f(x) ⊆ p, which implies

g(φe(x)) ⊆ p, iff φe(x) ∈ jg(p) for any p ∈ Ω. This means that e realizes jf (p) _ jg(p),

so e is an r-morphism from jf to jg.

Conversely, let e be an r-morphism from j to k. Then, for any p ∈ Ω and x ∈ N˜ ,

x ∈ j(p) implies e ∗ x ∈ k(p). By the equivalence (3.1) in the proof of Theorem 3.10, this
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shows that Uj(x) ⊆ p implies Uk(e ∗ x) ⊆ p. In particular, by setting p = Uj(x), we get

Uk(e ∗ x) ⊆ Uj(x). This means that e is an m-morphism from Uj to Uk.

Let us organize our results in Section 3 by introducing a little terminology. Since an

m-morphism is essentially a many-one reduction, let us write MRed for the category of

partial multifunctions on N˜ and m-morphisms. We also write OpX(Ω) for the category of

X-preserving operations on Ω and r-morphisms. By Proposition 3.12, we get the following

isomorphism (via U 7→ jU and j 7→ Uj):

MRed ≃ Op∩(Ω),
Similarly, we have isomorphisms between corresponding full subcategories. The full

subcategory of MRed consisting of partial single-valued functions is denoted by Red.

Then Proposition 3.7 and Theorem 3.10 ensure Red ≃ Op∪
,
∩(Ω).

For the full subcategory of MRed, restricted to those that are computably trans-

parent (inflationary, and idempotent, respectively), we add the superscript ct (η and

µ, respectively). Similarly, for the full subcategory of Op∩(Ω), restricted to those that

are monotone (inflationary, and idempotent, respectively), we add the superscript mon

(η and µ, respectively). Using this notation, Theorems 3.6 and 3.10 give the following

isomorphisms, for example:

(M)Redct ≃ Opmon
(
∪
),
∩(Ω), (M)Redct,η,µ ≃ Opmon,η,µ

(
∪
),
∩ (Ω),

One of the most important parts of computability theory is to discuss the complexity

of various objects. Therefore, we shall explain these results in the context of reducibility.

We consider the following reducibility notion:

Definition 3.13. For operations j, k : Ω → Ω we say that j is r-reducible to k (written

j ≤r k) if an r-morphism from j to k exists; that is, ∀p ∈ Ω.j(p) _ k(p) is realizable.

There also have been previous studies on r-reducibility for operations on Ω; see e.g. [60,

53]. For basic results on the r-ordering of Lawvere-Tierney topologies in a more general

topos-theoretic setting, see also Johnstone [48, Section A.4.5]. Each preorder obtained

from a reducibility notion is often referred to as the degrees. As a corollary of Theorem

3.10 and Proposition 3.12, we get the following:

Corollary 3.14. The m-degrees of partial multifunctions on N˜ and the r-degrees of∩
-preserving operations on Ω are isomorphic.

Combining the results of this section and Section 2.3, various degree notions can be

characterized using operations on truth values. As we have seen that
∩
-preserving mono-

tone operations on Ω correspond to computably transparent multimaps (Theorems 3.6

and 3.10), which correspond to Weihrauch degrees (Corollary 2.12), we get the following:
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Corollary 3.15. The Weihrauch lattice of partial multifunctions on N˜ is isomorphic

to the r-degrees of
∩
-preserving monotone operations on Ω.

Similarly, we have seen that
∩
-preserving monotone, inflationary, operations on Ω

correspond to computably transparent, inflationary, multimaps (Theorems 3.6 and 3.10),

which correspond to pointed Weihrauch degrees (Corollary 2.14), so we get the following:

Corollary 3.16. The pointed Weihrauch lattice of partial multifunctions on N˜ is

isomorphic to the r-degrees of
∩
-preserving, monotone, inflationary, operations on Ω.

We have also seen that
∩
-preserving Lawvere-Tierney topologies on Ω correspond to

computably transparent, inflationary, idempotent, multimaps (Theorems 3.6 and 3.10),

which correspond to Turing-Weihrauch degrees (Corollary 2.19), so we get the following:

Corollary 3.17. The Turing-Weihrauch lattice of partial multifunctions on N˜ is

isomorphic to the r-degrees of
∩
-preserving Lawvere-Tierney topologies.

As seen in Theorems 3.6 and 3.10, being single-valued corresponds to the
∪
-preservation

property, so this also gives the following characterization of the subTuring degrees (in the

sense of Sasso-Madore [82, 64] as in Corollary 2.20) since partial Turing oracles are exactly

single-valued Turing-Weihrauch oracles in the Kleene first algebra.

Corollary 3.18. The subTuring degrees of partial functions is isomorphic to the r-

degrees of
∪
,
∩
-preserving Lawvere-Tierney topologies (on the Kleene first algebra).

Remark. It was Hyland [47] who first noticed that each Turing degree yields a

Lawvere-Tierney topology (so a subtopos) on the effective topos. Later, Faber-van Oosten

[34] showed that the subTuring degrees correspond to the realizability subtoposes (i.e., the

subtoposes that are realizability toposes) of the effective topos. They also gave another

characterization of a partial Turing oracle (i.e., a subTuring degree) as a Lawvere-Tierney

topology preserving arbitrary union and disjointness.

Unfortunately, Sasso-Madore’s Turing sub-reducibility has not become mainstream as

reducibility between partial functions (see e.g. Cooper [21, Section 11]) and has not been

studied in depth. However, Corollary 3.18 and Faber-van Oosten’s result [34] mentioned

above suggest that Sasso-Madore’s Turing sub-reducibility is more natural, at least from

a topos-theoretic point of view, than other reducibilities between partial functions.

Therefore, we present the analysis of the subTuring degrees as an important problem.

Question 1 (see also Madore [64]). Analyze the structure of the subTuring degrees of

partial functions.

This problem has recently been addressed by Kihara-Ng [56].
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Table 2: Correspondences between operations on Ω and degree-theoretic notions
no condition monotone Lawvere-Tierney topology∪

,
∩
-preserving many-one single-Weihrauch Turing∩

-preserving multi-many-one Weihrauch Turing-Weihrauch

no condition extended many-one extended Weihrauch extended Turing-Weihrauch

Question 2. Is it possible to characterize ordinary Turing reducibility (i.e., Turing

reducibility for total functions) as a property of operations on truth values?

By Example 3.9 we also see that Medvedev degrees correspond to open Lawvere-

Tierney topologies (i.e., topologies for which internal nuclei yield open sublocales of Ω;

see e.g. Johnstone [48, Section A.4.5]).

Corollary 3.19. The Medvedev lattice is isomorphic to the r-degrees of open Lawvere-

Tierney topologies (on the Kleene-Vesley algebra).

We have now characterized various notions of oracles as operations on the truth values

(summarized as Table 2). A similar characterization of operations that do not preserve∩
is given in Section 5.

Note that the preservation property of union and intersection cannot be written in the

language of realizability. Indeed, these preservation properties are not closed under the r-

equivalence ≡r, so let us introduce a slightly modified notion. For j : Ω → Ω, we say that j

is realizably
∪
-preserving if, for any collection (pi)i∈I , the formula j(

∪
i∈I pi) ] ∪

i∈I j(pi)

is realizable. Similarly, j is realizably
∩
-preserving if, for any collection (pi)i∈I , the formula

j(
∩

i∈I pi) ] ∩
i∈I j(pi) is realizable.

Proposition 3.20. Let j : Ω → Ω be a monotone operation. If j is realizably
∩
-

preserving, then there exists a monotone
∩
-preserving operation k : Ω → Ω such that

k ≡r j. If j is realizably
∪
,
∩
-preserving, then there exists a monotone

∪
,
∩
-preserving

operation k : Ω → Ω such that k ≡r j.

Proof. Assume that j is realizably
∩
-preserving. Then, by Proposition 3.7, jUj

preserves arbitrary intersection, so it suffices to show that j ≡r jUj
. If x ∈ j(p) then

by the definition of Uj we have Uj(x) =
∩
{q : x ∈ j(q)} ⊆ p, so x ∈ jUj

(p) by the

definition of jUj
. Hence, the identity map witnesses j ≤r jUj

. Conversely, first note that

we clearly have x ∈
∩
{j(p) : x ∈ j(p)} for any x. As j is realizably

∩
-preserving, some

a ∈ N realizes
∩

x∈j(p) j(p) _ j(
∩

x∈j(p) p), so a ∗ x ∈ j(
∩

x∈j(p) p) = j(Uj(x)), where the

last equality follows from the definition of Uj. Now, x ∈ jUj
(p) implies Uj(x) ⊆ p by the

definition of jUj
, so the identity map realizes Uj(x) _ p. As j is monotone, some b ∈ N
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realizes j(Uj(x)) _ j(p). Hence, we get b ∗ (a ∗ x) ∈ j(p); that is, λx.b ∗ (a ∗ x) ∈ N

realizes jUj
(p) _ j(p), which shows j ≡r jUj

.

We next assume that j is realizably
∪
,
∩
-preserving. By the previous argument, we

may assume that j preserves arbitrary intersection (by replacing j with jUj
if necessary).

We first claim that j preserves disjointness, that is, p ∩ q = ∅ implies j(p) ∩ j(q) = ∅.
To see this, as j is realizably

∪
-preserving, in particular, j(∅) ] ∅ is realizable, but

this property implies j(∅) = ∅. If p ∩ q = ∅ then, as j preserves intersection, we have

j(p) ∩ j(q) = j(p ∩ q) = j(∅) = ∅. This verifies the claim. Now, by our assumption, we

have an element a ∈ N realizing j(
∪

i pi) _ ∪
i j(pi) whatever (pi)i∈I is. In particular,

x ∈ j(p) = j(
∪

y∈p{y}) implies a∗x ∈
∪

y∈p j({y}). As j preserves disjointness, one can see

that there exists a unique yx ∈ p such that a ∗x ∈ j({yx}). Then, we define U ′
j(x) = {yx}

for such yx. As U
′
j is single-valued, by Proposition 3.7, jU ′

j
preserves arbitrary union and

intersection.

It remains to show that j ≡r jU ′
j
. Given x ∈ j(p), for the unique yx ∈ p as above,

we have U ′
j(x) = {yx} ⊆ p, so we have x ∈ jU ′

j
(p) by definition. Hence, the identity map

witnesses j ≤r jU ′
j
Conversely, if x ∈ jU ′

j
(p), by definition, we have U ′

j(x) ⊆ p; that is

the identity map realizes U ′
j(x) _ p. Thus, by monotonicity of j, some b ∈ N realizes

j(U ′
j(x)) _ j(p). By our choice of yx, we have a ∗ x ∈ j({yx}) = j(U ′

j(x)), so we get

b ∗ (a ∗ x) ∈ j(p). Therefore, λx.b ∗ (a ∗ x) ∈ N realizes jU ′
j
(p) _ j(p); hence we obtain

j ≡r jU ′
j
.

In particular, the r-degrees of monotone realizably
∩
-preserving operations are equal

to those of monotone
∩
-preserving operations. The same is true for the

∪
,
∩

preservation

property.

4 Oracles as factors that change representations of

spaces

The goal of this section is to provide an explanation of the notion of “jump of represen-

tation (change of coding) [100, 23]” in the context of “universal closure operator [48]”,

which is known to be closely tied with Lawvere-Tierney topology.

4.1 Represented space

A triple (N,N˜ , ∗), dealt with in Section 2.2 (see also Definition 4.26), can be used to

encode various mathematical objects. For example, the case N = N˜ = N corresponds to

encoding various mathematical notions by using natural numbers (or finite sequences of

symbols), and it is not difficult to imagine that this idea is used in various fields, including
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the theory of computation. Ershov’s theory of numbering [32], for example, is well known

as an abstract theory of N-coding. The case N˜ = NN corresponds to the idea of encod-

ing abstract mathematical objects by streams (possibly infinite sequences of symbols),

which has also been used in various fields, including set theory, reverse mathematics and

computable analysis. In modern computable analysis, this idea is formulated as follows:

Definition 4.1 (see e.g. [84]). A represented space is a set X equipped with a partial

surjection δX :⊆ N˜ → X. If δX(p) = x then p is called a name or a code of x. A map

f : X → Y is continuous if one can transform a name of x ∈ X into a name of f(x) ∈ Y

in a continuous manner; that is, there exists a continuous function F :⊆ N˜ → N˜ such

that δY ◦ F = F ◦ δX . If such an F is computable, we say that f is computable.

X
f // Y

N
∼ F

//

δX

OO

N
∼

δY

OO

Example 4.2 (Coding topological spaces). As an example of coding by stream, a

real x can be coded by a (rapidly converging) Cauchy sequence of rationals; that is,

a stream α codes x if and only if |x − qα(n)| < 2−n, where qi is the ith rational. In

general, every point in a Polish space can be coded by a (rapidly converging) Cauchy

sequence in a countable dense set {qi}i∈N; see e.g. [68, 16]. Similarly, every point in a

second-countable T0 space can be coded by (an enumeration of) its neighborhood filter

restricted to a fixed countable basis {Bi}i∈N; that is, a stream α codes x if and only

if {α(n) : n ∈ N} = {i ∈ N : x ∈ Bi}. By using some variant (e.g., cs-network and

k-network) of (Arhangel’skii’s notion of) network instead of a basis, one can represent an

even wider class of topological spaces in such a way that computability and (sequential)

topology are compatible; see Schröder [83].

Example 4.3 (Coding function spaces). It is known that the category of represented

spaces and continuous maps is cartesian closed. In detail, given represented spaces X and

Y , a code for a continuous map f : X → Y is given by an index of a partial continuous

function F onN˜ that tracks f . This yields a representation of the function space C(X, Y ).

One important special case of this construction is a coding of a hyperspace. For a

topological space X, recall that U ⊆ X is open if and only if the characteristic function

χU : X → S is continuous, where S is Sierpiński’s connected two point space. One can

then introduce the hyperspace O(X) of open sets in X as the function space C(X, S).
For the details, see [16].

Example 4.4 (Coding Borel sets). One of the most famous representated spaces in
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set theory is the hyperspace of Borel sets, whose representation is given by the notion of

Borel codes, which is first introduced by Solovay; see e.g. [68].

In the following, a multi-surjection refers to a multimap δ :⊆ X ⇒ Y such that for

any y ∈ Y there exists x such that y ∈ δ(x).

Definition 4.5 (see e.g. [83, 84]). A multi-represented space is a set X equipped with

a partial multi-surjection δX :⊆ N˜ ⇒ N˜ . If x ∈ δX(p) then p is called a name or a code

of x. A map f : X → Y is continuous if there exists a continuous function F :⊆ N˜ → N˜
which, given a δX-name of x ∈ X, returns a δY -name of f(x) ∈ Y . If such an F is

computable, we say that f is computable.

Also, if a transparent map U is given, one may define the notion of U -continuity (U -

computability) of a map f : X → Y by replacing the condition of F with that of being

U -continuous (U -computable).

Example 4.6. A name of a null set A in a Polish space may be given by a certain

Gδ-witness of its nullness, i.e., a Gδ-code of a null Gδ set L ⊇ A (see e.g. [28]). However,

a null Gδ set may cover many null sets, so a Gδ-code of such a null Gδ set gives a name of

a lot of null sets. The (multi-)represented space of null sets plays important roles in both

set theory and computability theory (for the latter, especially in the theory of algorithmic

randomness [28]).

Above we have given examples of coding by natural numbers and streams, but more

generally, the theory of coding with a relative PCA (that unifies the notions of numbering,

representation, multi-representation, etc.) has also been studied in realizability theory and

related areas. There, an equivalent notion to multi-represented space (with respect to a

relative PCA) is called assembly; see also Section 4.2.

We now explain an operation of changing the way a space is accessed using an oracle,

which is the basis of the second view of oracle mentioned in Section 1.1. In de Brecht-

Pauly [23, 75], the relativization of a represented space by an oracle is defined in the

following manner.

