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Abstract

It is known that infinitely many Medvedev degrees exist inside the Muchnik degree
of any nontriviall‘[‘l) subset of Cantor space. We shed light on the fine structures in-
side these Muchnik degrees related to learnability and piecewise computability. As for
nonemptyl‘[? subsets of Cantor space, we show the existence of a ﬁ@imecewise
degree containing infinitely many finitﬂ?)z—piecewise degrees, and a finiﬂg]{z—
piecewise degree containing infinitely many finﬁ%—piecewise degrees (wher@),
denotes the dierence of twoll? sets), whereas the greatest degrees in these three
“finite-T-piecewise” degree structures coincide. Moreover, as for noneﬁfmgabsets

of Cantor space, we also show that every nonzero firﬂfl’e)z(piecewise degree in-
cludes infinitely many Medvedev (i.e., one-piecewise) degrees, every nonzero countable-
Ag—piecewise degree includes infinitely many finite-piecewise degrees, every nonzero
finite-(Hg)z-countabIeAg-pieceWise degree includes infinitely many countadsﬂqaiecewise
degrees, and every nonzero Muchnik (i.e., countmgkpiecewise) degree includes in-
finitely many finite—Ug)z-countableAg-piecewise degrees. Indeed, we show that any
nonzero Medvedev degree and nonzero countagﬂpiecewise degree of a nonempty

Hg subset of Cantor space have the strong anticupping properties. Finally, we ob-
tain an elementary fference between the Medvedev (Muchnik) degree structure and
the finiteI-piecewise degree structure of all subsets of Baire space by showing that
none of the finiteF-piecewise structures are Brouwerian, whEie any of the Wadge
classes mentioned above.
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1. Summary

1.1. Introduction

This paper is a continuation of Higuchi-Kihara [29]. Our objective in this paper
is to investigate the degree structures induced by intermediate notions between the
Medvedev reduction (uniformly computable function) and Muchnik reduction (nonuni-
formly computable function). We will shed light on a hidden, but extremely deep,
structure inside the Muchnik degree of ezﬂfpsubset of Cantor space.

In 1963, Albert Muchnik [46] introduced the notion of Muchnik reduction as a
partial function on Baire space that is decomposable into countably many computable
functions. Such areduction is also callecbaintably computablinction,o-computable
function, ornonuniformly computabl&inction. The notion of Muchnik reduction has
been a powerful tool for clarifying the noncomputability structure omﬁesubsets of
Cantor space [57-59, 61]. Muchnik reductions have been classified in Part | [29] by
introducing the notion of piecewise computability.

Remarkably, many descriptive set theorists have recently focused their attention
on the concept opiecewise definabilitpf functions on Polish spaces, in association
with the Baire hierarchy of Borel measurable functions (see [43, 44, 55]). Roughly
speaking, ifT" is a pointclass (in the Borel hierarchy) aAdis a class of functions
(in the Baire hierarchy), a function is said to BepiecewiseA if it is decomposable
into countably many-functions withI' domains. IfT" is the class of all closed sets
andA is the class of all continuous functions, it is simply calfgdcewise continuous
(see for instance [32, 36, 45, 50]). The notion of piecewise continuity is known to be
equivalent to thesg-measurability [32]. IfT" is the class of all sets amtl is the class
of all continuous functions, it is also calleduntably continuoupt4] or o--continuous
[54]. Nikolai Luzin was the first to investigate the notion of countable-continuity, and
today, many researchers have studied this concept, in particular, with an important
dichotomy theorem (see [51, 64]).

Our concepts introduced in Part | [29], suchz&%piecewise computabilifyare
indeed the lightface versions of piecewise definability. This notion is also known to
be equivalent to theftective Ag—measurability [50]. See also [5, 19, 38] for more
information on €ective Borel measurability.

To gain a deeper understanding of piecewise definability, we investigate the Medvedev-
and Muchnik-like degree structures induced by piecewise computable notions. This
also helps us to understand the notion of relative learnability since we have observed a
close relationship between lightface piecewise definability and algorithmic learning in
Part | [29].

In Part Il, we restrict our attention to the local substructures consisting of the de-
grees of aIIH? subsets of Cantor space. This indicates that we consider the rela-
tive piecewise computably (or learnably) solvabilityooimputably-refutable problems
When a scientist attempts to verify a statemenhis verification will be algorithmi-
cally refuted whenever it is incorrect. THalsifiability principle holds only wherP is
represented asl& subset of a space. Therefore, the restriction tdthsets can be re-
garded as an analogy Bbpperian learning11] because of the falsifiability principle.



From this perspective, the universe of lﬂ%sets is expected to be a good playground
of Learning Theory [31].

The restriction to theH‘f subsets of Cantor spac€ % also motivated by several
other arguments. First, many mathematical problems can be represeﬁl%dL&ssets
of certain topological spaces (see Cenzer and Remmel [15]). Hﬁhzaets in such
spaces have become important notions in many branches of Computability Theory,
such aRecursive Mathematid23], Reverse Mathemati¢60], Computable Analysis
[65], Effective Randomneg21, 48], andEffective Descriptive Set Theof2]. For
these reasons, degree structuresﬂ@r&;ubsets of Cantor spac# are widely studied
from the viewpoint ofComputability TheorandReverse Mathematics

In particular, many theorems have been proposed on the algebraic structure of the
Medvedev degrees cﬁt‘l) subsets of Cantor space, such as density [13], embeddability
of distributive lattices [3], join-reducibility [2], meet-irreducibility [1], noncuppability
[12], non-Brouwerian property [28], decidability [16], and undecidability [56] (see also
[30, 57-59, 61] for other properties on the Medvedev and Muchnik degree structures).
Thel‘[‘} sets have also been a key notion (under the narskeéd choickin the study
of the structure of the Weihrauch degrees, which is an extension of the Medvedev
degrees (see [6-8]).

Among other results, Cenzer and Hinman [13] showed that the Medvedev degrees
of theH(l) subsets of Cantor space are dense, and Simpson [57] questioned whether the
Muchnik degrees o]flg subsets of Cantor space are also dense. However, this question
remains unanswered. We have limited knowledge of the Muchnik degree structure of
theH‘i sets because the Muchnik reductions are velfficdit to control. What we know
is that as shown by Simpson-Slaman [62] and Cole-Simpson [17], there are infinitely
many Medvedev degrees in the Muchnik degree of any nontm%eslubsets of Cantor
space. Now, it is necessary to clarify the internal structure of the Muchnik degrees.
In Part I, we apply the disjunction operations introduced in Part | [29] to understand
the inner structures of the Muchnik degrees induced by various notions of piecewise
computability.

1.2. Results

In Part | [29], the notions of piecewise computability and the induced degree struc-
tures are introduced. Our objective in Part Il is to study the interaction among the
structuresP/F of ¥-degrees of nonempﬂgg’ subsets of Cantor space for notioAs
of piecewise computability listed as follows.

. decg“’[Hg] also denotes the set of all partial functionsiéh that are decompos-
able into finitely many partial computable functions V\JI[jn domains.

. deqj"’[Hg] denotes the set of all partial functions dA' that are decomposable
into finitely many partial computable functions Witﬁ[fl)()z domains, where a
(119), set is the dierence of twd1? sets.

. dec;w[Ag] denotes the set of all partial functions di' that are decomposable
into finitely many partial computable functions Wiﬂ’j domains.



. deq,“[Ag] denotes the set of all partial functions d#' that are decomposable
into countably many partial computable functions V\mg'ndomains.

. de(‘g‘”[Hg] denotes the set of all partial functions d#' that are decomposable
into finitely many partial computable functions witﬁg)z domains.

. de(‘g“’[Hg]de(g[Ag] denotes the set of all partial functions M that are decom-
posable into finitely many partiaﬂg—piecewise computable functions witﬂg)z
domains, where d10), set is the dierence of twd1) sets.

. de(g[l'[g] denotes the set of all partial functions d#' that are decomposable
into countably many partial computable functions V\II[gldomains.

The relationship among these notions is summarized as follows.

- PleGeId]
P/de¢ (7] — P/deg® 9] — P/deg [AJ] P/de[MJ]decs[AJ] — P/dec;[IT]
>~ pideg[Al]

In Part | [29], we observed that these degree structure are exactly those induced by
the (, Bly)-computability.

e [Cr]7 denotes the set of all partial computable function$¥%n

[€r]%, denotes the set of all partial functions B’ learnable with bounded
mind changes.

[GT]ijw denotes the set of all partial functions b’ learnable with bounded
errors.

[€1]} denotes the set of all partial learnable functiong®n

[€7];¢ denotes the set of all partigiwise computable functions ad' for some
keN.

[€r]5v denotes the set of all partial functions B learnable by a team.

[€r]{ denotes the set of all partial nonuniformly computable functiondin
(i.e., all functionsf satisfyingf(x) <t x for anyx € dom(f)).

As in Part | [29], each degree structtﬂaeé[(iT]gly is abbreviated a@gw. Then, we
have the following relationship among these notions.

<4
PR AN
<4
) P — po
~ p -

We will see that all of the above inclusions are proper. Beyond the properness of
these inclusions, there are four LEVELSs signifying thetiences between two classes
& and® of partial functions oM™ (lying between @T]} and [€1]?) listed as follows.



1. There is a functiod € § \ 6.

2. There are setX, Y ¢ N*' such that¥ has a functioly : X — Y, but & hasno
functionI'g : X — .

3. There areH‘l’ setsX, Y ¢ 2" such that¥ has a functiod’y : X — Y, butlI'g has
nofunctionl's : X = Y.

4. For every speciallf setY c 2", there is allf setX ¢ 2" such that¥ has a
functionT'y : X — Y, but® hasnofunctionT's : X — Y.

The LEVEL 1 separation just represef@sz . Clearly, 4— 3 — 2 — 1. Note
that the LEVEL 2 separation holds foo 29 setsX,Y ¢ N, sinceIl{ is the first
level in the arithmetical hierarchy which can define a nonemptysset N without
computable element. Suchl'EE set is calledspecial i.e., a subset of Baire space is
special if it is nonempty and contains no computable points. As mentioned before,
Simpson-Slaman [62] (see Cole-Simpson [17]) showed that the LEVEL 4 separation
holds betweengr]} and [£r]¢, that is, every nonzero Muchnik degree $4 contains
infinitely many Medvedev degreds< P1.

In section 2, we use the consistent two-tape disjunction operatioﬁ[@ snbsets
of Cantor space introduced in Part | [29] to obtain LEVEL 3 separation results.

e v, is the disjunction operation oH‘l’ sets induced by the two-tape Brouwer-
Heyting-Kolmogorov-interpretation with mind-changes.

e v, is the disjunction operation oﬁg sets induced by the two-tape Brouwer-
Heyting-Kolmogorov-interpretation with finitely many mind-changes.

e v, is the disjunction operation oﬁ(l) sets induced by the two-tape Brouwer-
Heyting-Kolmogorov-interpretation permitting unbounded mind-changes.

By using these operations, we obtain the LEVEL 3 separation resultﬁf@f,[
[Cr]t,, [@T]ikw, and [Er];“. We show that there exi$t? setsP, Q ¢ 2' such that all
of the following conditions are satisfied.

1. (a) There isnocomputable functioﬁ% : Pv,Q — Pv1Q;
(b) There is a functiof, : Pv,Q — Pv;Q learnable with bounded mind-

changes.
2. (a) There isnofunctionT®, : Pv,Q — Pv;Q learnable with bounded mind-
changes;
(b) Thereis a functioﬂ“&)lw : Pv,Q — Pv;Q learnable with bounded errors.
3. (a) There isno function Fi|<w : Pv..Q — Pv;Q learnable with bounded er-
rors;

(b) There is a 2-wise computable functibft” : Pv.,Q — Pv1Q.

The above conditions also suggest how does degreedhmfutty of our disjunction
operations behave.

In contrast to the above results, in section 3, we will see that the hierarchy be-
tween (1], and Er]; collapses forhomogeneouE[‘l) subsets of Cantor spacg.2
In other words, the LEVEL 4 separatiofail for [€1]%,, [€r]L _ , and [E]5“. For

<w?’ wl<w’

other classes, is the LEVEL 4 separation successful?



To archive the LEVEL 4 separations, we use dynamic disjunction operations de-
veloped in Part | [29].

1. The concatenatioR — P~P of two Hg setsP ¢ 2V indicates the mass problem
“solve P by a learning proof process with mind-change-bound 2.

2. Every iterated concatenation along a well-founded tree indicates a learning proof
process with an ordinal bounded mind changes.

3. The hyperconcatenatioR — PvP of two H‘l) setsP c 2" is defined as the
iterated concatenation &falong the corresponding ill-founded treefaf

These operations turn out to be extremely useful to establish the LEVEL 4 separa-
tion results. Some of these results will be proved by applying priority argumsiale
some learning proof model 6.

1. The LEVEL 4 separation succeeds f6x[} and ]2, via the magP - P~P.
2. The LEVEL 4 separation succeeds f@r[;“ and 1%, via the map

P U(PAP‘ ...(mtimes)..."P"P).
meN

3. The LEVEL 4 separation succeeds far|. and [1]:¢, via the maP — PvP.
4. The LEVEL 4 separation succeeds fda#r[5” and [£7], via the mapP
Deg(P), whereDeg(P) denotes the Turing upward closurerf

The method that we use to show the first and the third items also implies that any
nonzeroa € P} anda € P2 havethe strong anticupping property.e., for every
nonzeroa € P, there is a nonzerb € # belowa such thata < b v cimpliesa <
¢. Indeed, these strong anticupping results are established via concatenation
hyperconcatenatiom.

1. P1E(Yac) (a<(@ave — a<o).
2. PL = (Yac)(a<(ava)vc — a<o).

In section 5, we apply our results to sharpen Jockusch’s theorem [33] and Simp-
son’s Embedding Lemma [58]. Jockusch showed the following nonuniform com-
putability result forDNRy, the set of alk-valueddiagonally noncomputable functions

1. There isno (uniformly) computable functiofi7 : DNR3 — DNR.
2. There is a nonuniformly computable functidfi : DNRz — DNR3.

This result will be sharpened by using our learnability notions as follows.

1. There isnolearnable functiod? : DNRz — DNR;.

2. There isno kwise computable function; : DNRz — DNR; for k € N.

3. There s a (uniformly) computable functiéf : DNR3 — DNR,¥DNR,. Hence,
there is a functio’;” : DNR3; — DNR; learnable by a team of two learners.

Finally, we employ concatenation and hyperconcatenation operations to show that
neitherD?, nor O nor D are Brouwerian. Hence, these degree structures are not
elementarily equivalent to the Medvedev (Muchnik) degree structure.



1.3. Notations and Conventions

For any setsX andY, for convenience, we say thdtis a function from X to Y
(written f : X — Y) if the domain domf) of f includesX, and the image oK under
f is included inY. We also use the notatioh:C X — Y to denote thaf is a partial
function fromX to Y, i.e., the image of donf( N X underf is included inY.

For basic terminology in Computability Theory, see Soare [63]. FarN<!', we
let || denote the length af. Foro € N<¥ and f € N u N¥, we say thaw is an
initial segmentof f (denoted by c f) if o(n) = f(n) for eachn < |o7|. Moreover,

f I ndenotes the unique initial segmentfobf lengthn. let o~ denote an immediate
predecessor node of i.e.oc™ = o | (lo| - 1). We also defined] = {f e NV : f > o}.
A treeis a subset oN<" closed under taking initial segments. For any ffeg N<V,
we also letT] be the set of all infinite paths df, i.e., f belongstoT]if f | nbelongs
to T for eachn € N. A nodeo € T is extendiblef [T] n [o] # 0. Let T®<*denote the
set of all extendible nodes af. We say that- € T is a leafor a dead endf there is no
TeTwitht2o.

For any sek, the treeX<" of finite words onX forms a monoid under concatenation
~. Herethe concatenation af andr is defined by ¢~ 7)(n) = o(n) for n < |o| and
(o~7)(lo] + n) = 7(n) for n < |7]. We use symbols and[] for the operation on this
monoid, wherd .., o denotessp” 01~ ... "oy To avoid confusion, the symbots
and[] are only used for a product of sets. We often consider the following three left
monoid actions ofX<"': The first one is the sex™ of infinite words onX with an
operation” : X< x X* — X¥; (¢~ f)(n) = o(n) for n < |o] and ¢~ f)(Jo| + n) = f(n)
for n € N. The second one is the SE{(X) of subtreesT < X< with an operation
S XN xT(X) = T(X); o°T = {o"1 : T € T}. The third one is the power s@(X")
of X* with an operatiort : X< x P(X*) - P(XN), P ={c"f : f € P}.

