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Abstract. Kierstead showed that every computable marriage problem has a computable matching under the
assumption of computable expanding Hall condition and computable local finiteness for boys and girls. The
strength of the marriage theorem reaches WKL0 or ACA0 if computable expanding Hall condition or computable
local finiteness for girls is weakened. In contrast, the provability of the marriage theorem is maintained in RCA even
if local finiteness for boys is completely removed. Using these conditions, we classify the strength of variants of
marriage theorems in the context of reverse mathematics. Furthermore, we introduce another condition that also
makes the marriage theorem provable in RCA0, and investigate the sequential and Weihrauch strength of marriage
theorems under that condition.

1. Introduction

1.1. Summary. A subset R of the product B × G of two sets can be thought of as a multi-valued function (a set-
valued function, or a bipartite graph), and written as R : B ⇒ G. Given a multi-valued function R between countable
sets B and G, we discuss whether it has a single-valued injective selection or not. Such a problem is called a marriage
problem. Hall [11] showed that the marriage problem for a multi-valued function R : B ⇒ G is true whenever R
is locally finite (i.e., R(b) has at most finitely many values for every b ∈ B) and fulfills the Hall condition (i.e., the
cardinality of R[X] is not less than that of X for every finite set X ⊆ B). However, in the early age of recursive graph
theory (cf. [9]), Manaster and Rosenstein [18] found that such a multi-valued function need not have a single-valued
computable injective selection, even if it has a computable graph and its local finiteness is computably confirmed. To
render the marriage theorem computable, Kierstead [17] introduced the notion of expanding Hall condition, which
indicates that the difference between |R[X]| and |X| tends to infinity as |X| tends to infinity, where X ranges over all
finite subsets of B. Then, he found that R has a single-valued computable injective selection whenever the graph of R
is computable, the local finiteness of R is computably confirmed and the expanding Hall condition for R is computably
witnessed.

Concepts such as local finiteness and the Hall condition can be thought of as width conditions for Π0
1 classes, because

the set of all injective selections of a multi-valued function forms a Π0
1 class in GB ≃ ωω ([4]). For instance, the local

finiteness is known simply as compactness, and its computable version is known as recursive boundedness. Based
on this observation, in the context of reverse mathematics, Hirst [13] (see also [12]) showed that the finite marriage
theorem is provable in RCA0, and that the infinite marriage theorem is equivalent to ACA (equivalently, König’s
lemma) over RCA0. Moreover, he showed that the infinite marriage theorem under the assumption of computable
local finiteness is equivalent to WKL (König’s lemma for binary trees) over RCA0.

Our aim is to clarify the relationship between such width conditions for Π0
1 classes (problems) and the complexity of

elements contained in them (solutions to them) in the context of reverse mathematics. To achieve this, in section 2 we
investigate the strength of 24 variations (except 3 false variations) of marriage theorems obtained by combining three
smallness conditions (namely, no local finiteness (B,G), local finiteness (B′,G′), and highly recursiveness (B′′,G′′))
and three largeness conditions (namely, Hall condition (H), expanding Hall condition (H′), and computable expanding
Hall condition (H′′)).

The computable expanding Hall condition (H′′) guarantees that every large number of inputs has sufficiently
large number of outputs in order to make a computable marriage problem have a computable solution; however,
there is another condition that implies this. In section 3, we introduce a new condition called constant bounded
Hall condition (Hcb), which requires that every finite set of inputs has few extra outputs. If a computable marriage
problem fulfills this condition, then this problem will have a “non-uniformly” computable solution. In the practice
of reverse mathematics, the sequential versions of Π1

2 theorems, which expects to solve infinitely many instances of
a particular problem simultaneously, have been investigated in order to reveal the necessity of the non-uniformity of
their proofs in RCA0. For instance, the intermediate value theorem is provable in RCA0 but its sequential version is
equivalent to WKL [19]. We show in Section 3 that all of the marriage theorems with the constant bounded Hall
condition (Hcb) are “non-uniformly” provable in RCA0, while some of their sequential versions are equivalent to WKL
or ACA over RCA0.

The sequential strength roughly suggests the non-uniformity level of computable principles. However, even if a
Π1

2 theorem τ is provable in RCA and its sequential version Seq(τ) is equivalent to WKL, it is considerably short of
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determining the exact computational strength of τ . In Section 4, we employ the notion of Weihrauch reducibility to
further analyze the computational strength of marriage theorems. Our investigation demonstrates the close connection
between sequential reverse mathematics [14, 7, 6] and Brattka-Gherardi style reverse mathematics [2, 3] via Weihrauch
reducibility.

The reader is referred to Simpson’s book [19] for basic knowledge of reverse mathematics including techniques for
encoding mathematical statements in second order arithmetic. See [10] for the basic discussions on cardinality in
weak first order arithmetic and the first order hierarchy.

1.2. Basic Terminology and Notation. Throughout this paper, for sets B and G, we often identify each bipartite
graph R(B,G) with a multi-valued function R ⊆ B × G defined by R(b) = {g ∈ G : (b, g) ∈ R}. In addition, when
the underlying sets B and G of a bipartite graph R(B,G) are clear from the context, we drop B,G and denote the
bipartite graph just as R to avoid the notational complexity. In the graph theoretic terminology, each element of B
and G is called “vertex”, and each element (b, g) of R is called “edge”. One can think of B and G as the set of boys
and girls, respectively. Then (b, g) ∈ R is regarded as that boy b knowing girl g.

For a function f : B → G and sets X ⊆ B and Y ⊆ G, let f [X] and f−1[Y ] be the image of X and the preimage of
Y under f , and dom(f) and rng(f) be the domain and the range of f . We also use the same notation for a multi-valued
function R ⊆ B×G. That is, R[X] and R−1[Y ] denote {g ∈ G : (∃b ∈ X) g ∈ R(b)} and {b ∈ B : (∃g ∈ Y ) g ∈ R(b)}
respectively. In addition, by dom(R) and rng(R) we mean {b ∈ B : R(b) ̸= ∅} and R[B] respectively. Given
Z ⊆ R, by R − Z we denote the bipartite graph (multi-valued function) with dom(R − Z) = dom(R) \ dom(Z) and
(R − Z)(b) := R(b) \ rng(Z) for every b ∈ dom(R − Z). Given V ⊆ B ∪G, by R − V we denote the bipartite graph
with dom(R − V ) = dom(R) \ (V ∩ B) defined by (R − V )(b) = R(b) \ (V ∩ G) for every b ∈ dom(R − V ). We
denote a sequence by ⟨·⟩. For a (code of) sequence s, lh(s) denotes the length of s, si denotes the i-th element of s
for i < lh(s), and s⌢⟨t⟩ denotes the concatenation of s and ⟨t⟩. C∗ is the set of all finite sequences of the elements
of a set C. For a given set B, X⊂finB denotes that X is a (code of) finite subset of B. Let SR(X) := |R[X]| − |X|
for X⊂finB.

We recall that RCA0 consists of basic axioms for arithmetic, the Σ0
1 induction scheme and the ∆0

1 comprehension
scheme, WKL0 consists of RCA0 and WKL (weak König’s lemma), and ACA0 consists of RCA0 and ACA (the arith-
metical comprehension scheme). (See [19] for the formal definitions.) In addition, Σ0

n-IND denotes the Σ0
n induction

scheme and RCA denotes the extension of RCA0 with the full second order induction scheme.

1.3. Main Results. First, we state the precise definition of each notion in RCA0. A bipartite graph R(B,G) is
B-locally finite if |R[b]| < ∞ for all b ∈ B. The graph is B-highly recursive or computably B-locally finite if there
is a function f : B → N such that f(b) = |R[b]| for all b ∈ B. The notion of being G-local finiteness and G-highly
recursiveness are defined in the same manner. The graph R(B,G) satisfies the Hall condition if |R[X]| ≥ |X| holds
for all X⊂finB; it satisfies the expanding Hall condition if it satisfies the Hall condition, and, for every n ∈ N, there is
m ∈ N such that the difference SR(X) = |R[X]| − |X| is not less than n for all X⊂finB such that |X| ≥ m. If there is
a function in RCA0 mapping each n to such an m, then we say that R(B,G) satisfies the computable expanding Hall
condition. A solution, a matching or an injective selection of R(B,G) is an injective single-valued function M ⊆ R,
i.e., an injection M : B → G with M(b) ∈ R(b). Hereafter, we use the following notation:

• X : no local finiteness for X, for X ∈ {B,G}.
• X′ : X-locally finite, for X ∈ {B,G}.
• X′′ : X-highly recursive, for X ∈ {B,G}.
• H : Hall condition.
• H′ : expanding Hall condition.
• H′′ : computable expanding Hall condition.

Statement (B
(·)
H(·)G

(·)-M). If a bipartite graph R(B,G) satisfies B(·), G(·), and H(·), then R(B,G) has a solution.

