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Abstract. The notion of immunity is useful to classify degrees of non-
computability. Meanwhile, the notion of immunity for topological spaces
can be thought of as an opposite notion of density. Based on this view-
point, we introduce a new degree-theoretic invariant called layer density
which assigns a value n to each subset of Cantor space. Armed with
this invariant, we shed light on an interaction between a hierarchy of
density/immunity and a mechanism of type-two computability.
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1 Introduction

1.1 Summary

The study of immunity was initiated essentially by Post in 1944. Demuth-Kucera
[5] studied the notion of immunity for closed sets in Baire space. Immunity for
a closed set indicates that it is “far from dense”. They showed that any 1-
generic real computes no element of any immune co-c.e. closed set, and hence no
1-generic real computes a Martin-Lof random real. Binns [1] introduced many
notions of hyperimmunity for closed sets to classify degrees of difficulty of co-
c.e. closed sets. Cenzer-Kihara-Weber-Wu [4] started the systematic study on
immunity for closed sets. Higuchi-Kihara [6] clarified that such notions indicat-
ing being “nearly/far from dense” are extremely useful to study a hierarchy of
nonuniform computability on sets of reals. We investigate a hierarchy of prop-
erties that are “nearly dense”, by introducing a new degree-theoretic invariant
called layer density which assigns a value n to each subset of any computable
metric space. In this way, we shed light on an interaction between a hierarchy of
density and a mechanism of type-two computability. We also continue the work
[6] on the structure inside the Turing upward closure of any co-c.e. closed set.

1.2 Notation and Convention

Much of our notation in this paper follows that in [6]. For basic terminology on
Computability Theory and Computable Analysis, see [3,8,9]. For any sets X
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and Y, f is said to be a function from X to Y if dom(f) 2 X and range(f) CY
hold. We use the symbol ™ for the concatenation. For o € w<%, we let |o| denote
the length of 0. Moreover, f [ n denotes the unique initial segment of f of length
n. We also define [o] = {f € w* : f D o}. For a tree T C w<¥, let [T'] denote
the set of all infinite paths through 7. For a subset A of a space X, cl(4), and
ext(A) denote the closure, and the exterior of A, respectively. A representation
p of a space X is a surjection p :C w* — X. Let A_(X) denote the hyperspace
consisting of closed subsets of X represented by ¢_ : o +— X \ |, Ba(n). Here,
{Bn}tnew is a fixed countable base of X. A computable element of A_(X) (i.e.,
1_ () for some computable o € w*) is called a co-c.e. closed set or a IIY class.

2 Computability with Layers

2.1 Density and Immunity

Let X be a topological space, and B be a collection of open sets in X. A subset
S C X issaid to be B-dense if it intersects with all nonempty open sets contained
in B. By restricting B, one may introduce various “pre-dense’ properties. For
instance, immaunity [4] and hyperimmunity [1] can be introduced in this way.
A variety of interactions are known between density/immunity and degrees of
difficulty [4, 5, 7]. To introduce nice B-density notion, we consider the following
effective notion for open sets: An open set S C X is bi-c.e. open if both S and
ext(S) are c.e. open. We fix X = 2¥. A sequence {B,} of open rational balls
is nontrivial if it contains no empty set, and lim inf,, diam(B,,) = 0; computable
if it is uniformly computable (hence, J,, By, is c.e. open); and decidable if it is
computable, and J,, B, is bi-c.e. open. Let P C 2% be a closed set, and let
TE™ denote the tree {o € 2<¢ : PN [o] # 0}. Cenzer et al. [4] introduced the
following notion: P is immune if T§"* contains no infinite computable subset. P
is tree-immune if T contains no infinite computable subtree.

Proposition 1. Let P C 2¥ be a closed set with no computable element. Then,
P is not immune if and only if it is B-dense for some montrivial computable
sequence B of open balls; P is not tree-immune if and only if it is B-dense for
some nontrivial decidable sequence B of pairwise disjoint open balls.

Proof. Assume that P is B-dense via an infinite computable sequence B of open
balls. For each B € B, we choose the smallest clopen set [o] including B, and
enumerate [o] into another sequence B*. As liminfpcpdiam(B) = 0, the se-
quence B* is infinite. It is easy to see that P is also B*-dense. Therefore, P is
not immune. Another direction is obvious.