We say that a sé® ¢ N is Hg if there is a computable relatiddsuch thaP = {f €
N (Yn)R(n, f)} holds. EquivalentlyP = [Tp] for some computable treEp ¢ N,
Let{®c}ecn be an &ective enumeration of all Turing functionals (all partial computable
functions) on N"'. Then thee-th T19 subset of 2 is defined byPe = {f € 2" :
®(f;0) 7). Note that{Pe}ecyy is an dfective enumeration of aIII‘f subsets of Cantor
space 2. If (an indexe of) aIl? setP. C 2" is given, therTle = {o € 27" : ®g(c; 0) 1}
is calledthe corresponding tree for? Here®(o-; n) for o € N andn € N denotes
the computation ofd with an oracleo, an inputn, and stego|. Whenever a'lg set
P is given, we assume that an indexof P is also given. IfP ¢ 2V is Hg, then
the corresponding tre€p  2<" of P is computable, andTp] = P. Moreover, the
setLp of all leaves of the computable trde is also computable. We also say that
a sequence ofP;}ic; of H‘l) subsets of a space is computableor uniformif the set
{(i, f) €  xX: f € P} is again d1? subset of the product spate X. A setP ¢ N
is specialif P is nonempty and® has no computable member. Fog € N, f @ gis
defined by € @g)(2n) = f(n) and (f @g)(2n+ 1) = g(n) for eachn € N. ForP, Q ¢ N*,
putPe Q= (0)"P)U ()" QandP®Q={feg: feP& geQ}.

1in some contexts, a functiob is called partial computable if it can be extended to sdrae In this
paper, we identify each partial computable function with sudh.a



1.4. Notations from Part |

1.4.1. Functions

Every partial functionf :c N<V — N is called dearner. In Part | [29, Proposition
1], it is shown that we may assume tHats total, and we fix anféective enumeration
{Peeen Of all learners. For any string € N<¥, the set ofmind-change locations of a
learner¥ on the informantr is defined by

ncly(o) ={n< ol :¥P(o [ n+1)#P(o I n)}.

We also definancly(f) = Upeymcly(f | n) for any f € N¥. Then, #hcly(f) de-
notes thenumber of times that the learn&t changes héehis mind on the informant.
Moreover, the set ahdices predicted by a learn&¥ on the informantr is defined by

indxy(o) = {P(c [ n):n<|ol}.

We also definéindxy(f) = Uney indxy(f 1 n) for any f € N*'. We say thaa partial
functionT :c N — NY is identified by a learne® on g € N* if lim, W¢(g | n)
converges, an®im, w.gm)(9) = I'(g). We also say that a partial functidhis identified
by a learnel if it is identified by ¥ on everyg € dom(). In Part | [29, Definition
2], we introduced the seven notions af, 8y)-computability for a partial function
I :c N — N¥ |isted as follows:

1. T'is (1 1)-computabléf it is computable.

2. T'is (1, < w)-computabléf it is identified by a learnel with sup#mcly(Q) :
gedom()} < w.

3. I'is (1, w| < w)-computabléf it is identified by a learne¥ with sup#indxy(g) :

g e dom()} < w.

. T'is (1L w)-computabléf it is identified by a learner.

5. T is (< w,1)-computableif there isb € N such that for eveng € dom(),
I'(g) = ®(g) for somee < b.

6. I'is (< w, w)-computabldf there isb € N such that for everg € dom(), I' is
identified by¥, for somee < bong.

7. Tis (w, 1)-computabléf it is nonuniformly computable, i.el;(g) <t gfor every
g € dom().

N

Let [(ET]g (resp. [ST]gl ) denote the set of allof 8)-computable (resp.ofBly)-
computable) functions. I% be a monoid consisting of partial functions under com-
position, P(NY) is preordered by the relatioR <7 Q indicating the existence of a
functionT € ¥ from Q into P, that is,P <& Q if and only if there is a partial func-
tion T :c N*' — N¥ such thaf” € ¥ andI'(g) € P for everyg € Q. Let D/F and
P/F denote the quotient seBN")/ = andI1?(2")/ =¢, respectively. Herd]9(2")
denotes the set of all nonempiif subsets of 2. For P € P(N"), the equivalence
class{Q c NV : Q =¢ P} € D/F is calledthe 7-degreeof P. If ¥ = [GT]"W for
somea, B,y € {1, < w, w}, we writesg‘y, Dgw and?gly instead o<, D/F andﬁP/f
The preorderings% and<} are equivalent to the Medvedev reducibility [41] and the
Muchnik reducibility [46], respectively.



In Part | [29, Theorem 26 and Proposition 27], we showed the following equiva-
lences:

PL, =P/deg[l]] P, =P/dec[AJ] PL = P/de[A]

PI = PldeG [y Pi° = P/degNSldeq[AY] P = P/deq 1Y)

Here, for a pointclasg, a functionl’ :c N — N is finite (countable, resp.)
A-piecewise computabléthere is a finiteA-cover{X}i-, (a uniformI’-cover{X;}ic.,
resp.) of dom{) such thatl" | X; is computable for any € N, and the set of all
finite (countable, resp.)A-piecewise computable functions is denoted by tifg]
(deg[A]). We denote by de’[I17] the set of all finitel13-layerwise computable func-
tion (see Part | [29, Section 2.5]), which is equivalent tot#§(d15)2], where (I9); is
the complexity of the dferences of twdl sets.

This observation allows us to think of each degree strucktireas a piecewise-
degree structure in the following sense.

1. P1is the Medvedev degrees Bf sets.

. P, is the finite-(19),-piecewise degrees oF, sets.

. PL_,, is the finiteAd-piecewise degrees of; sets.

P2 is the countablex)-piecewise degrees oF, sets.

. P7¢ is the finite-(12),-piecewise degrees oF sets.

. P is the finite-(13),-countableAd-piecewise degrees oF sets.

. P¢ is the Muchnik degrees (or equivalently, the countdﬂ)gepiecewise degrees)
of ITY sets.

N U A WN

1.4.2. Sets

To define the disjunction operations in Part | [29, Definition 29], we introduced
some auxiliary notions. LdtC N be a set. Fixr € (I x N)<¥, andi € I. Thenthe i-th
projection ofo is inductively defined as follows.

_ _ [prite)n, if o = o (L),
pri(() = 0, pri(o) = {pri (o). otherwise.
Moreover,the number of times of mind-changes of (the process reconstructed from a
record)o € (I x N)<!' is given by

mc(o) = #{n < |o] — 1 : (c(n))o # ((N + 1))o}.

Here, forx = (X, X1) € | x N, the first (second, resp.) coordinatg (x1, resp.) is
denoted by X)o ((X)1, resp.). Furthermore, fof € (I x N)¥, we definepr;(f) =
Unen pri(f T n) for eachi € I, andmc(f) = lim,mc(f [ n), where if the limit does not
exist, we writemc(f) = oco.

In Part | [29, Definition 33, 36 and 55], we introduced the disjunction operations.
Fix a collection{P;}i¢ of subsets of Baire spad&".

1. [Vie Pilline = {f € (I x N - ((3i € 1) pri(f) € Pi) & me(f) = 0}.



2. [Vier Pilliempn = {f € (I xN)" 2 ((3i € 1) pri(f) € Pi) & me(f) < n}.
3. [Via Pille = {f € (I xN)"' : (Ji € 1) pry(f) € Pi}.

As in Part I, we use the notationrite(i, o) for anyi € N ando € N<,
write(i,o) = i@ o = ((i,7(0)), (i, (1)), (i, (2)). ... ., (i, (| = 1))).

This string indicates thimstruction to write the string- on the i-th tapen the ongtwo-
tape model. We also use the notatiani te(i, f) = Ungywrite(i, f 1 n) = i¥ o f for
any f e N¥,

In Part II, we are mostly interested in the degree structurél alubsets of 2. As
mentioned in Part | [29], the consistent disjunction operations are useful to study such
local degree structure$he consistency s€on(T;)ic, for a collection{T;}ic, of treesis
defined as follows.

Con(T)iar = {f € (I xN)" : (Vi e 1)(¥n € N) pr;(f } n) e Ti}.

Then we use the following modified definitions. Fix a collect{®}ic; of H‘f subsets
of Baire spac&™ andn € w U {w}.

1. [Vn]ie, Pi = [Via PillLemig N Con(Tp, il -
2. [V lia Pi = [Viel Pille 0N Con(Tp)ici -

HereTp, is the corresponding tree fé% for everyi € I. If i € {0, 1}, then we simply
write Pov,Py, Pov,,P1, andPyv,, P; for these notions. In Part Il, we use the following
notion.

Definition 1. Pick anyx € NU{w}U{o0}. For each disjunctive notions, and collection
{Pi}iar of subsets oR", fix the corresponding treEr, € N< of P; for everyi € | and
we may also associate a trégwith (the closure ofPyv.P;1. Thenthe heart of Bv.P;

is defined byT? = {oc € T, : (Vi € I) pri(o) € TgiX‘}.

Note that everyr € T is extendible inT,, sinceT C {c € T, : (Ji € |) pri(o) €
TeM).

Let Lp denote the set of all leaves of the corresponding tree for a nondﬂiﬁmgt
P (where recall that such a tree is assumed to be uniquely determined when an index
of P is given). Thenthe (non-commutative) concatenation of P andsQ@efined as
follows.

P Q=PU U Q.
peLp

We also writeTp~Tq for the corresponding tree & Q. Moreover, the commutative
concatenatiovQ is defined asR~Q)®(Q~P). Let P and{Qn}nar be computable col-
lection ofITY subsets of 2, and letp, denote the length-lexicographicalyth leaf of
the corresponding computable treeRofThen, we define thifinitary concatenation
andrecursive me€f3] as follows:

P {Qi}ien = PU UPnAQn, @ ien Qi = CPA™{Qi}iew.

10



Here,CPA is a Medvedev complete set, which consists ofcalinplete consistent ex-
tensions of Peano ArithmeticThe Medvedev completeness ©PA ensures that for
any nonempt)H‘l) subse c 2V, a computable functio® : CPA — P exists.

In Part I, we studied the disjunction and concatenation operations along graphs.
For nonempt;([g subset andQ of 2V, the hyperconcatenation @P of Q and Pis
defined by the iterated concatenatiorR¥ along the ill-founded tre&g, that is,

Qvp= {U (|_| Tp"<r(i)>] e

TeTg \i<|t]

Note that, after writing this paper, Kihara [37] gauv&eetive topological interpre-
tations of some of these constructions.

Remark. Recall from Section 1.3 that a corresponding tree ﬂﬁa;et is assumed to

be uniquely determined whem index of theH(l’ setis givenindeed, most of our above
definitions obviously depend on our choice of indices (hence, corresponding trees) of
given H(l’ sets, that is, most of operations introduced above are defined on subtrees of
N<¥ rather than subsets df'. Although there is noféective well-defined map from

the H‘f sets into the indices, it does not really matter what we chose, if we only focus
on the degree-theoretic behavior. Formally, the reader should replace the words “for
any (there exists a)Ig set” in this paper with “for any (there exitsts anylex ofa 1‘[2

set”, or simply, the reader may suppose the definition dﬂ‘i’a‘set" to mean a structure

# consisting of a pair of &? setP and its indexe (or equivalently, its corresponding
treeTp). We will frequently use index-dependent definitions in order to simplify our
notations, but in each case, one can easily ensure that it cause no problems at all.
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2. Degrees of Dificulty of Disjunctions

The main objective in this section is to establish LEVEL 3 separation results among
our classes of nonuniformly computable functions by using disjunction operations in-
troduced in Part | [29, Sections 3 and 5]. We have already seen the following inequali-
ties forng subsetd, Q c 2V in Part | [29, Section 5.1].

Pe Q> PUQ=>lPvQ>!Pv,Q>] Pv.Q.

As observed in Part | [29, Section 4], these binary disjunctions are closely related
to the reducibilitiessj, <4, <%,, <J,_,, and<;“, respectively. We employ rather
exotic Hg sets constructed by Jockusch and Soare to separate the strength of these
disjunctions. We say that a satc N is an antichainif it is an antichain with respect
to the Turing reducibility<t. In other words f is Turing incomparable witly, for any
two distinct elementd, g € A. A nonempty closed set ¢ N is perfectif it has no

isolated point.
Theorem 2(Jockusch-Soare [35])There exists a perfeﬁg’ antichain in2".

A stronger condition is sometimes required. For aRet NV and an element
g € N¥, let P<19 denote the set of all element Bfwhich are Turing reducible tg.
Then, a seA ¢ N" is antichain if and only ifA<"9 = {g} for everyg € A. A setP ¢ N¥
isindependenif P<r D = D for every finite subseb c P.

Theorem 3(see Binns-Simpson [3])There exists a perfect independ@@tsubset of
2N,

On the other hand, in Section 3.1, we will see that our hierarchy of disjunctions
collapses for homogeneous sets, which may be regarded as an opposite notion to an-
tichains and independent sets.
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2.1. The Disjunctior versus the Disjunctiot

We first separate the strength of the coproduct (the intuitionistic disjunction)
and the union (the classical one-tape disjunction)This automatically establish the
LEVEL 3 separation result betweefiﬂ]} and [£4];“. Recall that a seP ¢ NY is
specialif it is nonempty and it contains no computable points.

Lemma 4. Let Py, P, beTI9 subsets 02", and let Q be a specidll? subset oP".
Assume that there existef Pg and ge P; with Q<779 = Q=7 U Q<79 such that G '
and Q"9 are separated by open sets. Thertf)(Po ® 2') U (2" ® Py).

Proof. Suppose tha® <1 (Po ® 2"') U (2 ® P;) via a computable functionab. Then
foge (Po®2Y)u (2 ® P1). By our choice off andg, ®(f @ g) must belong

to Q<7f®9 = Q=tf U Q=79. By our assumptionQ=7f and Q<79 are separated by two
disjoint open set), V c 2. Thatis,Q<"" c U, Q<79 c V, andU NV = 0. Therefore,
eitherd(f @ g) € QN U or o(f & g) € QN V holds. In any case, there exists an open
neighborhoodd] > ®(f @g) such that§] € U or [o] C V. Without loss of generality,
we can assumerf] € U. We pick initial segmentsgy c f andr; c gwith (@ 71) 2

o. Then 0" @g e (Po®2Y) U (2" ® P1), and it is Turing equivalent tg. However
this is impossible becausg(ro" 0" @ g) e [o], and p] N Q9 CcUNQ<9=0. O

Corollary 5. 1. There arell{ sets PQ ¢ 2" such that RU Q <} P& Q.

2. There arel1{ sets PQ ¢ 2" such that P=g4, Q and P<} Q.

Proof. (1) Let R be a perfect independefl? subset of 2. SetP = 2" ® R and
Q =R®2". Note thatP® Q =] R Pick f,g € Rsuch thatf # g. ThenR*"" = {f},

RS9 = (g}, andRsT1®0 = RsTT || RS9 = ({f, g}. Since 2' is Hausdoff, two points
f andg are separated by open sets. ThRs Q z% R f_i PU Qby Lemma 4. (2)

PeQ=4PUQ<iPaQ. O

Remark. One can adopt the unit interval,[0] as our whole space instead of Cantor
space 2. Then,Py 1 Py := (Po x [0, 1]) U ([0, 1] x P4) is connected as a topological
space. IfPy C [0, 1] is homeomorphic to Cantor space, then the connected space
Po 1 Po is sometimes callethe Cantor tartan The above proof shows that every
perfect independeﬂﬂg setR C [0, 1] is not (1 1)-reducible to the obtained tart&t R,

while these sets are(w, 1)-tt-equivalent. Note that the tartan plays an important role
on the constructive study of Brouwer’s fixed point theorem (see [10]).

2.2. The Disjunctiorv versus the Disjunctiom

We next separate the strength of the unioand the concatenation (the LCM dis-
junction with mind-change-bound 2) Moreover, we also see the LEVEL 3 separation
between g5 and [Er]%,,.

Lemma 6. Let Py, Py beII? subsets o, and let Q be a specidll) subset of".
Assume that there exist ¢ Py and g € P; such that any he Q='" and "9 are
separated by open sets. Therﬁ@PoA P;.

13



Proof. Suppose thaQ <! Py~P; via a computable functionab. By our choice of
f € Py € Py~P1, there must exist an open détc 2V such thatd(f) € Qn U and
Q<9 N U = 0. SinceU is open there exists a clopen neighborhoefl $ ®(f) such
that o] N Q € U. We pick an initial segment c f with ®(7) 2 o. Sincef € Py holds,
we have that € Tp,, and we pickp € Lp, extendingr. Thenp~g € Py~P1, andp™g
is Turing equivalent t@. So, if Q <! Py~P; via @, then®(p~g) must belong taQ='9.
However this is impossible becau®éog) € [o], and [r] NQ=TY CcUNQ<9=0. O

Corollary 7. There arell{ sets PQ € 2" such that PQ < PUQ <} P& Q.