We investigate the strength of all possible marriage theorems having the above form. Using this terminology, we
can rephrase the result of Hirst [13] as follows: The statement B′

HG-M is equivalent to ACA, and B′′
HG-M is equivalent

to WKL over RCA0. Furthermore, Kierstead [17] showed that B′′
H′′G′′-M holds effectively. Now we note that the Hall

condition has Π0
2 form but it can be written as a Π0

1 formula under the assumption of being B-highly recursive. Thus,
we can verify Kierstead’s proof in our base system RCA0 with the Σ0

1 induction scheme (which enable us to carry out
Π0

1 induction [19, Corollary II.3.10]). Hence, B′′
H′′G′′-M is provable in RCA0. Furthermore, the sequential version of

B′′
H′′G′′-M is also provable in RCA0 by imitating the proof.
Our results in Section 2 are summarized in Table 1. Consequently, we find that the two conditions G′′ and H′′ are

necessary and sufficient for a computable marriage problem to have a computable solution. Except in these cases,
G(·) and H(·) do not affect the strength of marriage theorems, and only condition B′′ is necessary and sufficient for a
marriage theorem to be provable in WKL0.
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Hall condition
Expanding
Hall condition

Recursive expanding
Hall condition

ACA0 ∗ BH′G-M BH′′G-M
∗ BH′G′-M BH′′G′-M
∗ BH′G′′-M BH′′G′′-M ⊣ RCA0 + IΣ0

3

B′
HG-M [13] B′

H′G-M B′
H′′G-M

B′
HG

′-M B′
H′G′-M B′

H′′G′-M
B′

HG
′′-M B′

H′G′′-M B′
H′′G′′-M ⊣ RCA0 + IΣ0

3

WKL0 B′′
HG-M [13] B′′

H′G-M B′′
H′′G-M

B′′
HG

′-M B′′
H′G′-M B′′

H′′G′-M
B′′

HG
′′-M B′′

H′G′′-M B′′
H′′G′′-M ⊣ RCA0 ([17])

Table 1. The strength of marriage theorems (∗ : false)

ACA0 Seq(B′
Hcb

G-M) Seq(B′′
Hcb

G′-M) Seq(B′′
Hcb

G′′-M)

WKL0 Seq(B′′
Hcb

G-M) Seq(B′′
Hcb

G′-M) Seq(B′′
Hcb

G′′-M)

RCA0

Table 2. The sequential strength of constant bounded marriage theorems, which are provable in RCA0

On the other hand, already mentioned in Subsection 1.1, there is another approach to make a computable marriage
problem have a computable solution. As an extreme case, if the Hall condition holds and each boy knows at most
one girl, then it obviously has a computable solution. Based on this observation, we introduce another kind of Hall
condition, which requires that boys have few extra acquaintances. A bipartite graph R(B,G) satisfies the constant
bounded Hall condition if there exists k such that for all X⊂finB, |X| ≤ |R[X]| ≤ |X|+ k holds. We use the symbol
Hcb for the constant bounded Hall condition. Our results in Section 3 are summarized in Table 2. Summarizing, a
marriage theorem with condition Hcb is uniformly computable if and only if it includes G′′.

2. Marriage Theorems with Expanding and Recursive Expanding Hall Condition

2.1. Reversals. Kierstead [17, Theorem 5] showed that B′′
H′G′′-M does not hold in the least ω-model of RCA0, while

Hirst [13, Theorem 2.3] showed that it is provable in WKL0. The next lemma means that it is actually equivalent to
WKL over RCA0.

Lemma 2.1. RCA0 ⊢ B′′
H′G′′-M → WKL, that is, the following assertion implies WKL over RCA0: If R(B,G) is a

bipartite graph which is B,G-highly recursive and satisfies the expanding Hall condition, then R(B,G) has a solution.

Proof. We extend Kierstead’s proof of [17, Theorem 5] to show this lemma. We reason in RCA0. It suffices to separate
the range of disjoint injections, which is equivalent to WKL over RCA0 ([19, Lemma IV.4.4]). Let f, g : N → N be given
injections with pairwise disjoint ranges. The basic idea of the proof is to construct infinitely many disjoint marriage
problems such that the solution of the i-th problem indicates whether i is in rng(f) or rng(g). That is, the bipartite
graph R(B,G) produced eventually is the disjoint union of the bipartite graphs Ri(Bi, Gi), i ∈ N. Here we describe
the construction of the i-th graph Ri(Bi, Gi). The underlying set of the graph Ri(Bi, Gi) is the disjoint union of
3(i+1) many infinite full binary trees {0, 1}∗. Thus, each v ∈ Bi ∪Gi is described as (k, σ) ∈ Ti = 3(i+1)×{0, 1}∗.
The sets of the boys Bi and the girls Gi in the graph Ri(Bi, Gi) are chosen as Bi = {(k, σ) ∈ Ti : lh(σ) is even} and
Gi = {(k, σ) ∈ Ti : lh(σ) is odd}.

We construct a set Ri of edges on the graph Ri(Bi, Gi) as follows (see also Fig. 1). At the first step, we in advance
connect each boy in the 0-th column with his two successor girls in the 1-st column. Now we consider three cases
for the construction of Ri(Bi, Gi) in the (2j + 2)-th column. Let U j

i be the set of the first (i + 1)22j+1 boys in the

(2j + 2)-th column, and let G
L(j)
i (resp. G

R(j)
i ) be the set of all (k, σ) ∈ Ti with σ(0) = 0 (resp. σ(0) = 1) in the

(2j + 1)-th column.

(1) If neither f(j) = i nor g(j) = i we connect each boy in the (2j + 2)-th column with the predecessor girl in
the (2j + 1)-th column and the two successor girls in the (2j + 3)-th column respectively.

(2) If f(j) = i, then we connect U j
i with G

L(j)
i completely and each remaining boy in the (2j + 2)-th column

with the two successor girls in the (2j + 3)-th column respectively.

(3) If g(j) = i, then we connect U j
i with G

R(j)
i completely and each remaining boy in the (2j + 2)-th column

with the two successor girls in the (2j + 3)-th column respectively.
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Figure 1. i-th graph Ri(Bi, Gi) in the case of f(j) = i

Importantly, it inductively follows from this construction that for all l ≤ j, at least the two-third of boys in the left
(resp. right) sides in 2l-th column (see Fig. 1) choose their predecessor girls whenever f(j) = i (resp. g(j) = i).

It is trivial that R(B,G) is B,G-highly recursive. We show that R(B,G) satisfies the expanding Hall condition.

Claim 2.2 (RCA0). If i is contained in rng(f) ∪ rng(g), then either SRi(X) ≥ |X| or SRi(X) ≥ i + 1 holds for
X⊂finBi.

(Proof of Claim.) Let i be contained in rng(f)∪ rng(g) at j, and fix a finite subset X of Bi. If X and U j
i are disjoint,

then SRi(X) ≥ |X| holds since each boy in X is connected with the two successor girls. Assume that X intersects

U j
i . Consider the following set.

V j
i =

{
{(k, σ) ∈ Bi : 0 < lh(σ) ≤ 2j, and σ(0) = 0} if i ∈ rng(f),

{(k, σ) ∈ Bi : 0 < lh(σ) ≤ 2j, and σ(0) = 1} if i ∈ rng(g).

Note that the boys in the 0-th column are not contained in V j
i . We separate Ri(Bi, Gi) into two subgraphs. Let

Wi := U j
i ∪ V j

i . Then SRi−Wi(X \Wi) ≥ 0 since each boy in X \Wi is connected with at least one successor girl. To

estimate the value SRi(X ∩Wi), we first note that this value is equal to |Ri[X ∩Wi]|− |X ∩V j
i |− |X ∩U j

i |. Moreover,

|Ri[X ∩Wi]| ≥ |Ri[U
j
i ]| + 2−1|X ∩ V j

i | holds since each boy in U j
i knows all girls in Ri[U

j
i ], and, for each boy in

V j
i , his predecessor girl has just two successor boys. By our definition, |Ri[U

j
i ]| = |GL(j)

i | = |GR(j)
i | = 3(i + 1)22j ,

|U j
i | = (i+ 1)22j+1, and

|V j
i | = 3(i+ 1)

j−1∑
l=0

22l+1 = 2(i+ 1)(22j − 1).

Therefore,

SRi(X ∩Wi) ≥ |Ri[U
j
i ]| −

1

2
|X ∩ V j

i | − |X ∩ U j
i |

≥ 3(i+ 1)22j − (i+ 1)(22j − 1)− (i+ 1)22j+1

= i+ 1.