Definition 4.7 ([23, 75]). Let U :⊆ N˜ → N˜ be a transparent map. Then given a

represented space X = (X, δX) and a continuous map f : X → Y on represented spaces,

define a represented space U(X) and a function U(f) : U(X) → U(Y ) as follows:

U(X) = (X, δX ◦ U) U(f) = f

Note that a map f : X → Y is U -continuous (U -computable, respectively) if and only

if f : X → U(Y ) is continuous (computable, respectively).
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Remark. The origin of this idea is the notion of the jump of a representation by

Ziegler [100], so this notion may be called the U -jump of the representation space X. We

refer to the space U(X) as the U-relativization of X.

Example 4.8 (Ziegler [100]). Recall the limit operation introduced below Definition

2.1. The lim-relativization of the rapid Cauchy representation of R (see Example 4.2) is

equivalent to the näıve Cauchy representation of R.

Remark (see also [23, 75]). Surjectivity of a transparent map implies that U(X) is also

a represented space. Moreover, if f : X → Y is continuous, so is U(f) : U(X) → U(Y ).

Indeed, transparency is a condition for U to induce an endofunctor on the category Rep

of represented spaces and continuous functions. Furthermore, if U is inflationary and

idempotent, i.e., id = U ◦ η and U ◦ U = U ◦ µ for some computable functions η and

µ, then such η and µ yield a monad unit and a monad multiplication, respectively. To

be more precise, both the monad unit ηX : X → U(X) and the monad multiplication

µX : U ◦ U(X) → U(X) are given as identity maps, which are tracked by η and µ,

respectively. Thus, the triple (U, η, µ) forms a monad on Rep. Indeed, f : X → Y is

U -continuous if and only if f is a Kleisli morphism for the monad (U, η, µ). If U is

computably transparent, the same is true for the category of representated spaces and

computable functions.

Example 4.9 (Synthetic descriptive set theory [75, 24]). Definition 4.7 forms the basis

of synthetic descriptive set theory. For instance, the hyperspace of Σ˜ 0
2 sets in a Polish

space X, Σ˜ 0
2(X), can be given by applying the endofunctor lim appropriately to O(X) =

C(X, S), the represented hyperspace of open sets in X (Example 4.3): To be precise, put

Olim(X) := C(X, lim(S)) = Σ˜ 0
2(X). Similarly, the discrete limit operator lim∆ yields the

hyperspace of ∆˜ 0
2 sets in X, i.e., Olim∆(X) := C(X, lim∆(S)) = ∆˜ 0

2(X). Note that lim(S)
and lim∆(S) are pre-dominances (in the sense of Rosolini; see e.g. [62, Section 4.1.2]), and

Olim and Olim∆ give the corresponding representable classes of subobjects. Through this

particular endofunctor lim∆, various topological notions (e.g. Hausdorffness, compactness,

overtness) can be lifted to notions about∆˜ 0
2 sets. As a sample result, de Brecht-Pauly [24]

showed that a quasi-Polish space is lim∆-compact if and only if it is Noetherian, i.e. every

strictly ascending chain of open sets is finite. Of course, there are endofunctors not only

for ∆˜ 0
2, but for various descriptive set-theoretic notions as well. As other applications of

Definition 4.7, see e.g. [23, 75, 24].

4.2 Assembly

There are several advantages to transforming the partial multifunctions on N˜ into the

operations on truth values, but first of all, operations on Ω = P(N˜ ) are more compatible
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with multi-represented spaces. Here, it is convenient to rephrase multi-represented spaces

as follows.

Definition 4.10 (see e.g. [97]). A pair of a set X and a function EX : X → Ω+ is

called an assembly, where Ω+ = Ω \ {∅}.

Remark. For a multi-represented space (X, δX), let EX(x) ⊆ NN be the set of all

names of x. Clearly, (X,EX) is an assembly. Conversely, if (X,EX) is an assembly,

one can recover a multi-represented space (X, δX) by setting x ∈ δX(p) if p ∈ EX(x).

Therefore, a multi-represented space can be identified with an assembly.

Now, one can relativize a multi-represented space by using an operation j on Ω pre-

serving nonemptieness, i.e., p ̸= ∅ implies j(p) ̸= ∅. Such an operation can be thought of

as an operation on Ω+. Let us analyze when j preserves nonemptieness. We say that j is

trivial if j(p) = ∅ for any p ∈ Ω. Recall that we impose nonemptiness (i.e., dom(U) ̸= ∅)
on the definition of a transparent map U (Definition 2.1); hence jU is always nontrivial.

Observation 4.11. Any nontrivial monotone operation j : Ω → Ω preserves nonemp-

tieness.

Proof. As j is nontrivial, there exists q ∈ Ω such that j(q) ̸= ∅. Assume that a

nonempty set p ∈ Ω is given. Pick a ∈ p. Then λx.a realizes q _ {a}, and the identity

map realizes {a} _ p. By composing these two realizers, we see that q _ p is realizable.

Thus, by monotonicity, j(q) _ j(p) is also realizable. As j(q) is nonempty, so is j(p).

Hence, j preserves nonemptieness.

In particular, by Theorem 3.6, if U is computably transparent, then jU preserves

nonemptieness. Note also that any computably transparent map U : ⊆ N˜ ⇒ N˜ is sur-

jective in the sense that for any y ∈ N˜ there exists x ∈ dom(U) such that U(x) ⊆ {y}
(consider f = λz.y).

Definition 4.12. Let j : Ω+ → Ω+ be a monotone operation. Then given an assembly

X = (X,EX), and a continuous map f : X → Y on multi-represented spaces, define an

assembly j(X) and a map j(f) : j(X) → j(Y ) as follows:

j(X) = (X, j ◦ EX), j(f) = f.

We say that a function f :⊆ X → Y is j-computable if f :⊆ X → j(X) is computable.

The j-continuity is defined in the same way.

For any monotone operation j : Ω+ → Ω+, if f : X → Y is computable, so is j(f):

This is because computability of f means that EX(x) _ EY (f(x)) is realizable, so mono-

tonicity of j implies that j ◦ EX(x) _ j ◦ EY (f(x)) is realizable, which means that
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j(f) : j(X) → j(Y ) is computable. The same is true for continuity. Hence, monotonicity

of j ensures that j yields an endofunctor on the category MultRep of multi-represented

spaces (equivalently, assemblies). Note that this endofunctor preserves underlying sets,

and such a functor is called an S-functor in [97, Section 1.6].

Similarly, if j is inflationary, id : X → j(X) is computable, and if j is idempotent,

id : j ◦ j(X) → j(X) is computable. This ensures that if j is a Lawvere-Tierney topology,

then j induces a monad on MultRep. As before, a j-continuous function is a Kleisli

morphism for this monad.

Remark. An assembly of the form j(X) is also known as a j-assembly (see e.g. [35]).

If j is a Lawvere-Tierney topology, then the category of j-assemblies is essentially the

Kleisli category of the corresponding monad.

Let us make sure that Definition 4.12 is an extension of Definition 4.7. Recall from

Definition 3.5 (and a subsequent comment) that jU = U−1 for U :⊆ N˜ → N˜ .

Observation 4.13. Let X be a represented space, and U :⊆ N˜ → N˜ be a transparent

map. Then, the U-relativization U(X) in the sense of Definition 4.7 is equivalent to the

jU -relativization jU(X) in the sense of Definition 4.12.

Proof. On the one hand, x ∈ δX ◦ U(p) if and only if p ∈ N˜ is a U(X)-name of x if

and only if U(p) is an X-name of x. On the other hand, EX(x) is the set of all X-names

of x, and so jU ◦EX(x) is the set of all jU(X)-names of x. As jU = U−1, p ∈ jU ◦EX(x) if

and only if U(p) ∈ EX(x) if and only if U(p) is an X-name of x. Thus, p is a jU(X)-name

of x if and only if p is a U(X)-name of x.

Definition 4.12 leads us to the right extension of Definition 4.7 to partial multifunc-

tions. Let U be a partial multifunction on N˜ , and X = (X, δX) be a multi-represented

space. Then, define a new multi-representation δUX as follows: p ∈ N˜ is a δUX-name of

x ∈ X if and only if U(p) is defined and any solution q ∈ U(p) is a δX-name of x. Then

define U(X) = (X, δUX). One can check that U(X) is equivalent to jU(X) in the sense of

Definition 4.12.

In general, j does not necessarily preserve intersection. Thus, relativization of spaces

by operations on Ω is a broader concept than relativization of spaces by partial multi-

functions on N˜ .

Remark. The relativization of a space by an operation on Ω which is not
∩
-preserving

can also be useful. For instance, one can consider ¬¬X for a multi-represented space X,

where note that ¬¬◦EX(x) = N˜ for any x ∈ X. On the other hand, there is a notion called

a strong subobject. In the category MultRep, strong subobjects of a multi-represented

space X are exactly the ones isomorphic to subspaces of X; that is, multi-represented
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spaces of the form (Y,EX ↾ Y ) for some Y ⊆ X. Then the ¬¬-relativization ¬¬2 of

a two-point space 2 gives a strong-subobject classifier in the category MultRep, which

ensures that MultRep forms a quasi-topos (see e.g. [66, 33]). For other applications of

¬¬-relativization, see also Sections 5.1 and 5.5.

Two multi-represented spaces X and Y are computably isomorphic if there exists a

bijection h : X → Y such that both h and h−1 are computable.

Proposition 4.14. For any operations j, k : Ω+ → Ω+, if j ≡r k then j(X) and k(X)

are computably isomorphic for any multi-represented space X. If j and k are Lawvere-

Tierney topologies, then the converse also holds.

Proof. For the first assertion, we claim that j ≤r k if and only if the identity map

(on the underlying set X), id : j(X) → k(X), is computable for any multi-represented

space X. For the forward direction, if j ≤r k then some a ∈ N realizes j(p) _ k(p).

In particular, for any x ∈ X, x ∈ j(EX(x)) (i.e., x is a name of x in j(X)) implies

a∗x ∈ k(EX(x)) (i.e., a∗x is a name of x in k(X)). This means that a tracks id : j(X) →
k(X), so id : j(X) → k(X) is computable. Therefore, if j ≡r k then j(X) is computably

isomorphic to k(X) via the identity map.

For the backward direction, consider a multi-represented space Ω̂, where its underlying

set is Ω+ and an assembly map is EΩ̂ = id. Then, consider the space j(Ω̂), where note

that the set of names of p ∈ Ω+ in j(Ω̂) is j(p). Hence, computability of id : j(Ω̂) → k(Ω̂)

means that j(p) _ k(p) is realizable via a single realizer; that is, j ≤r k.

To show the second assertion, we claim that if j(Ω̂) computably embeds into k(Ω̂)

then k ≤r j holds whenever k is a Lawvere-Tierney topology. Let h : j(Ω̂) → k(Ω̂) be a

computable embedding; that is, p 7→ h(p) and h(p) 7→ p are computable. This means that

j(p) ] k(h(p)) is realizable, where a realizer is independent of p. Applying monotonicity

of k to this property, then idempotence of k, and then using the above property again,

k(j(p)) ] k(k(h(p))) ] k(h(p)) ] j(p)

is realizable. Furthermore, as j is inflationary, i.e., p _ j(p) is realizable, so applying

monotonicity of k to this, and using the above formula, we obtain that k(p) _ k(j(p)) ]
j(p) is realizable independent of p, and in particular k ≤r j. Now, for any computable

isomorphism h : j(X) → k(X), both h and h−1 are computable embeddings, so we get

k ≡r j.

Question 3. Does there exist monotone operators j, k : Ω+ → Ω+ such that j(X) and

k(X) are computably isomorphic for any multi-represented space X, but j ̸≡r k?
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4.3 Universal closure operator

It is known that there is a correspondence between Lawvere-Tierney topology and uni-

versal closure operator [48, Sections A4.3 and A4.4]. That is, given a subobject A↣ X,

one can consider its j-closure clj(A) ↣ X. One can also consider j-closedness (i.e.,

clj(A) ≡ A), j-density (i.e., clj(A) ≡ X) and so on.

We will give precise definitions of these notions. Our target is the category of repre-

sented spaces. No abstract setting is required, and the discussion is entirely elemen-

tary. The key idea is the following: One may use a formula φ to define a subset

A = {x ∈ X : φ(x)} of a represented space X, which entails the notion of witness

for x ∈ A. That is, a witness for x ∈ A is a witness for the formula φ(x) being true, i.e.,

a realizer for φ(x) with respect to a corresponding realizability interpretation.

Definition 4.15. A witnessed subset A of a represented space X is a represented

space such that A ⊆ X and every name of x ∈ A is a pair ⟨w, p⟩ of an X-name p of x and

some w ∈ N˜ . In this case, w is called a witness for x ∈ A.

One can see that a subobject of a represented space is nothing more than a witnessed

subset.

To explain this, we first introduce the notion of subobject. In the category of (multi-

)represented spaces, a monomorphism is merely an injective computable function.

Definition 4.16. A monomorphism i : A ↣ X is included in j : B ↣ X if there

exists a morphism k : A → B such that i = j ◦ k. If i is included in j and vice versa, we

write i ≡ j. A subobject is the ≡-equivalence class of a mono.

We use Sub(X) to denote the set of all subobjects of X ordered by the inclusion

relation. In the category of represented spaces, any ≡-equivalence class of a mono contains

an inclusion map; that is, its underlying set is a subset A ⊆ X such that the inclusion

map A ↪→ X is computable. Thereafter, we assume that a subobject is an inclusion map

A ↣ X. In this case, there is no need to name the monomorphism A ↣ X since it

is uniquely determined. Therefore, it is not confusing to write A ≤ B and A ≡ B for

the inclusion relation and the bi-inclusion relation, respectively. One can also show the

following:

Observation 4.17 (see also [54]). A witnessed subset of X is a subobject of X. Con-

versely, every subobject of X is ≡-equivalent to a witnessed subset of X.

Definition 4.18. Given an operation j : Ω → Ω and an assembly X, the j-closure of

a subobject A↣ X is a subobject cljA↣ X defined as follows:

Eclj(A)(x) = j(ÊA(x)) ∧ EX(x), clj(A) = {x ∈ A : Eclj(A)(x) ̸= ∅},
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where ÊA(x) is the set of all A-names of x ∈ X. Note that ÊA(x) = ∅ if x ∈ X \ A.
A subobject A ↣ X is j-closed if its j-closure is equivalent to A ↣ X. Similarly, a

subobject A↣ X is j-dense if its j-closure is equivalent to X ↣ X.

If j is a Lawvere-Tierney topology, this notion deserves the name “closure”, but this

name is less appropriate if j does not satisfy sufficient conditions. If j is a Lawvere-Tierney

topology, then clj is what is known as a universal closure operator.

Definition 4.19. Let c be an assignment of a map cX : Sub(X) → Sub(X) to each

object X. Then, consider the following properties for any subobject A,B ↣ X:

1. (monotone) If A ≤ B then cX(A) ≤ cX(B).

2. (inflationary) A ≤ cX(A).

3. (idempotent) cX(cX(A)) ≤ cX(A).

4. (natural) cY (f
∗A) ≡ f ∗(cX(A)) for any f : Y → X.

Here, the underlying set of the pullback f ∗A is {x ∈ Y : f(x) ∈ A}, and a name of

x ∈ f ∗A is the pair of a name of x ∈ Y and a name of f(x) ∈ A. Often, cX(A) is simply

written as c(A). A universal closure operator is an assignment satisfying all of the above

conditions (1)–(4).

The following is well-known; see e.g. [48, Lemma A4.4.2].

Fact 4.20. An operation j : Ω → Ω is a Lawvere-Tierney topology if and only if clj is

a universal closure operator.

As we have already seen, not only Lawvere-Tierney topologies but also (computably)

monotone operations are important in the context of oracle computations. Recall that

j : Ω → Ω is monotone if ∀p, q. (p _ q) _ (j(p) _ j(q)) is realizable. A universal

monotone operator is an assignment satisfying (monotone) and (natural) in Definition

4.19.

Proposition 4.21. An operation j : Ω → Ω is monotone if and only if clj is a uni-

versal monotone operator.

Proof. In this proof, by an abuse of notation, ÊA is abbreviated to EA.