Proof. Assume thaR be a perfectl? antichain of 2. SetP = 2" @ RandQ =

R® 2. Pick f,g € Rsuch thatf # g. ThenRsf = {f} andRs™9 = {g} sinceR is
antichain. Therefore RU Q)<* ¢ ({X} ® 2') U (2V ® {X}) for eachX € {f,g}. For
h=ho@hy € (PUQ)=TT, we havehy # gandh; # g. Thus,h ¢ (2 ®1{g}) U ({g} ® 2Y),

and note that 2 ® {g}) U ({g} ® 2") is closed. Then, there is an open neighborhood
U ¢ 2" such thath € U andU n (P U Q)<™9 = 0, sinceP U Q is regular, and
(PUQ)s9 C (2¥®{g})) U ({g} ® 2). Namely, anyh € (PU Q)= and P U Q)<Y are
separated by some open set. Consequently, by Lemma 6, w@ha@ﬁ} PQ. O

One can establish another separation result for the concatenation. Recall from [12]
that a closed se® ¢ N" is immuneif TE* contains no infinite c.e. subset. In [12] it
is shown that the class of non-immuH@ subsets of Cantor space is downward closed
in the Medvedev degree@}l. This property also holds in a coarser degree structure. In
Part | [29, Section 2.4] we have seen ti#gt; is an intermediate structure betwé@b

andPt,.

Lemma8. Let Pand Q beﬂ(l) subsets 0#", If P is notimmune, and @ft"‘i P, then Q
is not immune.

Proof. LetV be an infinite c.e. subset 3. Assume thaQ <g P holds vian truth-
table functionalgl’}i<,. Note that every functiondl; can be viewed as a computable
monotone function from 2’ into 2<¢. Let Vi be the c.e. sé¢ N M4 727 \ TEX]

for eachk < n. By our assumptiory, is finite, since otherwise the tree generated from
V has an infinite path such thatd;(f) ¢ P for everyi < n. Letk be the least number
such thawy, is finite. ThenI'k[Vy] is an infinite c.e. set, and| V] is included inTFe,Xt

except for finite elements. ]

Corollary 9. There arell) sets PQ € 2" such that Qe P =L,

Proof. Let P be an immuneﬂg subset of . PutQ = P~P. As seen in Part | [29,
Section 4], we hav® <} P =1 Q. Then,Q is not immune sincé'gXt includes an
infinite computable subs@. Hence P £5¢ Q by Proposition 8. ]

We have introduced two concatenation operatioasdv, while there are several
other concatenation-like operations (see Duparc [22]).[EosetsP andQ, let P~ Q
andP'Qdenote{c#f'r:0ceTp & teTol]land o7t : 0 € Tp & 7 € Tol],
respectively. (Note that these definitions are also index-dependent, and recall that the
final remark in Section 1.4.2.) As seen in Part | [29, Proposition 53], we Ra@e=}

P~ Q. However, there is a (1)-difference betweeR~Q andP™Q.
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Proposition 10. There arell{ sets PQ ¢ 2" such that PQ <} P~Q.

Proof. It is easy to see tha®"Q <] P~Q for any Il setsP,Q ¢ N". LetR c 2
be aH(l’ antichain. Then we divid® into four parts,Pg, Py, P2, andP3. PutP = P3,
andQ = (0,1)"P>"Pg) U (1)~ P,~P;). Without loss of generality, we may assume
that(0) € Tp. Suppose thaP~Q s% P"Q via a computable functio®. Choose
g € P,. Then we have0, 1)"g € P'Q. Therefore ®({0,1)"g) € P~ Q must contain
#, sinceP = P3; has no element computable gne P,. Thus, there i1 € N such
that ®({0,1)"(g | n)) contains(f, i) as a substring for some< 2. Fix suchi. Then,
OO0, 1) (g I n) € P7(QnN [(i)]). We extendg ' nto some leap of P,. Choose
hy € Py for eachk < 2. Then0,1)"p"hy € Q € P"Q, and(0,1)"p~h; € (0)"Q C
P"Q. Thus,®({0,1)"p~hy) must belongs t&~(Q N [(i}]), for eachk < 2. However
P~(Q N [(i)]) has no element computable®, 1)~p"h;_j. A contradiction. O

Proposition 11. P"Q =1, P~Q holds for everyT! sets PQ ¢ N"'.

Proof. It suffices to show thaP~Q <! P"'Q. Givenf € P"Q, our learner?¥ first
guesses thatt is also a correct solution 8~ Q. If f [ n¢ Tp happens, we know that
(f 1 m-#f=™ e P~Q for somem < n, where note that = (f 1 m)~f=™ holds
for eachm € N. Thus, the learne¥ can guess a correct number < n such that
(f T m)~4~f=™e P~ Q with at mostn mind-changes. |

2.3. The Disjunctiorv versus the Disjunctiom,,

Let ¥ be a learner (i.e., a total computable functdn: N<¥ — N). A point
a € NV is said to bean m-changing point o¥ if #mcly () > m. Then, the set of all
m-changing pointsof ¥ is denoted byncy(> m). A pointe € NV is anti-Popperian
with respect to¥ if lim, ¥(a [ n) converges, bu®jim, v (@) is partiaf. The set of
all anti-Popperian points of is denoted by AR.

Remark (Trichotomy) LetI be a (1w)-computable function identified by a learner
¥, and letP be any subset of Baire spab&’. ThenN" \ I'"(P) is divided into the
following three parts: the s€t*(N"" \ P); thexJ set ARy; and thell set( ey mey (>
m).

We say thaPy andP; areeverywherdw, 1)-incomparablaf Py [og] is Muchnik
incomparable withPy N[o] (thatis,Pin[oi] £9 P1-iN[o1-i] for eachi < 2) whenever
[o7] N P; # 0 for eachi < 2.

2The set ofm-changing points is closedly related to timeth derived set obtained from the notion of dis-
continuity levels ([19, 26, 27, 40]). See also Part | [29, Section 5.3] for more information on the relationship
between the notion of mind-changes and the level of discontinuity.

3In the sense of the identification in the limit [24], the learHéis said to be Popperian Py (0) is
total for everyo- € N<V such that?(o) is defined. This definition indicates that, given any sequene@?™,
if the learner makes an incorrect gudsg,5(0) # « at stages, the leaner will eventually find his mistake
Dy(e19(0;n) L# (n). In our context, the learner shall be called Popperian if given any falsifiabler(fl’.)a.,
mass problen@ and any sequenaec NV, the incorrectnes®y, g (@) ¢ Q implies Py (@) I N l¢ To
for somen € N. Every anti-Popperial point of witnesses tha¥ is not Popperian.
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Theorem 12. Let Py, P; be everywheréw, 1)-incomparab|e1‘[‘1) subsets oY, andp
be any binary string. For anyl, w)-computable functiofr identified by a learne¥,
the closure ofaicy (> m) UT1(NY \ Po@ P1) U APy includeso™ (Pov,P1)” with respect
to the relative topology op~(Povm:nP1)” (as a subspace of Baire spaté).

Proof. Fix a stringo~7o which is extendible in the heart pf (Pyv,P1). Then,pr;(ro)
must be extendible if?;. Fix fi € Pi N [pri(7o)] witnessingP,; £ P; for each

i < 2, i.e., P contains nofi-computable element. Sudh exists, by everywhere
(w, 1)-incomparability. Assume thdt = pri(ro)~ f* for eachi < 2 and that the last
declaration alongy is jo, i.€.,70 = 75" (jo. k) for somek < 2. Then we can proceed
the following actions.

e Extendrpto Jo = Toﬂwrite(]‘o, f;;) € pA(PoVnPj_).

Wait for the leasty > |ro| such thatDyg,)s)(do [ S0; 0) = jo.

Extendgo I soto g1 = (Qo [ o) write(js, f)) € p~(Povni1P1), wherejy =
1-jo.

Wait for the least, > sy such thay(g, 1s)(91 T S1;0) = 1 - jo.

If both 55 and s, are defined, then this action forces the leartielo change his
mind. In other wordsg; € mcy(> 1). Assume thas is undefined for some< 2 Note
thatg =7 fj, sincepr;(g) = f;, andpr;_;(g) is finite, for each < 2. Therefore,
I(a)) ¢ (- ji) Py sinceP._j has nog-computable element. In this casg, €
YN \ Py @ P1). Hence, inp~(Povn:1P1)?, the closure ofcy(> 1) U T71(NY \
Po @ P1) UAPy includesp™(Pov,P1)°. By iterating this procedure, ir (PoVm.nP1)",
we can easily see that the closuremafy(> m) U I"}(N" \ Py @ P;) U APy includes
P~ (PovnPy)”. m

Corollary 13.

1. There exists1? sets PQ ¢ 2" such that ®,,Q <%, PvQ.
2. There exists19 sets PQ ¢ 2" such that P=!,_ Q and P<!, Q.

Tw|l<w

Proof. (1) Let P be a perfecl‘[‘l’ antichain in 2 of Theorem 2. Fix a clopen s&
such thatPp = PN C # 0, andP, = P\ C # 0. Then everyf € Py andg € P;
are Turing incomparable. Thereforig; and P, are everywhered, 1)-incomparable.
Let pn denote then-th leaf of the treeTcps Of @ Medvedev completﬂg setCPA C
2. Fix a (1 m)-computable functiod” identified by a learne¥. By Theorem 12,
pmi1” (PoVime1P1) intersects withmey(> m+ 1) U T™Y(w® \ Py @ P;). Thus, Py @
Py £1, P ;7 (PovaP1). Additionally, we easily havé®ov,P; <i, P (PovnPy).
(2) P =B (PovnPy) andQ = Py & Py arelld. o

2.4. The Disjunctiorv,, versus the Disjunction.,

By the similar argument, we can separate the strength of the concatengtiond
the classical disjunctiori,.
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Figure 1: The two-tape (bounded-errors) model of disjunctions for indepeﬁ@emtsP, Qc 2V,

Theorem 14. Let Ry, P, be everywheréw, 1)—incomparable1‘[§ subsets o?". For any
(1, w)-computable functiofr, the complement dt-1(Py @ P,) is dense inPyv.,P1)”
(as a subspace of Baire spai¥).

Proof. Fix a learner?¥ which identifies the (lw)-computable functiol. Fix any
clopen set{] intersecting with the heart oPv.,P1). Assume thatq] N (PovP1)”
contains no element af (N \ Py @ P;) U APy. By Theorem 12mcy(> n) is dense
and open in the heart oP§{v.,P1) N [7] = 7°((Po N [pro(7)]) Ve (P1 N [pr1(7)])). As
[7] N (PovewP1)” is 119, the intersectior oy mey(> n) is dense inf] N (PoVeP1)®,
by Baire Category Theorem. Hend&, \ T1(P, ® P;) intersects with any nonempty
clopen setf] with [7] N (Pove,P1)” # 0. o

Corollary 15.

1. There existl{ sets PQ ¢ 2 such that P=5* Q holds but Q¢Z, P holds.
2. There exisII® sets PQ c 2" such that P=;“ Q holds but P<?, Q holds.

Proof. Let P be a perfechl’ antichain in 2' of Theorem 2. Fix a clopen sét such
thatPo = PN C # 0, andP; = P\ C # 0. ThenPy andP; are everywhered, 1)-
incomparable. Fix a (v)-computable functiom identified by a learne¥. By Theo-
rem 14 N\ (Po ® Py) is dense inPov.P1)”. ForIld setsPo, P, € 27, bothPov., Py
andPo & Py arell?, andPov,,P; <! Py @ P;. O

2.5. The Disjunctior versus the Disjunctiofy

By the similar argument, we can separate infinitary disjunctions. A seqehee
of elements ofN*' is Turing independenif x; is not computable ir@j¢i Xx; for each
i € N. A collection{P;}i¢ of subsets oN" is pairwise everywhere independéftfor
any collection{[c]}ic| of clopen sets withP; N [o] # 0 for eachi € |, there is a choice
{X}ier € [Tie1(Pi N[o]) such thatP; has no element computabledp) 1 X for each
iel.

Jel\di

Theorem 16. Let{P;}i-x be a pairwise everywhere independent coIIectioﬁ[?)fsub-
sets of2", and letp be any binary string. For anyt, w)-computable functiod’, the
complement of %(Py & - - - @ P»_4) is dense in the heart @f (PgVe ... Ve P2_1) (as
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a subspace of Baire spad&’). Indeed, for any nonempty interval | in the heart of
0 (PoVeo - .. VP2 1), there is g€ p~(PoVeo . .. Voo P2_1)" N 1\ F_l(PO @@ Paq)
which is computable in somé g &), _»_; P«.

Proof. Assume that thet(w)-computable functiol is identified by a teanf¥;}i; of
learners. Fix a string~7o which is extendible in the heart @f* (PyVe ... Voo Pat_1).
Then,pr; (o) must be extendible iR; for eachi < 2. Fix {fi}i<x € [Ti<z(Pin[pri(r0)])
witnessing the independence {#f }i-, i.e., P; contains noEBj;&i fj-computable ele-
ment. Assume thaf; = pr;(ro)~ f* for eachi < 2' and that the last declaration along
Tois jo< 2, i.e., 1o = 75" (jo, K) for somek < 2. Fix a computable functiofimapping

j < 2! to a unique binary string(j) satisfyingj = Y.552°- 5(j; €). Let EZ denote the
set{j < 2': §(j; €) = k}. Then we can proceed the following actions.

e Extendrgtogg = 1o write(jo, fj";) € p " (PoVeo ... Voo P2 1).

o Wait for the leastsy > |ro| such that®y,g,15)(G0 I S0;0) € Eg(jo;e) for some
e< 2.

e If such s exists, then enumerate all sueh 2 into an auxiliary set C§) and
defines(j1) as follows:

.~ Jo(jos€) if e¢ Chy,
008 = {1— s(jo;e) if ee Chy.

e Extendgo [ soto g1 = (Qo I So) write(js, f)) € p™(PoVes ... Ve P21), Where
j1= Y602°-6(j1;©).
These actions force each learN&rwith e e Chy to change his mind whenever the
learner?, want to have an element @KZ P;. Fix u € N. Assume thaf, gu, Su,

and Ch has been already defined, and the following induction hypothesis atistage
satisfied.

e pry(gy) € feforanye < 2!, hencegy € p"(PoVeo . . . Voo P2t_1)” N [0"70].
e {s,}y<y is strict increasing, and Ghz 0.

e For eache € Chy, if Dy g,15)(0u I Su; 0) converges to some valke< 2!, then
ke Efje

It is easy to see that = O satisfies the induction hypothesis. At stage 1 € N,
we proceeds the following actions.

o Defined(jy+1) as follows:

i 6(ju; € if e¢ Chy,
Siwsie) = |00 S
1-6(jy;e) if ee Ch,.
e Extendg, | syt0Qui1 = (Qu [ Su) write(jus1, fj(:il))u wherejy.1 = Z}a_z%) 2
8(ju+1; €), and U+ satisfiespr;, , (Gue1) = prj,,, (0 I 8) F =71, ..
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o Wait for the leasts,,1 > s, such thaty,(g,,,15,.1)(Qur1 T Sus1;0) € Eg(jm;e) for
somee < 2,

o If such s, exists, then enumerate all suek: 2! into Ch,, 1,

By our action, it is easy to see that 1 satisfies the induction hypothesis. As the
setp™(PoVw ... Vo P2_1)” is closed (with respect to the Baire topology) dsdycy is
strictly increasing, the sequenftR Juan converges to somge o~ (PoVe . . . Voo Pat_1)".
Let1(g) C 2! be the set of alé < 2' such thabrg(g) is total.

Claim. g <t @ed(g) fo.

Note thatg = g[fo,..., f2_1] is effectively constructed uniformly in a given col-
lection{fy}k<2t. In other words, there is a (uniformly) computable funct@®mapping
{filk<zt 10 O({ filk<2t) = g = g[fo, ..., fa_1]. Then, itis easy to see that the functi®n
Maps fefeci (g UipTe(9)” 0"ecztii(q) 10 9. Henceg <t P, @D enry (g Pre(9) 0"
Therefore,g <1 P f. as desired, sincer.(g)~0" is computable for ang €
2\ 1(9).

Let I'e denote the (lw)-computable function identified bye, that is, I'e(a) =
Djim,, (o) (@) for anya € NY. We consider the following two cases.

e<l(9)

Case 1(e € Ch, for finitely manyu € N). Fix u such thate ¢ Ch, for anyv > u.
For eachv > u, Py, g;5)(0 I su; 0) does not converges to an eIememE;Ijv;e) =
Eg(ju;e). By our definition, for eaclk ¢ Eg(ju;e), pri(g) c p~ fk is finite. By previous
claim, g <t EBe;tk fe. Thus, by independenc®, has nog-computable element. If
Dy grs)(@ I s;0) T for anyu € N, theng € APy,. If lim,¥e(g I n) does not
converge, themy € (e mey, (= m). Otherwise ®jim, w.gin)(9; 0) converges to some
valuek ¢ Eg‘(ju;e). AS Djim, w.(gm)(Q) iS g-computable, we se®jim, w,qm)(9) ¢ K Pxk.
Consequentlyy € N\ T3P, _» Pu).

