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Abstract. The strong measure zero sets of reals have been widely stud-
ied in the context of set theory of the real line. The notion of strong
measure zero is straightforwardly effectivized. A set of reals is said to be
of effective strong measure zero if for any computable sequence {εn}n∈N
of positive rationals, a sequence of intervals In of diameter εn covers
the set. We observe that a set is of effective strong measure zero if
and only if it is of measure zero with respect to any outer measure
constructed by Monroe’s Method from a computable atomless outer
premeasure defined on all open balls. This measure-theoretic restate-
ment permits many characterizations of strong measure zero in terms
of semimeasures as well as martingales. We show that for closed sub-
sets of Cantor space, effective strong nullness is equivalent to another
well-studied notion called diminutiveness, the property of not having a
computably perfect subset. Further, we prove that if P is a nonempty
effective strong measure zero Π0

1 set consisting only of noncomputable
elements, then some Martin-Löf random reals computes no element in
P , and P has an element that computes no autocomplex real. Finally,
we construct two different special Π0

1 sets, one of which is not of effec-
tive strong measure zero, but consists only of infinitely-often K-trivial
reals, and the other is perfect and of effective strong measure zero, but
contains no anti-complex reals.

1. Introduction

1.1. Background. Miniaturization of set-theoretic notions is sometimes
useful in computability theory. For example, set-theoretic forcing is trans-
formed into a notion called arithmetical forcing and n-generic reals, which
has become a fundamental tool in computability theory. There is another
set-theoretical notion whose miniaturization we expect to play an important
role. The notion is known as strong measure zero which was introduced by
Émile Borel in 1919. Careful consideration of the measure theoretic behavior
of sets of reals has profound significance in the study of algorithmic random-
ness [14, 30]. Binns [5, 6, 7] conducted a deep study of notions stronger than
being of measure zero/Hausdorff dimension zero, and clarified an interesting
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connection among such measure theoretic smallness, Muchnik degrees, and
Kolmogorov complexity.

In his thesis in 2011, Kihara pointed out the relationship between Binns’
smallness properties [5, 6, 7] and the notion of small sets in set theory of
the real line [9]. Kihara introduced the notion of effective strong measure
zero to formalize his idea. In Section 2, we will see that a set of reals is
of effective strong measure zero if and only if for any computable atomless1

outer measure defined on all open balls, the set is of measure zero with
respect to the outer measure. This characterization urges us to study other
effectivizations of strong measure zero. As one such effectivization, we study
strong Martin-Löf measure zero introduced in a personal communication
between Kihara and Miyabe in 2012. A set of reals is called strong Martin-
Löf measure zero if for any computable atomless outer premeasure defined
on all open balls, the set contains no Martin-Löf random real with respect
to the outer measure induced by the premeasure.

It is known that the notion of Martin-Löf randomness (nullness, and
Martin-Löf nullness) admits many natural characterizations such as incom-
pressibility (in terms of Kolmogorov complexity) and unpredictability (in
terms of martingales). In Section 2, we will focus on characterizations
of Martin-Löf randomness by semimeasures, Kolmogorov complexity, and
martingales, and extend such characterizations to Martin-Löf nullness with
respect to any outer measure induced by a computable outer premeasure.
This leads to the conclusion that the concept of effective strong measure
zero is robust enough to have many characterizations just as in the case of
Martin-Löf reals.

In Section 3, we review the results of Higuchi/Kihara [21] in their re-
search on the Π0

1 sets of reals of effective strong measure zero as well as
their Muchnik degrees. In contrast to Laver’s model [27] of ZFC in which
all strongly measure zero sets are countable, one can easily construct an
effectively strongly measure zero set of reals that is uncountable and Π0

1

definable. Indeed, the class of uncountable Π0
1 definable effective strong

measure zero subsets of Cantor space has nontrivial properties. We see that
for closed sets of reals, effective strong measure zero is equivalent to another
well-studied notion called diminutiveness [7], the property of not having a
computably perfect subset. Further, we prove that if P is a nonempty effec-
tive strong measure zero Π0

1 set consisting only of noncomputable elements,
then some Martin-Löf random real computes no element in P , and P has
an element that computes no autocomplex real. Here, an infinite binary
sequence x is (auto-)complex if there exists an (x-)computable function f
such that K(x ↾ f(n)) ≥ n for all n ∈ N, where K denotes the prefix-free
Kolmogorov complexity.