Assume that P is not tree-immune via an infinite computable tree V- C TF".
As P has no computable element, V' has infinitely many leaves, i.e., L = {0 €
Vi (Vi < 2) 07i ¢ V} is infinite. Then, we define B = {[o] : ¢ € L}. To
enumerate the exterior of |J B, for each o € 2<%, we define (¢7i)* = 07 (1 — 9)
for each ¢ < 2. Then, the exterior of |JB is generated by the computable set
{o € 2<¥\ V : ¢* € V}, since [V] has no interior. Hence, | B is bi-c.e. open.



Conversely, assume that P is B-dense for a decidable sequence B = {[0},] }new
of open balls. Then, there is a computable enumeration of all strings o that are
comparable with o, for some n € w, since B = {0, } ne. is computable. Moreover,
[0] C ext(lJB) if and only if there is no n € w such that ¢ is comparable with
on. Hence, the set U consisting of all strings o € 2<% which are comparable
with some o, is computable, since ext(|J B) is c.e. open. Then, we can compute
the tree V = {0 € 2<% : (In € w) 0 C 0, } as follows: If ¢ € U, then declare
o g V.If o € U, then 0 must be comparable with some ¢,,. Wait for the least
such n € w, and if ¢ C o,, then declare o € V. Otherwise, declare o ¢ V.
This algorithm correctly computes V, since the sequence {0, }new. is pairwise
incomparable. Then, for each o C o,,, the open ball [o] D [0,,] intersects with P,
by B-density of P. O

By considering layers {B;}jcw, {Bjk}jkew, {Bjk,i}jkicw, . of open balls
hitting a set P C 2¥, we may strengthen the notion of B-density. Here, it is
required that P is {B;};je.-dense; P N B; is {Bj i }rew-dense for each j € w;
PN B;N B,y is {Bjki}ico-dense for each j, k € w, ...

Definition 1. Let Y be a subset of X = 2%,

1. A sequence {Bpnm}(n,myerx.t of open balls is an J-refinement of {A, },er in
Y if it is pairwise disjoint, and By, ., C Ay, for any (n,m) € I x J.

2. A sequence {By}r<n (resp. {Bilrew) of decidable sequences of monempty
open rational balls is an n-layer in Y (resp. an oo-layer) if By11 = {ij‘l}”
is an w-refinement of By = {Bk}; in Y, and {Bﬁ'l}jeu is decidable uni-
formly in i, for any k <n —1 (resp. for any k € w).

3. Forn € wU {0}, a set P C X is n-layered if there is an n-layer B = {B;}
in P such that P is | JB-dense, where By = {X}.

4. The layer density of a set P C X is defined as follows:

density(P) = sup{n € wU {oo} : P is n-layered }.
Here, the ordering on w U {w, oo} is defined as n < w < oo for any n € w.

Proposition 2. Let P be a subset of 2¥. Then, P is empty if and only if
density (P) = 0; If @ C P, then density(Q) < density(P); If P is dense, then P
s co-layered. a

Proposition 3. Let P C 2¥ be a closed set with no computable element. Then,
P C 2% is n-layered if and only if there is a sequence {T;}i<n of infinite com-

putable trees such that [T,,] C P for any i <n, and T; C T for any i < n—1.

Proof. Assume that P C 2¢ has such a sequence {T;};<, of infinite computable
trees. We effectively enumerate all leaves {07}, }ren of the tree T;, for each i < n.
Then, as Proposition 1, {2¢, {[09]}kew, - - -, {[ag_l]hew} forms an n-layer of P.

Conversely, assume that P C 2 is n-layered via {B;}i<,. As in the proof
of Proposition 1, without loss of generality, we may assume B5; is of the form
{[o}]}kew, for each i < n. Then, we define T; = {0 € 2<¥ : (Fk € w) 0 C

a}jl}. We can see that T; is computable for each i < n, as Proposition 1. Then,
{To, T1,...,Tn-1,Tp} is the desired sequence. O



Ezample 1. Let P be a co-c.e. closed subset of 2. Then, for a fixed computable
tree Tp with P = [Tp], we have the computable set {p, }ne. of all leaves of Tp.
The concatenation P™ P is defined by J,, p,~P. Consider P = p; ptrtl) —
P~pm); P@) =] p,”P™; and P> = |J, P™. Then, density(P™) > n;
density(P“)) > w; and density(P(>)) = co. See also Higuchi-Kihara [6].