Hence, we have SRi(X) ≥ SRi−Wi(X \Wi) + SRi(X ∩Wi) ≥ i+ 1. □

Let W<n be the union of the sets Wi such that i < n and i ∈ rng(f)∪ rng(g). If i is not contained in rng(f)∪ rng(g),
then SRi(X) ≥ |X| for X⊂finBi, since the graph structure of Ri(Bi, Gi) also corresponds exactly to the disjoint union
of 3(i + 1) many full binary trees. By this fact and Claim 2.2, it is not hard to see that for all n, if a finite subset
X of B contains at least n + |W<n| elements, then SR(X) ≥ n holds (see the proof of [17, Theorem 5] for details).
Thus, R(B,G) satisfies the expanding Hall condition.

Consequently, the assertion B′′
H′G′′-M ensures that R(B,G) has a solution M . Let Mi,0 be the set of all boys

b in the 0-th column of Ri(Bi, Gi) who chooses the left successor girl according to M (i.e., M(b) = (k, ⟨0⟩)) for
k < 3(i+ 1)). By Σ0

0 comprehension, the set S = {i ∈ N : |Mi,0| ≤ i+ 1} exists. We shall show that S separates the
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Figure 2. i-th graph Ri(Bi, Gi) in the case of f(j) = i

ranges of f and g. Suppose i ∈ rng(f) and i /∈ S. Then |Mi,0| > i+ 1. Now

|U j
i ∪ V j

i | = |U j
i |+ |V j

i | = (i+ 1)22j+1 + 2(i+ 1)(22j − 1) = (i+ 1)22j+2 − 2(i+ 1).

However,

|M [U j
i ∪ V j

i ]| = 3(i+ 1)

j∑
l=0

22l − |Mi,0| < (i+ 1)22j+2 − 2(i+ 1).

This contradicts the injectivity ofM . Thus i ∈ rng(f) implies i ∈ S. In the same manner, we can show that i ∈ rng(g)
implies i /∈ S. □

By extending the previous proof, we can show the next lemma.

Lemma 2.3. RCA0 ⊢ B′
H′G′′-M → ACA, that is, the following assertion implies ACA over RCA0: If R(B,G) is a

bipartite graph which is B-locally finite, G-highly recursive and satisfies the expanding Hall condition, then R(B,G)
has a solution.

Proof. We reason in RCA0. It suffices to find the range of an injection, which is equivalent to ACA over RCA0 ([19,
Lemma III.1.3]). Let f : N → N be a given injection. We can show the existence of range of f in a slightly little
different way from Lemma 2.1. As in the previous proof, we construct infinitely many disjoint marriage problems
such that the solution of i-th problem indicates whether i is in rng(f) or not. The construction of Ri(Bi, Gi) is
similar to the previous one. The underlying set of Ri(Bi, Gi) consists of the disjoint union of 3(i+ 1) infinite binary
trees pruned below the right girls in the 1-st column and with additional 2(i+ 1) boys. Formally, the underlying set
Ti = Bi ∪Gi of Ri(Bi, Gi) is defined as Ti = {(k, σ) ∈ 3(i+ 1)× {0, 1}∗ : σ(0) ̸= 1} ∪ Ji, where Ji is a set of 2(i+ 1)
vertices (see also Fig. 2), and put Bi = {(k, σ) ∈ Ti : lh(σ) is even} ∪ Ji and Gi = {(k, σ) ∈ Ti : lh(σ) is odd}.

We construct Ri as follows. In advance, we connect each boy in the 0-th column with his two successor girls in the
1-st column as before. Moreover, connect each right girl in the 1-st column with the exceptional boys in Ji completely.
Note that the number of the right girls in the 1-st column is 3(i+1) and |Ji| = 2(i+1). Then we determine who are
connected with the boys in the (2j + 2)-th column according to f as follows. (See also Fig. 2.)

(1) If f(j) ̸= i, we connect each boy in the (2j + 2)-th column with the girls in the (2j + 1)-th column and
(2j + 3)-th column as before.

(2) if f(j) = i, we not only connect U j
i with G

L(j)
i completely and each remaining boy in the (2j +2)-th column

with the two successor girls in the (2j +3)-th column respectively as before, but also connect each boy in Ji
with some two girls remaining in the (2j + 3)-th column disjointly.

In the above construction, the procedure that combining Ji with the girls remaining in the (2j + 3)-th column has
the role of “liberating” the right girls in the 1-st column from the proposal by the boys in Ji. Since we use this way
of revising several times in the proofs below, we shall call this technique “liberation method”.

Obviously the graph R(B,G) produced in this way is B-locally finite and G-highly recursive and we can show that
R(B,G) satisfies the expanding Hall condition as in Lemma 2.1. Then, the assertion B′

H′G′′-M ensures that R(B,G)
has a solution M . As in the previous proof, let S be the set of all numbers i with |Mi,0| ≤ i+1, where Mi,0 is the set
of boys in the 0-th column of Ri(Bi, Gi) who choose their left successor girls according to M . As before, it is easy
to see that i ∈ rng(f) implies i ∈ S. If i ̸∈ rng(f), then the 2(i + 1) boys in Ji just know the right girls in the 1-st
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Figure 3. i-th graph Ri(Bi, Gi) in the case of f(j) = i

column (i.e., the girls of form (k, ⟨1⟩) ∈ Ti). Therefore, 2(i+1) right girls in the 1-st column must be chosen by boys
in Ji. Then, at most i + 1 boys in the 0-th column can choose their right girls. Thus, |Mi,0| > i + 1, and so i ̸∈ S.
Consequently, S = rng(f). □

Lemma 2.4. RCA0 ⊢ B′′
H′′G′-M → WKL, that is, the following assertion implies WKL over RCA0: If R(B,G) is

a bipartite graph which is B-highly recursive, G-locally finite, and satisfies the computable expanding Hall condition,
then R(B,G) has a solution.

Proof. We reason in RCA0. It suffices to separate the range of disjoint functions ([19, Lemma IV.4.4]). Let f, g : N → N
be given injections with pairwise disjoint ranges. We construct a bipartite graph R(B,G) which is the disjoint union
of bipartite graphs Ri(Bi, Gi), i ∈ N. Put Bi = Gi = N. For convenience, we will suppress the coding and label the
j-th boy in Bi by b

i
j as well as the 2j-th and (2j+1)-th girls in Gi by g

i
l(j) and g

i
r(j) respectively. Then we construct

Ri as follows (see also Fig. 3).

(1) The pairs (biu, g
i
l(u)) and (biu, g

i
r(u)) are enumerated into Ri for each u ∈ {0, 1, 2}.

(2) If neither f(j) = i nor g(j) = i holds, then the pairs (bi2j+3+v, g
i
l(2j+3+v)) and (bi2j+3+v, g

i
r(2j+3+v)) are

enumerated into Ri for each v ∈ {0, 1}.
(3) If f(j) = i holds, then (bi2j+3+v, g

i
l(u)) is enumerated into Ri for each u ∈ {0, 1, 2} and v ∈ {0, 1}.

(4) If g(j) = i holds, then (bi2j+3+v, g
i
r(u)) is enumerated into Ri for each u ∈ {0, 1, 2} and v ∈ {0, 1}.

It is trivial that R(B,G) is B-highly recursive and G-locally finite. We show that R(B,G) satisfies the computable
expanding Hall condition.

Claim 2.5 (RCA0). For a finite subset X of B, |X| ≥ 5n implies SR(X) ≥ n.

(Proof of Claim.) Let X be a finite subset of B such that |X| ≥ 5n. For each i, let B′
i be the set of all boys

of the form bij such that (bij , g
i
l(0)) or (bij , g

i
r(0)) is enumerated into R. Since the range of f and g are disjoint,

SR(X∩Bi) ≥ SR(X∩B′
i) for each i ∈ N. Then SR(X) =

∑
i SR(X∩Bi) ≥

∑
i SR(X∩B′

i). Note that, if X∩B′
i ̸= ∅,

then SR(X ∩ B′
i) ≥ 1. Therefore, in the case of |{i : X ∩ B′

i ̸= ∅}| ≥ n, we have SR(X) ≥ n. In the case of
|{i : X ∩B′

i ̸= ∅}| ≤ n, there are at least 3n boys who are not in
∪

iB
′
i. Since each of these boys knows under 2 girls

(see Fig. 3), |R[X]| ≥ 6n, so SR(X) = |R[X]| − |X| ≥ 6n− 5n = n. □

By the previous claim, R(B,G) satisfies the computable expanding Hall condition.
Then there exists a solution M of R(B,G) by B′′

H′′G′-M. By ∆0
1 comprehension, take

V :=
{
i
∣∣ two of {bi0, bi1, bi2} choose their right girls via M

}
.

If i ∈ rng(f), then bi2j+3 and bi2j+4 chooses two of {gil(0), gil(1), gil(2)} via M , then two of {bi0, bi1, bi2} must choose

their right girls. Hence, i ∈ V . If i ∈ rng(g), then bi2j+3 and bi2j+4 choose two of {gir(0), gir(1), gir(2)} via M . Hence,

i /∈ V . □

In the context of recursive graph theory, Lemma 2.4 suggests that being G-highly recursive is essential for a
computable marriage problem with the computable expanding Hall condition to have a computable solution.