(⇒) The condition A ≤ B means that ∀x.[EA(x) _ EB(x)] is realizable. Hence, by

monotonicity, ∀x.[j(EA(x)) _ j(EB(x))] is realizable, which means clj(A) ≤ clj(B). For
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clj(f
∗A) ≤ f ∗(clj(A)), since EY (x) ∧ EA(f(x)) _ EA(f(x)) and EY (x) _ EX(f(x)) are

clearly realizable, by computable monotonicity, the following is also realizable:

Eclj(f∗A)(x) = EY (x) ∧ j(Ef∗A(x))

= EY (x) ∧ j(EY (x) ∧ EA(f(x)))_ EY (x) ∧ j(EA(f(x)))] EY (x) ∧ EX(f(x)) ∧ j(EA(f(x))) = Ef∗(clj(A))(x).

To see f ∗(clj(A)) ≤ clj(f
∗A), we claim that computable monotonicity implies that

∀p, q.[j(p)∧q _ j(p∧q)] is realizable. Independently of p, q, some i realizes p∧q _ p∧q,
so by currying, some a realizes q _ p _ p ∧ q. Given b ∈ q, a ∗ b realizes p _ p ∧ q, so
some u ∗ (a ∗b) realizes j(p) _ j(p∧ q) by computable monotonicity. Hence, λb.u ∗ (a ∗b)
realizes q _ j(p) _ j(p ∧ q). By uncurrying, some c realizes j(p) ∧ q _ j(p ∧ q). Then,
the following is realizable:

Ef∗(clj(A))(x) ] j(EA(f(x))) ∧ EY (x)_ j(EA(f(x)) ∧ EY (x)) ∧ EY (x)

= j(Ef∗A(x)) ∧ EY (x) = Eclj(f∗A)(x).

(⇐) Let the underlying sets of P and Q be Ω × Ω and define EP (p, q) = p and

EQ(p, q) = q. One can consider P,Q as subobjects of the trivial assembly Ω × Ω. Let

ιQ : Q ↣ Ω × Ω be the inclusion map. By (4), we have clj(ι
∗
QP ) ≡ ι∗Q(clj(P )), so the

following is realizable:

j(Eι∗QP (p, q)) = j(EQ(p, q) ∧ EP (p, q)) = j(q ∧ p)] Eι∗Q(clj(P ))(p, q) = EQ(p, q) ∧ Eclj(P )(p, q) = q ∧ j(EP (p, q)) = q ∧ j(p).

Hence, ∀p, q.[j(p)∧q ] j(p∧q)] is realizable. In particular, independently of p, q, some

a realizes (j(p) ∧ (p _ q)) _ j(p ∧ (p _ q)). By currying, some b realizes j(p) Let the

underlying set of R be Ω×Ω and define ER(p, q) = p∧(p _ q). Again, R is a subobject of

Ω×Ω, and R ≤ B holds since ∀p, q.[(p ∧ (p _ q)) _ q] is realizable. By monotonicity of

clj, we get clj(R) ≤ clj(B), which means that some b realizes ∀p, q.[j(p∧(p _ q)) _ j(q)].

Composing a and b, we get some realizer c of (j(p)∧ (p _ q)) _ j(q). By currying, some

d realizes (p _ q) _ (j(p) _ j(q)).

Conversely, a monotone operation on Ω can always be reconstructed from a universal

monotone operator.

Definition 4.22. Let c be a universal monotone operator. Consider the trivial as-

sembly Ω, that is, anything is a name of p ∈ Ω. This has a subobject Ω̂ ↣ Ω, where the
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underlying set of Ω̂ is Ω+ = Ω \ {∅} and its assembly map is given by EΩ̂(p) = p. Then

the operation jc : Ω → Ω is defined by jc(p) = Ec(Ω̂)(p).

Observation 4.23. For j, k : Ω → Ω, if j ≤r k then clj(A) ≤ clk(A) for any A↣ X.

For universal monotone operators c and d, if c(A) ≤ d(A) for any A↣ X then jc ≤r jd.

Proof. If j ≤r k then j(EA(x)) _ k(EA(x)) is realizable, which means clj(A) ≤
clk(A). For Ω̂ ↣ Ω, if c(Ω̂) ≤ d(Ω̂) then Ec(Ω̂)(p) _ Ed(Ω̂)(p) is realizable. By definition,

this means jc ≤r jd.

Proposition 4.24. For any j : Ω → Ω, jclj ≡r j holds. For any universal monotone

operator c, cljc(A) ≡ c(A) holds for any A↣ X.

Proof. By definition, we get jclj(p) = Eclj(Ω̂)(p) = j(EΩ̂(p)) ∧ EΩ(p) = j(p) ∧ N˜ .

Clearly, j(p) ∧N˜ ] j(p) is realizable, so jclj ≡r j holds.

For each A ↣ X, ÊA : X → Ω is computable if Ω is thought of as a trivial assembly.

By naturality, we have cX(Ê
∗
AΩ̂) ≡ Ê∗

A(cΩ(Ω̂)). First, a name of x ∈ Ê∗
AΩ̂ ↣ X is the

pair of a name of x ∈ X and a name of ÊA(x) ∈ Ω̂, i.e., an element of ÊA(x). Note

that x ∈ Ê∗
AΩ̂ implies that ÊA(x) ̸= ∅, so ÊA(x) = EA(x). Thus, we get Ê∗

AΩ̂ ≡ A;

therefore cX(Ê
∗
AΩ̂) ≡ cX(A) by monotonicity. Next, a name of x ∈ Ê∗

A(cΩ(Ω̂)) ↣ X

is the pair of a name of x ∈ X and a name of ÊA(x) ∈ cΩ(Ω̂), which is an element

of EcΩ(Ω̂)(ÊA(x)) = jc(ÊA(x)). This is also a cljc(A)-name of x, so we obtain cljc(A) =

Ê∗
A(cΩ(Ω̂)). Consequently, cljc(A) ≡ c(A).

As we have already seen, a computably transparent map corresponds to a monotone

operator on Ω, so we expect that a jump of representation can be regarded as an appli-

cation of a universal monotone operator. It should be noted, however, that a jump of

representation is for represented spaces, i.e., objects, while an application of a universal

monotone operator is for subobjects. To bridge this gap, it is necessary to consider the

trivial assembly ∇X for a set X. Here, the underlying set of ∇X is X, and anything is

a name of x ∈ ∇X. Any (multi-)represented space X can be thought of as a subobject

X ↣ ∇X since the identity map X → ∇X is obviously computable.

Observation 4.25. Let X be a multi-represented space and j : Ω+ → Ω+ be a mono-

tone operation. Then the j-relativization j(X) in the sense of Definition 4.12 is equal to

clj(X) ↣ ∇X.

4.4 Applicative morphism

Next, let us discuss the relationship between computably transparent maps and applica-

tive morphisms (PCA-morphisms). The relationship between these notions has been
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suggested by Thomas Streicher (in private communication), and the goal of this section

is to provide a rigorous analysis of this relationship.

Partial combinatory algebra: As one of the oldest Turing-complete computational mod-

els, Schönfinkel’s combinatory logic is well known (especially in the context of lambda

calculus). An algebraic generalization of this model, called a partial combinatory algebra

(abbreviated as PCA), has been studied in depth. As a benefit of such a generalization, a

PCA also encompasses, in a rather broad sense, notions such as computation relative to an

oracle, infinitary computation, etc. A PCA is also used as the basis for the construction

of a type of topos called a realizability topos [97].

Definition 4.26 (see e.g. [97]). A partial magma is a pair (M, ∗) of a set M and

a partial binary operation ∗ on M . We often write xy instead of x ∗ y, and as usual,

we consider ∗ as a left-associative operation, that is, xyz stands for (xy)z. A partial

magma is combinatory complete if, for any term t(x1, x2, . . . , xn), there is at ∈ M such

that atx1x2 . . . xn−1 ↓ and atx1x2 . . . xn ≃ t(x1, x2, . . . , xn). By abusing the notation, we

use λx1x2 . . . xn.t(x1, x2, . . . , xn) to denote such an at. The symbols k and s are used

to denote λxy.x and λxyz.xz(yz) ∈ M , respectively. A combinatory complete partial

magma is called a partial combinatory algebra (abbreviated as PCA). A relative PCA is

a triple (N,N˜ , ∗) such that N ⊆ N˜ , both (N˜ , ∗) and (N, ∗ ↾ N) are PCAs, and share

combinators s and k.

For basics on a relative PCA, we refer the reader to van Oosten [97, Sections 2.6.9 and

4.5]. Typical examples are computations on natural numbers and on streams, which were

treated in Section 2.2. In descriptive set theory, the idea of a relative PCA is ubiquitous,

which usually occurs as a pair of lightface and boldface pointclasses. Hence, one might say

that a large number of nontrivial, deep, examples of relative PCAs have been (implicitly)

studied in descriptive set theory; see Section 6.2.

Applicative morphism: The basic idea behind applicative morphism is the concept of

structure-compatible coding. Coding here can be numbering, represented space, assembly,

or whatever, but if an object to be coded has some mathematical structure, such as an

algebraic structure or topological structure, then coding should be compatible with that

structure. For example, given an algebra A with a binary operation ∗, a coding of A should

be compatible with ∗, which means that the coding should be such that ∗ : A2 → A is

computable.

The algebraic structure considered here is a (relative) PCA. An applicative morphism

is a compatible coding of PCA A = (A˜ , ∗A) by PCA B = (B˜ , ∗B) in the above sense;

that is, it is one such multi-coding of A by B (i.e., a multi-representation or an assembly)

that has the property of allowing the application ∗A to be simulated in B.
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Definition 4.27 (Longley [62], see also [97]). Let A = (A˜ , ∗A) and B = (B˜ , ∗B) be
PCAs. An applicative morphism from A to B is a map γ such that (A˜ , γ) is an assembly

over B for which ∗A : (A˜ , γ)2 → (A˜ , γ) is computable.

To be more specific, γ is an applicative morphism if and only if there exists ev ∈ B

such that, for any f, x ∈ A˜ and any F, X ∈ B˜ , the conditions F ∈ γ(f) and X ∈ γ(x) and

f∗A x ↓ imply ev∗B ⟨F, X⟩ ↓ and ev∗B ⟨F, X⟩ ∈ γ(f∗A x). The latter condition is essentially

the same as the usual definition of applicative morphism (see [97]).

To be precise, Definition 4.27 is for (non-relative) PCAs, not for relative PCAs. The

definition of an applicative morphism for relative PCAs is given by Zoethout [101], for

example. If we are dealing with relative PCAs, we assume that any computable element

a in A (i.e., a ∈ A) has a computable γ-name in B. In particular, both s, k ∈ A have

computable γ-names; that is, both γ(s) ∩ B and γ(k) ∩ B are nonempty.

The notion of applicative morphism is usually used as a tool to convert coding by one

PCA to coding by another PCA. To transform an argument on A into an argument on

B, all we need is a (multi-)map from A to B, so suppose that an applicative morphism

γ : A˜ → P+(B˜ ) is given to us, where P+(B˜ ) = P(B˜ ) \ {∅}. Then, any multi-represented

space over A can be thought of as a multi-represented space over B. To be more precise:

Definition 4.28. Given E : X → P+(A˜ ), define γ ◦ E : X → P+(B˜ ) by γ ◦ E(x) =∪
{γ(a) : a ∈ E(x)}. For an assembly X = (X,E), define γ(X) = (X, γ ◦ E).

Note that in [97], the symbol γ∗(X,E) is used instead. This is considered a special

case of Definition 4.12. This construction suggests that an applicative morphism yields

an S-functor (i.e., a set-preserving functor) from MultRepA to MultRepB. Indeed, an

applicative morphism is known to correspond to a regular S-functor (see [97, Theorem

1.6.2]).

Applicative morphism has another equivalent definition. We note that A˜ itself can

be viewed as a represented space over A by the identity representation (or equivalently

E : a 7→ {a}). Also note that we have the represented function space [⊆ A˜ → A˜ ], where
the underlying set is the collection of all partial continuous (i.e., boldface realizable)

functions, and a ∈ A˜ is a name of f : ⊆ A˜ → A˜ if and only if f(x) = a ∗A x for any

x ∈ dom(f); see also Example 4.3.

Observation 4.29. An applicative morphism from A to B is exactly a map γ : A˜ →
P+(B˜ ) such that the evaluation map evalγ :⊆ γ([⊆ A˜ → A˜ ]) × γ(A˜ ) → γ(A˜ ) is com-

putable, where evalγ(f, x) = f(x) for any x ∈ dom(f).

As mentioned in Section 4.2, a transparent map always yields an S-(endo)functor. On

the other hand, an applicative morphism corresponds to a regular S-functor. The ques-
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tion then arises, what is the relationship between a transparent map and an applicative

morphism?

Observation 4.30. A multimap U :⊆ N˜ ⇒ N˜ is computably transparent if and only

if the evaluation map evalU :⊆ [⊆ N˜ → N˜ ]×U(N˜ ) → U(N˜ ) is computable if and only if

the partial application map ∗A :⊆ N˜ × U(N˜ ) → U(N˜ ) is computable.

Here, recall that the U -relativization of a (multi-)represented space has been intro-

duced below Observation 4.13, and N˜ can be thought of as a represented space via the

identity representation.

Proof. By definition, U is computably transparent if and only if given a continuous

function f one can effectively find F such that U ◦F refines f ◦U . The latter means that

if x ∈ N˜ is a U -name of x ∈ N˜ then F (x) is a U -name of f(x). Hence, if U is computably

transparent, then given a name f of f and a U -name x of x, one one can effectively find

a U -name F (x) of f(x); that is, the evaluation map is computable. Conversely, if the

evaluation map is computable, then given a name f of f and a U -name x of x, one one can

effectively find a U -name u(f, x) of f(x), which means that λx.U ◦ u(f, x) refines f ◦ U .
Thus, U is computably transparent via λfx.u(f, x). The equivalence of the second and

third conditions is obvious.

Given a multimap U :⊆ N˜ ⇒ N˜ , consider γU : N˜ → P(N˜ ) defined by a 7→ jU({a});
that is, γU(a) = {x ∈ dom(U) : U(x) ⊆ {a}}. As mentioned below Observation 4.11, if U

is computably transparent, then U is surjective, so γU(a) is nonempty. By Observation

4.13, one can see that γU(X) is equivalent to U(X); that is, a is a γU(X)-name of x if

and only if a is a U(X)-name of x.

The condition of U being computably transparent is similar to γU is an applicative

morphism fromN˜ toN˜ , but slightly different. We say that a computably transparent map

U is binary parallelizable if there exists a computable function p such that U(p(x, y)) ⊆
U(x) × U(y) for any x, y ∈ dom(U). Note that such a map U preserves binary product,

i.e., U(X) × U(Y ) ≃ U(X × Y ), since there is an algorithm which, given U -names of

x ∈ X and y ∈ Y , returns a U -name of (x, y) ∈ X × Y . Note also that if U is binary

parallelizable then given any f :⊆ N˜ m → N˜ one can effectively find F :⊆ N˜ m → N˜ such

that f(U(x1), . . . , U(xm)) = U(F (x1, . . . , xm)).

Observation 4.31. If a computably transparent map U :⊆ N˜ ⇒ N˜ is binary paral-

lelizable, then γU is an applicative morphism from N˜ to N˜ .

Proof. This is because, given U -names of f and x, one can effectively find an U -name

of the pair (f, x). AsN˜ is a PCA, we know a code of an evaluation map, eval, onN˜ . Then,

evalU(eval, (f, x)) = eval(f, x) = f(x) = evalγ(f, x), where γ = γU . As evalU and eval are
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computable, so is evalγ. Next, if a ∈ N then we have U(u(λx.a)b) ⊆ (λx.a)U(b) ⊆ {a};
that is, a has a U -name u(λx.a)b in N.