2.2 Learnability on Topological Spaces

When we try to extract effective content in classical mathematics, we sometimes
encounter the notion of nonuniform computability [2,10]. The deep structures
of subnotions of nonuniformly computability have been studied [6].

Definition 2 (Learnability). Let X be a topological space with a representa-
tion 0 :C w* — X, and fixr a new symbol 7 & X.

1. The representation 6, of the space Xo = X U{?} is defined as 62({0)" )
0(a), and 02({1)"a) =?, for any o € w¥.

2. A sequence {fn}new of partial functions f, :C Y — X, is ?-good if 7 €
{fn(a)7 fn+1(a)} whenever fn(a) 7’é fn+1(a)'

3. The discrete limit of a ?-good sequence { fn}new of partial functions f, :C
Y — X+ is a partial function lim,, f, :CY — X defined as follows.

lim £, (0) = {ﬂ(a), if (%5 2 1) fol) £

n undefined, if (3%s) fs(a) =7.

4. A function f :CY — X islearnable if it is the discrete limit of a computable
?-good sequence {fn}new of partial functions f, :CY — Xo.

5. An anti-Popperian point of a ?-good sequence { fy, }new is a point « € w* such
that fn(a) =7 at most finitely many n € w, but lim,, f,(«) is undefined.

6. A function f : Y — X is eventually Popperian learnable (abbreviated as
e.P. learnable) if it is the discrete limit of a computable 7-good sequence
{fn}new of partial functions f, :CY — X9 with no anti-Popperian points.

Lemma 1 (Blum-Blum Locking). Let (X,d) be a Polish space with a repre-
sentation, and @ be a closed set in X. For every learnable function I' : Q — P,
there is an open set U C X such that Q NU # 0, and the restriction I'|y :
QNU — P is computable.

Proof. Suppose not. Fix a learnable function I' = limg Iy : Q — P witnessing
the falsity of the assertion. Then, for any open set U and every sg € w, there is
s1 > so such that the open set Uy = I';, '{?} has a nonempty intersection with
Q. Then Uy contains an open ball {p € X : d(p,q) < €} with ¢ € Q and £ > 0.
Pick Uy = {p € X : d(p,q) < min{e/2,27"}} C U;. By iterating this procedure,
we can get a decreasing sequence {U}},,c.. Choose z,, € UXNQ. Then, {x, }new
converges to an element x € Q N[, cl(Uy;). By our choice of {U},c., We see
that I's(z) =7 for infinitely many s € w. Consequently, I'(z) = lim, I';(x) is
undefined, i.e., dom(I") 2 Q. O



3 Degrees of Difficulty

3.1 Layer Density as a Degree-Theoretic Invariant

Theorem 1. Let P,Q C 2“ be co-c.e. closed sets with no computable element.
If a computable function exists from P to @, then density(P) < density(Q).

Proof. A sequence {1, }1m<n of infinite computable trees is said to be an n-layer
if Te®t C T,,.1 for each m < n — 1. This definition is essentially equivalent to
the definition of n-layers of open balls, by Proposition 3. Let P be an n-layered
co-c.e. closed set with an n-layer {T), }m<n, and @ be a co-c.e. closed set. Let
@ be a computable function from P to Q. As P is co-c.e. closed, we may safely
assume that @ is total. It suffices to show that the sequence {®(T},)}m<n of
images of T},’s under @ forms an n-layer of Q). Note that &(7,,) is computable
for any m < n, by totality of @. Fix m < n—1. For each leaf p of &(T,,), we must
have a leaf p* of Ty, with &(p*) = p. As T}, C TS"!,, there are infinitely many
nodes of T}, 11 extending p*. By weak Konig’s lemma, 7},,+1 has an infinite path
g extending p*, and then g belongs to P, since [T},,+1] C P. Therefore, &(g) € Q
by our assumption that dom(®) includes P. Then, $(T,,+1) has a path $(g) € Q
extending &(p*) = p, i.e., p € &(T)y,) is extendible in $(T,+1). Hence, we have
D(Ty) C (P(Trnr1))e", as desired. O

Definition 3. Fix P C X. The layer density of a point a € X on P is defined
as density p(a) = inf{density(PNO):a € O € £Y(X)}. Forn € wU {w,0} a
point o € X is an n-layered accumulation point of P if density p(«) > n.