By applying “liberation method” to the proof of Lemma 2.4, we can show the next lemma.
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Lemma 2.6. RCA0 ⊢ B′
H′′G′-M → ACA, that is, the following assertion implies ACA over RCA0: If R(B,G) is a

bipartite graph which is B,G-locally finite and satisfies the computable expanding Hall condition, then R(B,G) has a
solution.

Proof. We reason in RCA0. It suffices to find the range of an injection f : N → N ([19, Lemma III.1.3]). The
construction of R is similar to that in Lemma 2.4. But in this occasion, for each i-th graph Ri(Bi, Gi), we make the
top right three girls being connected by two exceptional boys biel, b

i
er in advance. Then if f(j) = i, we carry out the

following procedure in the i-th graph Ri(Bi, Gi).

(1) Combine bi2j+3, b
i
2j+4 with the top left girls gi0, g

i
1, g

i
2 completely.

(2) Combine biel with g
i
l(2j+3), g

i
r(2j+3) and bier with gil(2j+4), g

i
r(2j+4).

The procedure 2 has the role of “liberating” the top right three girls from the proposal by biel, b
i
er. Then one can see

that R(B,G) is B,G-locally finite and satisfies the computable expanding Hall condition by taking h : N → N such
that h(n) = 5n as in Lemma 2.4. B′

H′′G′-M ensures that R(B,G) has a solution M and V := {i
∣∣ two of {bi0, bi1, bi2}

choose their right girls via M} is the range of f as before. □

2.2. Proofs in RCA0+Σ0
3-IND. We recall that a computable marriage problem has a computable solution under the

three strongest assumptions B′′, G′′, and H′′ as shown in [17]. As we have seen in Lemmas 2.1 and 2.4, in general, it
has no computable solution under the absence of G′′ or H′′. What will happen when B′′ is weakened? Surprisingly,
even in the absence of B′, every computable marriage problem has a computable solution when it satisfies G′′ and
H′′.

Theorem 2.7. RCA0 + Σ0
3-IND ⊢ BH′′G′′-M, that is, the following is provable in RCA0 + Σ0

3-IND: If R(B,G) is a
bipartite graph which is G-highly recursive and satisfies the computable expanding Hall condition, then R(B,G) has
a solution.

We need the following lemmas to show the previous theorem.

Lemma 2.8 (RCA0 + Σ0
2-IND). Assume that R(B,G) is a bipartite graph with the expanding Hall condition. Then

for any b ∈ B there exists g ∈ R[b] such that the remaining graph R− {(b, g)} satisfies the Hall condition.

Proof. We consider in two cases. We first consider in the case that given b knows infinitely many girls. If |X| < |R[X]|
for all X⊂finB, our requirement clearly holds. We assume that there exists X⊂finB such that |X| ≥ |R[X]|, which
implies |X| = |R[X]| by the Hall condition. Then there exists a maximal finite subset X0⊂finB such that |X0| ≥
|R[X0]|, since if it is not, Σ0

2-IND induction can prove a contradiction to the expanding Hall condition. (Note that
|X0| ≥ |R[X0]| is written as a Π0

1 formula.) Now b /∈ X0. By using Π0
1 collection principle (provable in RCA0+Σ0

2-IND),
R[X0] is assured to be finite. Therefore, b must know some g ̸∈ R[X0]. We shall show that R − {(b, g)} satisfies the
Hall condition. Suppose not. Then there exists nonempty X1⊂finB such that |X1| = |R[X1]| and g ∈ R[X1]. So,
|X0∪X1| = |R[X0]∪R[X1]| follows from it. Moreover X0∪X1 ⊋ X0 follows from g ∈ R[X1]\R[X0]. This contradicts
the maximality of X0.

Secondly, we consider in the case that given boy b knows at most finitely many girls. Let Bf denote the set of all
boys knowing at most finitely many girls. When Bf is finite, RCA0 +Σ0

2-IND proves the existence of Bf , since Bf is
Σ0

2 definable and Σ0
2-IND implies bounded Σ0

2 comprehension (cf. [19, Exercise II.3.13]). Therefore, our requirement
clearly holds because the finite marriage theorem is provable in RCA0 ([13, Theorem 2.1]). Next we assume that Bf

is infinite. For the sake of contradiction, suppose that there is no g ∈ R[b] such that G − (b, g) satisfies the Hall
condition. Since the original graph R(B,G) satisfies the Hall condition, there is a finite set Xg ⊆ R−1[g] \ {b} such
that |Xg| = |R[Xg]| for all g ∈ R[b]. Put X1 =

∪
g∈R[b]Xg. Then, since R[b] is finite, Σ

0
2-IND implies that X1 is finite

and |X1| = |R[X1]|. Since b ̸∈ X1 and R[b] ⊆ R[X1], we have

|X ∪ {b}| = |R[X1]|+ 1 > |R[X1]| = |R[X1 ∪ {b}]|.

This is the desired contradiction. Hence, there is g ∈ R[b] such that R− (b, g) satisfies the Hall condition. □

Definition 2.9 (R-chain, chainable matching).

(1) A finite sequence s = ⟨sBj , sGj ⟩j<k is a R-chain with starting point b of length k (> 0) if ⟨sBj ⟩j<k and

⟨sGj ⟩j<k are nondecreasing sequences of finite subsets of B and G respectively, where sB0 = {b}, sGj ⊆ R[sBj ],

sBj+1 = R−1[sGj ], and R(s
B
j , s

G
j ) satisfies the Hall condition for each j < k. A R-chain ⟨sBj , sGj ⟩j<k is called

proper if ⟨sBj ⟩j<k is strictly increasing.

(2) A finite matching m⊂finR is R-chainable with starting point b if there is an R-chain s = ⟨sBj , sGj ⟩j<k with

starting point b such that dom(m) = sBk−1, and s
G
j = m[sBj ] for all j < k.
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Note that every R-chainable matching m with an R-chain s has the following disjointness property:

R[B \ sBj+1] ∩m[sBj ] = ∅,(1)

for each j < lh(s)− 1. The next technical lemma has a key role in our proof of Theorem 2.7.

Lemma 2.10 (RCA0 +Σ0
3-IND). Assume that R(B,G) is a bipartite graph which is G-highly recursive and satisfies

the expanding Hall condition. Then, for all b ∈ B and l ∈ N, there exists an R-chainable matching m with starting
point b which has an R-chain of length l such that R−m satisfies the Hall condition.

Proof. Since R(B,G) is G-highly recursive, there exists a function q from codes of finite subset Y of G to that of B
such that q(Y ) = R−1[Y ]. We fix b ∈ B and show our lemma by induction on l. Since the Hall condition is a Π0

2

formula, this is a Σ0
3 induction and carried out straightforwardly by the iterative use of Lemma 2.8 and the function

q within RCA0 +Σ0
3-IND. □

We are now prepared to show Theorem 2.7.

Proof of Theorem 2.7. We reason in RCA0 + Σ0
3-IND. It suffices to consider only the case that B is infinite

since the finite marriage theorem is provable in RCA0 ([13, Theorem 2.1]). Let {bi : i ∈ N} be an enumeration of
B and h be a witness of the computable expanding Hall condition. We shall now construct a solution of R(B,G)
by a recursive procedure. Let θ(u, v) say that u = ⟨ui⟩i≤v is a sequence of length v + 1 and for all i < v + 1,
ui is the least Ri-chainable matching with starting point bi which has an Ri-chain of length h(i + 1) + 1, where
Ri(Bi, Gi) := R(B,G) − {(bi′ , ui′(bi′)) : i′ < i}, namely, the remaining graph obtained by removing the previously
determined i marriage pairs from R(B,G). If θ(u, v) holds, then we identify each Ri-chainable matching ui with the
Ri-chain si for ui.

Note that θ(u, v) is Σ0
0, since R(B,G) is G-highly recursive. We shall decide the partner of bi as the girl indicated

via uniquely determined matching ui. Suppose that we have shown ∀v∃uθ(u, v). Then the witness uv for each v is
unique and uv1 is a initial segment of uv2 for v1 ≤ v2 ≤ v because of the minimality of each ui in the definition
of θ(u, v). Therefore by ∆0

1 comprehension (as primitive recursion in RCA0, see [19, Theorem II.3.4]), there exists a
function which outputs the unique uv for each v ∈ N. Take M : B → G by M(bv) = (uv)v(bv), then it is not hard
to see that M is an injection from B to G. Thus our goal is to prove ∀v∃uθ(u, v). In preparation, we first show the
following claim.

Claim 2.11 (RCA0 +Σ0
2-IND). For all u and v, if θ(u, v) holds, then R− {(bj , uj(bj)) : j < v + 1} satisfies the Hall

condition.