Case 2(e € Ch, for infinitely manyu € N). We enumerate an infinite increas-
ing sequencgu[n]}ney, Whereu[n] is the n-th element such that € Ch,. Ase €
Chyny, we have®y g qm)(g I u[n];0) € Eg(ju[n];e). By our action,é(jyn+1);€) =
0(jun+1;€) # 0(jun; €. This impliesEg(ju[M];e) N Ef;‘(ju[n];e) = (. However, we must
have @y (grun+ap(9 I uln + 1J;0) € Eg(ju[n,,l];e)’ sincee € Chyns1y. This forces the
learner?¥, to change his mind. By iterating this procedure, we eventually obtain

ge mmeN mc‘l’e(2 m)-

Consequentlyg € Neewr(N' \ TgX (P, _» P))- Thus,g € N\ TgH(EP, _» Py). For
anytg such thap~to which is extendible in the heart pf (Pyv . .. Vo P2i_1), We can
construct sucly extendingry. ThereforeN™ \ Fgl(@kdt Py) intersects any nonempty
interval inp~(PgVe . .. VooP2_1)". In other wordsN*' \ I';}(Po @ - - - ® Px_1) is dense
iNn p~(PgVe ... VeP2_1)" as desired. O

The following theorem by Jockusch-Soare [35, Theorem 4.1] is important.

Theorem 17 (Jockusch-Soare [35])There is a computable sequendd,, P! }ia: of
nonempty homogeneoﬂ[{ subsets o2 such that{x }icy is Turing independent for
any choice xe [, P}, i € N.
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Clearly any suctﬂ‘l) set contains no element ofRA degree, a Turing degree of
a complete consistent extension of Peano Arithmetic. Accordingly, every element of
such al1? set computes no element of a Medvedev comflEteetCPA.

Corollary 18. There ardl1? sets R € 2", n € N, such thatP) ;> (PoVe . .. Voo Py) <5
@ Pt

Proof. Fix the computable sequengBilicy of Theorem 17. ThenPjliay is pair-
wise everywhere independent. Assume #{~P; < P (PoVw - .. Ve Py) Via a
(t, w)-computable functiolr. Letp, denote the-th leaf of the tre@ cps 0f a Medvedev
completell subset of 2. By Theorem 16T (U ok~ Px) is dense in the heart of
02" (PoVe ... Voo P2i_1). In particular, there ig € p2" (PoVw ... Vo P2i_1) such that
I'(9) ¢ Uk<2 px~ Pk which is computable in somg' <t ), _» P«. By our choice of
{Pi}ia, T'(g) computes no element ¢ Px U CPA. Thus,I'(g) ¢ €D 7 Pr. ]

Corollary 19.

1. There exists a computable sequefiEglnay of Hg subsets of Cantor spa&',
such that the conditiofl/, |, Pn <5“ €D, P is satisfied.
2. There exisl'[fl) sets PQ c 2" such that P=¢ Q holds but P<j Q holds.

Proof. (1) By Corollary 18. the conditiofi/., ],,Pn <] @ (PoVe ... Voo Pr) <5
P <] 6B, Py is satisfied. (2) PuP = [V, ],Pn <] D (PoVe ... V& Pt) and
Q= P P.. ThenP andQ are (11)-equivalent thg subsets as seen in Part | [29,
Section 5.2]. By Theorem 1& <3 Q, andQ =7 P as seen in Part | [29, Sections 4

and 5.2]. |

3. Contiguous Degrees and Dynamic Infinitary Disjunctions

3.1. When the Hierarchy Collapses

We have already observed the following hierarchy, for pairwise indeperﬁ@ant
setsP, Q c 2,

PeQ>1 PUQ>; PvQ>l, Pv,Q>} _, Pv.Q=:“PeQ.

Homogeneityis an opposite notion of antichain (and independence). Recall that
S ¢ N¥ is homogeneous S = [], Sy for someS, C N, n € N. Every antichain is
degree-non-isomorphic everywhere. On the other hand, every homogene&us set
degree-isomorphic everywhetbat is to sayS n C is degree-isomorphic t8 n D for
any clopen set€, D ¢ N¥ with SN C # 0 and withS N D # 0*.

The next observation is that every finite-piecewise computable method of solving a
homogeneouﬁg mass problem can be refined by a finiﬂg’—xz—piecewise computable
method. That s to say, our hierarchy betwegp and<:“ collapses for homogeneous
Hg sets, modulo the (k w)-equivalence.

4An anonymous referee pointed out that the notion of degree-isomorphic everywhere is related to the no-
tion of fractal in the study of Weihrauch degrees [9, 53]. The (reverse) lattice embeddifitne Medvedev
degrees into the Weihrauch degrees has the property that a $ub§&aire space is degree-isomorphic
everywhere if and only iéi(P) is a fractal.
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Theorem 20. For every homogeneod@‘l’ set Sc NY and for any set Qc N¥, if
S <5 QthenS<t, Q.

Proof. Let S = []4Fx for someH(l’ setsFyx € N. AssumeS <7“ Q via the bound

b. That is, for everyg € Q there exists an inde& < b such thatd¢(g) € S. Let us
begin defining a learn&¥ who changes his mind at most finitely often. lgix Q. The
learner¥ first setsAy = {e € N : e < b}. By our assumption, we hawk.(g) € S for
somee € Ay. Then the learne¥ challenges to predict the solution algoritlenx b
such thaid¢(g) € S by using an observatiog € Q. He begins the 1-st challenge. On
the(s+ 1)-th challenge of?, inductively assume that, the learner have already defined
a setAg C A. Letv be a stage at which tre+ 1-th challenge o ong begins. In this
challenge, the learn& uses the two following computable function@landA.

e Foragiven argument I'(x, s+1) outputs the leage(x), t(X)) such thag(x) € As
and®e (g I t(x); ) | if such(e(x), t(X)) exists.

o If T(x, s+ 1) = (&(X), t(X)), thenA(g; X, s+ 1) = Pgx (g [ t(X); X).

SetAs:1(g; X) = A(g; X, s+ 1). Clearly, an indexi(s+ 1) of As,; is calculated from
s+ 1. Then the learne¥(g | v) outputsd(s+ 1) on the § + 1)-th challenge. Hence
Dy (0 X) = Dys+1)(0; X) = Pew(g T 1(X); X) for any x. He does not change his
mind until the beginning stageé of the next challenge, i.eQygv)(9) = Pwgr(9)
for k < v’ < V. The next challengmight begin when it turns out th&t's prediction
on his 6+ 1)-th challenge is incorrect, namely:

o Oygy(g I'u) I n¢ Tsy for somen < u at some stage > v.

HereTs is a corresponding computable treeSf For eachx € N, fix a decreasing
approximation{Fy s}sey Of aH‘l’ setFy C {0,1}, uniformly in x. In this case, there
existsx < n such that the following condition holds.

Dygry(9 [ U; X) = As1(0; X) = Pex(95 X) ¢ Fxs.

For such a least, the learner removexx) from Ag, that is, letAs;1 = As\ {e(X)}.
If Asi1 # 0 then the learneW beginsthe (s + 2)-th challengeat the current stage.
The construction of the learn@ris completed. Animportant point of this construction
is that the learner never uses an index rejected on some challenge. This makes the
prediction ong € Q of the learne¥’ converge.

Claim. ¥ changes his mind at molstimes.
Wheneve¥ changesAs must decrease. HoweveA##= h.
Claim. For everyg € Q it holds that®jim w(g(9) € S.

Forg € Q, let BY C Ag be the set of ale € Ag such thatdg(g) € S = [« Fx. By
the definition ofAg, clearly B? is not empty. Moreovei3? C (s As holds, sincee is
removed fromN s As only when®g(g; X) ¢ Fx for somex. Thus,®ygny(g) : N - N
is total for every stage. This means that, iyg(9) ¢ S, then the learne¥ will
know his mistake at some staggi.e., Pygn(9 I U; X) ¢ Fyy for somex < u. Then
some index is removed fromsAs. However, this occurs at mosttimes. Thus,
Diim_w(grs(9) € S. O
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Leta,B,y € {1, < w, w}. We say that ad, S|y)-degreea of a nonempt)H(%’j subset
of 2" is (@, Bly)-completef b < afor every ¢, Bly)-degreeb of a nonemptyll{ subset
of 2", If aT19 setP C 2" has an ¢, Bly)-complete &, Bly)-degree, then it is also called
(a, Bly)-complete

Corollary 21. A Hg subset oP" is (1, < w)-complete if and only if it i$1, w| < w)-
complete if and only if it i$< w, 1)-complete.

Proof. Let DNR; denote the set of all two-valued diagonally noncomputable functions,
where a functiorf : N — 2 isdiagonally noncomputabl¢ f(€) # ®¢(€) for any index

e. This set is clearly homogeneous, alﬂ@t Moreover, it is (11)-complete (hence
(a, Bly)-complete for anyr, 8,y € {1, < w, w}). Therefore, we can apply Theorem 20
with S = DNR.. m|

Corollary 22. There areHg sets PQ ¢ 2" such that Rp Q =% ) Pv..Q. Indeed, if P
is homogeneous and Q} P, then P» Q =% Pv.Q is satisfied.

Proof. Let P be any homogeneoﬂ'@ subset of 2. ThenP & P is also homogeneous.
As seen in Part | [29, Section 4], there is aXpcomputable function frorPv,,P to
P P, henceP & P <; Pv,P. Thus, by Theorem 2@ & P <!, Pv.P. Recall

from Part | [29, Proposition 38] th&@ =1 P impliesPv.,P =1 Pv.,Q. HenceQ =} P
impliesP® Q=] Po P <! Pv,P =] Pv..Q. u!

—<w

It is natural to ask whether our hierarchy of disjunctive notions for homogeneous
Hg sets also collapsanodulo the(1, 1)-equivalence The answer isiegative We say
that a homogeneous ddt, Fr is computably boundeiithere is a computable function
| : N —» N such thatF, € {0,...,I(n)} for anyn € N. Clearly, every homogeneous
subset of Cantor spacé'2s computably bounded. Cenzer-Kihara-Weber-Wu [12]
introduced the notion of immunity for closed sets. A closed suBs#tCantor space
2" isimmuneif T§* has no infinite computable subset.

Theorem 23. Let PC 2" be a non-immun#? set, and g, Sy, . .., Sm € N be special
computably bounded homogenedlfssets. ThenJi., Si £1 P.

Proof. Let Vg be an infinite c.e. subtree 3§*. Assume thatJi<m 1, Fl s} Pvia a
computable functionab, where, for each < m, {F}, is a uniformlyl‘[? seguence
of subsets of0,1,...1;}. Let SieXt denotes the correspondiﬂi@ tree of[], FL, and let
Li = {p : (3r € SP)(3i) p = 7(i) ¢ S, for eachi. Note thatl; differsfrom the
set of leaves of the correspondingmputabldree of[],, F;,. We first consider the set
L? = {p € Li : (o € V)) ®(0) 2 p}, whereV, for 0 < i < mwill be defined in the
below construction. Note theh.g’ is computably enumerable. There are three cases:

1. LY is infinite;
2. LY is finite, henceb([Vo]) is a subset of ], FQ;
3. otherwise.

(Case 1): For anwy, there existp € Lg’ of height> n+ 1, andp(n) € F. From
any computable enumerationlo? we can calculate a computable pat§f F2. This
contradicts the specialness®f = [],, FC.
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(Case 2): There exists a finite numlkesuch that, for every string € Vg of height
> k, ®(c) belongs tdS#. This also contradicts the specialnesSgf= [, Fo.

(Case 3): There exists infinitely many strings V, such thatd(o) extends some
string of Lg. SinceLy is finite, by the pigeon hole principle, there exisgse L§ such
that® (o) extendsp for infinitely manyo € Vy. Fix suchpg, and letV; = {0 € V :
®(0) 2 p}. Then the downward closure & is an infinite c.e. subtree afs*, and
O([V1]) N So = 0.

By iterating this procedure, we win the either of the cases 1 or 2 for somm.
The reason is that, if the case 3 occurs jpthenV,, is defined as an infinite c.e.
subtree off§* such thatd([V1]) N (Ui« Si) = 0. SinceUi<m [Tn Fi <l P <[Vnlie.,
O([Vm]) € Ui<m Si, the case 3 does not occur for ]

Corollary 24. Let RQ be any nonemptl}{g subsets 0P, and ST be special com-
putably bounded homogenedi$sets. Then & T £} P~Q.

Proof. ClearlyP~Q s not immune. Thus, Theorem 23 impligsu T 7_5% PQ. ]

To understand degrees offitiulty of disjunctive notions, and to discover neas-
ier (possibly infinitary) disjunctive notions, it is interesting to discusstiguous de-
grees

Definition 25. Let (@, 8, 7), (o*, 8, ¥*) € {1, < w, w}®, and assume thag‘y is not finer
thansgflyi. An (cu,,8|y)-degreea‘ﬁ’Iy is (o, B ly*)-contiguousf a2 _contains at most one
(o, B*ly*)-degree, that is to say, for any representatiéeB € we have thaf is

aﬂ(
f Bly’
(a*, B*ly*)-equivalent toB.

Corollary 26.

1. There is &1, < w)-contiguoug< w, 1)-degree 0['[‘1) sets o2V,

2. Every(1, < w)-degree which contains a homogenedlfsset or all{ antichain
is not(1, 1)-contiguous.

3. Every(1, w| < w)-degree oﬂ‘l) antichains is no{1, < w)-contiguous.

4. Every (< w,1)-degree oﬂ'I(l) antichains is nof(1, w)-contiguous (hence, is not
(1, w| < w)-contiguous).

Proof. (1) This follows from Theorem 20.

(2) If d is a (1 < w)-degree of a homogeneoll§ setS, thend containsS and
SvS, sinceS = SvS. However,SvS <1 SUS = S by Corollary 24. Ifd is a
(1, < w)-degree of 412 antichainP, thend contains Px 2'") U (2" x P) andPvP, since
P=l, (Px2")u (2" x P). However,PvP <} (P x 2) U (2" x P) holds by Lemma 6.

(3) Note that, for anylg setP and any clopen s&, it holds that PNC)a(P\C) E}
P. Letd be a (1wl < w)-degree of 419 antichainP. Fix a clopen se€ such that
Po=PnNC #0,andP; = P\ C # 0. Thend containsPy & P, and@,, (PovnPy),
sincePy @ Py Ei\m B, (PovaP1). However,P, (PovnP1) <%, Po @ P holds by
Corollary 13.

(4) Letd be a k w, 1)-degree of zﬂ‘f antichainP. Fix a clopen se€ such that
Po=PnNnC #0,andP; = P\ C # 0. Thend containsPy & P; andPgyv,P;, since
Po ® P1 = Pov,,P1. However,Pov,,P1 <| Po ® P1 holds by Corollary 15. O
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3.2. Concatenation, Dynamic Disjunctions, and Contiguous Degrees

We next show the non-existence of nonzerdljicontiguous (1< w)-degree, that
is, we will see the LEVEL 4 separation betwedr [} and [ir]2,. Indeed, we show
the strong anti-cupping result for,(I)-degrees inside every nonzerq {lw)-degree
via the concatenation operation. The following theorem is one of the most important
and nontrivial results in this paper.

Theorem 27. For any nonempt\y'[g sets PQ c 2%, QP does not1, 1)-cup to P. That
is to say, for any RE N", if P < (Q"P) ® R then P<{ R.

Proof. We first note thaP andQ may be assumed to be special.Plis not special,
the assertion is trivial. 1Q has a computable element, th@nP also has a computable
element. In this caseQ(P)® R z} R, and then the assertion is obvious. Therefore,
we may assume thd is special. LetTp and Tq be corresponding trees &f and
Q, and letLp andLg denote all leaves ofp and Tq, respectively. Note thalg is
infinite sinceQ is special. For a tred ¢ 2<% andg € N¥, we write T ® {g} for
{cedt:0€T & tCg& |o| =|r]}. For computable treeS andT, we also writeS™T
for SU U,e1s 0~ T, wherels denotes the set of all leaves $f

AssumeP <} (Q"P) ® R via a computable functionab. We need to construct a
computable functional witnessingP <} R. Fix g € R. Then we will find ag-c.e.
tree D9 C Tp without dead ends. To this end, we inductively construct a uniformly
g-computable sequencé®’}ic,, {EP}ic., Of g-computable trees, as follows.

E=To®1gh DJ = O(EJ).
Eig+1 = (TQA D|g) ®{g}; Dig+1 = (D(Eig+1 :

Here®(E?) denotes the image &’ under a functiona®, namely,®(E’) = {r C

2% (3o € EY) T € d(0)}. Finally, we define @-c.e. treeD9 = | J,, Da. Now, we let
W be the treelo~Tp, and then we observé\]] = Q" P andTq € W&

Lemma 28. For any i, Df ¢ T&!and E' ¢ W**'g {g}.