Theorem 2. Let P,Q C 2“ be co-c.e. closed sets with no computable element. If
a learnable function exists from P to @, then density (P) < max{w, density(Q)}.

Proof. Fix an oo-layered co-c.e. closed set P C 2% and a computable function
F : P — 2“. By Blum-Blum Locking Lemma 1, there is a string o extendible in
PY = {a € P : density p(a) = density(P)} such that F | [¢] is computable, since
P is nonempty and closed. Moreover, density(P¥) = density(P) = oco. The
image of an oco-layer by a computable function is again an oco-layer. Therefore,
F(P) is oo-layered. O

For elements a,b of a lattice L, we say that a cups to b if a is one-half of
a witness of join-reducibility of b. For a bounded lattice L and a € L, we also
say that a is cuppable in L if a cups to max L. We define preorders <} and <}
on P(w¥) as follows: P <} Q (resp. P <! Q) if there is a partial computable
(resp. learnable) function F' on w* such that dom(F) 2 P and F(P) C Q. The
structures P(w*)/ =1 and P(w*)/ =L form lattices, where the supremum in
these lattices are given by PR Q = {p® q: (p,q) € P x Q}. The former lattice
is called the Medvedev lattice, and the latter lattice is said to be the degrees of
nonlearnability [6].

Theorem 3. For each n € wU {0}, let LD,, denote the set of all Medvedev
degrees of n-layered co-c.e. closed sets in 2*. Then, the set LD, is a princi-
pal prime ideal in LD1, and every element of LD,y1 is noncuppable in LD,.



Moreover, LDy, is a principal prime ideal in the degrees of monlearnability of
nonempty co-c.e. closed sets.

Proof. See Cenzer et al. [4, Corollary 4.13]. Indeed, the top element of LD,, is the
Medvedev degree of PA("), where PA denotes the set of all consistent complete
theories extending Peano Arithmetic. For principality, by Higuchi-Kihara [6],
PA(HD) ig noncuppable in LD,,, i.e., PACHY) does not cup to PA™. O

Fix a countable base O of Cantor space 2¥. A set P C 2% is totally co-layered
if it is co-layered, and there exists a computable function B : O X w — (O¥)<¥
such that B(U,n) forms an n-layer of P N U, whenever PN U is oo-layered.

Ezample 2. Fix a co-c.e. closed set P = [Tp] C 2¥. Then PY denotes the set of all
infinite paths through the tree consisting of strings of the form py™7(0)"p1"7(1)
“p2” . pir =1 T(|T| = 1)"0, where 0,7 € Tp and each p; is a leaf of Tp. Then,
PV is totally oo-layered, and (PY)Y = {a € PY : density pv (a) = density(PY)}
is co-c.e. closed.

Theorem 4. If a totally oco-layered set P has a co-c.e. closed subset P* con-
sisting of co-layered accumulation points, then P is noncuppable in the degrees
of nonlearnability of co-c.e. closed subsets of 2¢.

Lemma 2. Let C(X) denote the space of all continuous functions on X. There
exists a computable function = : C(w*) x A_(2)¥ x (2<¥)* X w* — w* such
that, for any (f, H,(0})icw, @) € Cw¥) x A_(2)¥ x (2<¥)¥ x w®, if the im-
age of flioje{a} intersects with the product set H C 2 for every i € w, then
E(f, H, (0i)icw, ) is contained in H.