However, there are many types of oracle computation that do not preserve binary

product (where note that (jU(p) ∧ q) _ jU(p ∧ q) is always realizable by internal mono-

tonicity, but (jU(p) ∧ jU(q)) _ jU(p ∧ q) is not always so). These include the type of

computation where multiple oracles are provided, but only one oracle can be accessed

during a single computation process:

Example 4.32. Given h0, h1 :⊆ N˜ → N˜ , define U(i, e, x) = φe(hi(x)). Then, clearly

φd◦U(i, e, x) = φd◦φe(hi(x)) = U(i, b(d, e), x), where φb(d,e) = φd◦φe, so U is computably

transparent. However, if h0 and h1 are sufficiently different, U does not preserve binary

product: Given an h0-name of f and an h1-name of x one may find an h0 ⊕ h1-name of

f(x), but in general, h0(p)⊕ h1(p) ≤T hi(p) does not hold for i ∈ {0, 1}.

On the other hand, it is known that an applicative morphism γ preserves all finite

limits (see [62, Proposition 2.2.2] or [97, Theorem 1.6.2]); in particular:

Observation 4.33. An applicative morphism γ from A to B preserves binary product;

that is, γ(X)× γ(Y ) ≃ γ(X × Y ) for any A-multirepresented spaces X and Y .

Proof. Let p be a code of a paring map in A. This can be made by combining s

and k, so it has a computable γ-name. As γ is applicative morphism, given γ-names

p′ and x′ of p and x ∈ A, one can effectively find a γ-name q of p ∗A x. Again by the

definition of applicative morphism, given a γ-name y, one can effectively find a γ-name

of p ∗A x ∗A y using the information of q and y. This means that a γ-name of the pair

p ∗A x ∗A y is computable from the pair of γ-names of x and y in a uniform manner. It is

straightforward to see that this ensures γ to preserve binary product.

Hence, a computably transparent map is not necessarily an applicative morphism.

This may be seen as an answer to Streicher’s suggestion.

Corollary 4.34. There exists a computably transparent map U :⊆ N˜ ⇒ N˜ such that

γU is not an applicative morphism from N˜ to N˜ .

Proof. By Example 4.32 and Observation 4.33.

Although they are not precisely corresponding notions, there are some known results

that suggest a relationship between applicative morphisms and oracles.

The concept of applicative morphism allows us to explore the relationships among var-

ious PCAs, rather than just discussing one PCA. An attempt to capture the relationship
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among several PCAs in the context of oracle computation was made, for example, by Lon-

gley [62], van Oosten [96], and Golov-Terwijn [39]. For example, Longley [62] showed that

X is Turing reducible to Y if and only if a decidable (projective and modest) applicative

morphism from KX
1 to KY

1 exists if and only if an applicative inclusion ([62, Definition

2.5.2]) from KY
1 into KX

1 exists. As an applicative inclusion induces a geometric inclusion

between the realizability toposes, this corresponds to the embedding of the Turing degrees

into the Lawvere-Tierney topologies. Not only this, Longley [62, Chapter 3] also examines

the relationships among various other PCAs using the notion of an applicative morphism.

As above, certain applicative morphisms can be associated with oracle-relativizations.

The important point here is that applicative morphisms can be used to compare com-

pletely different kinds of PCAs. Therefore, if we could find a way to always understand a

certain kind of applicative morphism (or its variant) as an oracle-relativization, we would

be able to greatly expand the notion of oracle-relativization. As a first step toward this,

let us present the question of whether it is possible to extend the notion of a computably

transparent map, an abstraction of oracle computability, to one between arbitrary PCAs.

Question 4. Is there a natural notion of a morphism between relative PCAs that is

identical to a computably transparent map when restricted to endomorphisms?

5 Oracles on multi-represented spaces

5.1 Predicate and reducibility

Now, our realizability world follows Ω-valued logic, and as a result, each predicate turns

into an Ω-valued map. Formally, a realizability predicate (or simply a predicate) on a

multi-represented space X is a map φ : X → Ω. Note that, since Ω = P(N˜ ), a predicate

can also be viewed as a multimap φ : X ⇒ N˜ on a multi-represented domain. Bauer

[6] introduced a reducibility notion on predicates, which can be viewed as Weihrauch

reducibility on multi-represented spaces.

Remark (Predicates as problems). To explain the background of this terminology, in

general, a predicate φ(xX) is interpreted as a subobject JxX : φ(x)K ↣ X. By Observation

4.17, a subobject of X is just a witnessed subset. For each x ∈ X, let χA(x) be the set of

all witnesses for x ∈ A, where χA(x) = ∅ for x ∈ X \ A. This is a map χA : X → Ω, and

hence a multimap X ⇒ N˜ . Remembering that a multimap is just a search problem, this

means that a predicate φ(xX) is regarded as a witness-search problem.

This may be viewed as a rigorous mathematical justification of Kolmogorov’s “propo-

sitions as problems” interpretation.
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So far we have only discussed Weihrauch reducibility for multimaps on N˜ . However, in

computable analysis, the notion of Weihrauch reducibility is usually defined for functions

on representated spaces [15]: For represented spacesX,Y,X ′, Y ′, a multimap f :⊆ X ⇒ Y

is Weihrauch reducible to g :⊆ X ′ ⇒ Y ′ if there exist partial computable functions φ−, φ+

on N˜ such that

• the inner reduction φ− transforms a given name x of any instance x ∈ dom(f) into

a name φ−(x) of some instance x̃ ∈ dom(g),

• and the outer reduction φ+ transforms a given name y of any solution y ∈ g(x̃) into

a name φ+(x, y) of some solution ỹ ∈ f(x).

Since the definition is a bit complicated, let us rewrite the above definition using

symbols. For a (multi-)represented space X, we write x ⊢X x if x is a name of x. Then:

Definition 5.1. Let X, Y,X ′, Y ′ be multi-represented spaces. For f :⊆ X ⇒ Y and

g :⊆ X ′ ⇒ Y ′, we say that f is Weihrauch reducible to g if there exist partial computable

functions φ−, φ+ on N˜ such that(∀x, x)
[
x ⊢X x ∈ dom(f) =⇒ (∃x̃)

(
φ−(x) ⊢X′ x̃ ∈ dom(g),

(∀y, y) [y ⊢Y ′ y ∈ g(x̃) =⇒ (∃ỹ) φ+(x, y) ⊢Y ỹ ∈ f(x)]
)]
.

If X and Y are represented spaces, x̃ and ỹ are uniquely determined. However, in

the case of multi-represented spaces, these are not uniquely determined, so we need to

be careful about the range enclosed by the existential quantifications. Specifically, x̃ in

the second line is assumed to be bounded by the existential quantifier in the first line. In

other words, this reduction also involves a map ς : (x, x) 7→ x̃.

Remark (Kihara’s definition [53]). Note that the definition of Weihrauch reducibility

on multi-represented spaces can also be viewed as an imperfect information three-player

game, as introduced in [53]:

Merlin Arthur Nimue

1 : x ⊢X x ∈ dom(f)

2 : x̃ ⊢X′ x̃ ∈ dom(g)

3 : y ⊢Y ′ y ∈ g(x̃)

4 : ỹ ⊢Y ỹ ∈ f(x)

Weihrauch reducibility on multi-represented spaces has also recently been introduced independently

by Matthias Schröder. However, his definition (presented in CCA 2022) seems to differ from ours.
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Here, x, x̃, y, ỹ are public moves and open to all players. On the other hand, x, x̃, y, ỹ

are secret moves, visible only to Merlin and Nimue. Also, computability is imposed

only on Arthur’s moves; that is, φ− : x 7→ x̃ and φ+ : (x, y) 7→ ỹ are computable. Then

f ≤W g if Arthur-Nimue have a winning strategy for the above game. For the details, see

Definition 5.19 and also [53].

Remark (Bauer’s definition [6]). As noted by Bauer [6], it is the realizability inter-

pretation of the statement ∀x ∈ dom(f)∃x̃ ∈ dom(g). g(x̃) _ f(x).

In this way, the definition of Weihrauch reducibility has been extended. Of course,

when broadening the framework, it is obligatory to provide a number of concrete examples

that could not be dealt with in the previous framework. Some basic examples are given

below.

Example 5.2. The double negation representation of a set X is a multi-representation

of X such that any a ∈ N˜ is a name of any element of X. The double negation space

¬¬X is the set X equipped with the double negation representation; that is, p ⊢¬¬X x

always holds whenever p ∈ N˜ and x ∈ X. Note that ¬¬X is usually denoted as ∇X in

realizability theory; see e.g. [97].

The double negation elimination on the natural numbers, DNEN : ¬¬N → N defined

by DNEN(n) = n. If (N,N˜ , ∗) is the Kleene-Vesley algebra:

Claim. A partial multimap f :⊆ N˜ ⇒ N˜ is Weihrauch reducible to DNEN if and only

if f is non-uniformly computable; that is, for any x ∈ dom(f) there exists y ≤T x such

that y ∈ f(x).

Proof. (⇒) Since N˜ = NN and a name of x ∈ NN is x itself, we have y = φ+(e, x)

for some e, but since φ+ is computable and e ∈ N, we get y ≤T x.

(⇐) By the assumption, y = φe(x)(x) for some e(x). For a public reduction, φ−(x)

can be any value, and φ+(e, x) = φe(x). By the definition of ¬¬N, we have φ−(x) ⊢¬¬N e

for any e. Therefore, a secret reduction can be given by ς(x) = ex.

Example 5.3. Let Meas>0 be the set of all subsets of 2N of positive measure, and con-

sider the nonuniform positive measure choice PC : ¬¬Meas>0 ⇒ 2N defined by PC(A) = A;

that is, any element r ∈ A is a solution to PC(A). If (N,N˜ , ∗) is the Kleene-Vesley alge-

bra, then a partial multimap f :⊆ N˜ ⇒ N˜ is Weihrauch reducible to PC if and only if f

is computable with random advice in the sense of Brattka-Pauly [17].

To analyze the structure of Weihrauch degrees on multi-represented spaces, it is suf-

ficient to consider only Weihrauch degrees of predicates, where we consider N˜ to be the

space represented by the identity map.
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Observation 5.4. Every multimap on multi-represented spaces is Weihrauch equiva-

lent to a predicate.

Proof. Given a multimap f , let f(x) be the set of all names of all solutions of the x-

th instance of problem f ; that is, f(x) = {y ∈ N˜ : (∃y) y ⊢Y y ∈ f(x)}. Obviously, f is a

predicate. Using this notation, the second line of the definition of Weihrauch reducibility

can be rewritten as follows:

y ∈ g(x̃) =⇒ φ+(x, y) ∈ f(x).

Hence, the Weihrauch degree of f only depends on its predicate part f .

Now note that, when the relation x ⊢X x holds for a multi-represented space X, the

name x is public information that can be accessed during a computation and the point x

is secret information that cannot be accessed during a computation. Often, a multimap

f : ⊆ X ⇒ Y is easier to handle if it is thought of as f̂ : ⊆ N˜ × X ⇒ Y defined by

f̂(x, x) = f(x) for x ⊢X x (sometimes f̂(x, x) is written as f̂(x ⊢X x) or f̂(x | x)). In

particular, a predicate φ : X ⇒ N˜ can be viewed as a function φ̂ :⊆ N˜ ×X ⇒ N˜ . We call

φ̂ the extension of φ. In Kihara [53], such a function has been called a bilayered function.

Essentially the same notion has been called an extended Weihrauch predicate by Bauer

[6], which sounds better, so we adopt Bauer’s terminology in this article.

Definition 5.5. An extended predicate is a partial multimap f :⊆ N˜ ×Λ ⇒ N˜ , where

Λ is a set. We write f(n | p) for f(n, p), and n is called a public input and p a secret input.

Example 5.6. Many natural examples of extended predicates have been studied in

[53]. For example, various computational notions of the type of allowing for minute errors

can be expressed as computations relative to some extended predicate oracles. Examples

include computability with error probability less than ε and error density (in the sense of

the lower asymptotic density) less than ε. However, most extended predicates treated in

[53] can also be described using double negation spaces, as in Examples 5.2 and 5.3.

Definition 5.7 (Bauer [6]; see also Kihara [53]). Let f and g be extended predicates.

Then f is extended Weihrauch reducible to g (written f ≤eW g) if there exist partial

computable functions φ−, φ+ on N˜ such that(∀x, x)
[
(x | x) ∈ dom(f) =⇒ (∃x̃)

(
(φ−(x) | x̃) ∈ dom(g),

(∀y) [y ∈ g(φ−(x) | x̃) =⇒ φ+(x, y) ∈ f(x | x)]
)]
.

Note that x̃ in the second line is bounded by the existential quantifier in the first line.

In other words, it involves a map ς : (x, x) 7→ x̃.
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As noted above, a predicate (on a multi-represented space) can be regarded as an ex-

tended predicate. Obviously, restricting extended Weihrauch reducibility to extensions of

predicates is equivalent to restricting Weihrauch reducibility on multi-represented spaces

to predicates. Bauer [6] has shown that the extended Weihrauch degrees form a Heyting

algebra.

Note also that obviously Definition 5.7 depends only on the set {g(a | p) : p ∈ Λ}. For
extended predicates f :⊆ N˜ ×Λ ⇒ N˜ and g :⊆ N˜ ×Λ′ ⇒ N˜ , we say that f is equivalent

to g if {f(x | p) : p ∈ Λ} = {g(x | q) : q ∈ Λ′} for any x ∈ N˜ . An extended predicate f is

canonical if f(x | p) = p for any (x | p) ∈ dom(f).

Note that a canonical extended predicate is always an extension of a predicate. Indeed,

a canonical extended predicate (seen as a predicate) is a map i : (Ω, δ) → Ω (where δ is a

multi-representation) that is identity on the underlying set Ω; that is, i(p) = p. In other

words, it is a subobject of the trivial assembly Ω.

Observation 5.8 (see also [60, 6]). Every extended predicate is equivalent to a canon-

ical one.

Proof. This is because given an extended predicate g define g̃ :⊆ N˜ × Ω ⇒ N˜ by

g̃(x | y) = y if g(x | p) = y for some (x | p) ∈ dom(g); otherwise g̃(x | y) is undefined.

Then g̃ is clearly equivalent to g.

In partiuclar, every extended predicate is Weihrauch equivalent to an extension of a

predicate. What this means is that the extended Weihrauch degrees are isomorphic to

the (extended) Weihrauch degrees of predicates (see also [6]), and thus, by Observation

5.4, we get the following:

Corollary 5.9. The Heyting algebra of the extended Weihrauch degrees is isomorphic

to the Weihrauch degrees on multi-represented spaces.

Remark. Under this isomorphism, Bauer [6] named the ones in the extendedWeihrauch

degrees corresponding to the Weihrauch degrees on represented spaces (i.e., the ordinary

Weihrauch degrees) the modest degrees. In other words, the modest extended Weihrauch

degrees are the ordinary Weihrauch degrees. This terminology is derived from the fact

that a represented space is called a modest set in realizability theory.

In proving various properties, it is often easier to discuss them if they are transformed

into a canonical form via Observation 5.8. However, natural concrete examples often

appear in non-canonical form, and it is intuitively easier to understand them if non-

canonical forms are also allowed; see also [53].
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Remark. Several variants of Weihrauch reducibility have been studied in recent years,

but they can be treated in a unified manner by using Weihrauch reducibility on multi-

represented spaces (or extended predicates). To see this, for a set X, consider the double

negation elimination DNEX : ¬¬X → X defined by DNEX(x) = x. Then, for any partial

multimaps f :⊆ X ⇒ Y and g :⊆ Z ⇒W , we have the following:

• f is computably reducible to g in the sense of Dzhafarov [29] if and only if f ≤W

DNEN ⋆ g ⋆ DNEN.

• f is omnisciently Weihrauch reducible to g in the sense of Dzhafarov-Patey [31] if

and only if f ≤W g ◦ DNEZ .

• f is omnisciently computably reducible to g in the sense of Monin-Patey [67] if and

only if f ≤W DNEN ⋆ g ◦ DNEZ .

Here, ⋆ denotes the compositional product (see [15, Theorem 5.2 and Definition 5.3]).