(Proof of Claim.) We fix u and v such that θ(u, v) holds and show that for all i ≤ v, R − {(bj , uj(bj)) : j < i + 1}
satisfies the Hall condition by induction on i. Since the Hall condition is Π0

2, this is a Π0
2 induction. We shall show

only the initial step below. The induction step can be shown in the same manner by using the induction hypothesis.
Let R1 := R− {(b0, u0(b0))}, s0 be an R-chain for u0 and fix X⊂finB \ {b0}.

In the case that s0 = ⟨s0,j⟩j≤h(1) is non-proper. Let ⟨s0,j⟩j≤k be its least non-proper initial segment. By the

disjointness property (1) with sB0,k−1 = sB0,k,

|R1[X]| ≥
∣∣∣u0[X ∩ sB0,k] ∪R1[X \ sB0,k]

∣∣∣
=

∣∣∣u0[X ∩ sB0,k]
∣∣∣+ ∣∣∣R1[X \ sB0,k]

∣∣∣
≥ |X ∩ sB0,k|+ |X \ sB0,k| = |X|,

where the first inequality holds since u0 − {(b0, u0(b0))} ⊆ R1 and the last inequality holds since u0 is single-valued,
R satisfies the Hall condition, and R1[X \ sB0,k] = R[X \ sB0,k] \ u0[s

B
0,0] = R[X \ sB0,k] follows from the disjointness

property (1).
Otherwise, i.e., s0 = ⟨s0,j⟩j≤h(1) is proper. If |X| ≥ h(1), then |R1[X]| − |X| ≥ |R[X]| − |X| − 1 ≥ 0 since the

original graph R(B,G) satisfies the expanding Hall condition via h. We consider in the case of |X| < h(1). By
properness, aj := sB0,j \ sB0,j−1 is nonempty for each j ≤ h(1). Then, aj1 ∩X = ∅ holds for some 0 < j1 ≤ h(1), since

{aj}j≤h(1) is pairwise disjoint. Fix such j1. By the disjointness property (1) with the fact X ∩ sB0,j1 = X ∩ sB0,j1−1,
as in the previous paragraph,

|R1[X]| ≥
∣∣∣u0[X ∩ sB0,j1−1] ∪R1[X \ sB0,j1−1]

∣∣∣
=

∣∣∣u0[X ∩ sB0,j1−1]
∣∣∣+ ∣∣∣R1[X \ sB0,j1−1]

∣∣∣
≥ |X ∩ sB0,j1−1|+ |X \ sB0,j1−1| = |X|,

as desired. □
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We are now prepared to show by Σ0
1 induction that ∀v∃uθ(u, v) holds. For the initial step, it clearly holds by

Lemma 2.10. We consider the induction step. Let θ(û, v) hold. By Claim 2.11, the remaining graph R−{(bj , (û)j(bj)) :
j < v + 1} satisfies the Hall condition. Define ĥ : N → N as{

ĥ(0) = 0,

ĥ(x) = h(x+ v + 1) for x > 0.

By Σ0
0 comprehension, such ĥ exists. It is clearly a witness of the computable expanding Hall condition for our

remaining graph. By Lemma 2.10, there exists an appropriate chainable matching m̂, and it is easy to see that
θ(û⌢⟨m̂⟩, v + 1) holds. This completes the proof of our theorem. □

As an immediate consequence from Theorem 2.7, we can see that B′
H′′G′′-M is also provable in RCA0 + Σ0

3-IND,
whereas we do not know whether Σ0

3-IND is necessary to prove BH′′G′′-M and B′
H′′G′′-M. We also note that the

construction of a solution in the proof of Theorem 2.7 is uniform. Hence, the sequential version of BH′′G′′-M is
provable in RCA0 + IΣ0

3 by imitating the proof of Theorem 2.7.

2.3. Summary of Section 2.

Remark 2.12. As a conclusion from Lemma 2.1 and Lemma 2.4, and Theorem 2.7, it turns out that the computable
expanding Hall condition and being G-highly recursive are essential for a computable marriage problem to have a
computable solution.

Theorem 2.13. All of the following assertions are equivalent to WKL over RCA0.

B′′
HG-M B′′

H′G-M B′′
H′′G-M

B′′
HG

′-M B′′
H′G′-M B′′

H′′G′-M
B′′

HG
′′-M B′′

H′G′′-M

Proof. It is clear by the fact that WKL0 ⊢ B′′
HG-M [13, Theorem 2.3], Lemma 2.1 and Lemma 2.4 since the computable

expanding Hall condition and being highly recursive are restrictions of the expanding Hall condition and being locally
finite respectively. □

Proposition 2.14. ACA0 ⊢ BH′G-M, that is, the following is provable within ACA0: If R(B,G) is a bipartite graph
which satisfies the expanding Hall condition, then R(B,G) has a solution.

Proof. Straightforward by a routine inspection of [17, Theorem 6]. □

Theorem 2.15. All of the following assertions are equivalent to ACA over RCA0.

B′
HG-M BH′G-M B′

H′G-M BH′′G-M B′
H′′G-M

B′
HG

′-M BH′G′-M B′
H′G′-M BH′′G′-M B′

H′′G′-M
B′

HG
′′-M BH′G′′-M B′

H′G′′-M

Proof. It is clear by the fact that ACA0 ⊢ B′
HG-M [13, Theorem 2.2], Proposition 2.14, Lemma 2.3 and Lemma

2.6. □

3. Marriage Theorems with Constant Bounded Hall Condition

3.1. Hall Condition with Constant Bound. In this section, we study reverse mathematics of marriage theorems
with the constant bounded Hall condition Hcb which is introduced in Subsection 1.3. The constant bounded Hall
condition means that there are very few choices of partners of each boy. Of course, it guarantees B-local finiteness
B′. However, it does not help to make a computable marriage problem B-highly recursive. Nevertheless, the next
theorem states that the constant bounded Hall condition renders marriage problems solvable in RCA0.

Theorem 3.1. RCA0 ⊢ B′
Hcb

G-M, that is, the following is provable within RCA0; If R(B,G) is a bipartite graph
which satisfies the constant bounded Hall condition, then R(B,G) has a solution.

Proof. We reason in RCA0. Let
Φ(c) ≡ ∀X⊂finB (|R[X]| ≤ |X|+ c) .

Note that the statement |R[X]| ≤ |X| + c is written as a Π0
1 formula, and then so is Φ(c). Since R(B,G) satisfies

the constant bounded Hall condition, ∃cΦ(c) holds. By Π0
1 least number principle, which can be carried out in

RCA0, there exists a least c1 such that Φ(c1) holds. It follows from the leastness that there exists X1⊂finB such that
|R[X1]| = |X1| + c1. We fix such X1. Then the set R[X1] exists by Σ0

0 comprehension, and |R[X1]| < ∞. We first
note the following:

For all b ∈ B \X1, there is at most one g ∈ R[b] \R[X1],(2)
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since if not, |R[X1 ∪ {b}]| ≥ |X1 ∪ {b}|+ c1 + 1. Moreover, we claim that

X2 := {b ∈ B \X1 : R[b] ⊆ R[X1]}
is finite, hence exists by bounded Π0

1 comprehension in RCA0 (cf. [19, Theorem II.3.9]). Indeed, X2 has at most
c1 many elements. Otherwise, for such a finite set X ′ of size c1 + 1 with R[X ′] ⊆ R[X1], we have |X1 ∪ X ′| ≥
|X1|+ c1 + 1 > |R[X1]| = |R[X1 ∪X ′]|. Next, we claim that

Y1 :=
{
g ∈ G \R[X1] :

∣∣R−1[{g}] \X1

∣∣ ≥ 2
}

is finite (actually, of size at most c1), and exists by bounded Σ0
1 comprehension in RCA0 [19, Theorem II.3.9]. Suppose

not. Then there exists a finite set Y ′ of such girls that |Y ′| = c1 +1. Moreover, by (2) with Y ′ ∩R[X1] = ∅, for every
different g1, g2 ∈ Y ′, two sets R−1[g1] \X1 and R−1[g2] \X2 are disjoint. Then R−1[Y ′] ≥ 2|Y ′| = 2(c1 + 1) follows.
Let X ′ be a finite subset of R−1[Y ′] such that |X ′| ≥ 2(c1 + 1). By (2), each boy in X ′ knows just one girl in Y ′.
Therefore,

|R[X1 ∪X ′]| ≤ |R[X1]|+ |Y ′| = (|X1|+ c1) + (c1 + 1) = |X1|+ 2c1 + 1.

On the other hand,
|X1 ∪X ′| = |X1|+ |X ′| ≥ |X1|+ 2c1 + 2.