Proof. Indeed, the proof of Cenzer et al. [4, Theorem 5.2] is uniform, where
their theorem states that, if a co-c.e. closed set P is B-dense for some infinite
computable sequence B = {[0;]}iee of intervals (i.e., P is not immune), then it
does not cup to any separating class H € A_(2)“. In other words, if a computable
function f : PQ R — H exists, then we have a computable function = : w* — w*
such that = («) € H for any « € R. O

Proof (Theorem 4). Fix a learnable function F' = lim, Fs : P ® R — PA. Note
that P*®{g} is closed for any g € R. Therefore, by Blum-Blum Locking Lemma
1, there must exist an extendible string p in P* such that G, = F|(P*m[p])®{g}
is computable. Then, we can find a sequence {o/};c,, extending p such that
P*N[of] # 0, since P is totally oo-layered. Therefore, Z(G,, PA, (07 )icw, g) is
contained in PA, where = is a computable function in Lemma 2. From an input
g € R, one can learn a pY such that p? € P* and I|,ogisy = Lps|lpseiqy for
any s > |p9], since the assertion I'y|y = Iy|y is equivalent to the following: for
any clopen set [0] and any u € [t,s], such that I, *({?}) N Y # 0. Here recall
that {?} is a clopen set in (w*)7, and hence, Iy '({?}) is c.e. open. Therefore,
there is a ITY(g) statement characterizing p?, uniformly in g € R. Then, we have
a learnable function h = limghs : R — 2% which maps g to such p9. Define
Ay(g) =7 if hy(g) =7, and Ay(g) = Z(Gh.(g), PA, (0779 )icw, g) otherwise. Tt is
easy to see that the learnable function A = limgy Ay maps R into PA. ad



3.2 Topological Games and Popperian Learnability

By Lewis-Shore-Sorbi [7], the initial segment (0,d] below the Medvedev degree
d of a dense set in w* has no co-c.e. closed set. There are other density-like
properties making co-c.e.-free initial segments:

For a set S C X, the two-players game &g is defined as follows: Each play
is a decreasing sequence {U,}ncw of open sets with SN U, # (. For a play
p = {Un}new, Player II wins on p if SN, U, # 0. Otherwise, Player I wins. If
Player II has a winning strategy for the game &g, then S is called Choquet.

Player I: Uy Us U,y S
X2 R 2 R 2
Player II: U, Us Us
Theorem 5. Assume that a set P C 2% contains a Choquet subset C C P
whose closure has a dense subset of computable points. For any co-c.e. closed
set Q@ C 2%, if an e.P. learnable function exists from P to Q, then Q) contains a
computable element.

Proof. Let F' :C w* — w® be a partial learnable function. A partial computable
function f:C w<¥ — w<¥ U {?} is said to be an approzimation of F if:

— (?-goodness) f(o7) & f(o) occurs only when ? € {f(c7), f(0)};
— (Convergence) F(z) = lim;, f(x [ s), for any « € dom(F).

Fix a winning strategy ¢ for Player IT on the Choquet game &¢, a co-
c.e. closed set Q C 2“ with no computable element, and suppose that an
e.P. learnable function F': P — @ exists. Fix also an approximation f : w<% —
w<¥ U {?} of F. Choose any string 7; with [r;] N C # 0. Since cl(C) has a dense
subset of computable points, C' is dense at a computable point 3; D 7;. Note
that, if f(3; | n) #7? for any n > |r;], then [f(c)]NQ = O for some o C 5.
Otherwise, since F' is e.P., we have lim,, f(8; [ n) € Q. However, monotonicity
of {f(Bi | n)}|r,j<necw implies that lim, f(5; [ n) is computable. This contra-
dicts our assumption that () contains no computable element. If f(o) & Tg
happens for some ¢ C 3; extending 7;, for any a € C extending o, we have
flo) € lim, f(a | s) € Q, since F(C) C Q. Therefore, f(o*) =? must occur
for some o* with 7; C ¢* C «. Then, define ¥1(7;) = o*. Player II extend it
to Ti+1 = Y (¥i(7;)). Eventually an infinite increasing sequence {7;};c., is con-
structed, and then h = lim; 7; € C by the property of ¢11. However, lim,, f(h [ n)
does not converge. Therefore, h ¢ dom(F). ad

Definition 4. Fizx a set S C X, and we consider the Choquet game Gg.

1. A function ¢ is a strategy if, for a given open set b, in X, ¥(by,) is an open
subset of by, and S N(by,) # O whenever SN b, # 0.