Next, let us consider the composition of two extended predicates. For f : X ⇒ Y and

g : Y ⇒ Z, the composition g◦f : X ⇒ Z is defined as usual (see Section 1.4). However, if

f and g are presented as extended predicates θf , θg :⊆ N˜ ×Λ ⇒ N˜ , then the composition

θg ◦ θf would not be defined, of course.

Disscussion. To overcome this difficulty, we introduce a composition-like operation for

extended predicates. It almost adopts the definition of the composition of multifunctions

on multi-represented spaces. Recall that for a given f : X ⇒ Y , we first consider its

extension f̂ : N˜ ×X ⇒ Y , and then take the set of names of solutions, i.e., f̂ : N˜ ×X ⇒ N˜ ,

which is the corresponding extended predicate θf . One can see the following:

z ∈ ĝ ◦ f(x | x) ⇐⇒ (∃y, y) [y ∈ f̂(x | x) and z ∈ ĝ(y | y)].

In represented spaces, y 7→ y is uniquely determined, but this is not the case in multi-

represented spaces. For this reason, let us always specify a map ς : y 7→ y as a secret

input (a nonuniform advice). Then, we declare that (x | x, ς) is in the domain of the

composition as long as the process always terminates along this map ς. This discussion

leads to the following definition:

Definition 5.10. Let α :⊆ N˜ ×Λ ⇒ N˜ and β :⊆ N˜ ×Λ′ ⇒ N˜ be extended predicates.

Define β ◦ α :⊆ N˜ × (Λ× [N˜ → Λ′]) ⇒ N˜ as follows: For the domain, (β ◦ α)(x | p, ς) is
defined if α(x | p) is defined and β(y | ς(y)) is defined for any y ∈ α(x | p). In such a case,

z ∈ (β ◦ α)(x | p, ς) ⇐⇒ (∃y) [y ∈ α(x | p) and z ∈ β(y | ς(y))].
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The definition of the composition is complicated, but the idea comes from the notion

of non-uniform advice, or Nimue’s strategy in games ending in two rounds [53]. That is,

(x | p) are first moves of Arthur and Nimue, respectively, and ς is Nimue’s strategy to

decide her next move according to Merlin’s reply.

5.2 Universal extended predicate

Now, let us generalize the properties for multimaps (Observation 2.9) to extended predi-

cates.

Definition 5.11. Let U :⊆ N˜ × Λ ⇒ N˜ be an extended predicate.

• U is computably transparent if and only if there exists u ∈ N such that for all f, x ∈ N˜
and p ∈ Λ, whenever f ∗ U(x | p) is defined,

(∃q ∈ Λ) (u ∗ f ∗ x | q) ∈ dom(U) and U(u ∗ f ∗ x | q) ⊆ f ∗ U(x | p).

• U is inflationary if and only if there exists η ∈ N such that for all x ∈ N˜ ,

(∃p ∈ Λ) (η ∗ x | p) ∈ dom(U) and U(η ∗ x | p) ⊆ {x}.

• U is idempotent if and only if there exists µ ∈ N such that for all x ∈ dom(U ◦ U)
and p ∈ Λ,

(∃q ∈ Λ) (µ ∗ x | q) ∈ dom(U) and U(µ ∗ x | q) ⊆ U ◦ U(x | p).

Remark. By Corollary 5.9, it seems more natural to deal directly with a multimap

on multi-represented spaces rather than an extended predicate. The reason why we still

use an extended predicate instead of a multimap on multi-represented spaces is Definition

5.11. For example, the definition of idempotence uses self-composition U ◦ U , which is

always defined for an extended predicate, but is generally meaningless for a multimap on

multi-represented spaces (since the domain and the codomain might be different).

The following is the extended predicate version of Definition 3.11.

Definition 5.12. For extended predicates f and g, we say that a computable element

e ∈ N is an extended m-morphism from f to g if for any (x | p) ∈ dom(f) there exists q

such that (φe(x) | q) ∈ dom(g) and g(φe(x) | q) ⊆ f(x | p). We also say that f is extended

m-reducible to g (written f ≤em g) if there exists an extended m-morphism from f to

g. If U is computably transparent, we often say that f is U -computable if f is extended

m-reducible to U .
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One can also think of extendedm-reducibility for extended predicates asm-reducibility

for predicates on multi-represented spaces.

Example 5.13 (Extended Weihrauch oracle). For an extended predicate g, the uni-

versal computation relative to the extended Weihrauch oracle g, EWeihg, is defined as the

following extended predicate:

dom(EWeihg) = {(h, k, x | p, ς) : (φh(x) | ς(x, p)) ∈ dom(g)

and φk(x, y) ↓ for all y ∈ g(φh(x) | ς(x, p))}
EWeihg(h, k, x | p, ς) = {φk(x, y) : y ∈ g(φh(x) | ς(x, p))}

One can think of EWeihg as an extended predicate that can simulate all the plays in

the extended Weihrauch reduction game mentioned in Remark above, where (x | p) is

Merlin’s first move, (h, k) is Arthur’s strategy, and ς is Nimue’s strategy.

Note that EWeihg is computably transparent. This is because we have φℓ[EWeihg(h, k, x |
p, ς)] = {φℓ ◦ φk(x, y) : y ∈ g(φh(x) | ς(x, p))} = EWeihg(h, bℓ,k, x | p, ς), where bℓ,k is a

code of φℓ ◦ φk.

Moreover, an extended predicate f is EWeihg-computable if and only if f ≤eW g. This

is because f ≤eW g via h, k, ς if and only if (h, k) and ς are Arthur and Nimue’s winning

strategies for the reduction game in the above Remark if and only if EWeihg(h, k, x |
p, ς) ⊆ f(x | p), so f is EWeih-computable. The converse direction can be shown by an

argument similar to Example 2.5

We will discuss the exact relationship between computable transparency and universal

computation in the context of extended predicate.

Definition 5.14. Let exMRed be the set of all extended predicates on N˜ preordered

by extended many-one reducibility ≤em. The restriction of this preordered set to those

that are computably transparent, inflationary, and idempotent, respectively, is expressed

by decorating it with superscripts ct, η, and µ, respectively.

We next see an extension of Proposition 2.12 stating that the notions of extended

many-one reducibility and extended Weihrauch reducibility coincide on computably trans-

parent extended predicates. As we have seen in Example 5.13, the construction EWeih : g 7→
EWeihg yields a computably transparent map from a given extended predicate. Moreover,

it is easy to see that f ≤m g implies EWeihf ≤em EWeihg. Hence, EWeih can be viewed

as an order-preserving map from exMRed to exMRedct. The following guarantees that

EWeih(f) is the ≤em-least computably transparent map which can compute f .

Proposition 5.15. The order-preserving map EWeih : exMRed→ exMRedct is left
adjoint to the inclusion i : exMRedct ↣ exMRed. In other words, for any extended pred-

icates f and g, if g is computably transparent, then f ≤em g if and only if EWeih(f) ≤em g.
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Proof. Obviously, EWeih(f) ≤em g implies f ≤em g. For the converse direction, if

f ≤em g then EWeih(f) ≤em EWeih(g) by monotonicity; hence it suffices to show that

EWeih(g) ≤em g. Given h, k, x ∈ N˜ and p, ς, note that y ∈ g(h ∗ x | ς(x, p)) implies

k ∗ ⟨x, y⟩ ∈ EWeihg(h, k, x | p, ς). Put k′ = λxy.k ∗ ⟨x, y⟩. As g is computably transparent,

there exists u ∈ N and q such that g(u ∗ (k′ ∗ x) ∗ (h ∗ x) | q) ⊆ (k′ ∗ x) ∗ g(h ∗ x | ς(x, p)).
Note that if y ∈ g(h ∗ x | ς(x, p)) then k′ ∗ x ∗ y = k ∗ ⟨x, y⟩ ∈ EWeihg(h, k, x | p, ς). Hence,
we get g(u ∗ (k′ ∗ x) ∗ (h ∗ x) | q) ⊆ EWeihg(h, k, x | p, ς), so the term λhkx.u ∗ ((a ∗ k) ∗
x) ∗ (h ∗ x) ∈ N witnesses EWeihg ≤em g, where a ∈ N is a computable element such that

a ∗ k = k′.

This implies that the notions of extended many-one reducibility and extentdedWeihrauch

reducibility coincide on computably transparent extended predicates.

Corollary 5.16. The Heyting algebra of extended many-one degrees of computably

transparent extended predicates on N˜ is isomorphic to the extended Weihrauch degrees.

Proof. We first claim that if g is computably transparent, then f ≤em g if and only

if f ≤eW g. The forward direction is obvious. For the backward direction, first note that

f ≤eW g if and only if f ≤em EWeihg as seen in Example 5.13. By Proposition 5.15,

EWeihg ≤em g since g is computably transparent. Hence, f ≤em g. This claim ensures

that the identity map is an embedding from the poset reflection of exMRedct into the

extended Weihrauch degrees. For surjectivity, we have f ≡eW EWeihf as seen in Example

5.13, and EWeihf is computably transparent.

Remark. There are several candidates for the definition of Weihrauch reducibility on

multi-represented spaces, and it is debatable which one to adopt. Of course, all definitions

seem valuable in the context for which they are appropriate, and indeed, Proposition 5.15

supports the validity of our definition from at least one perspective. The key point is that

our notion of Weihrauch reducibility automatically appears when we have the notions of

computable transparency and many-one reducibility as before, so in fact, there is no need

to define Weihrauch reducibility: Any left-adjoint EW of the inclusion i : exMRedct ↣
exMRed recovers the notion of extended Weihrauch reducibility as f ≤eW g if and only

if f ≤em EW(g) since EW(g) ≡em EWeih(g). By Corollary 5.9, this means that our definition

of Weihrauch reducibility on multi-represented spaces is automatically obtained from any

EW ⊣ i without explicitly defining it.

One can also introduce an inflationary version of extended Weihrauch reducibility. For

extended predicates f and g, we say that f is pointed extended Weihrauch reducible to g

(written f ≤peW g) if f is extended Weihrauch reducible to id⊔g, where (id⊔g)(0, x | p) =
x and (id ⊔ g)(1, x | p) = g(x | p). It is straightforward to show analogues of Proposition

2.14 and Corollary 2.13.
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Proposition 5.17. The order-preserving map pEWeih : exMRed → exMRedct,η is

left adjoint to the inclusion i : exMRedct,η ↣ exMRed. In other words, for any extended

predicates f and g, if g is computably transparent and inflationary, then f ≤em g if and

only if pEWeih(f) ≤em g.

Corollary 5.18. The Heyting algebra of extended many-one degrees of computably

transparent, inflationary, extended predicates on N˜ is isomorphic to the pointed extended

Weihrauch degrees.

The notion of extended Weihrauch reducibility is given by a relative computation that

makes exactly one query to an oracle, so it is not idempotent. Like Turing-Weihrauch

reducibility corresponding to the idempotent version of Weihrauch reducibility, the idem-

potent version of extended Weihrauch reducibility (i.e., extended Turing-Weihrauch re-

ducibility) was introduced in [53] (almost equivalent one had been studied in [60]; see [53,

Remark 2.15]) and named LT-reducibility.

The definition of LT-reducibility can be described using an imperfect information game

between three players, Merlin, Arthur, and Nimue.

Definition 5.19 ([53, Definition 2.13]). For extended predicates f and g, let us

consider the following imperfect information three-player game G(f, g):

Merlin Arthur Nimue

(p0 | x0) ∈ dom(f)

Query : (q0 | z0) ∈ dom(g)

p1 ∈ g(q0 | z0)
Query : (q1 | z1) ∈ dom(g)

p2 ∈ g(q1 | z1)
...

...
...

Query : (qn | zn) ∈ dom(g)

pn+1 ∈ g(qn | zn)
Halt : qn+1 ∈ f(p0 | x0)

Game rules: Here, the players need to obey the following rules.

• First, Merlin chooses a pair (p0 | x0) ∈ dom(f).

• At the nth round, Arthur reacts with yn = ⟨An, qn⟩.

– The choice An = Query (coded by 0) indicates that Arthur makes a new query

qn to g.
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– The choice An = Halt (coded by 1) indicates that Arthur declares termination

of the game with qn.

• At the nth round, Nimuemakes an advice parameter zn such that (qn | zn) ∈ dom(g).

• At the (n + 1)st round, Merlin responds to the query made by Arthur and Nimue

at the previous stage. This means that pn+1 ∈ g(qn | zn).

Then, Arthur and Nimue win the game G(f, g) if either Merlin violates the rule before

Arthur or Nimue violates the rule, or both Arthur and Nimue obey the rule and Arthur

declares termination with qn ∈ f(p0 | x0).

Strategies: As noted above, Arthur can only read the moves p0, p1, p2, . . . , and the other

players can see all the moves. In other words, Arthur’s strategy is a partial map τ : ⊆
N˜ <ω → N˜ . Arthur’s strategy is always computable or continuous, coded in the lightface

part N for the former case and in N˜ for the latter. On the other hand, Merlin and Nimue’s

strategies are any partial functions (which are not necessarily computable).

If σ, τ , and η are strategies of Merlin, Arthur, and Nimue, respectively, then the play

that follow these strategies are defined as follows: Merlin’s first move is (p0 | x0) := σ(),

and (n + 1)th move is pn+1 := σ(q0, z0, . . . , qn, zn). Arthur’s nth move is ⟨An, qn⟩ :=

τ(p0, . . . , pn). Nimue’s nth move is zn := η(x0, p0, q0, . . . , pn, qn). Here, “undefined” counts

as a rule violation.

A pair (τ | η) of Arthur’s strategy τ and Nimue’s strategy η is called an Arthur-

Nimue strategy. If Arthur’s strategy τ is computable (continuous, resp.) then the pair

(τ | η) is called a computable (continuous, resp.) Arthur-Nimue strategy. An Arthur-

Nimue strategy (τ | η) is winning if, as long as Arthur and Nimue follow the strategy

(τ | η), Arthur and Nimue win the game, no matter what Merlin’s strategy σ is.

Definition 5.20 ([53, Definition 2.14]). Let f and g be extended predicates. We

say that f is LT-reducible to g (written f ≤LT g) if there exists a computable winning

Arthur-Nimue strategy for G(f, g).

Note that the rule of the game G(f, g) does not mention f except for Player I’s first

move. Hence, if we skip Player I’s first move, we can judge if a given play follows the rule

without specifying f . Such a restricted game is denoted by G(g).

Definition 5.21 ([53, Definition 2.20]). Given an extended predicate h, let us define

the new extended predicate h⅁ as follows: An input for h⅁ is a continuous Arthur-Nimue

strategy (τ | η), where Arthur’s strategy τ is a public input, and Nimue’s strategy η is a

secret input.
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• h⅁(τ | η) is defined only if, along any play in G(h) following the strategy (τ |
η), either Merlin violates the rule before Arthur or Nimue violates the rule, or

both Arthur and Nimue obey the rule and Arthur declares termination, whatever

Merlin’s strategy is.

• u ∈ h⅁(τ | η) if and only if there is a play in G(h) that follows the strategy (τ | η)
such that Arthur declares termination with u at some round, where all players obey

the rule.

Note that h⅁ can be thought of as the extended predicate version of the diamond

operator (recall a few paragraphs before Fact 2.18), which plays a role of the universal

computation relative to the extended oracle h. Observing the proof of [53, Proposition

2.22], one can see that an extended predicate f is g⅁-computable (i.e., f ≤em g⅁) if and

only if f is LT-reducible to g.

Observation 5.22. For any extended predicate h, h⅁ is computably transparent, in-

flationary, and idempotent.

Proof. For computable transparency, let f be a partial continuous map. For Arthur’s

strategy τ in G(h), if τ(α) = ⟨Halt, y⟩ then put τ f (α) = ⟨Halt, f(y)⟩, and if τ(α) =

⟨Query, y⟩ then put τ f (α) = τ(α). Then we have f ◦ h⅁(τ | η) = h⅁(τ f | η), and the

transformation τ 7→ τ f is computable. To see that h⅁ is inflationary, consider Arthur’s

strategy ix() = ⟨Halt, x⟩. Then h⅁(ix | η) = x, and x 7→ ix is computable.