1A point which has a positive µ-measure is called an atom of µ. A measure having an
atom is called atomic. Otherwise, it is called atomless. As pointed out by L. A. Levin in
1970, every computable real can be µ-random for a computable atomic probability measure
µ. We avoid such a singular case by restricting the range of µ to atomless measures.
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In Section 4, we see some interactions between measure theoretic small-
ness and Kolmogorov complexity. We prove two non-basis theorems for small
Π0

1 sets and very small Π0
1 sets. By using the non-basis results, we construct

a computably perfect Π0
1 set consisting only of non-generic reals that are

both complex and infinitely often K-trivial, and we also construct a perfect
(but effectively strongly measure zero) Π0

1 set consisting only of non-generic
reals that are neither complex nor anti-complex. Here, an infinite binary
sequence x ∈ 2N is infinitely often K-trivial if there exists a constant c such
that K(x ↾ n) ≤ K(n) + c for infinitely many n ∈ N, and x is anti-complex
if there exists an (x-)computable function f such that K(x ↾ f(n)) ≤ n for
all n ∈ N.

1.2. Notation. Let N = {0, 1, 2, · · · } denote the set of all natural numbers;
NN = {f | f : N → N}, Baire space; 2N = {f | f : N → {0, 1}}, Cantor
space; N<N, the set of all finite strings of natural numbers; and 2<N, the set
of all finite binary strings. We define N≤N = N<N ∪NN and 2≤N = 2<N ∪ 2N.
We use ∅ to denote the empty string or the empty set. For a set A, we use
#A to denote the cardinal number of A. For σ, τ ∈ N<N and ρ, ρ′ ∈ N≤N,
we use σ ⊂ ρ to mean that σ is an initial segment of ρ, i.e., ρ extends σ;
σ | τ to mean that σ and τ are incomparable, i.e., neither σ ⊂ τ nor σ ⊃ τ ;
σρ or σ⌢ρ to denote the concatenation of σ and ρ, i.e., the string σ followed
by ρ; |ρ| and lh(ρ) to denote the length of ρ, i.e., the cardinal number of the
domain of ρ; ρ ↾ n to denote the initial segment of ρ of the length n for any
n ≤ |ρ|; ρ ∩ ρ′ to denote the longest common initial segment of ρ and ρ′;
ρ ⊕ ρ′ to denote the string ρ′′ with ρ′′(2n) = ρ(n) and ρ′′(2n + 1) = ρ′(n),
when |ρ| = |ρ′| or |ρ| = |ρ′|+1; [[σ]] to denote the set {f ∈ NN : σ ⊂ f} or the
set {f ∈ 2N : σ ⊂ f} depending on the context. For n ∈ N, {0, 1}n denotes
the set of all binary strings of length n; {0, 1}≤n, the set of all binary strings
of length ≤ n. We often identify a natural number n with the string ⟨n⟩ of
the length 1. Let A ⊂ N<N and P,Q ⊂ NN. A is prefix-free if σ | τ for any
distinct two element σ, τ ∈ A. [[A]] denotes the set

∪
σ∈A[[σ]]; [A], the set

{f ∈ NN : (∀n ∈ N)[f ↾ n ∈ A]}; Ext(P ), the set {σ : [[σ]] ∩ P ̸= ∅}; Br(P ),
the set {σ ∩ τ : σ, τ ∈ Ext(P ) & σ | τ}; Brl(P ), the set {|σ| : σ ∈ Br(P )};
Ext(A), Br(A) and Brl(A) denote the sets Ext([A]), Br([A]) and Brl([A]),
respectively; P × Q denotes the set {f ⊕ g : f ∈ P & g ∈ Q}; and P + Q,
the set 0P ∪ 1Q, where 0P = {0f : f ∈ P} and 1Q = {1g : g ∈ Q}. A
set T ⊂ N<N is called a tree if T is closed under taking initial segments,
i.e., τ ∈ T if τ ⊂ σ for some σ ∈ T . For a tree T , σ ∈ T is an immediate
successor of τ in T if τ ⊂ σ and |σ| = |τ |+1; T is finitely branching if every
element in T has at most finitely many immediate successors.

