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Abstract. The notion of immunity is useful to classify degrees of non-
computability. Meanwhile, the notion of immunity for topological spaces
can be thought of as an opposite notion of density. Based on this view-
point, we introduce a new degree-theoretic invariant called layer density
which assigns a value n to each subset of Cantor space. Armed with
this invariant, we shed light on an interaction between a hierarchy of
density/immunity and a mechanism of type-two computability.
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1 Introduction

1.1 Summary

The study of immunity was initiated essentially by Post in 1944. Demuth-Kučera
[5] studied the notion of immunity for closed sets in Baire space. Immunity for
a closed set indicates that it is “far from dense”. They showed that any 1-
generic real computes no element of any immune co-c.e. closed set, and hence no
1-generic real computes a Martin-Löf random real. Binns [1] introduced many
notions of hyperimmunity for closed sets to classify degrees of difficulty of co-
c.e. closed sets. Cenzer-Kihara-Weber-Wu [4] started the systematic study on
immunity for closed sets. Higuchi-Kihara [6] clarified that such notions indicat-
ing being “nearly/far from dense” are extremely useful to study a hierarchy of
nonuniform computability on sets of reals. We investigate a hierarchy of prop-
erties that are “nearly dense”, by introducing a new degree-theoretic invariant
called layer density which assigns a value n to each subset of any computable
metric space. In this way, we shed light on an interaction between a hierarchy of
density and a mechanism of type-two computability. We also continue the work
[6] on the structure inside the Turing upward closure of any co-c.e. closed set.

1.2 Notation and Convention

Much of our notation in this paper follows that in [6]. For basic terminology on
Computability Theory and Computable Analysis, see [3, 8, 9]. For any sets X
⋆ This work was supported by Grant-in-Aid for JSPS fellows.



and Y , f is said to be a function from X to Y if dom(f) ⊇ X and range(f) ⊆ Y
hold. We use the symbol a for the concatenation. For σ ∈ ω<ω, we let |σ| denote
the length of σ. Moreover, f � n denotes the unique initial segment of f of length
n. We also define [σ] = {f ∈ ωω : f ⊃ σ}. For a tree T ⊆ ω<ω, let [T ] denote
the set of all infinite paths through T . For a subset A of a space X, cl(A), and
ext(A) denote the closure, and the exterior of A, respectively. A representation
ρ of a space X is a surjection ρ :⊆ ωω → X. Let A−(X) denote the hyperspace
consisting of closed subsets of X represented by ψ− : α 7→ X \

∪
n βα(n). Here,

{βn}n∈ω is a fixed countable base of X. A computable element of A−(X) (i.e.,
ψ−(α) for some computable α ∈ ωω) is called a co-c.e. closed set or a Π0

1 class.

2 Computability with Layers

2.1 Density and Immunity

Let X be a topological space, and B be a collection of open sets in X. A subset
S ⊆ X is said to be B-dense if it intersects with all nonempty open sets contained
in B. By restricting B, one may introduce various “pre-dense” properties. For
instance, immunity [4] and hyperimmunity [1] can be introduced in this way.
A variety of interactions are known between density/immunity and degrees of
difficulty [4, 5, 7]. To introduce nice B-density notion, we consider the following
effective notion for open sets: An open set S ⊆ X is bi-c.e. open if both S and
ext(S) are c.e. open. We fix X = 2ω. A sequence {Bn} of open rational balls
is nontrivial if it contains no empty set, and lim infn diam(Bn) = 0; computable
if it is uniformly computable (hence,

∪
nBn is c.e. open); and decidable if it is

computable, and
∪

nBn is bi-c.e. open. Let P ⊆ 2ω be a closed set, and let
T ext

P denote the tree {σ ∈ 2<ω : P ∩ [σ] ̸= ∅}. Cenzer et al. [4] introduced the
following notion: P is immune if T ext

P contains no infinite computable subset. P
is tree-immune if T ext

P contains no infinite computable subtree.

Proposition 1. Let P ⊆ 2ω be a closed set with no computable element. Then,
P is not immune if and only if it is B-dense for some nontrivial computable
sequence B of open balls; P is not tree-immune if and only if it is B-dense for
some nontrivial decidable sequence B of pairwise disjoint open balls.