For idempotence, given Arthur’s strategy τ in G(h), define the new strategy τ ⋆ in G(h)

as follows: Given a sequence p1, . . . , pn, if there exists i ≤ n such that τ(p1, . . . , pi) =

⟨halt, τ ′⟩, define τ ⋆(p1, . . . , pn) = τ ′(pi+1, . . . , pn) for the least such i. If there is no such

i, put τ ⋆(p1, . . . , pn) = τ(p1, . . . , pn). If τ
′ ∈ h⅁(τ | η) and y ∈ h⅁(τ ′ | η′) then, by letting

ζ⋆ be the concatenation of η and η′ as above, we get y ∈ h⅁(τ ⋆ | η⋆).

In particular, the operator ⅁ : g 7→ g⅁ can be viewed as an order-preserving map from

exMRed to exMRedct,η,µ. Conversely, as in [99], one can also see that:

Proposition 5.23. If an extended predicate g is computably transparent, inflationary,

and idempotent, then g⅁ ≤eW g.

Proof. (Sketch) The proof is almost the same as Westrick’s proof [99] of Fact 2.18.

To prove the assertion, we construct a computable function Φ∗, where note that, by the

recursion theorem, we can refer to Φ∗ itself during the construction of Φ∗. Since g is

computationally transparent and idempotent, a computation that makes two queries to g

can be simulated by a computation that makes one query to g. Note that a given Arthur-

strategy τ in G(g) is of the form τ(α) = ⟨τ0(α), τ1(α)⟩, where τ0(α) is either Query or
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Halt, and consider the following two-step computation.

Merlin Arthur Nimue

(τ1(p1, . . . , pn) | zn) ∈ dom(g)

pn+1 ∈ g(τ(p1, . . . , pn) | zn)
(Φ∗(τ, p1, . . . , pn, pn+1) | zn+1) ∈ dom(g)

α ∈ g(Φ∗(τ, p1, . . . , pn+1) | zn+1)

⟨pn+1, α⟩

Here, if τ0(p1, . . . , pn, pn+1) = Halt then Φ∗(τ, p1, . . . , pn, pn+1) above is replaced with

a fixed computable input in the domain of g. Such an input exists since g is inflationary.

In this case, we further replace the last output ⟨pn+1, α⟩ above with ⟨pn+1, Halt⟩. Note

that the query-making part of Arthur’s strategy above consists of τ1(p1, . . . , pn) and

λy.Φ∗(τ, p1, . . . , pn, y). Therefore, the only public information needed to make the two

queries is (τ, p1, . . . , pn). Since there is an effective way to convert this into a single query,

we write Φ∗(τ, p1, . . . , pn) for the public input part of the query.

Let us see how this one-query computation works. If we ask for a solution of g with

respect to the pair of Φ∗(τ, ε) (where ε is an empty sequence) and an appropriate secret

input, oracle should answer p1 and a solution α of g with respect to the pair of Φ∗(τ, p1)

and a secret input. If this secret input is appropriate, this value α is the pair of p2 and a

solution α′ of g with respect to the pair of Φ∗(τ, p1, p2) and a secret input. Repeating this

process, we obtain a sequence ⟨p1, p2, . . . , pn, Halt⟩. Applying Arthur’s strategy τ to this

sequence, since τ(p1, . . . , pn) = ⟨Halt, qn⟩, one can compute a solution qn ∈ g⅁(τ) with a

single query to g.

The question that remains is whether appropriate secret inputs always appear in

this disassembly process. Now, for secret input, assuming that zn depends on some

z′1, . . . , z
′
n−1, Nimue’s strategy above depends only on (τ, p1, . . . , pn, z

′
1, . . . , z

′
n−1), the first

move is to take an appropriate zn, and the next move is an appropriate map pn+1 7→ zn+1.

Thus, the z′n guaranteed by the inner secret reduction for g ◦ g ≤eW g depends only on

(τ, p1, . . . , pn, z
′
1, . . . , z

′
n−1). The pn+1 and α obtained as solutions to g with respect to this

secret input are for the appropriate zn and zn+1 as shown in the above table.

By Proposition 5.15, this is equivalent to g⅁ ≤em g. Therefore:

Corollary 5.24. The operator ⅁ : exMRed → exMRedct,η,µ is left adjoint to the

inclusion i : exMRedct,η,µ ↣ exMRed.
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Corollary 5.25. The Heyting algebra of many-one degrees of computably transpar-

ent, inflationary, idempotent, extended predicates on N˜ is isomorphic to the LT-degrees

(the extended Turing-Weihrauch degrees).

5.3 Modality

Using this notion, operations on Ω that do not necessarily preserve intersections can also

be understood as properties related to oracle. The discussion that follows is a further

elaboration of the arguments in [60, 53]. Lee-van Oosten [60] constructed a canonical

extended predicate Uj :⊆ N˜ × Ω ⇒ N˜ from a given operator j : Ω → Ω as follows:

dom(Uj) = {(x | p) ∈ N˜ × Ω : x ∈ j(p)}, Uj(x | p) = p.

Compare also with Definition 3.8. Since the intuitive meaning of this definition is

difficult to grasp, we will analyze it with a slight restriction on j. For an operation

j : Ω → Ω, we say that j is ⊆-monotone if, for any p, q ∈ Ω, q ⊆ p implies j(q) ⊆ j(p). If

j is ⊆-monotone, it is easy to verify that the following holds.

x ∈ j(p) ⇐⇒ (∃q ∈ Ω) Uj(x | q) ⊆ p

The forward direction is obvious since x ∈ j(p) implies Uj(x | p) = p. For the backward

direction, by definition, Uj(x | q) ⊆ p implies x ∈ j(q) and q ⊆ p, so ⊆-monotonicity

ensures x ∈ j(p).

Compare also with the equivalence (3.1) in Theorem 3.10. The idea is to read the

expression x ∈ j(p) as “If x is given as input to the universal oracle computation cor-

responding to j, then p can be solved under some secret advice”. Let us use this to

give the inverse construction. Given an extended predicate U :⊆ N˜ × Λ ⇒ N˜ , define a

⊆-monotone operator jU : Ω → Ω as follows:

jU(p) = {x ∈ N˜ : (∃q ∈ Λ) [(x | q) ∈ dom(U) and U(x | q) ⊆ p]}.

Note that this inverse construction differs from that used in [60, 53]. This simplification

in this article is made possible by our use of the notion of computable transparency.

Proposition 5.26. For any extended predicate U :⊆ N˜ × Λ → N˜ , UjU is equivalent

to U . Conversely, for any ⊆-monotone operation j : Ω → Ω, we have jUj
= j. Moreover,

any monotone operation is r-equivalent to a ⊆-monotone operation.

Proof. Given x ∈ N˜ and p ∈ Ω, UjU (x | p) is defined if and only if x ∈ jU(p) if and

only if U(x | q) ⊆ p for some q ∈ Λ by definition. For such q, we have U(x | q) ⊆ p =

UjU (x | p); hence {U(x | p)}p∈Λ ⊆ {UjU (x | p)}p∈Ω. Moreover, as U(x | q) ⊆ U(x | q), by
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the above equivalence, UjU (x | U(x | q)) is defined, and equal to U(x | q) by canonicity.

This implies that {UjU (x | p)}p∈Ω ⊆ {U(x | p)}p∈Λ; hence UjU is equivalent to U .

Next, let j : Ω → Ω be an operation. Then one can easily see the following equivalences:

x ∈ jUj
(p) ⇐⇒ (∃q ∈ Ω) Uj(x | q) ⊆ p

⇐⇒ (∃q ⊆ p) (x | q) ∈ dom(Uj) ⇐⇒ (∃q ⊆ p) x ∈ j(q)

If j is ⊆-monotone, the last condition is equivalent to x ∈ j(p). Hence, jUj
= j. To

verify the last assertion, note that jUj
is always ⊆-monotone. Thus, it suffices to show

jUj
≡r j for any monotone operation j. By the above equivalence (with q = p), x ∈ j(p)

implies x ∈ jUj
(p), so the identity map witnesses j ≤r jUj

. Conversely, if x ∈ jUj
(p) then

x ∈ j(q) for some q ⊆ p by the above equivalence. Assume that monotonicity of j is

witnessed by u ∈ N. As the identity map i realizes q _ p, u ∗ i realizes j(q) _ j(p).

Hence, u ∗ i ∗ x ∈ j(p). Thus, jUj
≤r j is witnessed by λx.u ∗ i ∗ x.

Lemma 5.27. For any extended predicate U , jU◦U = jU ◦ jU .

Proof. First, one can see that x ∈ jU◦U(p) if and only if there exist p′ and η such that

U ◦U(x | p′, η) ⊆ p. By the definition of the composition, the last condition is equivalent

to being U(y | η(y)) ⊆ p for any y ∈ U(x | p′). By the definition of jU , this implies that

y ∈ jU(p) for any y ∈ U(x | p′); hence U(x | p′) ⊆ jU(p). By the definition of jU again,

we get x ∈ jU(jU(p)). Therefore, jU◦U(p) ⊆ jU ◦ jU(p).
Conversely, by applying the definition of jU twice, one can see that x ∈ jU ◦jU(p) if and

only if there exists p′ such that for any y ∈ U(x | p′) there exists p′′y such that U(y | p′′y) ⊆ p.

Then put η(y) = p′′y. By the definition of the composition, it is straightforward to see

that U ◦ U(x | p′, η) ⊆ p for such p′ and η. By the definition of jU◦U , we get x ∈ jU◦U(p);

hence jU ◦ jU(p) ⊆ jU◦U(p).

The following is a combination of the analogue of Theorem 3.6 and the extended

predicate version of Theorem 3.10.

Theorem 5.28. Let U :⊆ N˜ × Λ ⇒ N˜ be an extended predicate. If U is computably

transparent, then jU is monotone. Moreover, if U is inflationary, so is jU ; and if U is

idempotent, so is jU .

Conversely, let j : Ω → Ω be an operation. If j is monotone, Uj is computably trans-

parent; if j is inflationary, so is Uj; and if j is monotone and idempotent, so is Uj.

Proof. Let U be computably transparent. To see that jU is monotone, assume that

a realizes p _ q. Given x ∈ jU(p), by the definition of jU , we have U(x | p′) ⊆ p for

some p′. Hence, a ∗ U(x | p′) ⊆ q. By computable transparence, there exists p′′ such that
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U(u∗a∗x | p′′) ⊆ a∗U(x | p′) ⊆ q. Again, by the definition of jU , we have u∗a∗x ∈ jU(q).

Hence, λax.u ∗ a ∗ x ∈ N realizes (p _ q) _ (jU(p) _ jU(q)).

Let U be inflationary. In this case, x ∈ p implies U(η ∗ x | p′) ⊆ {x} ⊆ p for some p′.

By the definition of jU , we have η ∗ x ∈ jU(p). Therefore, λx.η ∗ x ∈ N realizes p _ U(p).

Let U be idempotent. Assume x ∈ jU(jU(p)). By Lemma 5.27, we have x ∈ jU◦U(p),

which means U ◦ U(x | p′) ⊆ p for some p′. By idempotence, there exists p′′ such that

U(µ ∗ x | p′′) ⊆ U ◦ U(x | p′) ⊆ p. Thus, by the definition of jU , we get µ ∗ x ∈ jU(p).

Hence, µ ∈ N realizes jU(jU(p)) _ jU(p).

Next, assume that j is monotone, realized by u ∈ N. To show that Uj is computably

transparent, let f, x ∈ N˜ and p ∈ Ω be such that f ∗ Uj(x | p) is defined. In particular,

(x | p) ∈ dom(Uj), so x ∈ j(p) by the definition of Uj. Next, note that f clearly realizes

Uj(x | p) _ f ∗ Uj(x | p). By monotonicity, u ∗ f realizes j(Uj(x | p)) _ j(f ∗ Uj(x | p)).
As Uj is canonical, we have x ∈ j(p) = j(Uj(x | p)); hence u ∗ f ∗ x ∈ j(f ∗ Uj(x | p)). In
particular, Uj(u ∗ f ∗ x | q) ⊆ f ∗Uj(x | p) for some q, which means that Uj is computably

transparent.

Assume that j is inflationary, realized by η ∈ N. In particular, η realizes {x} _ j({x}),
so we have η ∗ x ∈ j({x}). Then, by the definition of Uj, in particular, we have p ∈ Ω

such that Uj(η ∗ x | p) ⊆ {x}, which means that Uj is inflationary.

Assume that j is idempotent, realized by µ ∈ N. In particular, µ realizes j◦j(Uj◦Uj(x |
p, η)) _ j(Uj◦Uj(x | p, η)). Note that from the definition of composition of multifunctions,

if (x | p, η) ∈ dom(Uj ◦Uj) then z ∈ Uj(x | p) implies (z | η(z)) ∈ dom(Uj). Then, for such

x and z we have Uj(z | η(z)) ⊆ Uj ◦ Uj(x | p, η) by the definition of composition. As (z |
η(z)) ∈ dom(Uj), we have z ∈ j(η(z)) by the definition of Uj and η(z) ⊆ Uj ◦ Uj(x | p, η)
by canonicity. The identity map i realizes η(z) _ Uj ◦ Uj(x | p, η), so by monotonicity,

u ∗ i ∗ z ∈ j(Uj ◦ Uj(x | p, η)). Hence, u ∗ i realizes Uj(x | p) _ j(Uj ◦ Uj(x | p, η)). By

monotonicity, u∗ (u∗i) realizes j(Uj(x | p)) _ j ◦j(Uj ◦Uj(x | p, η)). Recall that (x | p) ∈
dom(Uj) implies x ∈ j(p) = j(Uj(x | p)), and thus u ∗ (u ∗ i) ∗ x ∈ j ◦ j(Uj ◦ Uj(x | p, η)).
Hence, we obtain µ ∗ (u ∗ (u ∗ i) ∗ x) ∈ j(Uj ◦ Uj(x | p, η)). By the definition of Uj, in

particular, we have Uj(µ ∗ (u ∗ (u ∗ i) ∗ x) | q) ⊆ Uj ◦ Uj(x | p, η) for some q. This verifies

that Uj is idempotent.

5.4 Correspondence

Let us now characterize reducibility notions on extended predicates as properties for

operations on truth values. First, we extend the correspondence between m-reducibility

and r-reducibility (Proposition 3.12) to extended predicates.

Proposition 5.29. For any extended predicates f and g, an extended m-morphism

e : f → g can be thought of as an r-morphism e : jf → jg. Conversely, for any operations
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j, k : Ω → Ω, an r-morphism e : j → k can be thought of as an extended m-morphism

e : Uj → Uk.

Proof. Assume that e is an m-morphism from f to g. Then for any (x | p) ∈ dom(f)

there exists q such that g(φe(x) | q) ⊆ f(x | p). Therefore, by definition, we have x ∈ jf (p)

iff f(x | p′) ⊆ p for some p′, which implies g(φe(x) | q′) ⊆ p for some q′, iff φe(x) ∈ jg(p)

for any p ∈ Ω. This means that e realizes jf (p) _ jg(p), so e is an r-morphism from jf

to jg.

Conversely, let e be an r-morphism from j to k. Then, for any p ∈ Ω and x ∈ N˜ ,

x ∈ j(p) implies e ∗ x ∈ k(p). By definition, this means that if Uj(x | p) ↓= p implies

Uk(e ∗ x | p) ↓= p. In particular, by setting p = Uj(x | p), we get Uk(e ∗ x | p) ⊆ Uj(x | p).
This means that e is an m-morphism from Uj to Uk.

Corollary 5.30. The extended m-degrees (i.e., the m-degrees of predicates on multi-

represented spaces) and the r-degrees of operations on Ω are isomorphic.

Combining the results of this section and Section 5.2, various degree notions can be

characterized using operations on truth values. As we have seen that monotone operations

on Ω correspond to computably transparent extended predicates (Proposition 5.26 and

Theorem 5.28), which correspond to extended Weihrauch degrees (Corollary 5.16), we get

the following:

Corollary 5.31. The Heyting algebra of the Weihrauch degrees on multi-represented

spaces is isomorphic to the r-degrees of monotone operations on Ω.