Proof. This lemma is proved by induction. First, our assumpflenc W ensures
Eg =To®{g} C We® (g}, and we also hav®] = ®(E7) € Tg* since®((Q"P) ®R) C
[Te] implies ®(W*'® {g}) C T for g € R. Assume the lemma holds for eagh i.
We now show that the lemma also holdsferl. By assumptionTq D € To TgX =
We* So by definition ofE?,, we getE? | ¢ We'® {g}. Furthermore, we observe
DP, = ®(EY,,) € DWW {g}) € Tg*. O
Lemma 29. There is a computable functidhmapping each g R to a g-computable
sequenc&(g) = {Df}ne., Of g-computable trees.
Proof. Clearly Eg is computable irg, and Dig - Eig+ is uniformly g-computable.
Therefore, it sffices to show that we can construgt from E? by a uniformly g-
computable way. Our proof is essentially dfeetivization of the classical fact saying
that the continuous image of a compact space is compact (see also [49]).
Assume tha€? c 2" ® {g} is given. For eaclr € 2, if c @ (g I |of) € EY,
then putl(c) = |®(c @ (g | [o)l. If c® (g | |o]) ¢ EY, then putl(c) = . Note that
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| : 2<% 5 NU{oo} is g-computable, since the notatidr{c) just means the computation
of @ restricted to stefir| with the oracles. By Lemma 28, limI(f ' n) = oo for any

f € 2. Because, for anyf with f ® g € [E]], we have®(f @ g) € [®(E])] C
O([W]e{g}) € ((Q"P)®R) C P, hencef ®#g € dom(@). Therefore, by compactness,
for eachn € N, there ish, € N such that(c) > nfor eacho € 2< of lengthh,,. We can
computehig(n) = h, with the oracleg, sincel is g-computable. Here, we can compute
a g-computable index off from an index ofE?, uniformly ini € N andg € N
Thus, the relation € Dig is equivalent to theg-computable condition that ¢ ®(o)
for someo € Eig of Iengthh?(|r|), uniformly ini € N andg € N*'. Formally, the set
{(r.i,g) € 2" x N x N : 7 € DY} is computable. O

DefineLp, as the set of all leaves of the trﬁ and definelg, as the set of all
leaves of the treEg for eachi.

Lemma 30. Let X be D or E, and i be any natural number. For gny Lf’(i, there are
infinitely many nodes € L§2+1 which are extensions gf

Proof. This lemma is proved by induction. First we pigke Lg, = Lo® {9} = {c®T1:
celg&tcg& o= |r|} We note thaflp is an infinite tree sinc® is special. By
using our assumptioR < (Q P) ® Rvia ® and the propertyTg] ® {g} € (Q"P)® R,
the treeD = ®(EJ) hasapath i.e., itis infinite. By definition, we haﬁ%_ Tp"DJ 2
p~ D2, and soEgI has infinitely many extensions pf Now, we assume this Iemma for
E and anyj < i. For a giverp € Lpg, there is a node- € EY such thatd(c) = p
by our definition ofD{ = ®(EP). Note that we hav@(c*) = p for everyo* € E?
extending such a, smcecI)(o- ) € DgJ extendsd(o) = p while p is a leaf of the tree
Dg Therefore, without loss of generahty, we can piclas a leaf oEg
By induction hypothesisy has infinitely many extensions h‘qg .- By Lemma 28,

we knowEg c We'® {g}. This implies thalz:[)(Eg " 1(2 o)) must be infinite whenever

I+1(3 o) is |nf|n|te whereE(2 o) denotes the set of all nodes in a tteextending
o. We now remark that, for any”’ € cI)(Eg 12 7)), ©(c’) 2 ®(0) = p. Thus,
(D(E " 1(2 0)) gives infinitely many extensions pf and our deflnltlorD = cI)(EI+1
clearly implies the lemma fdp andi. Now, we will show the Iemmade and|+1 By
our definition ofE? , = (Tq™DP)®1{g}, everyp € Lg,, must be of fornp = (") (g !
lo~7]) for someo € Lg andt € Lp,. Soift € Lp, has infinitely many extensions in
Lp,., thenp = (c"7) ® (g I lo"7]) has infinitely many extensions irg,,,. Thus, we
have established the lemma tBrandi + 1. Now, the lemma follows by induction.o

As a consequence of the previous lemm&jurns out to be an infinitg-c.e. sub-
tree of Tp without dead ends for arye P. Hence, we can compute a path throwfh
uniformly in g as follows.

Lemma 31. DY has a g-computable path opTuniformly in ge R.

Proof. The set of all infinite paths through a c.e. tree@bf' without dead ends is also
called ac.e. closedr overt([49]) subset ofN"'. If a nonempty set is c.e. closed, then
one can easily find its computable element in a uniform way. O
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Then we define a computable functionabs'¥(g) = A(U,T'(g)) for anyg € NY,
This witnesse® <} Ras desired. O

Corollary 32. For every special'[‘l) set Pc 2, there exists :ﬂ‘l’ set Qc 2 such that
Q<iPandQ=t, P.

Proof. By Theorem 27, we have"P <} P =1 P. O

—<w

Definition 33. Fix «,8,y € {1, < w,w}. An (a,Bly)-degreea e Py hasthe strong
anticupping propertyf there is a nonzeroaf, Bly)-degreeb € PZW such that, for any
(a,Bly)-degreec, if a< b v ¢, thena<c.

Corollary 34. Every nonzera € 701 has the strong anticupping property.

Proof. Fix P € a. Letb be the (11)-degree ofP~P. Then, by Theorem 27, for any
(1,1)-degree, if a< b v c, thena<c. O

For Hg sets, ifP and Q are disjoint, therP @ Q is equivalent toP U Q modulo
the (1 1)-equivalence, sinc®] = $/de¢“[I19]. However, if P andQ are notl1?, the
above claim is false, in general.

Proposition 35. For any speciall‘[? set Pc 2, there exists al‘lg)z set Qc 2" such
that PN Q=0butPUQ <] P& Q.

Proof. PutQ = (P"P)\ P. For anyg € Q, there is aleap € Lp such thap c g. So we
wait for such a leap € Lp. Theng=¥! belongs toP. Hence,P <! Q. Thus, we have
P <l P& Q whilePu Q=P P <! Pby Theorem 27. O

Definition 36. The operatiorv : P(NY) — P(INY) is defined as the map sendify
to PY = CPA~P, whereCPA denotes the set of all complete consistent extensions of
Peano Arithmetic, and it is a,(l)—completeﬂg subset of .

By the previous theorem, the derived B8tdoes not (11)-cup toP wheneverP is
I2. In particular, we havé®’ <} P. Recall from Part | [29, Proposition 38] that the
operator : P} — Plintroduced by (delfP))” = ded(P") is well-defined. Moreover,
Pi(s 1) =f{ae Pi :a < 1%} is a principal prime ideal consisting of tree-immune-
free Medvedev degrees [12]. Here, recall thitg’asetP c 2 is tree-immune ifrext
contains no infinite computable subtree. Then, we also observe the following.

Proposition 37. Fix I19 sets B, P1, Qo, Q; € 2", and assume thatPP; <} Qo™ Q:.
Then, either @ s% Qo or P, s% Q: holds. Moreover, if Ris tree-immune and §is
nonempty, then P<} Q;.

Proof. Assume thaPy~P; si Qo™ Q, via a computable functio. If ®(p) € TFe,:t for
any leafp € Lg,, then®(g) € [Tp,] for any g € [Qq], i.e., Po s} Qo. If d(p) ¢ TS;“
for some leap € Lq,, then there are only finitely many stringsD$, extending®(p).
Thus, [Tp,"Te,] N [D(p)] is essentially a sum of finitely mar#y;’s, hence it is (11)-
equivalent toP;. Since a computable functiondl mapsp~Q; to the above class,
obviously, P, s} Qi. If Py is tree-immune, the®(p) ¢ ng“ for some leap € Lg,,
since otherwise the image &%, under® is included inTp,, and clearly it is infinite
and computable. Therefore, we must h&ge<} Q;. O
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Corollary 38. The operatorv : a — a’ is injective. Hencey provides an order-
preserving self-embedding of tt 1)-degreesP] of nonempty1? subsets of".

Proof. By Cenzer-Kihara-Weber-Wu [12(PA is tree-immune. Therefore, by Propo-
sition 37,CPA"Q = Q7 <} P¥ = CPA"PimpliesQ <] P. O

It is natural to ask whether the image%f under the operator is exacﬂ?/}(s 17).
Unfortunately, it turns out to be false.

Proposition 39. There exists a non—tree-immuﬁ% set Qc 2" such that no nonempty
Hg sets B, Py C 2" satisfy Q=1 Po~Py. In particular, the operator : P} — Pi(< 17)
is not surjective.

Proof. Let {Qn}newy be a computable sequence of nonerrm?ysubsets of ¥ such that
@neN Qn forms a Turing antichain. Defin® = Qp~{Qn:1}lnay. Suppose that there
exist nonempt)H‘f setsPy, P; € 2V with Q =} Py~P;. Choose computable functions
®:Q - Py"Pyand¥ : Pp"P; — Q. Since{Qn}neny forms a Turing antichainy o @

is an identity function orQ. Consider two cases.

The first case is thab(Q) < Py. In this caselY(Py) = Q sinceV¥ o @ is identity.
Thus, every string iT&is extended by some stringW(Tp,). Moreover, he condition
Tr, C Ty, implies ¥(Tp,) € TEY Therefore,¥(Tp,) = Tg. HenceTg"is a
computable tree without leaves. But this is impossible s@oentains no computable
elements.

The second case is th@(Q) ¢ Py, that is, there exist§ € Q such thatd(f) e
o~ P1, wherep is a leaf of Tp,. We havef =r ®(f) since¥ o @ is identity. Note
that we may assume thét= p~ f for some leafoy € Tq, and fy € Q, since even
if f e Qp the string®(f | n) extendsp for suficiently largen, and replacef with
a string extending [ n which is removed fronQy. On the one handf is the only
element inQ computable inf. On the other hand, every € Tp, always extends to an
element ofP which is Turing equivalent té. Thus, for everyr € Tp,, the stringd(o)
must be compatible with,. Hence,\¥(P) C px~Qk. This contradicts the property that

Yo ®(Q) = Q. O

Let O denote Kleene’s system of ordinal notations (see [52]). As usual, this system
involves a representatidn|p :C N — w‘fK of computable ordinals with Hi domain
dom(-|) = O, wherelOlp = 0,28y = [alp+1, and3-5%p = sup, |De(N)lo if Pe: N — N
is total and strictly increasing. Recall from Part | [29, Definition 62] 1@ is thea-th
derivative ofP, i.e., thea-th iterated concatenation starting fraPnfor everya € O.

Proposition 40. For any speciang set Pc 2V, ifa,b € O and a<¢ b, then ¥ does
not (1, 1)-cup to A, i.e., for any set R NV, if P@ <1 PO @ R then ¥ <1 R.

Proof. The assumptioa <o bimplies 2 <, b. Therefore, we have® <1 p&). By
Theorem 27P?) does not (11)-cup toP®@. Thus,P® does not (11)-cup toP@. 0

Fix any notationomega € O such thai®gyega(N)lo = N for eachn € N. Note that
|omegalp = w.

Proposition 41. Let P be a speciall? subset of". For anyIl9 set Rc 2V, if P <%
plomesa) @ R, then P< R.

—<w
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Proof. As seen in Part | [29, Section 2.4], for evei{ setsP, Q c 27, P <!  implies

—<w

P <t ., Q. SincePmsd) @ RisI1?, P <! Plme9d) @ RimpliesP <} _, Pms?) g R,
and then there is a (i)-truth-table functior” : P"92) @ R — P for somen € N. In
particular,l" : (pp.1~ P@emese(™ D)) @ R — P, wherepy, 1 is the @ + 1)-th leaf of Tp. By
modifying I, we can easily construct a, (i)-truth-table functior® : P™Y @ R — P.

Assume tha® is (1, n)-truth-table vian many total computable functio®y, . .., ®,_1.
We define a computable functign: n x 2<% — 2< as follows. 1f®,(0) € Tp, then
puty(m, o) = Om(c). If Oy(c) 2 p for somep € Lp, then we defing(m, o) to be such
p. Letz(o) = minim < n: Oy(o) € Tp}. Then, fore € 2<%, the valued(o) is defined
bY [Min<zoy (M. o). Then® ensures tha®® <! P @ R By Theorem 27, we have
P <l R Consequentlyp <! R O

—<w

Corollary 42. For every ac O there exists a computable function g such that, for any
Hg index e, if R is special then the following properties hold.

1. Pyen) <} Pgeq holds for every <o b <o a, indeed, Bep) does nof(1, 1)-cup
t0 Pyeo)-
2. Pyep) =2, Pyeg for every he <o a.

Proof. Letg(e, b) be an index oP®. Then, the desired conditions follow from Propo-
sition 40. m]

For any reducibility notiorr, and any ordered sel,(K,), a sequencésa; }ic of r-
degrees ig-noncuppingif, for any i <; j, the conditiona; <; b must be satisfied
whenevels; <, a; v b, for anyr-degreeb. In particular, any-noncupping sequence is
strictly decreasing, in the sensereflegrees.

Corollary 43. For any nonzerq1, w)-degreea € P21, there is a(1, 1)-noncupping
computable sequence df, 1)-degrees inside of arbitrary lengtha < w(fK. |

3.3. Infinitary Disjunctions along the Straight Line

We next see the LEVEL 4 separation betweém]tlw and E1]}. Indeed, we
show the non-existence of & (v, 1)-contiguous (lw)-degree. We introduce theCM
disjunctions offPi}ien asVcw Pn = Unen(Po™ ... "Pn). This is a straightforward in-
finitary iteration of the concatenations. Bf, = P for all n € N, we write\/ P instead
of V,, Pn.

Proposition 44. Let{P;}icn be a computable collection of nonemﬂ%subsets o™,
ThenV/, P, is (1, 1)-equivalent to a densE) set in Cantor spac@".

Proof. LetS denote the sdg € {0, 1, #}'' : (n € N) (count(g) = n & tail(g) € Py)},
wherecount(g) = #{n € N : g(n) = #}. Then,S is clearly a=J subset of0, 1, #}', and
it is easy to se& z% V., Pn. For anyo € {0,1,#}<, we havec~(#)"h € S for any
h € Peount(s)+1. Thus,S intersects with any clopen set. O

Example 45. Let MLR denote the set of all Martindf random reals. TheMLR =}
V P for any nonemptyl19 setP ¢ MLR, by Kutera-Gacs Theorem (see [48]), while
MLR <} P for anyTI9 setP ¢ MLR as follows.
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Proposition 46 (Lewis-Shore-Sorbi [39]) No somewhere dense set in Baire space
(1, 1)-cup to a closed set in Baire space. In other words, for any somewhere dense set
D c N¥, any closed set @ N, and any set R N, if C < D@ RthenC<} R. O

Proposition 47. For any somewhere dense setd N and any special closed set
C ¢ N¥, we have G£;“ D.

Proof. If {D;}i« is a finite partition ofD, then|J;, Cly(D;) = Clyw (D), where the
topological closure ob, in the standard Baire topology o', is denoted by Gl (D).

To show the claim, for everyx € Cly(D) we have a sequené®& ke € D converging
to x. By pigeonhole principle, there is< b such that there are infinitely makysuch
thatxy € D;. For suchi, clearlyx € Chy:(D;). However, since the somewhere density
of D implies that Glw(D) contains some clopen set, and hencg:(@;) contains a
computable element for somei. Additionally, Ckx(C) = C sinceC is closed. If
C <7“ D®R, then there is a finite partitiofD;}i-p of D such thatC <! D; via a
computable functiorbg;y. Fix i such that Gl(D;) contains a computable element.
ThereforeC = Clyw (C) 5} Chyt(Dy) 2 {r} via (D;i). HenceC contains a computable
element. O

Especially, ifP is a speciall? set, then there is no nonzero (, 1)-degree of1?
subsets of 2 below the & w, 1)-degree of\/ P. We will see that the sef P has a
stronger property.

Theorem 48. Let P be anyHg subset o2". Then, for every speci:i[g set Qc 2V,
there exists al{ setP ¢ / P such that Q¢%,, P.

Then-th bounded learner will be diagonalized above it leaf of the spindp,
where note thaP = [Tp] € V P. To make a desiredll set inside thez) set\/ P,
we need to specify upper bounds of mind-changes to diagonalize all bounded learners.
Unfortunately, we cannot give a computable sequence of such upper bounds. However,
our finite injury construction will specify such upper bounds by a left-c.e. way, which
will be called a timekeeper.

Definition 49. A sequencét,) oy Of finite strings isa timekeepeif there is a uniformly
c.e. collection of finite setVn}new, such that, for any € N, |ty| = [V,| andty(i) is
given as the stage at which théh element is enumerated intg, for eachi < |ty).

Definition 50. For a finite stringr € N<V, the r-delayed(|r| + 1)-derivative B is
inductively defined as follows:

pto) = p plrii+d) — U{o’P o € Lpeny & |or| > (i)} for eachi < [].
Proposition 51. If 7(m) = 0 for each m< |, then F?) = P(+1),

Proof. Straightforward from the definition. O

Lemma 52. For any timekeepett,)nen, the following conditions hold.
1. Pt ¢ Plt+Y) Hence, P{P®)}nqy c V P.
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2. P®) isTI9, uniformly in n. Hence, P{P®™} ¢ is TI9.

Proof. (1) Straightforward. (2) We construct a computable ffée corresponding
to P%). Eacho € 2V can be represented as= pg p1~ ... px 7, wherepy, € Lp
for anym < k, and({) # 7 € Tp. Theno € T® if and only if t,(k) holds by stage
lpo"p1” ... prl. ThenT®) is a computable tree, and cleaf¥f») = [T®)], O

Remark. The delayed derivative construction is useful to bound the complexity of the
set, since the recursive meRt{P(+1)} . of the standard derivatives along a time-
keeperitlnay is only assured to bEY'.