Proof. Assume that P is B-dense via an infinite computable sequence B of open
balls. For each B ∈ B, we choose the smallest clopen set [σ] including B, and
enumerate [σ] into another sequence B∗. As lim infB∈B diam(B) = 0, the se-
quence B∗ is infinite. It is easy to see that P is also B∗-dense. Therefore, P is
not immune. Another direction is obvious.

Assume that P is not tree-immune via an infinite computable tree V ⊆ T ext
P .

As P has no computable element, V has infinitely many leaves, i.e., L = {σ ∈
V : (∀i < 2) σai ̸∈ V } is infinite. Then, we define B = {[σ] : σ ∈ L}. To
enumerate the exterior of

∪
B, for each σ ∈ 2<ω, we define (σai)∗ = σa(1 − i)

for each i < 2. Then, the exterior of
∪

B is generated by the computable set
{σ ∈ 2<ω \ V : σ∗ ∈ V }, since [V ] has no interior. Hence,

∪
B is bi-c.e. open.



Conversely, assume that P is B-dense for a decidable sequence B = {[σn]}n∈ω

of open balls. Then, there is a computable enumeration of all strings σ that are
comparable with σn for some n ∈ ω, since B = {σn}n∈ω is computable. Moreover,
[σ] ⊆ ext(

∪
B) if and only if there is no n ∈ ω such that σ is comparable with

σn. Hence, the set U consisting of all strings σ ∈ 2<ω which are comparable
with some σn is computable, since ext(

∪
B) is c.e. open. Then, we can compute

the tree V = {σ ∈ 2<ω : (∃n ∈ ω) σ ⊆ σn} as follows: If σ ̸∈ U , then declare
σ ̸∈ V . If σ ∈ U , then σ must be comparable with some σn. Wait for the least
such n ∈ ω, and if σ ⊆ σn, then declare σ ∈ V . Otherwise, declare σ ̸∈ V .
This algorithm correctly computes V , since the sequence {σn}n∈ω is pairwise
incomparable. Then, for each σ ⊆ σn, the open ball [σ] ⊇ [σn] intersects with P ,
by B-density of P . ⊓⊔

By considering layers {Bj}j∈ω, {Bj,k}j,k∈ω, {Bj,k,l}j,k,l∈ω, . . . of open balls
hitting a set P ⊆ 2ω, we may strengthen the notion of B-density. Here, it is
required that P is {Bj}j∈ω-dense; P ∩ Bj is {Bj,k}k∈ω-dense for each j ∈ ω;
P ∩Bj ∩Bj,k is {Bj,k,l}l∈ω-dense for each j, k ∈ ω, . . .

Definition 1. Let Y be a subset of X = 2ω.

1. A sequence {Bn,m}(n,m)∈I×J of open balls is an J-refinement of {An}n∈I in
Y if it is pairwise disjoint, and Bn,m ⊆ An for any (n,m) ∈ I × J .

2. A sequence {Bk}k<n (resp. {Bk}k∈ω) of decidable sequences of nonempty
open rational balls is an n-layer in Y (resp. an ∞-layer) if Bk+1 = {Bk+1

i,j }i,j

is an ω-refinement of Bk = {Bk
i }i in Y , and {Bk+1

i,j }j∈ω is decidable uni-
formly in i, for any k < n− 1 (resp. for any k ∈ ω).

3. For n ∈ ω ∪ {∞}, a set P ⊆ X is n-layered if there is an n-layer B = {Bk}
in P such that P is

∪
B-dense, where B0 = {X}.

4. The layer density of a set P ⊆ X is defined as follows:

density(P ) = sup{n ∈ ω ∪ {∞} : P is n-layered }.

Here, the ordering on ω ∪ {ω,∞} is defined as n < ω <∞ for any n ∈ ω.

Proposition 2. Let P be a subset of 2ω. Then, P is empty if and only if
density(P ) = 0; If Q ⊆ P , then density(Q) ≤ density(P ); If P is dense, then P
is ∞-layered. ⊓⊔

Proposition 3. Let P ⊆ 2ω be a closed set with no computable element. Then,
P ⊆ 2ω is n-layered if and only if there is a sequence {Ti}i<n of infinite com-
putable trees such that [Tn] ⊆ P for any i < n, and Ti ⊆ T ext

i+1 for any i < n− 1.