2. A function ¢ is a prestrategy if, for a given previous move ag, ¥(ag) is a
pair {bgo,bp1) of open sets with bgo U bgy C ag, or ¥(ag) = RESIGN, where
we declare that S N RESIGN = (.

3. For a strategy 11 and a prestrategy 1, the preplay 11 ® ¥ produced by vr
and vy is a collection {(ay,bgj, agj)oca<w j<2, where ay = P1(()), Yulag) =
(bgo, be1), and ag; = P1(be;) for any 0 € 2<%, and j < 2.
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Fig. 1. A preplay on a given Choquet game

4. For a preplay p = {a(,bgj, ap;)eca<w j<2, the play of p along h € 2¢ is
defined by the infinite sequence pln = (ay,bg, ao)och-

5. The play tree Play (v ) of a preplay vy @t = (ay), boy, agoea<e j<z is
defined by Play (v1®@vm) = {0 : (Vn C 0) b, # RESIGN}. For a partial preplay
m C 1 @ Y11, the play tree Play(w) is also defined in the same manner.

6. A prestrategy 111 for Player II is winning if, for every strategy 1y for Player
I, Player II wins on the play of ¥1 ® ¥y along any infinite path h through
Play(¢1 ® ¥n), i-e., SN, (¢1 @ Yuln)(n) # 0 for any h € [Play(¢1 @ ¢m)].

7. A function 1 is a playful strategy if it is a prestrateqy, and the play tree
Play(¢ ® ©) has an infinite path for any strategy ¢.

8. If Player II has a computable winning playful strategy for the game &g, then
S is called PA-Choquet.

A partial computable function 8 : w<¥ — w* is a dense choice of computable
points in C if C'N [o] is dense at the point G(o), whenever C N [o] is nonempty.

Theorem 6. Assume that a set P C 2“ contains a PA-Choquet subset C C P
whose closure has a dense choice of computable points. For any co-c.e. closed set
Q C 2% and any R C w®, if an e.P. learnable function exists from P ® R to Q,
then an e.P. learnable function exists from R to Q.

Proof. Fix a computable winning playful strategy ¢y for the player II on the
Choquet game &, a co-c.e. closed set @ C 2, and an e.P. learnable function
F: P® R — @ with an approximation f : w<* — w<¥ U {?}. Let 8 be a dense
choice of computable points in C. Fix g € R.

Strategies S§. We introduce a strategy Sy for each § € 2<“. There are four
states for strategies, ACTIVE, CHANGED, REFUTED, and RESIGNED. First we
declare the root strategy Sg to be ACTIVE. Assume that, on a partial play on
the Choquet game &¢, the 6-th move 77 of +ry is given, Sj is ACTIVE, and there
is no ACTIVE strategy S for k C 6. We determine the state of the 6-th strategy
S3 as follows:

Sy is CHANGED if f(o @ g) =7 for some 7§ C o C 3(7).

— S§ is REFUTED if f(0 & g) & Tg for some 7 C o C B(7]).

— S§ is RESIGNED when we find that 6 does not extend to an infinite path
through the play tree Play (¢ ® 111) of the winning strategy rr.



If S§ is declared to be CHANGED, or RESIGNED, then we withdraw the pre-
vious declaration that Sj is ACTIVE, and close the strategy Sj.

Play on Choquet Game &¢. Now we determine the next move of Player I,
ie., define ¢1(7]). If Sj is REFUTED or RESIGNED, then Player I takes no action.
If S7 is CHANGED, then Player I chooses the least o such that Sj is refuted at o,
and put ¢1(7j) = o. Then, by using the winning strategy 11, Player II chooses
the (60)-th move 75, and the (61)-th move 7, from the partial play ¥1(7j), i.e.,
Yi(Yi(rf)) = (750,74, ), and declare that the strategies S, and S, are ACTIVE.
Note that 75 and the state of S at each stage are partial computable uniformly
in 6 and g, since 1 and § are computable.

Observation. For any g € R, consider the following binary tree V¢ consisting
of all binary strings # € 2<% such that S§ is declared to be ACTIVE at some
stage. Claim that V9 has no infinite path. If V9 has an infinite path h, then f
must outputs ? infinitely often along pn = (Jy-), 70. However, py, is constructed
along the winning strategy 1, and pj is an infinite path through the play
tree Play(¢r ® 11), since no substring of h is RESIGNED. As ¢y is winning, pp,
must belong to C C P. It implies that F(p;, @ g) = lim, f(p, ® g [ s) does
not converges, and note that p, ®g € C ® {g} C P ® R, This contradicts our
assumption that the domain of F' includes P ® R.