We always treat Baire space NN and Cantor space 2N as topological spaces
whose open sets are of the form [[A]] for some subset A of N<N or 2<N. An
open set U of NN or 2N is c.e. or Σ0

1 if there exists a c.e. set A with U = [[A]].
The complement of a c.e. open set is called co-c.e. closed or Π0

1. The Π
0
1 sets

are characterized as the sets of the form [T ] for some computable tree T .
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Let X be N or 2<N. A function G : X → R is computable if there exists
a computable function g : N×X → Q such that |G(a)− g(n, a)| < n−1 for
any a ∈ X and n ∈ N. In addition, if g(n, a) ≤ G(a) for any a ∈ X and
n ∈ N, then G is left-c.e., and if g(n, a) ≥ G(a) for any a ∈ X and n ∈ N,
then G is right-c.e.

Let P,Q ⊂ NN. P is Medvedev reducible (or strongly reducible) to Q,
denoted by P ≤s Q, if there is a computable function Φ : Q → P ; P is
Medvedev comparable with Q if P ≤s Q or P ≥s Q; otherwise, Medvedev
incomparable; P is Medvedev equivalent to Q, denoted by P ≡s Q, if P ≤s

Q and P ≥s Q. The Medvedev degree of P is the equivalence class of
P under the equivalence relation ≡s. P is Muchnik reducible (or weakly
reducible) to Q, denoted by P ≤w Q, if P ≤s {g} for all g ∈ Q. Muchnik
comparability, Muchnik incomparability, Muchnik equivalence and Muchnik
degree are defined in the same way. The arithmetical hierarchy is introduced
in the usual way. We refer the reader to several textbooks [14, 30, 36] to
know some basic terminologies and facts of Computability Theory.

2. Effective Strong Measure Zero

In this section we give definitions of two main concepts, effective strong
measure zero and strong Martin-Löf measure zero, which we discuss through-
out the paper. It is known that the notion of Martin-Löf randomness has
many characterizations in terms of Kolmogorov complexity, semimeasures,
and martingales. We will extend the characterization results to generalized
Martin-Löf randomness with respect to an arbitrary outer measure, and then
it turns out that the concepts of effective strong measure zero and strong
Martin-Löf measure zero are robust enough to have a lot of characteriza-
tions.

2.1. Outer Measures. Émil Borel in 1919 introduced the notion of strong
measure zero. A subset X of a metric space is strong measure zero (or strong
null) if for any sequence {kn}n∈N of natural numbers, there exists a sequence
{In}n∈N of open intervals such that X ⊂

∪
n∈N In and diameter(In) ≤ 2−kn

for all n ∈ N. This notion is straightforwardly effectivized in the following
manner.

Definition 1 (Kihara). A subset X of 2N is said to be of effective strong
measure zero (or effective strong null) if for any computable sequence {kn}n∈N
of natural numbers, there exists a sequence {σn}n∈N of finite binary strings
such that X ⊂

∪
n∈N[[σn]] and |σn| ≥ kn for all n ∈ N.

This notion can be characterized as a measure-theoretic concept.

Definition 2. A function µ from 2<N into [0,∞). is monotone if µ(σ) ≥
µ(σi) for any σ ∈ 2<N and i ∈ {0, 1}. It is subadditive if µ(σ) ≤ µ(σ0)+µ(σ1)
holds for any σ ∈ 2<N. It is called atomless if lim infn→∞ µ(f ↾ n) = 0 for any
f ∈ 2N. An outer premeasure is a monotone subadditive atomless function.
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Our definition of outer premeasures is essentially equivalent to the notion
of premeasures defined on the (cl)open subsets of 2N in the sense of Rogers
[33]. Every outer premeasure is naturally extended to an outer measure by
a so-called “Method I construction” (named by Munroe; see Rogers [33]).

Definition 3. For a monotone function µ : 2<N → [0,∞), we define a
function µ∗ from the power set of 2N into [0,∞] by

µ∗(X) = inf

{∑
σ∈A

µ(σ) : A ⊂ 2<N, and X ⊂ [[A]]

}
.

We call the function µ∗ the induced outer measure by µ. A subset X of
2N is said to be µ-null or of µ-zero if µ∗(X) = 0.

Note that an outer premeasure µ is atomless if and only if the induced
outer measure µ∗ is atomless, i.e., µ∗({x}) = 0 for every single point x ∈ 2N.
Moreover, given premeasure µ : 2<N → [0,∞), one can effectively obtain
a probability premeasure (i.e., µ̃ : 2<N → [0, 1]) such that the classes of
all µ-null reals and all µ̃-null reals coincide. Hereafter, we only consider
probability premeasures.