Proof. Assume that P ⊆ 2ω has such a sequence {Ti}i≤n of infinite computable
trees. We effectively enumerate all leaves {σi

k}k∈ω of the tree Ti, for each i < n.
Then, as Proposition 1, {2ω, {[σ0

k]}k∈ω, . . . , {[σn−1
k ]}k∈ω} forms an n-layer of P .

Conversely, assume that P ⊆ 2ω is n-layered via {Bi}i≤n. As in the proof
of Proposition 1, without loss of generality, we may assume Bi is of the form
{[σi

k]}k∈ω, for each i ≤ n. Then, we define Ti = {σ ∈ 2<ω : (∃k ∈ ω) σ ⊆
σi+1

k }. We can see that Ti is computable for each i < n, as Proposition 1. Then,
{T0, T1, . . . , Tn−1, TP } is the desired sequence. ⊓⊔



Example 1. Let P be a co-c.e. closed subset of 2ω. Then, for a fixed computable
tree TP with P = [TP ], we have the computable set {ρn}n∈ω of all leaves of TP .
The concatenation PaP is defined by

∪
n ρn

aP . Consider P (1) = P ; P (n+1) =
PaP (n); P (ω) =

∪
n ρn

aP (n); and P (∞) =
∪

n P
(n). Then, density(P (n)) ≥ n;

density(P (ω)) ≥ ω; and density(P (∞)) = ∞. See also Higuchi-Kihara [6].

2.2 Learnability on Topological Spaces

When we try to extract effective content in classical mathematics, we sometimes
encounter the notion of nonuniform computability [2, 10]. The deep structures
of subnotions of nonuniformly computability have been studied [6].

Definition 2 (Learnability). Let X be a topological space with a representa-
tion θ :⊆ ωω → X, and fix a new symbol ? ̸∈ X.

1. The representation θ? of the space X? = X ∪ {?} is defined as θ?(⟨0⟩aα) =
θ(α), and θ?(⟨1⟩aα) =?, for any α ∈ ωω.

2. A sequence {fn}n∈ω of partial functions fn :⊆ Y → X? is ?-good if ? ∈
{fn(α), fn+1(α)} whenever fn(α) ̸= fn+1(α).

3. The discrete limit of a ?-good sequence {fn}n∈ω of partial functions fn :⊆
Y → X? is a partial function limn fn :⊆ Y → X defined as follows.

lim
n
fn(α) =

{
ft(α), if (∀s ≥ t) fs(α) ̸=?,
undefined, if (∃∞s) fs(α) =?.

4. A function f :⊆ Y → X is learnable if it is the discrete limit of a computable
?-good sequence {fn}n∈ω of partial functions fn :⊆ Y → X?.

5. An anti-Popperian point of a ?-good sequence {fn}n∈ω is a point α ∈ ωω such
that fn(α) =? at most finitely many n ∈ ω, but limn fn(α) is undefined.

6. A function f : Y → X is eventually Popperian learnable (abbreviated as
e.P. learnable) if it is the discrete limit of a computable ?-good sequence
{fn}n∈ω of partial functions fn :⊆ Y → X? with no anti-Popperian points.

Lemma 1 (Blum-Blum Locking). Let (X, d) be a Polish space with a repre-
sentation, and Q be a closed set in X. For every learnable function Γ : Q→ P ,
there is an open set U ⊆ X such that Q ∩ U ̸= ∅, and the restriction Γ |U :
Q ∩ U → P is computable.

Proof. Suppose not. Fix a learnable function Γ = lims Γs : Q → P witnessing
the falsity of the assertion. Then, for any open set U∗

0 and every s0 ∈ ω, there is
s1 ≥ s0 such that the open set U1 = Γ−1

s1
{?} has a nonempty intersection with

Q. Then U1 contains an open ball {p ∈ X : d(p, q) < ε} with q ∈ Q and ε > 0.
Pick U∗

1 = {p ∈ X : d(p, q) < min{ε/2, 2−n}} ⊆ U1. By iterating this procedure,
we can get a decreasing sequence {U∗

n}n∈ω. Choose xn ∈ U∗
n ∩Q. Then, {xn}n∈ω

converges to an element x ∈ Q ∩
∩

n cl(U∗
n). By our choice of {U∗

n}n∈ω, we see
that Γs(x) =? for infinitely many s ∈ ω. Consequently, Γ (x) = lims Γs(x) is
undefined, i.e., dom(Γ ) ̸⊇ Q. ⊓⊔



3 Degrees of Difficulty

3.1 Layer Density as a Degree-Theoretic Invariant

Theorem 1. Let P,Q ⊆ 2ω be co-c.e. closed sets with no computable element.
If a computable function exists from P to Q, then density(P ) ≤ density(Q).