These contradict the Hall condition.
Now note that the condition (2) implies R[R−1[Y1]] ⊆ R[X1] ∪ Y1. Therefore, we have

|X1|+ |R−1[Y1]| = |X1 ∪R−1[Y1]| ≤
∣∣R[X1 ∪R−1[Y1]]

∣∣
≤ |R[X1] ∪ Y1| = |R[X1]|+ |Y1| ≤ (|X1|+ c1) + c1 = |X1|+ 2c1.

Hence, R−1[Y1] has at most 2c1 many elements, and R−1[Y1] exists by Σ0
0 comprehension. Moreover, |X1 ∪ X2 ∪

R−1[Y1]| is finite. On the other hand, R[X1 ∪ X2 ∪ R−1[Y1]] ⊆ R[X1] ∪ Y1 holds by our choice of X1, X2 and Y1.
Thus the following finite subgraph (

X1 ∪X2 ∪R−1[Y1], R[X1] ∪ Y1;R
)

of R(B,G) satisfies the Hall condition because of the Hall condition for the original graph R(B,G). Then it has a
matchingM by the finite marriage theorem in RCA0 ([13, Theorem 2.1]). Again by (2), each boy b ̸∈ X1∪X2∪R−1[Y1]
knows just one girl gb ̸∈ R[X1]∪Y1. Moreover, for any such boys b and b′, if b ̸= b′, then gb ̸= gb′ , since b, b

′ ̸∈ R−1[Y1].
Therefore, M ∪ {(b, gb) : b ∈ B \ (X1 ∪X2 ∪R−1[Y1])} is a solution of R(B,G) in RCA0. This completes the proof of
our theorem. □

Consequently, all of B′
Hcb

G′-M, B′
Hcb

G′′-M, B′′
Hcb

G-M, B′′
Hcb

G′-M and B′′
Hcb

G′′-M are probable in RCA0. As a
corollary, if a computable bipartite graph R(B,G) satisfies the constant bounded Hall condition, then R(B,G) has
a computable solution. However, note that the algorithm in the proof of Theorem 3.1 to give a solution for a given
instance of B′

Hcb
G-M is not uniform, in contrast to the uniformity of the algorithm in the proof of Theorem 2.7 for

BH′′G′′-M.

3.2. Sequential Reverse Mathematics.

3.2.1. Extracting Non-uniformity from Proofs. Our proof of Theorem 3.1 in RCA0 contains an implicit non-uniformity
in the use of least number principle. The next theorem suggests that this non-uniformity can not be avoided. We
use a notation Seq(A) for the sequential version of A below.

Theorem 3.2. The following are pairwise equivalent over RCA0.

(1) ACA.
(2) Seq(B′

Hcb
G-M), that is, for all sequence ⟨Bn, Gn, Rn, kn⟩n∈N such that Rn(Bn, Gn) satisfies the constant

bounded Hall condition via kn, there exists a sequence ⟨M⟩n∈N of the solutions.1

(3) Seq(B′
Hcb

G′-M), that is, for all sequence ⟨Bn, Gn, Rn, kn⟩n∈N such that Rn(Bn, Gn) is Gn-locally finite and
satisfies the constant bounded Hall condition via kn, there exists a sequence ⟨M⟩n∈N of the solutions.

Before proving this theorem, will we show the following related equivalences with WKL.

Theorem 3.3. The following are pairwise equivalent over RCA0.

(1) WKL.
(2) Seq(B′′

Hcb
G-M), that is, for all sequence ⟨Bn, Gn, Rn, pn, kn⟩n∈N such that Rn(Bn, Gn) is Bn-highly recur-

sive via pn and satisfies the constant bounded Hall condition via kn, there exists a sequence ⟨M⟩n∈N of the
solutions.2

1Note that the sequence kn is included in the sequence of marriage problems. This is appropriate sequentialization because our
focus is on the non-uniformity of the construction of a solution from the given constant bounded Hall condition via k. (cf. [8])

2Note that the sequence pn is included in the sequence of marriage problems. This is the appropriate sequentialization for our
purpose as in the previous footnote. (cf. [8])
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(3) Seq(B′′
Hcb

G′-M), that is, for all sequence ⟨Bn, Gn, Rn, pn, kn⟩n∈N such that Rn(Bn, Gn) is Bn-highly recursive
via pn, Gn-locally finite and satisfies the constant bounded Hall condition via kn, there exists a sequence
⟨M⟩n∈N of the solutions.

Proof. (1 → 2) holds by the facts that WKL0 ⊢ B′′
HG-M ([13, Theorem 2.3]) and that RCA0 ⊢ WKL ↔ Seq(WKL)

([14, Lemma 5]). (2 → 3) is trivial. We shall show (3 → 1). It suffices to separate the ranges of disjoint functions
([19, Lemma IV.4.4]). Let f, g : N → N be given injections with disjoint ranges.

We construct a sequence of bipartite graphs ⟨Rn(Bn, Gn)⟩n∈N in RCA0. For each n ∈ N, put Bn = Gn = N. At
first, (0, 0) and (0, 1) are enumerated into each Rn. At the j-th step in the construction of Ri, if f(j) = i occurs,
then put (j + 1, 1) ∈ Ri. If g(j) = i occurs, then put (j + 1, 0) ∈ Ri. Otherwise, put (j + 1, j + 2) ∈ Ri.

We put ⟨pn⟩n∈N := ⟨p⟩n∈N where p : N → N such that p(n) = n + 1 and ⟨kn⟩n∈N := ⟨1⟩n∈N in RCA0. Then each
n graph Rn(Bn, Gn) is Gn-locally finite and Bn-highly recursive via pn, and it is also easy to see that for all n and
X⊂finBn, |X| ≤ |Rn[X]| ≤ |X| + kn holds within RCA0. Then Seq(B′′

Hcb
G′-M) implies the existence of a sequence

⟨Mi⟩i∈N of solutions for ⟨Rn(Bn, Gn)⟩n∈N. Define V := {i : (0, 0) ∈Mi} by Σ0
0 comprehension. Then V separates the

ranges of f and g because of the above construction. □

Proof of Theorem 3.2. (1 → 2) is shown straightforwardly by revising the proof of ACA0 ⊢ B′
HG-M by Hirst ([13,

Theorem 2.2]) a bit. (2 → 3) is trivial. We show (3 → 1) by revising a proof of (3 → 1) of Theorem 3.3 by using
“liberation method” as the proofs of Lemma 2.3 and Lemma 2.6.

Let f : N → N be an injection and for each n ∈ N, put Bn = Gn = N. At first, put (0, 0), (0, 1), (1, 0) ∈ Rn.
At the j-th step in the construction of Ri, if f(j) = i occurs, then put (j + 2, 1), (1, j + 2) ∈ Ri. Otherwise, put
(j + 2, j + 2) ∈ Ri. Then ⟨Bn, Gn, Rn, 1⟩n∈N satisfies our assumptions, so has a sequence ⟨Mn⟩n∈N of solutions by
Seq(B′

Hcb
G′-M). It is easy to see that V := {i : (0, 0) ∈Mi} is the range of f . □

Remark 3.4. It has been recently established in [15] and [5] that for a Π1
2 statement of a certain syntactical form,

its provability in (semi-)intuitionistic systems guarantees the provability of its sequential form in weak subsystems
of second order arithmetic.3 Such kind of results are called “uniformization theorems”. The first uniformization
theorems in higher order setting [15] can be applied for Π1

2 statements of the following syntactical form:

(♠) ∀X (φ(X) → ∃Y ψ(X,Y )) ,

where φ(X) is purely universal and ψ(X,Y ) is in sufficiently large class Γ2 of formulas. On the other hand, Dorais has
recently shown other uniformization theorems in second order setting [5]. The advantage of Dorais’s uniformization
theorems compared to the former is that it can be applied for more Π1

2 statements, namely, for Π1
2 statements of the

form (♠) with φ(X) including purely existential formulas as subformula. (See [5, Section 4] for details.) By a careful
inspection, one can check that the assertion “a bipartite graph (B,G;R) satisfies the constant bounded Hall condition
via k” is (in intuitionistic sense) formalized as a formula of form ∀x∃yA0(B,G,R, k) where A0 is quantifier-free. That
is to say, Dorais’s uniformization theorems can be applied to our marriage theorems with the constant bounded Hall
condition while the uniformization theorems in [15] can not. As a consequence of Theorem 3.2 and 3.3, we have the
following. (Note that EL is the intuitionistic second order system and RCA consists of EL and the law of excluded
middle. See [5] for the definition of each symbol.)

(1) B′
Hcb

G-M and B′
Hcb

G′-M are not provable in EL+WKL+GCL +CNL.

(2) B′′
Hcb

G-M and B′′
Hcb

G′-M are not provable in EL+GC+CN.

3.2.2. Recursive Construction. By inspecting the proofs of Theorem 3.2 and Theorem 3.3, one notices that even if
the Hall condition is bounded by k = 1, the marriage problem is not solvable uniformly in RCA. By contrast, if the
marriage problem is G-highly recursive, then it is uniformly solvable in RCA0, regardless of the size of the constant
bound on the Hall condition.