Proof of Theorem 48Let Q be a speciang set, andP be a givenH‘l’ set. By a uni-
formly computable procedure, froif, we will construct a timekeepétn}nay. The
desired clas® will be given byP = P~{Pt)} .

Requirements. We need to ensure, for alle N, the following:
R, : Q<! Pvian —» (3A,) Ane Q.
Here,A, ranges over computable elements 6f 2

Action of an R,-strategy. Fix an dfective enumeratiofp, : n € N} of all leaves of
Tp. An R;-strategy uses nodes extending thth leafp, of Tp, and it constructs a
finite sequencé,[s], a sequence,[g] of strings, and a computable functiay,. For
anyn, putt,[0] = (), andr,[0] = p,, at stage OAn R,-strategy acts at stageisl if the
following condition holds:

(Fp € TS)(He < N) Og(7n[S]"p) € Tq & Pe(tn[S]"p) 2 Pe(Tn[S]).

If an R,-strategy acts at stage+ 1 then, for a witnesgp € T3, we pickp* € Lp
extendingo. Then let us definep[s+ 1] = 7n[S]"p", ta[S+ 1] = ta[S] " (|TnlS + 111},
andAen [ | = ®g(rq[s + 1]), wherel is the length of®dg(ry[s + 1]). Otherwise,
ta[s+ 1] = ty[9], 7i[s+ 1] = 7i[s]. Note that the mappingn(m) — ,(m) is partial
computable. At the end of the construction, et | Jsta[s]. As mentioned aboveP
is defined byP = P~{Pt)}, ;.

Claim. An R,-strategy acts at most finitely often for eath

Clearlytyh = Us7n[9] is @a computable string. R, acts infinitely often, therAe, =
®(1n) € Q for somee < nby our choice ofr,. Since®¢(r,) is computableQ contains
a computable element. However, this contradicts our assumptiorQtigtspecial.
Therefore, we concludes the claim. As a corollaty)y is a timekeeper.

Claim. P £t P.

Let tp = Us7n[S]. By induction we show that,, € pn‘Tg(fnt,. First we have the
following observation:

_ ~Text _ ~Text ~Text
7[0] = on € o0 Tp" = pn” Tt S Pn” T piaion -

Assumery[s] € pn Tog- If Tals+ 1] = 7[s]7p* for p* € Lp thenty[s+ 1] =

ta[s]~(rn[s + 1]I). In particularty[s+ 1] € pn~ Lptatscumaisn @and|mn[s + 1]| = to[s+
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1](ta[s]]). Hence, by the definition oP®[s+1) it is easy to see that,[s + 1] P C
pn PO Thus,mi[s + 1] € pn TE..,). SO we obtainr, € p,"TE and by our
construction ofr, there is ng € P ande < n such that®g(r,"p) 2 De(rn). Since

®(1y) is a finite string, for anyg € pn“ngfnt) c P extendingrn, ®c(g) is also a finite

string. Consequently, thigwitnesses thaP £% P. ]

Corollary 53. 1. For every speciall? set Pc 2, we havéy P <;“ P =], / P.
2. For every speciall? set Pc 2" there exists aI9 set Qc 2 with Q <;* P =], Q.

Proof. By applying Iheorem 48 t® = P, we haveP ¢! P >1 \/ P. Moreover,

PoP < P=lPaP. O

3.4. Infinitary Disjunctions along ill-Founded Trees

We next show the LEVEL 4 separation betwe€r]t and [E1]5¢. The follow-
ing theorem concerning the hyperconcatenaf¥oand the (1w)-reducibility <2 is a
counterpart of Theorem 27 concerning the concatenatiand the (11)-reducibility

1
<i.

Theorem 54. For every speciall{ sets PQ ¢ 2", and for any R, if P<}, (QvP) ® R
then P<! R holds.

Proof. Let Ty denote the corresponding computable treeQeP. The heart of T,
Ty, is the set of all stringg € Ty such thaty C [;.,(oi~(z(i))) for some{ci}i<n C Lp,
andr € TgXt. If y is precisely of the fornfi|;_,(o5i~(7(i))), theny is called aquasi-root
of Ty.

Lemma55. The heart T is aH? subtree of §. Moreover, the complexity of the set of
all quasi-roots of T is alsoI1?.

Proof. The first assertion is trivial. For the second assertion, byfi@ct/e way, every
string o € 2V is uniquely decomposed ini®g, Mg, o1, My, . .., o, My, p Such that
0 = ([Ni<n(oi"m))"p and{coi}i<n € Lp. Recall from Part | [29, Definition 70] that
(00,071, ...,00m, p) IS wWritten ascut (o), (M, My, . .., My) is written aswalk(c), andp is
written astail“**(c). Clearly, one canfiectively determine whethamil®* (o) = ()
or not. Now,o is a quasi-root offy if and only if o € TY andtail®"*(c’) = (). m|

Now we assum® <! (QvP)®Rvia a learne®. To show the theorem it is needed
to construct a new learnérwitnessingP <! R Fixge R

Lemma 56. There exists a string € Ty such that, for every € Ty extendingo, we
have¥(o & (9 I Ipl)) = ¥(y) foranyy withpe (g I o) Sy S 7@ (9 [ I7]).

Proof. If Lemma 56 were false, we could inductively define an increasing sequence
{ti}icw Of strings. First letrg = (), andti,1 be the least 2 7; such thatr € T{ and
Y(ra(g | (I7]+1))) # Pled(g | (lol+)))) for somei, j < 2. Sincel J; 7 € QVP, clearly
(Uimi) @ g € (QvP) ® R. However, based on the observatign; ¢;) @ g, the learner

Y changes his mind infinitely often. This means that his predictiop ¥l ; 7i) ® g)
diverges. This contradicts our assumption fatl (QvP)®RVvia the learne¥. Thus,

our claim is verified. O
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Lemma 56 can be seen as an analogy of an observation of Blum-Blum [4] in the

theory of inductive inference for total computable function®orSuchp is sometimes
calleda locking sequence

Lemma 57. There exist an giective procedur® : N x 2" x 2 —» N" and al1?
conditiony such that, for any g Q, ¢(g, p, m) holds for some € 2<V, and m< 2,
and that for any € 2<¥ and me N, if (g, p, M) holds, ther®(g, p, m) € P.

Proof. The desired conditiog(g, p, m) is given by the conjunction of the following
three conditions.

1. pis a quasi-root ofy.
2. 7(m) € Tg“.
3. Yo @ (g1 lol) =¥(y) foranyy € (o™ Tp™(Mm)"Tp) ® {g}.

By Lemma 55, the first condition H‘l). The second condition is clear]jfl). Since
Y is total computable, the last condition is aIH@. Consequentlyy is 1‘[(1’. We first
show thaty(g, p, m) holds for somep € 2<*" andm € N. Letp € TY be a locking
sequence in Lemma 56, which forc#sto stop changing the mind. Without loss of
generality, we can assume thesatisfies the condition (1). Sinee= TSX‘, there exists
m € w such thatr~(m) € T, and thism satisfies the condition (2). From conditions
(1) and (2), we conclude (tgharP%m)AP = (" P)U (0" UpeL, o~ (M~P) € Ty, and
so condition (3) is satisfied. Since we assume Ehat, (QvP) ® {g} via the learne®,
if (g, p, M) is satisfied, then the following holds.

P <1 (0" P~ (M)"P) ® {9} Via Du(gpipiep)-

Our proof process in Theorem 27 ifextive with respect tg, m, and an index of
Dy(gpplep) Which are calculated frorg, p, and an index off. To see this, recall our
proof in Theorem 27. Defin€f' = Tp U {p~(m) : p € Lp}.

Eo"" = Vi gk D" = wgtipier) (Eg”")-
EA™ = (Ve D" @ {g); DA™ = Qu(grilen (EZL")-

i+1 i

Then, as in the proof of Theorem 239%™ = | i Dlgflm is a subtree o¥/p, and it
has no dead ends. Moreover, this construction is clearly c.e. unifornglydnandm.
Therefore, we canfiectively choose an eleme®Xg, o, m) € [D%™] C P, uniformly
in g, p, andm. |

Now, a procedure to g& <! Ris follows. For giverg € Q, onthe i-th challengef
alearnemn\, the learnen chooses the lexicographicailgth least paikp, m) € 2<¥ x N,
andA calculates an inde&(p, m) of the computable functiong — ©(g, o, M), that is
to say,A(g ' s) = e(p, m) at the current stage At each stage in theth challenge,
the learner tests whether thE[‘l’ conditiong(g, p, m) is refuted. Whenp(g, p, m) is
refuted,A changes his mind, and goes to the ()-th challenge. Clearly ligA(g | S)
converges, an®im agrg(9) € P holds. O

Corollary 58. For every speciaﬂ‘f set Pc 2" there exists aT‘f set Q¢ 2 with
Q<lrP=rqQ.
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Proof. By Theorem 54, ifP <1 (PyP) ® 2" =1 PvP, thenP <} 2", i.e., P contains a
computable element. ABis special, we must have £ PvP. As seen in Part | [29,
Section 4],P <¢ PvP. Therefore, foiQ = PYP, we haveQ <! P =5¢ Q. O

Corollary 59. Every nonzera € P21 has the strong anticupping property.

Proof. Fix P € a. Letb be the (1w)-degree ofP¥P. Then, by Theorem 54, for any
(1, w)-degreec, if a<b v c, thena<c. |

The primary motivation of the second author behind introducing the notions of
learnability reduction was to attack an open problerm@rsubsets of 2. The problem
(see Simpson [57]) is whether the Muchnik degrees 1j-degrees) ofI0 classes are
dense. Cenzer-Hinman [13] showed that the Medvedev degred3-(légrees) ol’I‘l)
classes are dense. One can easily apply their priority construction to prove densities of
(1, < w)-degrees and<{ w, 1)-degrees. The reason is that the arithmetical complexity
of Ay = {(i.]) € N2 : P <z Pjlis 23 for (. 8) € {(L1), (L < w), (< w,1)}, where
{Pe}ecny IS an dfective enumeration of aﬂg subsets of 2. It enables us to use a priority
argument directly. However, for other reductionsf), the complexity oﬂg seems to
beH}. For instance, Cole-Simpson [17] showed ti{atj) : P; <{ P;j}is H%-complete.
This observation hinders us from using priority arguments. Hence it seems to be a hard
task to prove densities of such,B)-degrees. Nevertheless, our disjunctive notions
turn out to be useful to obtain some partial results.

Theorem 60(Weak Density) For nonemptyl? sets PQ c 2V, if P <} Qand P<“ Q
then there exists HY set Rc 2" such that P<Jz) R<! Q.

Proof. AssumeP <} QandP <“ Q. LetR = (QvQ)® P. ThenP <! R <! Q.
MoreoverQ ¢ P impliesQ £ R = (QvQ) ® P, by non-cupping property of¥.
On the other handR = (QvQ) ® P £ P sinceQvQ = Q £ P. Consequently,
P<!R=(QvQ)eP<!Q. O

One can introduce a transfinite iteratiB%® of hyperconcatenation alorage O
(see also the nested tape model introduced in Part | [29, Section 5.6]).

Proposition 61. For any speciall? set Pc 2, ifa,b € O and a<, b, then P® does
not (1, w)-cup to P@, i.e., for any set R N, if PY® <! P'® g R then P@ <! R,

Proof. The assumptiom <o b implies 2 <, b. Therefore, we have™® <! p'(®),
By Theorem 54P"?) does not (1w)-cup toP"®@. Thus,P'® does not (1w)-cup to
PY@, O

Fix again any notationmega € O such thaf®oeqa (N)lo = Nfor eachn € N. Recall
from Part | that a learne? is eventually-Popperiaif, for every f € N*, ®jim_w(i19(f)
is total whenever lim¥(f | s) converges.

Proposition 62. Let P be a speciall? subset of". For any set Rc NV, if P <5¢
pr(omesa) @ R by a team of eventually-Popperian learners, theg P R.
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Proof. If P <Z¢ PY("92) g R via a team of eventually-Popperian learners, then this
reduction is also witnessed by a teamroéventually-Popperian learners, for some
n € N. In particular, by modifying this reduction, we can easily construct a team of
n eventually-Popperian learners witnessPigs® P"(™D @ R. In this case, it is not
hard to showP"™ <! p"(1) @ R By Theorem 54P"™ <l R HenceP <“ Ris
witnessed by a team oflearners, as seen in Part | [29, Proposition 75]. |

Corollary 63. For every ac O there exists a computable function g such that, for any
Hg index e, if R is special then the following properties hold.

1. Pyen) <L Pyeq holds for every cp b <o a, indeed, Bep) does no(l, w)-cup
tO Pg(e’c).
2. Pyen) =} Pgyeo) forevery bc <o a.

Proof. Letg(e, b) be an index oPI®. Then the desired conditions follow from Propo-
sition 61. O

Corollary 64. For any nonzerqw, 1)-degreea € #¢, there is a(1, w)-noncupping
computable sequence {f w)-degrees insida of arbitrary lengtha < w‘f". m|

3.5. Infinitary Disjunctions along Infinite Complete Graphs

The following is the last LEVEL 4 separation result, which revealsftedince
between €1]5” and [Er].

Theorem 65. For every special'lg set PQ c 2" there exists ﬂ(l) setP ¢ 2" such that
Q£ P andP is (w, 1)-equivalent to P.

Proof. We construct i[(l) setP ¢ 2 by priority argument with infinitely many require-
ments{Pe, Geleeny- Each preservatiorf-)strategy will injure our codingg-)strategy

of P into P infinitely often. In other words, for eadhe-requirementP contains an el-
ementfZ which is a counterpart of eadhe P, but eachfg has infinitely many noises.
Indeed, to satisfy thé-requirements, we need to ensure that there is no uniformly
team-learnable way to extract the informationfoé P from its codef? € P. Never-
theless, the globalx-)requirement must guarantee ttfa¢ P is computable inf € P

via a non-uniform way. Le¥}i-pe be thee-th team of learners, whete= b(e) is the
number of members of theeth team.

Requirements. It suffices to construct ﬁ[‘f setP c 2V satisfying the following re-
quirements.

Pe: (Age € P)(7i < b) (I WE(Ge 19 L = Pim,vei0,19(08) ¢ Q).
Ge: (Vf e P) f <1 f2.

Here, the desireﬁ‘j setP ¢ 2" will be of form P U {f:eeN& f eP}.
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Construction. We will construct a computable sequence of computable {fegs:y,
and a computable sequence of natural numbgyls.;. The desired se® is defined
as [JsTs], and hg is calledactive height at stage. sWe will ensure that the tre€s
consists of strings of length hs. The strategy for thé&.-requirement acts on some
string extending the-th leafpe of Tcpa.

We will inductively define a stringe(a, s) € Ts extendingoe for eachs € N and
@ € Tp of height< s. The mapr — limsye(a, 9) restricted tol S will provide a tree-
isomorphism betweemg* and (JsTs)®™, i.e., P N [pe] Will be constructed as the set
of all infinite paths of the tree generated fiyns ye(a, S) : @ € Tp}. In other words f
is defined by J,c¢ limsye(a, S), and each stringe(e, ) is an approximation o € P
witnessing to satisfy th®, requirements.

We will also define a finite sétle(a, S) C bfor eachs € N anda € Tp of height< s.
Intuitively, Me(a, S) contains any index of the learner who have been already changed
his mind|a| times along any string extendiragof lengths, and the stringe(e, S) also
plays the role of an active node for learnerdMi(e, ). To satisfy thePe-requirement,
each learner itMg(a, S) can act onye(w, ) at stages + 1, and then he extendg(a, 9)
to some new stringe(a, s+ 1) of lengthhg, andinjuresall constructions oy(8, s+ 1)
for 8 2 a. We assume that, for any € Tp of lengths, {Me(8, 9)}sc. is a partition of
{ieN:i<b}.

StageO0. At first, putTs = {()}, hs = 0, Me({),0) = {i € N : i < b}, andye((), 0) = pe.

Stages+ 1. At the beginning of each stage+ 1, assume thats and hs are given,
and thatM¢(B, s) andy.(B, s) have been already defined for each N andg € Tp of
height< s. For each, e € N and eachr € 2", the length-of-agreement functidsfd) is
the maximal € N such thatye()(7; X) | for eachx < I, and®ye()(7) € Tq.

Fix a stringa € Tp of lengths, and then eachbelongs to som&/¢(3, s) for 8 C a.
In this case, the learn#f® can act onve(8, s). Then, we say thahe learnert? requires
attention alonge at stage st+ 1 if there existsr € Ts of lengthhg extendingye(8, 9)
such that either of the following conditions are satisfied.

1. Y7 changes ortye(8. ), 7], i.e., there is a string- such thatye(3,s) ¢ o € 7 and
Ye(o™) # ¥(0).
2. or,Ii(r) > maxXli(o) : o C ve(B, 9)}.