Proof. A sequence {Tm}m<n of infinite computable trees is said to be an n-layer
if T ext

m ⊆ Tm+1 for each m < n − 1. This definition is essentially equivalent to
the definition of n-layers of open balls, by Proposition 3. Let P be an n-layered
co-c.e. closed set with an n-layer {Tm}m<n, and Q be a co-c.e. closed set. Let
Φ be a computable function from P to Q. As P is co-c.e. closed, we may safely
assume that Φ is total. It suffices to show that the sequence {Φ(Tm)}m<n of
images of Tm’s under Φ forms an n-layer of Q. Note that Φ(Tm) is computable
for any m ≤ n, by totality of Φ. Fix m < n−1. For each leaf ρ of Φ(Tm), we must
have a leaf ρ∗ of Tm with Φ(ρ∗) = ρ. As Tm ⊆ T ext

m+1, there are infinitely many
nodes of Tm+1 extending ρ∗. By weak König’s lemma, Tm+1 has an infinite path
g extending ρ∗, and then g belongs to P , since [Tm+1] ⊆ P . Therefore, Φ(g) ∈ Q
by our assumption that dom(Φ) includes P . Then, Φ(Tm+1) has a path Φ(g) ∈ Q
extending Φ(ρ∗) = ρ, i.e., ρ ∈ Φ(Tm) is extendible in Φ(Tm+1). Hence, we have
Φ(Tm) ⊆ (Φ(Tm+1))ext, as desired. ⊓⊔

Definition 3. Fix P ⊆ X. The layer density of a point α ∈ X on P is defined
as densityP (α) = inf{density(P ∩ O) : α ∈ O ∈ Σ0

1(X)}. For n ∈ ω ∪ {ω,∞} a
point α ∈ X is an n-layered accumulation point of P if densityP (α) ≥ n.

Theorem 2. Let P,Q ⊆ 2ω be co-c.e. closed sets with no computable element. If
a learnable function exists from P to Q, then density(P ) ≤ max{ω, density(Q)}.

Proof. Fix an ∞-layered co-c.e. closed set P ⊆ 2ω and a computable function
F : P → 2ω. By Blum-Blum Locking Lemma 1, there is a string σ extendible in
P♡ = {α ∈ P : densityP (α) = density(P )} such that F � [σ] is computable, since
P♡ is nonempty and closed. Moreover, density(P♡) = density(P ) = ∞. The
image of an ∞-layer by a computable function is again an ∞-layer. Therefore,
F (P ) is ∞-layered. ⊓⊔

For elements a, b of a lattice L, we say that a cups to b if a is one-half of
a witness of join-reducibility of b. For a bounded lattice L and a ∈ L, we also
say that a is cuppable in L if a cups to maxL. We define preorders ≤1

1 and ≤1
ω

on P(ωω) as follows: P ≤1
1 Q (resp. P ≤1

ω Q) if there is a partial computable
(resp. learnable) function F on ωω such that dom(F ) ⊇ P and F (P ) ⊆ Q. The
structures P(ωω)/ ≡1

1 and P(ωω)/ ≡1
ω form lattices, where the supremum in

these lattices are given by P ⊗Q = {p⊕ q : (p, q) ∈ P ×Q}. The former lattice
is called the Medvedev lattice, and the latter lattice is said to be the degrees of
nonlearnability [6].

Theorem 3. For each n ∈ ω ∪ {∞}, let LDn denote the set of all Medvedev
degrees of n-layered co-c.e. closed sets in 2ω. Then, the set LDn is a princi-
pal prime ideal in LD1, and every element of LDn+1 is noncuppable in LDn.



Moreover, LD∞ is a principal prime ideal in the degrees of nonlearnability of
nonempty co-c.e. closed sets.