Similarly, we have seen that monotone, inflationary, operations on Ω correspond to

computably transparent, inflationary, extended predicates (Proposition 5.26 and Theorem

5.28), which correspond to pointed extended Weihrauch degrees (Corollary 5.18), so we

get the following:

Corollary 5.32. The Heyting algebra of the pointed Weihrauch degrees on multi-

represented spaces is isomorphic to the r-degrees of monotone, inflationary, operations on

Ω.

We have also seen that Lawvere-Tierney topologies on Ω correspond to computably

transparent, inflationary, idempotent, extended predicates (Proposition 5.26 and Theorem

5.28), which correspond to LT-degrees (extended Turing-Weihrauch degrees; Corollary

5.24). This argument gives an alternative proof of the characterization in [53] that the

Heyting algebra of LT-degrees is isomorphic to the r-degrees of Lawvere-Tierney topolo-

gies. In other words:
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Corollary 5.33. The Heyting algebra of the Turing-Weihrauch degrees on multi-

represented spaces is isomorphic to the r-degrees of Lawvere-Tierney topologies.

The above extends the correspondence between the notions of degrees and operations

on truth values. In summary, when considering reducibility on (represented spaces over)

a relative PCA, we could only obtain correspondence for operations that preserve inter-

section, but by considering reducibility on multi-represented spaces, we have obtained the

complete correspondence (see also Table 2).

Remark. The above results give a more precise analysis of the previous correspon-

dence theorems [53] that the extended Weihraruch degrees in the sense of Bauer [6] is

isomorphic to the r-degrees of monotone operations on Ω, and that the extended Turing-

Weihrauch degrees (also called the LT-degrees in [53]) is isomorphic to the r-degrees of

Lawvere-Tierney topologies.

Remark (Joyal’s theorem). Satoshi Nakata (in private communication) pointed out

that our construction of jU can be explained in terms of topos theory. Joyal showed

that any Lawvere-Tierney topology arises as a ≤r-least topology that makes a subobject

m : R ↣ X dense; see e.g. Lee [59, Section 2.2].

In a realizability topos, a subobject of (X,∼X) can be expressed as a predicateR : X →
Ω which is strict and extensional with respect to∼X . It is known that to obtain a Lawvere-

Tierney topology on a realizability topos, we only need to consider a subobject of a multi-

represented space. That is, X above can be assumed to be a multi-represented space, in

which case R is a realizability predicate in the sense of this section. Our construction of jU

can be regarded as an interpretation of the procedure for constructing a Lawvere-Tierney

topology from a subobject R ↣ X as a relative computation with a predicate R : X → Ω

as an oracle.

To be explicit, recall from Definition 4.18 that a subobject A ↣ X is j-dense if

clj(A) ≡ X, where clj is the universal closure operator given by j. In particular, X ≤
clj(A) means that given a name of x ∈ X one can compute a name of x ∈ clj(A); that is,

one can compute a name of x ∈ A with the help of j. A name of x ∈ A is nothing but a

witness for x ∈ A, so this states that one can solve a witness-search problem for x ∈ A

with the help of j. That j is a least such topology means that j is exactly an oracle just

solving a witness-search problem for x ∈ A (uniformly in x ∈ X) but nothing more.

As a concrete example, let us consider a topology obtained from a subterminal (i.e., a

subobject of the terminal 1). A subterminal is expressed as R : 1 → Ω, i.e., it is a mass

problem R ∈ Ω = P(N˜ ), and therefore, it is predictably related to a Medvedev degree.

And it is known that an open topology can be defined as the least topology that makes

a subterminal dense. Compare this observation with Corollary 3.19.
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5.5 Realizability relative to oracle

As an application of the correspondence results in Sections 3.1 and 5.3, various notions

of “realizability relative to an oracle” can be organized in a unified manner. A specific

example of such a realizability is Lifschitz realizability (see [97, Section 4.4]), which can

be thought of as realizability relative to the multivalued oracle LLPO (the lessor limited

principle of omniscience). As suggested in the last Remark in Section 2.1, the three fun-

damental properties (computable transparency, being inflationary, and idempotence) of

multimaps are obtained by abstracting the conditions necessary for Lifschitz realizability

to realize all the axioms of fundamental theories such as HA and IZF. Based on this

observation, the author [52] has generalized the idea of Lifschitz realizability to deal with

realizability relative to any multifunctions on N˜ which is computably transparent, infla-

tionary, and idempotent (i.e., realizability relative to any Turing-Weihrauch oracle). By

our correspondence theorem, this idea is absorbed by the notion of realizability relative

to Lawvere-Tierney topologies.

One benefit of the correspondence between Lawvere-Tierney topologies j and oracles

Uj is that the internal logic of the j-sheaf topos can be analyzed by realizability relative

to the corresponding oracle. The realizability notion corresponding to a Lawvere-Tierney

topology j on the effective topos is described in Lee-van Oosten [60], but it is not written

in the context of oracle, so we shall rewrite it here in the terms of oracle. As explained

in Section 5.2, the universal computation relative to an extended predicate θ is given as

θ⅁. Here, we understand the expression θ⅁(e | z) ⊆ p to mean “When the program e

is executed with the oracle θ, all paths of nondeterministic computation that follow the

advisor z terminates and any output is a solution to p.” Or, using the terminology of

games (see Definition 5.19 and also [53]), it could be read to mean “(e | z) is a winning

Arthur-Nimue strategy in the reduction game to θ, and no matter what strategy Merlin

follows, Arthur’s final move always gives a solution to p”.

Let us now rewrite θ-realizability for arithmetical formulas introduced in Lee-van

Oosten [60] using the notion of oracle. Recalling the notation in Definition 3.2, we define

pθ ⊆ N˜ for an arithmetical formula p as follows:

(p ∧ q)θ = pθ ∧ qθ, (p ∨ q)θ = pθ ∨ qθ, (∃n.p(n))θ = {⟨m, a⟩ : a ∈ (p(m))θ}
(p _ q)θ = {e ∈ N˜ : (∀x) [x ∈ pθ → (∃z) θ⅁(e ∗ x | z) ⊆ qθ]}

(∀n.p(n))θ = {e ∈ N˜ : (∀n) (∃z) θ⅁(e ∗ n | z) ⊆ (p(n))θ}

Then, we say that p is θ-realizable if p has a computable θ-realizer, i.e., pθ ∩ N ̸= ∅.
This is exactly the same as the definition in Lee-van Oosten [60], but considering the

meaning of θ⅁(e | z) ⊆ p mentioned above, it is persuasive that this is a very natural

definition as a realizability relative to the oracle θ.
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As we saw in Section 5.2, if j is the Lawvere-Tierney topology corresponding to θ⅁,

then

x ∈ j(p) ⇐⇒ (∃z) θ⅁(x | z) ⊆ p(5.1)

holds, so the j-transformation (−)j corresponding to Lee-van Oosten’s θ-realizability can

be written as follows:

(p ∧ q)j = pj ∧ qj, (p ∨ q)j = pj ∨ qj, (∃n.p(n))j = ∃n.(p(n))j
(p _ q)j = pj _ j(qj) (∀n.p(n))j = ∀n.j((p(n))j)

On the other hand, generalized Lifschitz realizability in [52], expressed in terms of the

corresponding Lawvere-Tierney topology, is given as follows:

(p ∧ q)j = pj ∧ qj, (p ∨ q)j = j(pj ∨ qj), (∃n.p(n))j = j(∃n.(p(n))j)
(p _ q)j = pj _ qj (∀n.p(n))j = ∀n.(p(n))j

That a generalization of Lifschitz realizability would result in such a definition is also

pointed out in Rathjen-Swan [79]. Either way, they are known to behave very well, the

latter being the Gödel-Gentzen-style j-translation and the former closer to the Kuroda-

style j-translation; see [93]. Realizability relative to any extended predicate oracle based

on the latter can also be easily defined via the equivalence (5.1).

Some of the many advantages of treating j-translation as realizability relative to or-

acle are that oracles are far easier to make concrete examples of than logical operations,

and also allow the use of ideas and techniques from computability theory. One trivial

example is hyperarithmetical realizability (and its relatives), but another, slightly more

nontrivial examples are realizability relative to multimaps (i.e., Turing-Weihrauch ora-

cles), which are useful for separating various nonconstructive principles in constructive

reverse mathematics [52].

Indeed, the author’s goal in [52] was to solve a problem of separating the strengths

of specific nonconstructive principles in constructive reverse mathematics presented by

Ishihara-Nemoto (a problem of separating some principles that are equivalent under the

countable choice in the absence of the countable choice), which was actually accomplished

using the idea mentioned above. In this sense, our work is not just an abstract theory,

but has concrete applications.

And one of the benefits of generalizing realizability to any extended predicate oracle

(not just multivalued oracle) is that it can handle realizability that cannot be expressed

in the framework of a multivalued oracle, such as random realizability. For example, the

oracle ProbErrorε introduced in Kihara [53], which corresponds to probabilistic computa-

tion, is an extended predicate but not a multivalued oracle. One of the notions of random
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realizability has also been introduced in Carl et al. [19]. The exact connection between

this and ProbErrorε-realizability is not clear, since Carl et al.’s random realizability has

a slightly convoluted form, but they seem to be deeply related.

Question 5. Find out the exact relationship between ProbErrorε-realizability and

Carl et al.’s random realizability.

Also, extended oracles, rather than multivalued oracles, encompass topologies that

induce classical logic, such as the double negation topology. This may allow us to in-

terpret some of the activities in classical reverse mathematics [86] in our context. The

familiar definition of Turing-Weihrauch reducibility is due to Hirschfeld-Jockusch [46],

whose aim was to give a game-theoretic characterization of the implication relation be-

tween Π1
2 principles over the base system RCA of classical reverse mathematics; see also

[30]. As a special case, one of the objects of their consideration is the preorder P ≤ω Q

for Π1
2 principles P and Q, which means that every ω-model of RCA+ Q is a model of P.

Note that, to characterize the ω-model reducibility ordering ≤ω, the Turing-Weihrauch

reduction game cannot actually be used as is, but instead its non-uniform version was

used ([46, Proposition 4.2]). As mentioned in the last Remark in Section 5.1, the use of

extended oracle makes it possible to deal with the notion of non-uniform computability.

In our terminology, the ω-model reducibility ordering can be expressed as follows:

Observation 5.34. P ≤ω Q if and only if P ≤LT Q ⊔ DNEN, where ⊔ is the join in

the Weihrauch lattice (over the Kleene-Vesley algebra).

This also gives an embedding of the ω-model degrees of Π1
2 principles into the poset of

the Lawvere-Tierney topologies on the Kleene-Vesley topos. However, the topology corre-

sponding to DNEN is not Boolean, so there does not seem to be a perfect correspondence

in the context of internal logic.

There are several other notable recent studies on the application of Lawvere-Tierney

topology to logic. On the relation between Lawvere-Tierney topology and intuitionistic

arithmetic, a significant work has recently been done by Nakata [71], which deserves

serious attention.

6 Oracles in descriptive set theory

In this section, let us give rich concrete examples of computably transparent maps in the

Kleene-Vesley algebra or Kleene’s second algebra. Such concrete examples are obtained

from the theory of hierarchies. One of the main aims of classical computability and

descriptive set theory is to analyze the hierarchical structure of definability; for example,
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the lowest level of the hierarchy is definability through arithmetical quantification (i.e.,

iteration of Turing jumps), but the idea was extended to infinitary logic (with well-founded

syntax trees), and then to infinite nesting of quantifiers (which deals with formulas with

ill-founded syntax trees), which gave rise to a mechanism to transform a given generalized

quantifier into a more complex one (see e.g. [49]), etc.; see also [44].

Of course, these studies dealt with infinitary objects, but one of the major achieve-

ments of classical computability and descriptive set theory was the uncovering of a series

of hidden computability-like structures of such infinitary notions. This field, called gener-

alized recursion theory, emerged as a synthesis of such infinitary computation theories and

flourished in the last century (see e.g. Hinman [44, Part C] and Sacks [81, Parts B–D]).

For example, admissible recursion theory (Kripke-Platek set theory) is a major part of

the theory. A related concept is Spector pointclass, around which the theory of pointclass

was developed in descriptive set theory (see e.g. [68]).

In these classical theories, concrete pointclasses corresponding to various types of

definability have been studied, providing a wealth of concrete examples. In this section,

we shall see that from each pointclass that is good enough, we can obtain a computably

transparent map and a relative pca.

6.1 Pointclass and measurability

From now on, we connect the notions we have dealt with so far with those that have

been studied in depth in classical descriptive set theory. The key idea here is to create

a function concept from a set concept. For example, the notion of a continuous function

is automatically obtained by defining a topology on a set X, i.e., a family of open sets

OX ⊆ P(X). When a family OX of open sets in X is specified, the family BX ⊆ P(X)

of Borel sets is also defined as the smallest σ-algebra including OX , which yields Borel

measurable functions. In descriptive set theory, this kind of idea is generalized as follows.

Definition 6.1 (see e.g. [68]). Let C be a class of sets. If an assignment X 7→ ΓX ⊆
P(X) for each X ∈ C is given, such an assignment Γ = (ΓX)X∈C is called a pointclass.

The most commonly used pointclasses in descriptive set theory and computability

theory are Σi
n, Π

i
n, ∆

i
n, and their boldface versions (see [68] and also below). However,

it should be noted that there are a number of other natural pointclasses that have been

studied in great depth as mentioned above.

In descriptive set theory, C usually consists of (quasi-)Polish spaces and its subspaces.

Under this setting, each X ∈ C can be thought of as either a topological space or a repre-

sented space (see Example 4.2). Many natural pointclasses have good closure properties.
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Definition 6.2. A boldface pointclass is a pointclass Γ which is closed under continu-

ous substitution; that is, for any continuous map f : X → Y , U ∈ ΓY implies f−1[U ] ∈ ΓX .

Similarly, a lightface pointclass is a pointclass Γ which is closed under computable substi-

tution; that is, for any computable map f : X → Y , U ∈ ΓY implies f−1[U ] ∈ ΓX .

In other words:

• A boldface pointclass over C is a subfunctor of the powerset functor P : Cop →
Set, where C is a full subcategory of the category Top of topological spaces and

continuous maps.

The above C can also be a full subcategory of the category of multi-represented spaces

and continuous maps. A similar characterization for a lightface pointclass is also given:

• A lightface pointclass over C is a subfunctor of the powerset functor P : Cop →
Set, where C is a full subcategory of the category of multi-represented spaces and

computable maps.

Most pointclasses considered in descriptive set theory are either lightface or boldface.

The following representable pointclasses (representable subfunctors) are also important

in synthetic descriptive set theory.

Example 6.3 (Representable pointclass). Recall from Example 4.3 that the hyper-

space O(X) of open sets in X can be identified with the function space C(X, S), where
S is the Sierpiński space. Thus, the pointclass of open sets is exactly the representable

functor C(−,S).
In general, let U be a transparent map. Then A ⊆ X is said to be U-open if A ∈ OU

X ;

that is, A ∈ C(X,U(S)) (see Example 4.9). Then OU = (OU
X)X∈Rep forms a boldface

pointclass. The core idea of synthetic descriptive set theory seems to attempt to refor-

mulate the theory based on the observation that most natural pointclasses in descriptive

set theory are representable. For the details, see [75, 24].

Perhaps this idea goes back at least to Longley [62, Section 4.1.2], which is to think

the representable functor C(−,Σ) for any pre-dominance Σ, where a pre-dominance is a

two-point assembly Σ with a distinguished computable element ⊤ ∈ Σ [62, 70]. In this

case, a subset A ⊆ X with A ∈ C(X,Σ) is usually called a Σ-subobject. If OΣ
X is the set

of all Σ-subobjects of X, then OΣ = (OΣ
X)X∈MultRep forms a boldface pointclass.