Theorem 3.5. RCA0 ⊢ Seq(B′
Hcb

G′′-M), that is, the following is provable in RCA0: For any sequence
⟨Bn, Gn, Rn, pn, kn⟩n∈N such that Rn(Bn, Gn) is Gn-highly recursive via pn and satisfies the constant bounded Hall
condition via kn, there exists a sequence ⟨Mn⟩n∈N of the solutions.

Proof. Rather than formally proving the sequential form, we give a uniform proof in RCA0 of B′
Hcb

G′′-M for a graph

with B infinite. This proof can easily be transformed into a proof of Seq(B′
Hcb

G′′-M) in RCA0.
Let R(B,G) be a bipartite graph which is G-highly recursive and satisfies the constant bounded Hall condition via

k, and {bi : i ∈ N} be an enumeration of B. We shall now construct a solution of R(B,G) by a recursive procedure.
Let θ(u, v) say that u encodes a sequence ⟨ui⟩i<v+1 of length v+1 of chains ui = ⟨uB

i,j , u
G
i,j⟩j<lh(ui), where each ui is

a least non-proper Ri-chain (Definition 2.9) of finite length in the remaining graph Ri(Bi, Gi) = R(B,G)−
∪

i′<i ui′

3Precisely, the systems employed in [15] and [5] are based not on set-based language but on function-based language. However,
we do not emphasize it here, because the structure of our statements allows direct translations between set-based and function-based
formalizations.
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Figure 4. A proper R-chain s in the proof of Claim 3.6

and bi is contained in
∪

i′≤i u
B
i′ . Note that the present ui is not a chainable matching as in the proof of Theorem 2.7.

Now θ(u, v) is written as a Σ0
0 formula because R(B,G) is G-highly recursive.

Suppose that we have shown ∀v∃uθ(u, v). Then there exists a function which outputs the unique uv for each v ∈ N
by ∆0

1 comprehension as in the proof of Theorem 2.7. Now we construct a function g by the following primitive
recursion in RCA0.

g(0) = the least matching of
(
(u0)0

)B
in R,

g(v + 1) = the least matching of
(
(uv+1)v+1

)B
in R−

∪
i≤v ui.

This primitive recursion works by the finite marriage theorem, since the definition of θ(u, v) ensures the Hall condition
for each subgraph (uv+1)v+1 in each remaining graph. We take M :=

∪
v∈N g(v), then we can straightforwardly verify

in RCA0 that M is an injection from B to G. Thus, it suffices to show ∀v∃uθ(u, v) by Σ0
1 induction on v. To show

∃uθ(u, 0), we first show the following key claim.

Claim 3.6 (RCA0). If a bipartite graph R(B,G) satisfies the constant bounded Hall condition via k ∈ N, then there
is no proper R-chain s = ⟨sBi , sGi ⟩i<lh(s) of length more than t(k + 1), where t(k) := k(k + 3)/2.

(Proof of Claim.) Suppose not, i.e., assume that s = ⟨sBi , sGi ⟩i<lh(s) be a proper R-chain of length more than t(k+1).

Note that t(k+1)− (t(k)+ 1) = k+1. Now we shall show that for all n ≤ k+1 there exists X ⊆ sBt(n) and Y ⊆ sGt(n)

such that Y ⊆ R[X] and |X| + n ≤ |Y | by induction on n. Note that the above statement can be written as a Σ0
0

formula with the use of s, then this induction can be carried out in our system RCA0. The initial step is accomplished
obviously. Let Xn and Yn be witnesses of the case of n, i.e., Xn ⊆ sBt(n), Yn ⊆ sGt(n), Yn ⊆ R[Xn] and |Xn|+ n ≤ |Yn|
hold. By the properness of R-chain s (see Fig. 4), we can choose gj ∈ sGj \ sGj−1 ̸= ∅ for each t(n) < j ≤ t(n+ 1).

• In the case that sBt(n)+1 ∩R−1[gj1 ] = ∅ for some t(n) + 1 < j1 ≤ t(n+ 1).

Hence, R[sBt(n)+1] ∩ {gj1} = ∅. Then, gj1 ∈ sGj1 ⊆ R[sBj1 ] implies that there is b̂ ∈ sBj1 \ sBt(n)+1 such that

gj1 ∈ R(b̂). Now b̂ ∈ sBj1 \ sBt(n)+1 = R−1[sGj1−1] \ R−1[sGt(n)] implies that there is ĝ ∈ sGj1−1 \ sGt(n) such that

b̂ ∈ R−1(ĝ). As gj1 ̸∈ sGj1−1, the girls gj1 and ĝ are different, and they are not contained in sGt(n). Hence,

the boy b̂ ̸∈ Xn ⊆ SB
t(n) knows two different girls gj1 , ĝ ̸∈ Yn ⊆ SG

t(n). Therefore, for Xn+1 := Xn ∪ {b̂} and

Yn+1 := Yn ∪ {gj1 , ĝ}, we have Yn+1 ⊆ R[Xn+1] and |Xn+1|+ n+ 1 ≤ |Yn|.
• Otherwise, i.e., sBt(n)+1 ∩R−1[gj ] ̸= ∅ for every t(n) + 1 < j ≤ t(n+ 1).

Choose xj ∈ sBt(n)+1 ∩ R−1[gj ] for each t(n) + 1 < j ≤ t(n + 1), and put X̂ = {xj}t(n)+1<j≤t(n+1). Since

(sBt(n)+1, s
G
t(n)+1) satisfies the Hall condition, there exists Ŷ ⊆ sGt(n)+1 such that |X̂| ≤ |Ŷ | holds. Then one

can verify that X̂ and Ŷ ∪ {gj}t(n)+1<j≤t(n+1) are witnesses of the case of n+ 1 straightforwardly.

Therefore the induction step is also accomplished. Then there exists X ⊆ sBt(k) and Y ⊆ sGt(k) such that Y ⊆ R[X]

and |X|+k < |Y | holds. This contradicts our assumption that R(B,G) satisfies the constant bounded Hall condition
via k and completes the proof of our claim. □
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Because R(B,G) is G-highly recursive, we can effectively produce a non-proper R-chain s with starting point b0 ∈ B
by the following procedure: Let sB0 be the set consisting only of b0, take the first witnessed set of girls sGj such that

⟨sBj′ , sGj′⟩j′≤j forms an R-chain, and put sBj+1 = R−1[sGj ]. Claim 3.6 ensures that this procedure would stop eventually

until j is up to t(k+1), i.e., ⟨sBj , sGj ⟩j≤t(k+1) is non-proper. Then, by Σ0
0 least number principle, there exists u0 such

that θ(u0, 0) holds. Thus the initial step is accomplished.
Next we turn to the induction step. Assume that ∃uθ(u, v) holds, and let u′ be u such that θ(u, v) holds. Then

R′ = R −
∪

j≤v u
′
j satisfies the constant bounded Hall condition by the disjoint property (1). As in the initial step,

we can effectively produce a non-proper R′-chain s′ of finite length, where we take bv+1 as the starting point of

s′ if bv+1 /∈ (u′
v)

B . Let uv+1 be such a least s′, then θ
(
u′⌢uv+1, v + 1

)
holds. This completes the proof of our

theorem. □

Corollary 3.7. Seq(B′′
Hcb

G′′-M) is provable in RCA0.

4. Weihrauch Degrees

4.1. Basic Terminology. Many theorems of mathematics can be formalized as Π1
2 sentences. In particular, marriage

theorems can be written as the following Π1
2 sentences:

(∀R) [φ(R) → ∃M ψ(R,M)],

where φ(R) denotes that R is a graph with B(·),G(·),H(·), and ψ(R,M) denotes that M is a matching of R. Impor-
tantly, such a Π1

2 theorem can be viewed as a (partial) multi-valued function f :⊆ P(N) ⇒ P(N) with an arithmetical
domain, by interpreting ψ(R,M) as M ∈ f(R). Every single-valued selection s of f can be thought of as a witness of
the Π1

2 theorem, that is, s witnesses ψ(R, s(R)). The following reducibility notion is useful to estimate how difficult
it is to find a witness of a given Π1

2 theorem.

Definition 4.1 (See also [2, 3].). For multi-valued functions f and g, f is Weihrauch reducible to g (denoted f ≤W g)
if there are computable functions H,K such that K⟨id, GH⟩ is a single-valued selection of f for every single-valued
selection G of g.

Let us consider the following partial multi-valued functions.