Proof. See Cenzer et al. [4, Corollary 4.13]. Indeed, the top element of LDn is the
Medvedev degree of PA(n), where PA denotes the set of all consistent complete
theories extending Peano Arithmetic. For principality, by Higuchi-Kihara [6],
PA(n+1) is noncuppable in LDn, i.e., PA(n+1) does not cup to PA(n). ⊓⊔

Fix a countable base O of Cantor space 2ω. A set P ⊆ 2ω is totally ∞-layered
if it is ∞-layered, and there exists a computable function B : O × ω → (Oω)<ω

such that B(U, n) forms an n-layer of P ∩ U , whenever P ∩ U is ∞-layered.

Example 2. Fix a co-c.e. closed set P = [TP ] ⊆ 2ω. Then PH denotes the set of all
infinite paths through the tree consisting of strings of the form ρ0

aτ(0)aρ1
aτ(1)

aρ2
a . . .aρ|τ |−1

aτ(|τ |−1)aσ, where σ, τ ∈ TP and each ρi is a leaf of TP . Then,
PH is totally ∞-layered, and (PH)♡ = {α ∈ PH : densityP H(α) = density(PH)}
is co-c.e. closed.

Theorem 4. If a totally ∞-layered set P has a co-c.e. closed subset P ⋆ con-
sisting of ∞-layered accumulation points, then P is noncuppable in the degrees
of nonlearnability of co-c.e. closed subsets of 2ω.

Lemma 2. Let C(X) denote the space of all continuous functions on X. There
exists a computable function Ξ : C(ωω) × A−(2)ω × (2<ω)ω × ωω → ωω such
that, for any (f,H, (σi)i∈ω, α) ∈ C(ωω) × A−(2)ω × (2<ω)ω × ωω, if the im-
age of f |[σi]⊗{α} intersects with the product set H ⊆ 2ω for every i ∈ ω, then
Ξ(f,H, (σi)i∈ω, α) is contained in H.

Proof. Indeed, the proof of Cenzer et al. [4, Theorem 5.2] is uniform, where
their theorem states that, if a co-c.e. closed set P is B-dense for some infinite
computable sequence B = {[σi]}i∈ω of intervals (i.e., P is not immune), then it
does not cup to any separating classH ∈ A−(2)ω. In other words, if a computable
function f : P⊗R→ H exists, then we have a computable function Ξ : ωω → ωω

such that Ξ(α) ∈ H for any α ∈ R. ⊓⊔

Proof (Theorem 4). Fix a learnable function F = lims Fs : P ⊗ R → PA. Note
that P ⋆⊗{g} is closed for any g ∈ R. Therefore, by Blum-Blum Locking Lemma
1, there must exist an extendible string ρ in P ⋆ such that Gρ = F |(P ⋆∩[ρ])⊗{g}
is computable. Then, we can find a sequence {σρ

i }i∈ω extending ρ such that
P ⋆ ∩ [σρ

i ] ̸= ∅, since P is totally ∞-layered. Therefore, Ξ(Gρ,PA, (σρ
i )i∈ω, g) is

contained in PA, where Ξ is a computable function in Lemma 2. From an input
g ∈ R, one can learn a ρg such that ρg ∈ P ⋆ and Γs|ρg⊗{g} = Γ|ρg||ρg⊗{g} for
any s ≥ |ρg|, since the assertion Γs|Y = Γt|Y is equivalent to the following: for
any clopen set [σ] and any u ∈ [t, s], such that Γ−1

t ({?}) ∩ Y ̸= ∅. Here recall
that {?} is a clopen set in (ωω)?, and hence, Γ−1

t ({?}) is c.e. open. Therefore,
there is a Π0

1 (g) statement characterizing ρg, uniformly in g ∈ R. Then, we have
a learnable function h = lims hs : R → 2ω which maps g to such ρg. Define
∆s(g) =? if hs(g) =?, and ∆s(g) = Ξ(Ghs(g),PA, (σhs(g)

i )i∈ω, g) otherwise. It is
easy to see that the learnable function ∆ = lims∆s maps R into PA. ⊓⊔



3.2 Topological Games and Popperian Learnability

By Lewis-Shore-Sorbi [7], the initial segment (0,d] below the Medvedev degree
d of a dense set in ωω has no co-c.e. closed set. There are other density-like
properties making co-c.e.-free initial segments:

For a set S ⊆ X, the two-players game GS is defined as follows: Each play
is a decreasing sequence {Un}n∈ω of open sets with S ∩ Un ̸= ∅. For a play
p = {Un}n∈ω, Player II wins on p if S ∩

∩
n Un ̸= ∅. Otherwise, Player I wins. If

Player II has a winning strategy for the game GS , then S is called Choquet.
Player I: U0 U2 U4 . . .