Let Rs be the set of allr € Tp of lengths such that some learner requires attention
alonga at stages+ 1. Fora € R, let m(a) be the leasim such that there is a string
B € a of lengthmand an index € Me(B, S) such that¥f requires attention along at
stages+ 1. That is to say, some learngf who has already changed his mimgx)
times requires attention.

Claim. For anyqa,B € Rs, we have thatr | m(a) = 8 [ m(B) holds ora | m(a) is
incomparable witt8 | m(B).

PutR; = {a [ m(e) : @ € Rs}. Then, forg € R, leti(B) be the least € M(m(), )
such that¥? requires attention along some 2 g of length s at stages + 1. For
B € R;, we say that‘{’iew) acts at stage ¢ 1. Moreover, forg € R;, let 7(8) be
the lexicographically least string € Ty of length hg extendingye(B, ) such thatr
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witnesses that the learngf , requires attention along some g of lengths at stage
s+ 1. ThenRy € R;is degined as the set of gl € Rg such that¥f, changes on
(7e(B. 9), 7(B)].

For eachB € Ry, put Me(B, s+ 1) = Me(B, 9) \ {i(8)}, and putMe(87i,s+ 1) =
Me(8, 5) U {i(B8)} for ~i € Tp. For anyB ¢ R, putMe(B, s+ 1) = Me(B, S). For each
B e R, if oo € Tpis length< sfor somes € 2<, then putye(8-c, s+ 1) = 7(8) o
If @ € Tp of length< shas no substring € R;, then putye(a, s+ 1) = ye(a, S). For
eacha € Tp of lengths, if |ye(e, s+ 1) < hs then pick the lexicographically least
nodeyi(a, s+ 1) € Ts such thatys(e, s+ 1)l = hs andyi(a, s+ 1) 2 ye(a, s+ 1).
Otherwise putyi(a, s+ 1) = ye(a, s+ 1). Then, for eacla"i € Tp of lengths, put
ve(@ i, s+ 1) = yi(a, s+ 1)i. Puthg,s = maXlye(e,S+ 1) : @ € Tp & |a| = s+ 1}.
Then we define the approximation Pfat stages+ 1 as follows.

Te1 = TsU {0 C ye(a, s+ 1) QM@ Dl 4 € To & Jaf = s+ 1 & ee NJ.

Finally, we se = [sy T. Clearly, P is a nonempty1? subset of 2.

Lemma 66. limgye(a, ) converges for any e N anda € Tp.

Proof. Note thatye(a, ) is incomparable withye(8, S) whenevera is incomparable
with 8. Thereforeye(a, S) changes only when some learnemiy(B, s) acts for some
B C a. Assume thay(a, S) changes infinitely often. Then theredsc «, t € N and
i € Me(B,1) such that € Me(B, s) for anys > t, and¥7 ,, acts infinitely often. However,
by our constructiong? = limsye(a, s) is computable. Additionally, sindee Me(3, 9)
foranys>t, Iimn\wa)(gg I n) exists, andD,imn\piew)(ggm)(gg) € Q. This contradicts our
assumption tha® is special. m|

For f € P, put f& = Ugct limsye(a, ). By this lemma, suctg exists, and we
observe thaP can be represented Bs= PU {f@ :eeN& f e P}. Foreaclee N
anda € Tp, we pickt(e, @) € N such thatye(w, S) = ye(a, t) for any st > t(e, ).

Lemma 67. TheP-requirements are satisfied.

Proof. Assume thatP <3¢ P via the e-th team{¥;}i-, Of learners. Then, for any
f e P, there isi < b such that limP;(f& [ n) exists and®m, s n)(fe) € Q.
Since lim, ¥;(f& I n) exists, there exists c f such thai € Me(a, t(e, @)). However,
by the previous claim, no learner (g, Me(B, t(€, @)) requires attention after stage
t(e, @). This implies limy lg(f I n) < co. In other words @jim, w1 ny(fe) € Q. This
contradicts our assumption. m|

Lemma 68. TheG-requirements are satisfied.

Proof. It suffices to show that <t f for anyee N andf € P. Assume thaf¥;}ip is
thee-th team of learners. Létg(f) denote the set of all< b such that limy W;(f& I n)
converges. By our construction and the first claim,dfHe(f) theni € Me(ai, t(e, i)
for someq; c f. If i ¢ He(f) then for anye c f there exists such thai € Mg(«, ).
Setl = maXen(f) lail, andu = maxenyr) (e, ;). Forn > I, to computef (n), we wait
for stagev(n) > usuch that, for every¢ He(f),i € Mg(f I m, v(n)) for somem > n+1.
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Figure 2: The dynamic proof model for a sped[@ setP c 2,

By our construction, it is easy to see that we can extf&a} from ye(f ' n+ 1,v(n)),
by a uniformly computable procedurenn |

Thus, we have £ P by Lemma 67, and® ¢ P ¢ Deg(P) by Lemma 68. Thus,
Pis all? set satisfyingQ 5 P =% P. This concludes the proof. O

Corollary 69. For any nonemptyl sets PQ ¢ 2", if Q <* Deg(P) then Q contains
a computable element.

Proof. Assume thaQ <3 ISe\g(P) is satisfied. Suppose thgt has no computable
element. Then, foP,Q c 2", we obtainQ £ P ={ P by Theorem 65. Note that
the conditionP =¢ P impliesP ¢ Deg(P). Then,Q << Deg(P) <! P. Itinvolves a
contradiction. m]

4. Applications and Questions

4.1. Diagonally Noncomputable Functions

A total functionf : N — N is ak-valued diagonally nhoncomputable functidn
f(n) < kfor anyn € N andf(e) # ®¢(€) wheneverd¢(e) converges. LeDNRy denote
the set of alk-valued diagonally noncomputable functions. Jockusch [33] showed that
everyDNRy function computes ®NR; function. However, he also noted that there is
no uniformly computable algorithm finding@NR, function from anyDNR function.

Theorem 70(Jockusch [33])

1. DNRk >1 DNRy.1 for any ke N.
2. DNR; ={ DNRy for any ke N.

Proposition 71.
1. Ifa (1, w)-degreed?, of subsets df"' contains &1, 1)-degreen; of homogeneous
sets, thern] is the greatestl, 1)-degree insidel’,.
2. If an (< w, 1)-degreed;* of I19 subsets of" contains a(1, < w)-degreeh?, of
homogeneouR! sets, thern? | is the leas(1, < w)-degree insidel;*.
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3. Every(< w, 1)-degree oﬂ‘[‘f subsets o contains at most ongl, 1)-degree of
homogeneouR! sets.

Proof. For the item 1, we can see that, for amyc N and any closed s& ¢ NV, if
P <! Qthen there is a node such thaQ N [¢] is nonempty and® <} Q N [¢]. That
is, o is a locking sequence. @ is homogeneous, theﬁ’lsi Q Ei QnJo]. The item 2
follows from Theorem 20. By combining the item 1 and 2, we see that evedy, {)-
degree oﬂ'[‘l) subsets of 2 contains at most one (% w)-degree of homogeneoméf
sets which contains at most one {)-degree of homogeneoﬁ@ sets. ]

Corollary 72. DNR3 <;“ DNR;, andDNR3 <! DNR;.

Proof. By Jockusch [33], we havBNR3 <} DNR». Thus, Proposition 71 implies the
desired condition. ]

By analyzing Jockusch’s proof [33] of the Muchnik equivalenceDdfR, and
DNRy for any k > 2, we can directly establish the: (w, w)-equivalence 0DNR;
andDNRy for anyk > 2. However, one may find that Jockusch’s proof [33] is essen-
tially based on th€g law of excluded middle. Therefore, the fine analysis of this proof
structure establishes the following theorem.

Theorem 73. DNRcYDNRy <} DNR; for any k.

Proof. As Jockusch [33], fix a computable functisnN? — N such thatby,(z(v, u))
= (D(V), Dy(u)) for anyv,u € N. Note that everyg € (k%) determines two functions
go € K" andg; € K such thatg(n) = (go(n),g1(n)) for anyn € N. We define a
uniform sequencdl’,}van, A of computable functions aB,(g;u) = gi(z(v, u)), and
A(Q; V) = go(z(v, W), whereu, = min{u € N : g;(z(v, u)) = ®y(u) |}. Fix g € DNRy..
Since(go(z(v, u)), gu(z(v, u))y = g(z(v, u)) # (Du(Vv), Py(u)), eithergo(z(v, u)) # Dy(V)
or gi(z(v, u)) # ®y(u) holds for any, u € N. We consider the followin@g sentence:

@Av)(Vu) (Pu(u) I = ga(Zv, 1) # Dy(u)).

Let 6(g,v) denote thd1? sentenceX(u) (Du(u) | — gu(Z(v,u)) # Dy(W). If 6(g,V)
holds, therl',(g; u) = g1(z(v,u)) # ®(u) for anyu € N. HenceI'\,(g) € DNRy. If
-6(g, V) holds, thenu, is defined. ThereforeA(g;Vv) = go(z(v, w)) l# Dy(v), since
01(z(v, w)) = @y, (w)) . Thus,A(g;V) is extendible to a function iDNR. This
procedure shows that there is a functionDNR,. — DNRy that is computable strictly
along H(l’ sets{Sy}van Via A and {I'\}ven, WhereS, = {g : 6(g,v)}. Consequently,
DNRyYDNR <] DNR. by Part | [29, Theorem 46].

To seeDNRYDNRy ii DNRyz, we note thaDNR,Y¥DNRy is not tree-immune. By
Cenzer-Kihara-Weber-Wu [12)NRYDNRy does not cup to the generalized separat-
ing classDNRe. |

Corollary 74. DNRk =5 DNR; for any k> 2. Indeed, for any ke N, the direction
DNRy <5 DNRy is witnessed by a team of a confident learner and a eventually-
Popperian learner. In particulaDNRy ={ DNR; for any k> 2.
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Proof. As seen in Part | [29, Proposition 73}, < PvP is withessed by a team of

a confident learner and a eventually-Popperian learner. Thus, Theorem 73 implies the
desired condition. ]

Corollary 75. Thereis an< w, w)-degree which contains infinitely maiy 1)-degrees
of homogeneous! sets.

Proof. By Corollary 74, the £ w, w)-degree oDNR, containsDNRy for anyk € N,
while DNRy #1 DNR; for k # I u!

4.2. Simpson’s Embedding Lemma

For a pointclasE in a spaceX, we say that SELL{, X) holds for(a, 8)-degreesolds
for (a, B)-degrees if, for every setS C X and for every nonemptl][‘l) setQ c 2,
there exists ilg setP ¢ 2V such thatP = S U Q. Jockusch-Soare [34] indicates that
SEL(19, N") holds for (, 1)-degrees, and points out that SHE(2") does not hold
for (w, 1)-degrees, since the set of all noncomputable element§imI2}. Simpson’s
Embedding Lemma [58] determines the limit of SELX) for (w, 1)-degrees.

Theorem 76(Simpson [58]) SELES, NY) holds for(w, 1)-degrees. m|

Theorem 77(Simpson’s Embedding Lemma for other degree structures)

1. SEL(Zg, 2') does not hold fof< w, 1)-degrees.
2. SEL(EY, 2V) holds for(1, w)-degrees.

3. SEL(H‘Z), 2) does not hold fo(1, w)-degrees.
4. SEL@IY,N") holds for(< w, w)-degrees.

5. SEL(3, 2") does not hold fof< w, w)-degrees.

Proof. (1) For anyIl{ setP c 2, we note tha/ P ¢ 2" is £3. By Theorem 48, there
is noH? set 2' which is  w, 1)-belowV/ P. In particular, there is nﬁlg set 2" which
is (< w, 1)-equivalenttdP U \/ P = {/ P.

(2) For a givenzg setS c 2, there is a computable increasing sequeiBcy
of ITY classes such th&® = (Jioy P;i. We need to showJios P =L P, Pi, since
P, Piis (1 < w)-equivalent to thel classcp ;~ Pi. Then, itis easy to seg) P; <]
P, Pi. For givenf e J; P;, from each initial segment | n, a learner¥ guesses
an index of a computable functichysn)(g) = i~g for the least numbeir such that
fIneTp butf [ n¢ Tp_,. Foranyf e [ J; P, for the least such thatf € P; \ Pi_4,
lim,¥(f I n) converges to an index @jim,w(in)(9) = i°9. Thus, Djm, v n)(Q) €
i~P;. Consequenths = |J; P <L, @ P:.

(3) Fix any speciall) setP ¢ 2. By Jockusch-Soare [34], there is a noncom-
putablezflJ setA C N such thatP has noA-computable element. Thegi} c 2 is a
IT singleton, sinceA is £9. Therefore P @ {A} is T19. It suffices to show that there is
noITY setQ c 2¥ such thatQ = P @ {A}. Assume thaQ =1 P {A} is satisfied
for somell? setQ ¢ 2. ThenQ must have a-computable element € Q. Fix a
learner? witnessingP @ {A} <1 Q. Then, we hav®iim, wen) (@) = 1A, sinceP has
no element computable in <t A. We wait fors € N such that¥(a [ t) = Y(a | 9)
for anyt > s. Then, fixu > swith Oy (e [ u;0) = 1. Consider theﬂ‘i’ set
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Q ={feQnfau:(Mv=u P v) =L I u}l Then, for anyf € Q,
Dlim w(r19(f) = Py (f) must extendgl). Thus,{1"A} s} Q* via the computable
function®y(, ). SinceQ* is specialﬂ‘f subset of 2, this implies the computability of
1~ Awhich contradicts our choice &.

(4) Fix alld setS ¢ NV, As Simpson’s proof, there isfa? setS ¢ N such that
S =}'S. We can find d19 setP ¢ SvQ such thaP <} S U Q, andP is computably
homeomorphic to ﬁ[‘l’ setP ¢ 2. SinceSu Q < SvQ, we haveS U Q =5 P,

(5) For evenyl19 setP c 2, the Turing upward closurBeg(P) = {g € 2" : (3f €
P) f <rglofPis Zg, and 5e\g(P) has the leastq{ w, w)-degree inside d¢§P). By
Theorem 65, there is ria(l’ subset of Z which is (< w, w)-equivalent tdSEg(P). O

4.3. Weihrauch Degrees

The notion of piecewise computability could be interpreted as the computability
relative to the principle of excluded middle in a certain sense. Indeed, in Part | [29,
Section 6], we have characterized the notions of piecewise computability as the com-
putability relative to nonconstructive principles in the context of Weihrauch degrees.
Thus, one can rephrase our separation results in the context of Weihrauch degrees as
follows.

Theorem 78. The symbols P, Q, and R range over all speﬂ%lsubset oPY, and X
ranges over all subsets df'.
1. There are P and G} P such that P<syo po Q but P£1 Q.
2. There are P and X} P such that P<yo, gy Q but P50, po Q.
3. For every P, there exists ! P such that P<soem Q whereas, for every X, if
P <sopne Q® X then P<i X.
. There are P and Q<1 P such that P<o gy Q but P£yo ey Q.
. There are P and G} P such that P<so1ipo Q Ut P£u0 ey Q.
. There is P such that, for every Q, iy, po Q, then P<so, gy Q.
. For every P and R, there exists €} P such that P<yo pye Q but Rso1 po Q.
. For every P, there exists ; P such that P<so1em Q. whereas, for every X, if
P <s0one Q® X then P<go pye X.
9. For every P and R, there exists QP such that Pézg.DNE Q but szg.LEM Q.

o N O O b~

Proof. See Part | [29, Section 6] for the definitions of partial multivalued functions and
their characterizations.

(1) By Corollary 5. (2) By Corollary 9. (3) By Corollary 32. (4) By Corollary 13
(2). (5) By Corollary 15 (1). (6) By Theorem 20. (7) By Corollary 53 (2). (8) By
Corollary 58. (9) By Theorem 65. m|

Definition 79 (Mylatz [47]). Thez‘l) lessor limited principle of omniscience wittm/k)
wrong answer,sZ‘f-LLPOm/k, is the following multi-valued function.

YO-LLPOpyk :C NV 3k, X {l <k:(YneN) x(kn+ 1) = 0}.

Here, domES-LLPOpyk) = {x € N*' : x(n) # 0, for at mostmmanyn € NJ}.
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Remark. Itis well-known that the parallelization d]‘l)—LLPol/g is equivalent to Weak
Konig's LemmaWKL (hence, is Weihrauch equivalent to the closed choice for Cantor

spaceCov).
Definition 80.

1. (Cenzer-Hinman [14]) A seP c K" is (m k)-separatingif P = [],ay Fn for
some uniform sequend€p}ney Of H‘l) setsF, C k, where #k \ F,) < mfor any
neN.

2. A function f : N™ — k is k-valued m-diagonally noncomputable dne N¥
if the valuef({ey, ..., em-1)) does not belong t¢D¢ (; {€p, - - ., Em-1)) : i < M}
for each argumen(gy, ..., en-1) € N™. By DNRp (@), we denote the set of all
k-valued functions which ame+-diagonally noncomputable im.