Hereafter, we assume that C is closed under binary product. For A ⊆ I × X, by Ae

we denote the e-th section {x ∈ X : (e, x) ∈ A} for each e ∈ I. An important pointclass

in descriptive set theory is a pointclass that can be coded or represented.
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Definition 6.4 (see e.g. [68]). Let (ΓX)X∈C be a pointclass. Then a set G ∈ ΓI×X

is ΓX-universal if for any A ∈ ΓX there exists e ∈ I such that A = Ge (the e-th section

of G). A pointclass Γ is I-parametrized if for any X ∈ τ there exists a ΓX-universal set

GX ∈ ΓI×X .

In descriptive set theory, N- and NN-parametrized pointclasses play important roles.

For instance, Σi
n and Πi

n are N-parametrized, and Σ˜ i
n and Π˜ i

n are NN-parametrized.

Observation 6.5. If Γ is I-parametrized, then for each X ∈ C one can consider ΓX

as an I-represented space.

Proof. The map GX
• : I → ΓX defined by p 7→ GX

p is a total I-representation of

ΓX .

Thus, when parametrized, one can think of a pointclass as an indexed family of (total)

represented spaces, and in many cases, indices are also represented spaces; that is, it

often yields a functor Repop → Rep. See also Gregoriades et al. [41] for an explanation

of descriptive set theoretic notions using represented spaces.

For such represented spaces, we can discuss computability and continuity for functions

on them, but of particular importance are computability and continuity of evaluation

maps, evalΓ : ΓX×Y ×X → ΓY , defined by (A, x) 7→ Ax, where recall that Ax is the x-th

section of A. Note that if Γ is a representable pointclass OΣ as in Example 6.3 then evalΓ

is computable by the property of the exponential object ΣX ≃ OΣ
X . However, in general,

evaluation maps are not always continuous, in which case we change representations by

replacing a universal set with another one.

Before going into the details of this, we introduce some basic notions. The first is the

relativization of pointclass (see also [68, Section 3H]).

Definition 6.6. For a pointclass Γ and an oracle ε ∈ NN, define Γε
X as the collection of

ε-th sections (i.e., sets of the form Pε) of some P ∈ ΓNN×X . Then define Γ˜ X =
∪

ε∈NN Γε
X .

For instance, Σ˜ 0
1 is the pointclass consisting of open sets, and ∆˜ 1

1 is the pointclass

consisting of Borel sets.

Below let C0 be the smallest collection of sets that contains N and NN, and is closed

under binary product, and let C be the collection of all Polish spaces. The following fact

is known as smn theorem or good parameterization lemma:

Fact 6.7 (see Moschovakis [68, Lemma 3H.1]). Let Γ be an N-parametrized lightface

pointclass. Then there is an NN-parametrization G for Γ satisfying the following:

1. For any set P ∈ ΓX there exists a computable element ε ∈ NN such that P = Gε.
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2. For any X ∈ C0 and Y ∈ C, the evaluation map evalΓ : Γ˜ X×Y × X → Γ˜ Y is

computable with respect to the representations induced from G.

This follows from Moschovakis [68, Lemma 3H.1] because evalΓ : Γ˜ X×Y ×X → Γ˜ Y is

computable if and only if there exists a computable function S which, given a code ε of

A ∈ Γ˜ X×Y and x ∈ X, returns a code S(ε, x) of Ax ∈ Γ˜ Y . Assume that all pointclasses

mentioned from here on are given such parametrization.

A pointclass Γ is adequate if it is a lightface pointclass which contains all computable

sets, and is closed under ∧, ∨, and bounded quantifiers; see [68, Section 3E] for the

details. For example, Σi
n,Π

i
n,∆

i
n are adequate. Good parametrization lemma implies the

following uniform closure theorem.

Fact 6.8 (see Moschovakis [68, Theorem 3H.2]). Let Γ be an N-parametrized adequate

pointclass. If Γ is closed under binary intersection, then ∩ : Γ˜ X×Γ˜ X → Γ˜ X is computable

for any X ∈ τ . The same is true for binary union, projection, etc.

Definition 6.9. Let Γ be a pointclass. For a set X ∈ C and a topological space Y , a

function f : X → Y is Γ-measurable if f−1[A] ∈ ΓX for any open set A ⊆ Y .

For a transparent map U , Pauly-de Brecht [75, Corollary 11] showed that f : X → Y

is U -continuous (in the sense of Definitions 2.1 and 4.5) if and only if it is OU -measurable

whenever Y is U -admissible.

A Σ-pointlcass is a pointclass containing all Σ0
1 sets (i.e., c.e. open sets), and is closed

under trivial substitution, ∧, ∨, bounded quantifiers, existential quantifiers on N; see [68,
Section 3E] for the details. For example, Σi

n,Π
1
n,∆

1
n are Σ-pointclasses. By the uniform

closure theorem, one may assume that it is uniformly closed under these operations.

Proposition 6.10. Let Γ be an N-parametrized adequate Σ-pointclass, X ∈ τ , and

Y be a Polish space. Then, a function f : X → Y is Γ˜ -measurable if and only if the

preimage map f−1[·] : OY → Γ˜ X is continuous; that is, there exists a continuous function

which, given a code of an open set U ⊆ Y , returns a code of f−1[U ] ∈ ΓX .

Proof. The forward direction is obvious. For the backward direction, let (BY
n )n∈N be

a countable basis of Y . For each n ∈ N, since f is Γ˜ -measurable, we have f−1[BY
n ] ∈ Γ˜ X ,

so let βn be its code. Then define β ∈ NN by β(⟨n,m⟩) = βn(m). Each code of an open

set U ⊆ Y is given as α such that U =
∪

n∈NB
Y
α(n). Then x ∈ f−1[U ] if and only if

there exists n ∈ N such that (βα(n), x) ∈ GNN×X . As Γ˜ is closed under substitution by

n 7→ βα(n) and existential quantifiers on N, the latter set is in Γ˜ . Thus, by the uniform

closure theorem (Fact 6.8), one can continuously obtain a code of f−1[U ].
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By Γ˜ (X, Y ) we denote the set of all Γ˜ -measurable functions from X into Y . By

Proposition 6.10, one can consider Γ˜ (X,Y ) as a represented space, where a code of f ∈
Γ˜ (X,Y ) is given by a code of the continuous preimage map f−1[·] ∈ C(OY ,Γ˜ X). This idea

can be extended to partial functions. A partial function f :⊆ X → Y is Γ˜ -measurable

if for any open set U ⊆ Y there exists a Γ set A such that f−1[U ] = A ∩ dom(f). It is

easy to see that Proposition 6.10 also holds for partial functions, by taking a code of An

such that f−1[BY
n ] = An ∩ dom(f) instead of βn. Thus the set Γ˜ (⊆ X, Y ) of all partial

Γ˜ -measurable functions from X into Y can also be (multi-)represented.

Proposition 6.11 (uniform measurability). Let Γ be an N-parametrized adequate Σ-

pointclass. Then the map, preim : Γ˜ (X, Y ) × OY → Γ˜ X , defined by (f, U) 7→ f−1[U ] is

computable.

Proof. Define frame : Γ˜ (X,Y ) → C(OY ,ΓX) by f 7→ f−1[·]. By definition, the

identity map on the codes witnesses that frame is computable. Consider the evaluation

map, ev : C(OY ,Γ˜ X) × OY → Γ˜ X , which is computable. Then one can easily check

preim = ev ◦ (frame × id), which is computable as it is the composition of computable

maps.

A partial function f : ⊆ X → Y is Γ-computable if f is a computable element in

Γ˜ (⊆ X,Y ). A Γ-computable function g :⊆ NN × X → Y is universal if for any partial

Γ˜ -measurable function f :⊆ X → Y there exists ε ∈ NN such that f(x) = g(ε, x) for any

x ∈ dom(f).

Proposition 6.12 (universal function). Let Γ be an N-parametrized adequate Σ-

pointclass. Then, for any X, Y ∈ τ , there exists a universal Γ-computable function

φΓ :⊆ NN ×X → Y .

Proof. For p ∈ NN, let φΓ
p be the partial Γ˜ -measurable function from X to Y coded

by p. Then define φΓ :⊆ NN ×X → Y by φΓ(p, x) = φΓ
p (x). By Proposition 6.11, given a

code u of an open set U ⊆ Y and a code p of a Γ˜ -measurable function, one can compute

a code r(u, p) of (φΓ
p )

−1[U ] ∈ Γ˜ X . Hence, we get (φΓ)−1[U ] = {(p, x) : (r(u, p), x) ∈ GX}.
As Γ is closed under computable substitution, A = {(u, p, x) : (r(u, p), x) ∈ GX} is in

ΓNN×NN×X . By Fact 6.7, A has a computable code e, so by good parametrization lemma

(Fact 6.7), one can compute a code S(e, u) of Au = ψ−1[U ]. Therefore, u 7→ S(e, u)

witnesses that U 7→ (φΓ)−1[U ] is computable. Hence, φΓ a computable element in Γ˜ (⊆
NN ×X,Y ). The universality of φΓ is obvious.

Proposition 6.13 (computable transparency). Let Γ be an N-parametrized adequate

Σ-pointclass. Then, the map, comp : Γ˜ (X,Y ) × C(Y, Z) → Γ˜ (X,Z), defined by (f, g) 7→
g ◦ f is computable.
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Proof. By Proposition 6.11, the maps (g, U) 7→ g−1[U ] : C(Y, Z) × OZ → OY and

(f, V ) 7→ f−1[V ] : Γ˜ (X,Y )× OY → Γ˜ X are computable. Hence, (f, g, U) 7→ (g ◦ f)−1[U ]

is also computable. By currying, the map (f, g) 7→ λU.(g ◦f)−1[U ] : Γ˜ (X,Y )×C(Y, Z) →
C(OZ ,Γ˜ X) is also computable. In other words, given a code (f, g), one can effectively

find a code of the map U 7→ (g ◦ f)−1[U ], but the latter code is the same as the code of

g ◦ f .

Let us recall that computable transparency is an abstraction of the notion of a uni-

versal oracle machine. Thus, as expected, one can see that the universal function φΓ is

computably transparent.

Corollary 6.14. Let Γ be an N-parametrized adequate Σ-pointclass. Then the uni-

versal Γ-computable function φΓ in Proposition 6.12 is computably transparent in the sense

of Definition 2.1.

Proof. First, φΓ has a computable code p. By Proposition 6.13, given a code c of a

continuous function f , one can effectively find a code r(p, c) of f ◦ φΓ, which means that

f ◦ φΓ(x) = φΓ(r(p, c), x). Clearly, F : x 7→ (r(p, c), x) is continuous, and moreover, one

can effectively find its code by using the information of c (where recall that p and r are

computable); hence, f 7→ F is computable. Consequently, φΓ is computably transparent.

In conclusion, many pointclasses that appear in descriptive set theory can be thought

of as oracles. Note that φΓ is always inflationary since an adequate pointclass Γ always

contains all computable sets (so all computable functions are Γ-computable). Moreover,

idempotence of φΓ corresponds to the substitution property of Γ (i.e., being closed under

partial Γ-computable substitution; see [68, Section 3G] for the precise definition), and an

adequate Σ-pointclass having the substitution property is called a Σ∗-pointclass (see [68,

Section 7A] and also below).

6.2 Pointclass algebra

In this section, we see that Γ-measurability for a pointclass Γ having a certain closure

property always yields a partial combinatory algebra (recall the definition from Section

4.1).

Explicitly, put N˜ = NN, and let N ⊆ N˜ be all computable elements. Then, define

a ∗Γ b by φΓ
a(b), where φ

Γ is defined as in Proposition 6.12. Roughly speaking, the left

∗Γ-application by a computable element e ∈ N corresponds to a partial Γ-computable

function, and the left ∗Γ-application by an element x ∈ N˜ corresponds to a partial Γ˜ -
measurable function.
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A pointclass Γ is said to have the substitution property if it is closed under partial Γ-

computable substitution (see Moschovakis [68, Section 3G] for the details). An adequate

Σ-pointclass having the substitution property is called a Σ∗-pointclass (see also [68, Section

7A]).

Observation 6.15 (see also [52]). Let Γ be an N-parametrized Σ∗-pointclass. Then

(N,N˜ , ∗Γ) forms a relative PCA.

Proof. As is well known, it suffices to construct k and s. Below we abbreviate a ∗Γ b
as a ∗ b. To construct k, as the projection is Γ-computable, so there is π0 such that

π0 ∗ ⟨a, b⟩ = a. Then, by smn theorem (Fact 6.7), we have S(π0, a) ∗ b = π0 ∗ ⟨a, b⟩ = a.

Moreover, a 7→ S(π0, a) is Γ-computable, so there exists k ∈ N such that k ∗ a = S(π0, a).

Hence, k ∗ a ∗ b = S(π0, a) ∗ b = a.

To construct s, since φΓ in Proposition 6.12 is Γ-computable, and Γ has the substitution

property, the function (x, y, z) 7→ φΓ(φΓ(x, z), φΓ(y, z)) = x ∗ z ∗ (y ∗ z) is Γ-computable,

so let e ∈ N be an index of such a function. By smn theorem (Fact 6.7), we have

S(e, x, y) ∗ z = e ∗ (x, y, z), and (x, y) 7→ S(e, x, y) is Γ-computable via some index d ∈ N.

By smn theorem again, we have S(d, x)∗y = d∗ (x, y), and x 7→ S(d, x) is computable, so

let s ∈ N be its index. Then s ∗ x ∗ y ∗ z = S(d, x) ∗ y ∗ z = d ∗ (x, y) ∗ z = S(e, x, y) ∗ z =
x ∗ z ∗ (y ∗ z). Consequently, (N,N˜ , ∗Γ) is a relative PCA.

In particular, we obtain a cartesian closed category whose morphisms are Γ˜ -measurably

realizable functions (and even a topos, usually called a realizability topos; see e.g. van

Oosten [97]). If Γ = Σ0
1, the induced lightface PCA is equivalent to Kleene’s first algebra

(associated with Kleene’s number realizability), and the boldface PCA is Kleene’s second

algebra (associated with Kleene’s functional realizability). The relative PCA induced from

Γ = Σ0
1 is known as Kleene-Vesley’s algebra, cf. [97].

In general, as a Spector pointclass (see Moschovakis [68, Lemma 4C]) is a Σ∗-pointclass,

many infinitary computation models yield (relative) PCAs. The pointclass Π1
1 is the best-

known example of a Spector pointclass, and the induced lightface PCA obviously yields

hyperarithmetical realizability; see e.g. [7, Example VI.3.3]. For the boldface PCA, the

associated total functions are exactly the Borel measurable functions. Bauer [5] also

studied the PCA (and the induced realizability topos) obtained from infinite time Turing

machines (ITTMs).

In conclusion, thus, a large number of natural pointclasses and their associated mea-

surable functions that appear in descriptive set theory yield PCAs, and as well as various

toposes.
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7 Conclusion

In this article, we presented new perspectives on oracles. This makes it possible to un-

derstand various oracle computations or reducibility notions, which have been studied in

computability theory in the past, in the context of synthetic descriptive set theory and

realizability topos theory. For example, in descriptive set theory, climbing various hier-

archies (the Borel hierarchy, the C-hierarchy, the R-hierarchy, the projective hierarchy,

etc.) now can be understood as giving oracles in the Kleene second algebra.

For another example, as a benefit of understanding oracles as operations on truth-

values, it directly links “oracle computations” to “non-constructive axioms”, and so we

can expect new types of applications of oracle computation to (constructive) reverse math-

ematics. One important difference from the old applications of oracle computation to clas-

sical reverse mathematics is that our new idea allows even formulas outside the framework

of second-order arithmetic to be analyzed in the context of oracle computation. This is

because, if an operation on truth-values is a Lawvere-Tierney topology, then it yields a

sheaf topos [63], whose internal logic naturally allows one to deal with formulas outside

the framework of second-order arithmetic; Bauer’s result [5] on the ITTM-realizability

topos is one such example.

One last point: A new bridge has now been built connecting degree theory, descriptive

set theory, and realizability topos theory. By crossing this bridge, our future goal is to

bring modern ideas and techniques of degree theory to realizability topos theory and

related areas (and vice versa).
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