⊇ ⊇ ⊇ ⊇ ⊇ ⊇
Player II: U1 U3 U5 . . .

Theorem 5. Assume that a set P ⊆ 2ω contains a Choquet subset C ⊆ P
whose closure has a dense subset of computable points. For any co-c.e. closed
set Q ⊆ 2ω, if an e.P. learnable function exists from P to Q, then Q contains a
computable element.

Proof. Let F :⊆ ωω → ωω be a partial learnable function. A partial computable
function f :⊆ ω<ω → ω<ω ∪ {?} is said to be an approximation of F if:

– (?-goodness) f(σ−) ̸⊆ f(σ) occurs only when ? ∈ {f(σ−), f(σ)};
– (Convergence) F (x) = lims f(x � s), for any x ∈ dom(F ).

Fix a winning strategy ψII for Player II on the Choquet game GC , a co-
c.e. closed set Q ⊆ 2ω with no computable element, and suppose that an
e.P. learnable function F : P → Q exists. Fix also an approximation f : ω<ω →
ω<ω ∪ {?} of F . Choose any string τi with [τi] ∩C ̸= ∅. Since cl(C) has a dense
subset of computable points, C is dense at a computable point βi ⊃ τi. Note
that, if f(βi � n) ̸=? for any n ≥ |τi|, then [f(σ)] ∩ Q = ∅ for some σ ⊂ βi.
Otherwise, since F is e.P., we have limn f(βi � n) ∈ Q. However, monotonicity
of {f(βi � n)}|τi|≤n∈ω implies that limn f(βi � n) is computable. This contra-
dicts our assumption that Q contains no computable element. If f(σ) ̸∈ TQ

happens for some σ ⊂ βi extending τi, for any α ∈ C extending σ, we have
f(σ) ̸⊆ lims f(α � s) ∈ Q, since F (C) ⊆ Q. Therefore, f(σ∗) =? must occur
for some σ∗ with τi ⊂ σ∗ ⊂ α. Then, define ψI(τi) = σ∗. Player II extend it
to τi+1 = ψII(ψI(τi)). Eventually an infinite increasing sequence {τi}i∈ω is con-
structed, and then h = limi τi ∈ C by the property of ψII. However, limn f(h � n)
does not converge. Therefore, h ̸∈ dom(F ). ⊓⊔

Definition 4. Fix a set S ⊆ X, and we consider the Choquet game GS.

1. A function ψ is a strategy if, for a given open set bn in X, ψ(bn) is an open
subset of bn, and S ∩ ψ(bn) ̸= ∅ whenever S ∩ bn ̸= ∅.

2. A function ψ is a prestrategy if, for a given previous move aθ, ψ(aθ) is a
pair ⟨bθ0, bθ1⟩ of open sets with bθ0 ∪ bθ1 ⊆ aθ, or ψ(aθ) = Resign, where
we declare that S ∩ Resign = ∅.

3. For a strategy ψI and a prestrategy ψII, the preplay ψI ⊗ψII produced by ψI

and ψII is a collection ⟨a⟨⟩, bθj , aθj⟩θ∈2<ω,j<2, where a⟨⟩ = ψI(⟨⟩), ψII(aθ) =
⟨bθ0, bθ1⟩, and aθj = ψI(bθj) for any θ ∈ 2<ω, and j < 2.
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Fig. 1. A preplay on a given Choquet game

4. For a preplay p = ⟨a⟨⟩, bθj , aθj⟩θ∈2<ω,j<2, the play of p along h ∈ 2ω is
defined by the infinite sequence p|h = ⟨a⟨⟩, bθ, aθ⟩θ⊂h.

5. The play tree Play(ψI⊗ψII) of a preplay ψI⊗ψII = ⟨a⟨⟩, bθj , aθj⟩θ∈2<ω,j<2 is
defined by Play(ψI⊗ψII) = {θ : (∀η ⊆ θ) bη ̸= Resign}. For a partial preplay
π ⊂ ψI ⊗ ψII, the play tree Play(π) is also defined in the same manner.