Thus, at some stage, all declarations of strategies on V9 are determined.
Moreover, each leaf of V9 which is not assigned RESIGN by 11 must be declared
to be ACTIVE at almost all stages. Because C' is dense at $(7J) for each leaf
p € V9 which is not declared to be RESIGNED, and then limg f(3(77) © g [ s) is
total, since F' = lim f is e.P., and each leaf p € V9 must not be declared to be
CHANGED. In particular, lim, f(B(7]) @ g | s) € Q.

Learning Procedure. We construct an e.P. learnable function G : R — Q.
The learner G(g) tries to find an ACTIVE leaf p of V9 at each stage s, and set
G(g9) = F(B(7§) @ g). Each time his guess on an eventually ACTIVE leaf of V9
is changed, an approximation of G returns 7. If g is contained in R, then by
finiteness of V9, an approximation of G(g) eventually finds an ACTIVE leaf of
V9. If g € R, then G(g) may yet fail to find an ACTIVE leaf of V9. But then
its approximation returns ? infinitely often. Otherwise, G(g) is defined to be
F(B(1]) ®g), and then it is e.P., since F is e.P. By the previous observation, the
e.P. learnable function G maps R into @) as desired. a

Definition 5 (Higuchi-Kihara [6]). Fiz 0 € w<%, and i € w. Then the i-th
projection of ¢ is inductively defined as follows.

pr;(()) = (), pr, (o) = {Pri(a)hn, if o =0~ " (i,n),

pr;(07), otherwise.
Furthermore, the projection of x € w* is defined to be pr,(z) = lim,, pr,(z [ n).

Theorem 7. For every co-c.e. closed set P C 2“, for each k > 2, the set
TEAM,LEARNING(P) = {z € w* : (3i < k) pr,(x) € P} is a XY subset
of 2% which has the same Turing upward closure as P, and has a PA-Choquet
subset whose closure has a dense choice of computable points.



Proof. Set S = TEAMaLEARNING(P). Straightforwardly, we can check that S is
X9 and it has the same Turing upward closure as P. Consider the following set:

C = {z cw’: pry(z) € P & (Vn € w) pry(z | n) € TE}.

Clearly, C is a subset of S. To construct a dense choice 8 of computable points
in the closure of C', we fix a leaf of Tp. Given o, if it has a nonempty intersection
with C, then pr,(o) must be of the form po~p1” ... " p, "7, where p; is a leaf of
Tp for each 7 < n, and 7 is a node of Tp. By a uniformly computable way, we
can calculate the position of a leaf 771 of Tp. Then, define 5(o) as follows:

B(o) = o (0" @)~ (0P & p)~ (0 @ p)~ ...~ (0P @ p)~ (0P & p) ...

Here, 0/°/ @ a denotes the string (0, «(0),0, (1), ...,0,a(|a| —1)). Clearly, 8(c)
is contained in the closure of C.

Now we construct a strategy v for Player IT on Choquet game &¢ as follows:
Given ap € w<¥, the 0-th move of Player I, first check whether pr,(ag) has an
extension in Tp of length max{|pr, (ag)|,|6|} or not. If not (it is possible because
of the past moves by Player II), Player II resigns the game &, i.e., ¥rr(ag) =
RESIGN. Otherwise, when |pr;(ag)| > |0], Player II does not act, i.e., ¥r(ag) =
(ap, ag). If pry(ap) < |0|, then Player II returns ¢r(ag) = (apg™(1,0),ap”(1,1)).
By our construction of the strategy i1, for every i1 ® 1|, along any infinite
path h through the play tree Play(¢r ® 1), the 1-st projection of (), 11 ® vri|p
must be contained in P. Therefore, ﬂn Y1 ® Yr1|p is contained in C. Moreover,
P is equal to the set of all infinite paths through Play (v ® v11). Consequently,
Y11 is a winning playful strategy of Player II. a
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