Of course, there are several other methods to construct a measure from a
premeasure. For instance, the notion of Hausdorff h-measure Hh is obtained
from a so-called “Method II construction” (named by Munroe; see Rogers
[33]). However, the concept of “Hh-nullness” is also obtained as the “µh-

nullness” by taking µh(σ) = h(2−|σ|) for every binary string σ (see also
Reimann [31]).

Theorem 4. A subset X of 2N is of effective strong measure zero if and only
if X is of µ-zero for all atomless computable outer premeasures µ : 2<N →
[0, 1].

Proof. First, suppose that X is of effective strong measure zero. Fix an
atomless computable outer premeasure µ : 2<N → [0, 1]. By the compactness
of 2N, there exists a computable strictly increasing function F : N → N such
that µ(σ) < 2−n holds for any n ∈ N and σ ∈ {0, 1}F (n). Define µ′ : 2<N →
[0, 1] by µ′(σ) = 2−nσ for all σ ∈ 2<N and nσ = min{n ∈ N : |σ| < F (n+1)}.
It is easy to see that µ′ is an atomless computable outer premeasure and
µ(σ) ≤ µ′(σ) for any σ ∈ 2<N. Take an arbitrary natural number m. Since
X is of effective strong measure zero, there exists a sequence {σn}n∈N of
finite binary strings such that X ⊂

∪
n∈N[[σn]] and |σn| ≥ F (n + m). We

have the following inequality

µ∗(X) ≤ (µ′)∗(X) ≤
∑
n∈N

µ′(σn) ≤
∑
n∈N

2−(n+m+1) = 2−m.

Since we take m arbitrarily, X is of µ-zero.
Second, suppose that X is of µ-zero for all atomless computable outer

premeasures µ : 2<N → [0, 1]. To show that X is of effective strong measure
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zero, fix a computable sequence {kn}n∈N of natural numbers. Choose a com-
putable strictly increasing function F : N → N such that F (n) ≥ max{km :
m < 2n} for all n ∈ N. Define µ : 2<N → [0, 1] by µ(σ) = 2−nσ for all
σ ∈ 2<N, where nσ = min{n ∈ N : |σ| < F (n+1)}. Obviously, µ is an atom-
less computable outer premeasure. Since X is of µ-zero, there exists a subset
A of 2<N such that X ⊂ [[A]] and

∑
σ∈A µ(σ) < 1. Choose an initial segment

N of N and a sequence {σn}n∈N of finite binary strings such that n 7→ σn is
a bijection from N onto A with |σn−1| ≤ |σn| for all n ∈ N . We show that
|σn| ≥ kn for any n ∈ N . Fix n ∈ N . Choose the maximum number n0 ∈ N
such that 2n0 − 1 ≤ n. If |σn| < kn, then |σm| ≤ |σn| < kn ≤ F (n0 + 1)
for any m < 2n0 and, therefore,

∑
m<2n0 µ(σm) ≥

∑
m<2n0 2

−n0 ≥ 1. Since∑
n∈N µ(σn) < 1, we have |σn| ≥ kn. Thus X is of effective strong measure

zero. □

Remark 5. Omitting “effective” and “computable” from the proof of Theo-
rem 4, we have a proof of the theorem obtained by omitting the same words
from Theorem 4. This characterization of strong measure zero of 2N is a
counterpart of a characterization of R proved by Besicovitch [3, Theorem 1]
in 1933. Thus, Theorem 4 can be seen as an effective version of Besicovitch’s
theorem.

It may be natural to study concepts obtained from the latter condition of
the precede theorem by strengthening effectivity. The next definition gives
one of such concepts.

Definition 6. For an outer premeasure µ : 2<N → [0, 1], a subset X of 2N is
called Martin-Löf µ-null or of Martin-Löf µ-zero if there exists a computable
descending sequence {Un}n∈N of c.e. open subsets of 2N such that X ⊂∩

n∈N Un and µ∗(Un) ≤ 2−n for any n ∈ N.

Definition 7 (Kihara/Miyabe). A subset X of 2N is of strong Martin-Löf
measure zero (or strongly Martin-Löf null) if for any atomless computable
outer premeasure µ : 2<N → [0, 1], X is of Martin-Löf µ-zero.