6. A prestrategy ψII for Player II is winning if, for every strategy ψI for Player
I, Player II wins on the play of ψI ⊗ ψII along any infinite path h through
Play(ψI ⊗ ψII), i.e., S ∩

∩
n(ψI ⊗ ψII|h)(n) ̸= ∅ for any h ∈ [Play(ψI ⊗ ψII)].

7. A function ψ is a playful strategy if it is a prestrategy, and the play tree
Play(ϕ⊗ ψ) has an infinite path for any strategy ϕ.

8. If Player II has a computable winning playful strategy for the game GS, then
S is called PA-Choquet.

A partial computable function β : ω<ω → ωω is a dense choice of computable
points in C if C ∩ [σ] is dense at the point β(σ), whenever C ∩ [σ] is nonempty.

Theorem 6. Assume that a set P ⊆ 2ω contains a PA-Choquet subset C ⊆ P
whose closure has a dense choice of computable points. For any co-c.e. closed set
Q ⊆ 2ω and any R ⊆ ωω, if an e.P. learnable function exists from P ⊗R to Q,
then an e.P. learnable function exists from R to Q.

Proof. Fix a computable winning playful strategy ψII for the player II on the
Choquet game GC , a co-c.e. closed set Q ⊆ 2ω, and an e.P. learnable function
F : P ⊗R → Q with an approximation f : ω<ω → ω<ω ∪ {?}. Let β be a dense
choice of computable points in C. Fix g ∈ R.

Strategies Sg
θ . We introduce a strategy Sg

θ for each θ ∈ 2<ω. There are four
states for strategies, Active, Changed, Refuted, and Resigned. First we
declare the root strategy Sg

⟨⟩ to be Active. Assume that, on a partial play on
the Choquet game GC , the θ-th move τg

θ of ψII is given, Sg
θ is Active, and there

is no Active strategy Sg
κ for κ ( θ. We determine the state of the θ-th strategy

Sg
θ as follows:

– Sg
θ is Changed if f(σ ⊕ g) =? for some τg

θ ⊂ σ ⊂ β(τg
θ ).

– Sg
θ is Refuted if f(σ ⊕ g) ̸∈ TQ for some τg

θ ⊂ σ ⊂ β(τg
θ ).

– Sg
θ is Resigned when we find that θ does not extend to an infinite path

through the play tree Play(ψI ⊗ ψII) of the winning strategy ψII.



If Sg
θ is declared to be Changed, or Resigned, then we withdraw the pre-

vious declaration that Sg
θ is Active, and close the strategy Sg

θ .
Play on Choquet Game GC . Now we determine the next move of Player I,

i.e., define ψI(τ
g
θ ). If Sg

θ is Refuted or Resigned, then Player I takes no action.
If Sg

θ is Changed, then Player I chooses the least σ such that Sg
θ is refuted at σ,

and put ψI(τ
g
θ ) = σ. Then, by using the winning strategy ψII, Player II chooses

the (θ0)-th move τg
θ0 and the (θ1)-th move τg

θ1, from the partial play ψI(τ
g
θ ), i.e.,

ψII(ψI(τ
g
θ )) = ⟨τg

θ0, τ
g
θ1⟩, and declare that the strategies Sg

θ0 and Sg
θ1 are Active.

Note that τg
θ and the state of Sg

θ at each stage are partial computable uniformly
in θ and g, since ψII and β are computable.

Observation. For any g ∈ R, consider the following binary tree V g consisting
of all binary strings θ ∈ 2<ω such that Sg

θ is declared to be Active at some
stage. Claim that V g has no infinite path. If V g has an infinite path h, then f
must outputs ? infinitely often along ph =

∪
θ⊂h τθ. However, ph is constructed

along the winning strategy ψII, and ph is an infinite path through the play
tree Play(ψI ⊗ ψII), since no substring of h is Resigned. As ψII is winning, ph

must belong to C ⊆ P . It implies that F (ph ⊕ g) = lims f(ph ⊕ g � s) does
not converges, and note that ph ⊕ g ∈ C ⊗ {g} ⊆ P ⊗ R, This contradicts our
assumption that the domain of F includes P ⊗R.