B
(·)
H(·)G

(·)-M(R) = {M :M is a matching of R},

dom(B
(·)
H(·)G

(·)-M) = {R : R is a graph with B(·), G(·), H(·)},
KL(T ) = WKL(T ) = {P : P is an infinite path through T},

dom(KL) = {T ⊆ N∗ : T is an infinite finitely branching tree},
dom(WKL) = {T ⊆ N∗ : T is an infinite binary tree},

LimX(⟨pn⟩n∈N) = lim
n→∞

pn, where X is a topological space,

dom(LimX) = {⟨pn⟩n∈N ∈ XN : lim
n
pn converges}.

Intuitively, f ≤W g means that, to find a solution to the problem f(x), it suffices to find a solution y to g(H(x)),
since K(x, y) is a solution to f(x). The Weihrauch degree of the identity function id is analogous to the ∆0

1 compre-
hension axiom RCA in second order arithmetic. The limit function LimNN is analogous to the Σ0

1 comprehension, that
is equivalent to the arithmetical comprehension ACA in reverse mathematics. Every function f ≤W LimN is said to
be computable with finitely many mind changes, and f ≤W LimNN is also said to be limit computable [1]. The function
LimN is also known as the discrete limit [1]. The parallelization of a partial multi-valued function f is defined by

f̂(⟨xi⟩i∈N) =
∏

i∈N f(xi). Given a multi-valued function fτ with an associated Π1
2 theorem τ , its parallelization f̂τ can

be seen as the sequential version Seq(τ) of the original theorem τ . As shown in [2], WKL is Weihrauch equivalent to

L̂LPO. As a counterpart of this result in the context of constructive reverse mathematics over intuitionistic analysis
EL or intuitionistic finite type arithmetic HAω, Ishihara [16] has shown that WKL is equivalent to LLPO plus the

axiom of countable choice for Π0
1 disjunctions, Π0

1-AC
∨. It is also known that LimNN ≡W L̂PO ≡W L̂imN holds (see

[2]).

4.2. Weihrauch Degrees inside ACA. Contrary to the inequality LimNN <W KL (obtained from the fact that KL
is equivalent to weak König’s lemma relative to the jump), the standard reverse mathematics [19] does not distinguish
LimNN from KL since the collection of functions in every model of RCA0 is closed under composition. Therefore, even
if some theorem is shown to be equivalent to ACA over RCA0, the exact computational strength of the theorem has
many possibilities including the jump, the double jump, and so on. The concept of Weihrauch degrees may help us
to better understand the computational strength of Π1

2 theorems.
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Theorem 4.2. (1) All of the following multi-valued functions are Weihrauch equivalent to KL.

B′
HG-M B′

HG
′-M B′

HG
′′-M

(2) All of the following multi-valued functions are Weihrauch equivalent to LimNN .

B′
H′G-M B′

H′′G-M
B′

H′G′-M B′
H′′G′-M

B′
H′G′′-M

(3) All of the following multi-valued functions are Weihrauch equivalent to WKL.

B′′
HG-M B′′

H′G-M B′′
H′′G-M

B′′
HG

′-M B′′
H′G′-M B′′

H′′G′-M
B′′

HG
′′-M B′′

H′G′′-M

(4) All of the following multi-valued functions are Weihrauch equivalent to id.

BH′′G′′-M B′
H′′G′′-M B′′

H′′G′′-M

Proof. (1) It suffices to show that B′
HGM ≤W KL ≤W B′

HG
′′M. It is easy to see that B′

HGM ≤W KL since the

set of all injective selections for a locally finite multi-valued function F forms a bounded Π0,F
1 class. Conversely,

given finitely branching tree T , we can effectively construct an instance of B′
HG

′′-M whose solutions are computably
homeomorphic to KL(T ) as follows. Put B = T , G = T \ {⟨⟩}, and for each σ ∈ T \ {⟨⟩} enumerate (σ, σ) ∈ R and
(σ−, σ) ∈ R, where σ− is the unique immediate predecessor of σ.

(3) Straightforward. (4) By uniformity of the proof of the Theorem 2.7.
(2) By using LimNN , B′

H′G-M is reducible to B′′
H′′G′′-M. Thus, by (4), we have B′

H′G-M ≤W LimNN . Conversely,
by uniformity of proofs of Lemma 2.3 and 2.6, LimNN is Weihrauch reducible to B′

H′G′′-M and B′
H′′G′-M. □

4.3. Weihrauch Degrees inside RCA. If a Π1
2 theorem τ is provable in RCA, then the associated multi-valued

function fτ is always expected to be non-uniformly computable. Here, a multi-valued function f :⊆ NN ⇒ NN is
said to be non-uniformly computable if there is a single-valued selection F of f such that F (x) is computable in
x for all x ∈ dom(F ). For instance, LimN, LPO, LLPO, and id are non-uniformly computable. Over RCA, if its

sequential version Seq(τ) is equivalent to an axiom, say WKL, then one may also guess that its parallelization f̂τ is
expected to be Weihrauch-equivalent to WKL. For instance, LLPO is such a multi-valued function, that is, LLPO is

non-uniformly computable, and its parallelization L̂LPO is Weihrauch equivalent to WKL. Unfortunately, however,
LLPO is not a unique such function.

For a tree T , a string σ ∈ T is branching if at least two immediate successors of σ are contained in T . Now we
introduce the following multivalued functions.

WKL?<ω(T ) = WKL?n(T ) = WKL(T ),

dom(WKL?n) = {T ∈ dom(WKL) : T has less than n branching nodes},
dom(WKL?<ω) = {T ∈ dom(WKL) : T has only finitely many branching nodes},

Obviously LLPO ≤W WKL?2, and every WKL?n is Weihrauch reducible to an iterative use of sufficiently many
LLPO’s. Hence, one can think of WKL?<ω as a natural enrichment of LLPO. We now see the Weihrauch degree of
constant bounded marriage theorems.

Theorem 4.3. (1) All of the following multi-valued functions are Weihrauch equivalent to LimN.

B′
Hcb

G-M B′
Hcb

G′-M

(2) All of the following multi-valued functions are Weihrauch equivalent to id.

B′
Hcb

G′′-M B′′
Hcb

G′′-M

Proof. (1) To see B′
Hcb

G-M ≤W LimN, it suffices to check that the canonical indices of parameters c1, X1, X2, Y1,

R[X1], and R
−1[Y1] in Theorem 3.1 are effectively determined by finitely many mind changes. At stage s+ 1, if we

find a finite set X of boys such that |Rs[X]| > |X| + c1,s, where Rs[X] = R[X] ∩ {0, . . . s}, then renew X1 and c1,
that is, put X1,s+1 = X and c1,s+1 = |Rs[X]| − |X|. Clearly, c1 = lims c1,s and X1 = limsX1,s converge. If c1,s and
X1,s are fixed, since X2 and Y1 have at most c1,s elements and R−1[Y1] has at most 2c1,s elements, we can determine
the indices of X2 and Y1 by 4c1,s many mind changes. Thus, if c is an upper bound for c1, then we can find a solution
by

∑
d≤c 4d many mind changes.

Conversely, to see LimN ≤W B′
Hcb

G′-M, given a sequence p = (pn)n∈N ∈ NN, we construct a graph Rp with the
constant bounded Hall condition. Put B = G = N, and (0, 0) ∈ R with a parameter g0 = 0. If pn+1 = pn, then put
(n+ 1, n+ 1) ∈ R and gn+1 = gn. If pn+1 ̸= pn, then put (n+ 1, gn) ∈ R, (0, n+ 1) ∈ R, and gn+1 = n+ 1. Then, it
is easy to see that R has the unique matching M , and pM(0) = limn pn.

(2) By the uniformity of the proof of Theorem 3.5. □
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Theorem 4.4. WKL?<ω ≤W B′′
Hcb

G′-M ≤W B′′
Hcb

G-M ≤W inf(LimN,WKL).

Proof. The inequality B′′
Hcb

G-M ≤W inf(LimN,WKL) clearly holds by Theorem 4.3 (1). Given a tree T and a
nonempty string σ ∈ T , we denote by lT (σ) the longest initial segment of σ whose immediate predecessor is branching
or empty. To see WKL?<ω ≤W B′′

Hcb
G′-M, assume that T is an infinite tree with only finitely many branching nodes.

Put B = T and G = T \ {⟨⟩}. For each σ ∈ T , if σ is not a leaf, then enumerate (σ, τ) ∈ R for each immediate
successor τ ∈ T of σ. If a nonempty string σ ∈ T is a leaf or branching, then we also enumerate (σ, lT (σ)) ∈ R. Note
that every non-branching boy knows just one girl, and every nonempty branching boy knows just three girls. Hence,
if T has only finitely many branching nodes, then R(B,G) is constant bounded. If τ is of the form lT (σ) such that
σ is a leaf or branching, then τ = lT (σ) is known by at most two boys σ and lT (σ)

−. Here note that lT (σ)
− must

be branching. Otherwise, τ is known by at most one boy. Hence, R(B,G) satisfies the Hall condition. Given any
matching of R(B,G), we can effectively find an infinite path through T . □
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