3. The (m/k) diagonally noncomputable operati@NRx : N*' =3 k' is the multi-
valued function mapping € N*' to DNRyk(a).

Remark. ClearlyDNRyk(0) is (m, k)-separating. The structure of Medvedev degrees
of (m, k)-separating sets have been studied by Cenzer-Hinman [14]. Diagonally non-
computable functions are extensively studied in connection algbrithmic random-

ness for example, see Greenberg-Miller [25].

Proposition 81. DNRpk is Weihrauch equivalent tE‘i-IIP\Om/k.

Proof. To seezg-l_fP\Om/k <w DNRpy, for given ( : i € N), let€ be an(P,,, x-
computable index of an algorithm, for any argument, which retuatsstagesif | €
L \ Lsand #s = t, whereLs = {I* < k: (An) kn+ 1" < s & x(kn+1*) #

0}. Clearly,{€, : i € N & t < m} is computable uniformly inD,_,, x. For any

f € DNRm(D;; %) the functioni - f((e),..., €, ,)) belongs toZ(l’-IIFTOm/k((xi :
i € N)). Conversely, for giverx € NV, for the i-th m-tuple (ey, ..., €n1) € N™
we setx(ks+ 1) = 1 if ®q((€n,...,en1)) cOnverges td < k at stages € N for
somet < m, and otherwise we se§(ks+ 1) = 0. Clearly{x : i € N} is uniformly
computable inx. Then, for anyl; : i € N) € Efl’-l_/LP\Om/k«xi (i e N)) c kY, we have
li ¢ {®g((e,...,em1)) : t < m} by our construction. Hence, thevalued function
i — |; is mdiagonally noncomputable ]

Recall from Part | [29, Section 6] thatis the operation on Weihrauch degrees such
that is defined byr x G = max{F* o G* : F* <w F & G* <w G}. See [53] for more
information onx.

Corollary 82. Let k> 2 be any natural number.

1. $9-LLPOy ) £w ZO-DNE * S0-LLPOy 1.
2. $0-LLPOyx £w E-LLPO * Z0-LLPO 1.
3. 20-LLPOyk <w E%-LEM * 29-LLPOy k1.

Proof. By Corollary 72 and Proposition 81, the item (1) and (2) are satisfied. It is not
hard to show the item (3) by analyzing Theorem 73. |
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Remark. By combining the results from Cenzer-Hinman [14] and our previous results,
we can actually show the following.

1. ZQ-IIEOM £w Z9-DNE ZE-L/LEOm/k, whenever &< n < | < [k/ml.
2. $0-LLPOy; £w Z3-LLPO * 29-LLPO, Whenever 0< n < | < [k/m.
3. Eg-@onﬂ <w Z9-LEM EE-LTFTOm/k, whenever & n <l and O< m< k.

These results suggest, within some constructive setting, thétgtltmxv of excluded

middle is suificient to show the formulE?-lIFTOm/k — ZE-IIEO,]/., whereas neither
thezg double negation elimination nor tlﬂg lessor limited principle of omniscience
is suficient.

Corollary 83. DNRz <50, gy DNR3; DNR2 #5011 p0 DNR3; DNR2 £505ne DNRg;
MLR <s0,gm DNR3; and MLR £y pye DNRs. Here, MLR denotes the set of all
Martin-Lof random reals.

Proof. For the first three statements, see Corollary 72 and Theorem 73. It is easy to
see thaMLR <; DNR; <so.em DNRs. Itis shown by Downey-Greenberg-Jockusch-

Millans [20] thatMLR ﬁ} DNR3. By homogeneity oDNR3 and Proposition 71, we
haveMLR £59 pne DNR3. ]

4.4. Some Intermediate Lattices are Not Brouwerian

Recall from Medvedev’s Theorem [41], Muchnik’'s Theorem [46], and Part | [29,
Proposition 16] that the degree structuze’f4 DL, andD¢ are Browerian. Indeed, we
have already observed that one can genefdtdérom a logical principle so called the
xJ-double negation eliminatioriThoughD?,,, DY, andD; are also generated from
certain logical principles ovefD% as seen before, surprisingly, these degree structures
arenot Brouwerian.

Theorem 84. The degree structure®:_, D!

<w 1 1
X <w? wl<w’ ‘Z)l ’ P P
Brouwerian.

<w!' 7 wlkw!

andP3¢ are not

PutAP,Q) ={RcN": Q<! P®R},andB(P,Q) = {RCN": Q< P®R).

—<w

Note thatA(P, Q) € B(P, Q). Then we show the following lemma.

Lemma 85. There arell{ sets PQ € 2", and a collectior{Ze}ecy 0f 12 subsets o™
such that Z € A(P, Q), and that, for every R B(P, Q), we have Rt{ Z. for some
eeN.

Proof. By Theorem 17, we have a collecti@B;}icy of nonemptyl‘[‘i subsets of P
such thatx £1 @j;tk Xj for any choicex; € S;, i € N. Consider the following sets.

P=CPA™ {Se0) S --- Seeletts Ze = Sieer1)s
S<&i> ® Ze, ifi<e

Q =CPA {Qn}nerr, Where Qejy = (P\[oe]) ®Ze, ifi=e+1,
0, otherwise.
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Here,pe is thee-th leaf of the corresponding computable teg, for CPA. To see
Ze € A(P,Q), choose an elemerftdge P® Z.. If f ' ne Tcpa Or f | nextends a
leaf exceppe, our learneM((f | n) @ g) guesses an index of the identity function. If
f I nextendspe, then'¥ first guesseDy s meg)(f ® g) = (<) @ g. By continuing
this guessing procedure, ff | nis of the formpe" 7%~ 71~ ... 7'~ such thatr! is a
leaf of S¢j) for eachj < i, andr does not extend a leaf &ej.1), then'¥ guesses
Dyt myeg)(f @ 0) = (F+++)) g g, Note thai < e, sincef € P. Itis easy to see
thatQ <, P® Z, viathe learnel, where #fne N : ¥((f @ g) I n+ 1) # P((f @ Q) |
n)} < e+ 1. ThereforeZe € A(P, Q).

Fix Re B(P,Q). AsQ <;“ P®R, there isb € N such that, forevery @g e P®R,
we must havebe(f & g) € Q for somee < b. Suppose for the sake of contradiction
thatR <{ Zy.1. Then, for anyh € Zy,;, we haveg € Rwith g <t h. Pick fy €
Pb+1” Sp+1.00 € PN [pope1]. SinceR € B(P, Q), there isey < b such thatbe, (fo®g) € Q.
By our choice offSp}nen and the property <t h € Zy,1 = Spr1ps2y, if € # b+ 1
ori # 0, thenQj, has no fy ® g)-computable element. Therefordg,(fo ® g) have
to extendpp.1,0). Take an initial segmernty c fo determining®e, (00 @ 9) 2 Po+1,0)-
Extendoy to a leafr® of Sp,10, and choosd; € p~71°°Sp,11 ¢ P. Again we have
e1 < b such thatdg (f; @ g) € Q. As before,®¢ (f; & g) have to extenghp1.1).
However,p.1.1y iS incomparable withyp,10y. Hence, we have; # . Again take
an initial segmentr; ¢ f; extendingo and determiningbe, (01 © 9) 2 pw+1.1y- BY
iterating this procedure, we see tHarequires at leasb + 1 many indices. This
contradicts our assumption. TherefoReg;“ Zp.1. O

Proof of Theorem 84Let P, Q, and {Zg}een be H‘l) sets in 85. Fix¢,8) € {(1,<
w),(1,w| < w), (< w,1)}. To seeDy is not Brouwerian, it sffices to show that there
is no (,B)-leastR satisfyingQ <3 PR If R satisfiesQ <3 PO®R then clearly
Re B(P, Q) since<j is stronger than or equals . Then,R £; Z for somee € N.
Moreover,Z, € A(P, Q) impliesQ <z P®Z, sincesg is weaker than or equals .
HenceR is not such a smallest set. By the same argument, it is easy to séegthaat

not Brouwerian, sinc& is I19. o

Theorem 86. D* and £5“ are not Brouwrian. Moreover, the order structures in-
duced by(P(N"), <30, £y) @nd (the set of all nonempti? subsets 02", <yo, ¢y,) are
not Brouwrian.

Lemma 87. Let{S;}i<n be a collection oﬂ‘l) subsets of" with the property for each
i < nthatJki Sk has no element computable in € S;. Then, there is n¢n, w)-
computable function fron¥.,S; to @isn S;.

Proof. Assume the existence of am (»)-computable function fron¥<,S; to (D,_, Si
which is identified byn many learner$¥;}i.,. Let F; be a partial §, w)-computable
function identified by?, i.e., Fi(X) = ®jim, woqn)(X). Note thatV¥;,S; € Ui, dom(F;).
For each < n, putD; = dom(F) N F;l(@isn Si). LetTg, denote the corresponding
tree forS;, for eachi < n. DefineS{ for eachE C n + 1 to be the set of all infinite
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paths through the following treEz.

TE = vD‘ETOE (vO'ETiE ( .. (va'ETlil[TrE]) s )) .

tere e _ [T ificE,
"1 7 | some finite subtree are,  otherwise.

Here, the choice of “some finite subtreeTcg’“” depends on the context, and is implic-
itly determined wherk is defined. For eacB c n+1, clearlyS{ is a closed subset of
Vi<nSi. Divide S, into n+ 1 many part$S;}i<n, whereS? , is equal ta Ji., S;', and
eachS; is degree-isomorphic t8;.

For eachi < n, check whether there is a string extendible inS?,; such that
S,., N Din[o] is contained |rSj for somej < n. If yes, for such a least< n, choose
a witnessog = o, and putdg = {i}, andBy = {j}. Then, for suchj € By, “some finite

subtree ofT, g:‘” is choosen as the set of all stringsised inog as a part ofl gJX‘ in the
sense of the definition d¥;,S;, or successors of suehin TSeJ?“. Note thatog is also

extendible m‘S”n+l ) Inductively, for somes < nassume thats, As, andBg has been
already defined. For eacht A, check whether there is a strieg2 o5 extendible in
S(n+1)\B such thaS”ml)\B NDjN[o]is contained irS’; for somej ¢ Bs. Ifyes, forsuph
aleast ¢ As, choose a witness = o, and putAg;; = AgU {i}, andBs,; = Bs U {j}.

As before, for suclj € Bs,1, “some finite subtree oTeXt” is choosen as the set of all
stringsn used incs,1 as a part off & or successors of suehin T‘”‘t Note thatos,1

is also extendible ”Sanrl)\B If no SUChI ¢ As exists, finish our constructlon of, A,
andB. Then, putA = As, B = Bs, and definer* to be the last witnesss.

PutA- =n\ AandB™ = (n+ 1)\ B. Note that#A~ + 1 = #B", since A = #B.
Therefore B contains at least one element. By our assumption, foxen$? N[o™*] #

0, we must havé=i(x) € @isn S for somei € A~. Thus,A™ is nonempty.

Fix a sequencer € (A")" such that, for each € A-, there are infinitely many
n € N such thate(n) = i. First setrg = o*. Inductively assume that; 2 ¢* has
been already defined. By our definition @f, A andB, if £ extendso™, then the set
S§- N Dyg N [¢] intersects with’]f for at least twoj € B~. Therefore, we can choose
X € Sg NDy(9N[7s]NS; # 0 for somej € B™. Then,Fy(x; 0) = j, by our assumption
of {Si}i<n. Find a stringrg such thatrs € 75 € x andF,5(7s; 0) = j. Again, we can
choosex’ € S§. N Dy N[t N Sk # 0 for somek € B~ \ {j}. Then, we must have
Fa9(X";0) = k# j. Letts,1 be a string such that; C 75,1 € X" andFy(g(7s+1; 0) = k
Therefore, betweens andrs, 1, the learnei, changes his mind.

Definey = (Js7s. Theny is contained inSg_, sinceSg_ is closed. However, for
eachi € A~, by our construction of, the valueF;(y) does not converge. Moreover, for
eachi ¢ A, by our definition ofA, B, ando™ c vy, even ifFj(y) convergesFi(y) ¢
@lsn Si. Consequently, there is no,w)-computable function fron¥.,S; > Sg_ to
.., Si as desired. O

Puty (P, Q) = {RC N : Q <po gy PR}, andX (P, Q) = (RC N : Q <5 P®R).
Note that7 (P, Q) € % (P, Q). Then we show the following lemma.
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Lemma 88. There arel'[‘l) sets PQ ¢ 2V, and a collectionZe} ey Of H‘l’ subsets of™
such that Z € J (P, Q), and that, for every R K(P, Q), we have R¢{ Z. for some
eeN.

Proof. By Theorem 17, we have a collecti@B;licy of nonemptyl‘[‘l) subsets of P
such thatx £ @jik x; for any choicex; € S;, i € N. Consider the following sets.

P = CPAH{S<e,o>VS<e,1>V PN vS<e’e> }eeN, Ze = S(e’e.\\_]_),

S(ai> ® Ze, ifi<e
Q=CPA™ {Qn}nearr, Where Qejy = {(P\ [oe]) ®Ze, ifi=e+1,
0, otherwise.

Here,pe is thee-th leaf of the corresponding computable tikga for CPA. To see
Zoe J(P,Q), for fege P®Z, by usingz(l)-LEM, check whethef does no extengde.

If no, outputsoee,1~(f @ @). If T extendspe, it is not hard to see that an finite iteration
of Zg-LEM can divide beAS(&o>VS<al>V . VS<e,e>) ® Ze iNto {S<e,i> ® Zoli<e-

Fix Re K(P, Q). AsQ <¥, P®R, some b, w)-computable functiofr mapsP® R
into Q. Suppose for the sake of contradiction tRat{ Z,. Then, for anyh € Zy,, we
haveg € Rwith g <y h. Then,F maps P N [pp]) ® {g} into Q N (Ui<p pb.iy) by our
choice of{Sp}nar. Note that Pn[pp]) ®{g} =7 (VibS(ei) @1} andQN (Ui<h pwiiy) =1
(@isb Seiy) ® Ze. Therefore, by Lemma 8F, is not (0, w)-computable. |

Proof of Theorem 86Let P, Q, and{Z}een beH‘l’ sets in 88. Then, by the same argu-
ment as in the proof of Theorem 84, it is not hard to show the desired statement.

Corollary 89. If (¢,8) € {(1,1), (1, w), (w, 1)}, and(y,9) € {(1, < w), (1, w| < w),(<
w,1), (< w,w)}, then, there is an elementaryfféirence betweem)g and D7, in the
language of partial orderingé<}.

Proof. Recall that the degree structurgy, D%, and D% are Browerian, i.e., they
satisfy the following elementary formulain the language of partial orders.

Yv=Mp,g@ANVs) (p<gvr&(p<gvs — r<y9).

Here, the supremum is first-order definable in the language of partial orders. On the
other hand, by Theorem 84 and 80, D, ., D;*, andD* are not Brouwerian,
i.e., they satisfy-y. m|

4.5. Open Questions
Question 90(Small Questions)
1. Determine the intermediate logic corresponding the degree strugiirevhere
recall thatD7 and D% are exactly Jankov’s Logic.
2. Does there exislt[‘l’ sets PQ ¢ 2" with P <! Q such that there is njaj-bounded
learnable functiol” : Q — P for any ae O? For aH? setP in Theorem 48, does

there exist a functiolr : P — P (1, w)-computable via afel-bounded learner
for some notation & O?
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3. Does there exist a pair of speciHEl) sets PQ ¢ 2" with a functionl” : QvP —
QaeP (orT : Qve, VP — Q@ P) which is learnable by a team of confident
learners (or a team of eventually-Popperian learners)?

4. Let By, Py, Qo, and Q beTl? subsets 08" with Qy <} Q, and Ry <}, Py. Then,
does[Po v Qollso <[PV Qillxe hold? Moreover, if @ <! Q, is witnessed by
an eventually Lipschitz learner, then doesy®g <! P1vQ; hold?

5. Compare the reducibility<y; and other reducibility notions (e.gs, <,
<t <@ and<?)for Hg subsets of Cantor spa@'.

—wl<w' —1
Question 91(Big Questions)

1. Are there elementary flerences between any twgfdrent degree structure®

glv
andDg,‘y, (SDg‘y andP‘ﬁ’,ly,)?
2. Is the commutative concatenatiorfirst-order definable in the structur®; or
PI?
3. Iseachlocal degree structui@!ﬁ’Iy first-order definable in the global degree struc-
ture Dgw?

4. Is the structurePl dense?

5. Investigate properties dfy, Bly)-degreesa assuring the existence bf> a with
the saméca’, §'|y’)-degree as.

6. Investigate the nested nested model, the nested nested nested model, and so on.

7. Does there exist a natural intermediate notion betwgemw, w)-computability
(team-learnability) andw, 1)-computability (nonuniform computability) dm‘l)
sets?

8. (Ishihara) Define a uniform (non-adhoc) interpretation (such as the Kleene re-
alizability interpretation) translating each intuitionistic arithmetical sentence
(e.g.,(==IANYmA(n, m)) — (AnYmA(n, m))) into a partial multi-valued function
(e.g9.,Z0-DNE :c N =3 NY),
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