Thus, at some stage, all declarations of strategies on V g are determined.
Moreover, each leaf of V g which is not assigned Resign by ψII must be declared
to be Active at almost all stages. Because C is dense at β(τg

ρ ) for each leaf
ρ ∈ V g which is not declared to be Resigned, and then lims f(β(τg

ρ )⊕ g � s) is
total, since F = lim f is e.P., and each leaf ρ ∈ V g must not be declared to be
Changed. In particular, lims f(β(τg

ρ ) ⊕ g � s) ∈ Q.
Learning Procedure. We construct an e.P. learnable function G : R → Q.

The learner G(g) tries to find an Active leaf ρ of V g at each stage s, and set
G(g) = F (β(τg

θ ) ⊕ g). Each time his guess on an eventually Active leaf of V g

is changed, an approximation of G returns ?. If g is contained in R, then by
finiteness of V g, an approximation of G(g) eventually finds an Active leaf of
V g. If g ̸∈ R, then G(g) may yet fail to find an Active leaf of V g. But then
its approximation returns ? infinitely often. Otherwise, G(g) is defined to be
F (β(τg

θ )⊕g), and then it is e.P., since F is e.P. By the previous observation, the
e.P. learnable function G maps R into Q as desired. ⊓⊔

Definition 5 (Higuchi-Kihara [6]). Fix σ ∈ ω<ω, and i ∈ ω. Then the i-th
projection of σ is inductively defined as follows.

pri(⟨⟩) = ⟨⟩, pri(σ) =

{
pri(σ

−)an, if σ = σ−a⟨i, n⟩,
pri(σ

−), otherwise.

Furthermore, the projection of x ∈ ωω is defined to be pri(x) = limn pri(x � n).

Theorem 7. For every co-c.e. closed set P ⊆ 2ω, for each k ≥ 2, the set
TeamkLearning(P ) = {x ∈ ωω : (∃i < k) pri(x) ∈ P (∞)} is a Σ0

3 subset
of 2ω which has the same Turing upward closure as P , and has a PA-Choquet
subset whose closure has a dense choice of computable points.



Proof. Set S = Team2Learning(P ). Straightforwardly, we can check that S is
Σ0

3 , and it has the same Turing upward closure as P . Consider the following set:

C = {x ∈ ωω : pr0(x) ∈ P (∞) & (∀n ∈ ω) pr1(x � n) ∈ T ext
P }.

Clearly, C is a subset of S. To construct a dense choice β of computable points
in the closure of C, we fix a leaf of TP . Given σ, if it has a nonempty intersection
with C, then pr0(σ) must be of the form ρ0

aρ1
a . . .aρn

aτ , where ρi is a leaf of
TP for each i ≤ n, and τ is a node of TP . By a uniformly computable way, we
can calculate the position of a leaf τaη of TP . Then, define β(σ) as follows:

β(σ) = σa(0|η| ⊕ η)a(0|ρ| ⊕ ρ)a(0|ρ| ⊕ ρ)a . . .a(0|ρ| ⊕ ρ)a(0|ρ| ⊕ ρ)a . . .

Here, 0|α|⊕α denotes the string ⟨0, α(0), 0, α(1), . . . , 0, α(|α|−1)⟩. Clearly, β(σ)
is contained in the closure of C.

Now we construct a strategy ψ for Player II on Choquet game GC as follows:
Given aθ ∈ ω<ω, the θ-th move of Player I, first check whether pr1(aθ) has an
extension in TP of length max{|pr1(aθ)|, |θ|} or not. If not (it is possible because
of the past moves by Player II), Player II resigns the game GC , i.e., ψII(aθ) =
Resign. Otherwise, when |pr1(aθ)| > |θ|, Player II does not act, i.e., ψII(aθ) =
⟨aθ, aθ⟩. If pr1(aθ) ≤ |θ|, then Player II returns ψII(aθ) = ⟨aθ

a⟨1, 0⟩, aθ
a⟨1, 1⟩⟩.

By our construction of the strategy ψII, for every ψI ⊗ ψII|h along any infinite
path h through the play tree Play(ψI ⊗ψII), the 1-st projection of

∩
n ψI ⊗ψII|h

must be contained in P . Therefore,
∩

n ψI ⊗ ψII|h is contained in C. Moreover,
P is equal to the set of all infinite paths through Play(ψI ⊗ ψII). Consequently,
ψII is a winning playful strategy of Player II. ⊓⊔
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