Remark 8. A set of reals is universally null or universal measure zero if
it is null with respect to all Borel atomless probability measures. See, for
instance, Bukovský [9, Chapter 8]. Clearly, every strong measure zero set
of reals is universally measure zero. There can be at least three nontrivial
concepts of effective universal measure zero. The first effectivization of the
notion of universal measure zero was studied by van Lambalgen [37], where
he said that a set of reals is constructively small if it is null with respect
to all computable atomless probability measures. The second concept is
introduced by Bienvenu/Porter [4]. A real is contained in NCRcomp if it is
not Martin-Löf random with respect to all computable atomless probability
measures. Further, as the third concept, a real is never continuously random
[32, 1] if it is not Martin-Löf random with respect to all Borel atomless
probability measures.
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Remark 9. According to [20, Definition 2.2, Definition 8.1], for a func-
tion µ : 2<N → [0, 1] and A ⊂ 2<N, the direct µ-weight of A, the prefix-
free µ-weight of A, the vehement µ-weight of A are defined as dwtµ(A) =∑

σ∈A µ(σ), pwtµ(A) = sup{dwtµ(P ) : P ⊂ A is prefix-free}, and vwtµ(A) =
inf{dwtµ(S) : [[A]] ⊂ [[S]]}, respectively. In Definition 6, µ∗(Un) corresponds
to the vehement weight. Thus, Definition 6 has two other variants. However
our main results on strong Martin-Löf measure zero do not depend on the
choice of these three definitions.

Even when we replace “computable outer premeasure” with “right-c.e.
outer premeasure” in Theorem 4, the theorem still holds. Similarly, strong
Martin-Löf measure zero is equivalent to the one obtained by replacing
“computable outer premeasure” with “right-c.e. outer premeasure” in Def-
inition 7. On the other hand, the same holds even when we replace “com-
putable outer premeasure” with “exactly computable rational-valued outer
premeasure”. Here, a non-negative rational valued function µ : 2<N → Q≥0

is exactly computable if there exists a computable function (f, g) : X →
N× (N \ {0}) such that µ(σ) = f(σ)/g(σ) for any σ ∈ 2<N. These facts are
easy corollaries of the following lemmas. For a function F from 2<N into
a set, F is called length-preserving if F (σ) = F (τ) for any σ, τ ∈ 2<N with
|σ| = |τ |.

Lemma 10. For any right-c.e. atomless monotone function µ0 : 2<N →
[0, 1], we can find a computable atomless length-preserving outer premeasure
µ1 : 2

<N → (0, 1] such that µ0(σ) ≤ µ1(σ) for any σ ∈ 2<N.

Proof. By the compactness of 2N, we can find a computable function F : N →
N such that F (n) < F (n+1) and µ0(σ) < 2−n for any σ ∈ {0, 1}F (n). Define
µ1 : 2

<N → (0, 1] by µ1(σ) = 2−nσ , where nσ = min{n ∈ N : |σ| < F (n+1)}.
It is easy to see that µ1 satisfies our desired properties. □

Lemma 11. For any computable outer premeasure µ0 : 2
<N → (0, 1], we can

find an exactly computable outer premeasure µ1 : 2
<N → (0, 1]∩Q such that

2−1µ0(σ) ≤ µ1(σ) ≤ µ0(σ) for any σ ∈ 2<N. Therefore, µ0-zero and µ1-zero
coincide and also Martin-Löf µ0-zero and Martin-Löf µ1-zero coincide.

Proof. Fix a computable outer premeasure µ0 : 2<N → (0, 1]. By the prop-
erties of µ0, we can find an exactly computable function µ1 : 2<N → (0.1]
such that 2−1µ0(σ) < µ1(σ) < µ0(σ) and µ1(σi) ≤ µ1(σ) ≤ µ1(σ0)+µ1(σ1)
for any σ ∈ 2<N and i ∈ {0, 1}. Clearly, µ1 is an outer premeasure with our
desired properties. Note that for any subset A ⊂ 2<N, the inequalities

2−1
∑
σ∈A

µ0(σ) <
∑
σ∈A

µ1(σ) <
∑
σ∈A

µ0(σ)

holds. Thus for any X ⊂ 2N, we have 2−1µ∗0(X) ≤ µ∗1(X) ≤ µ∗0(X). This is
the reason why µ0-zero and µ1-zero coincide and so do Martin-Löf µ0-zero
and Martin-Löf µ1-zero. □
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Technically, it is important to show that for a given outer premeasure µ
and a c.e. open set U ⊆ 2ω, one can effectively approximate the value of
µ∗(U) in the following manner.

Lemma 12 (see also Miller [29, Lemma 3.3]). Let µ : 2<N → [0, 1]∩Q be an
exactly computable outer premeasure, and let A be a nonempty c.e. subset
of 2<N. We can uniformly find a c.e. subset B of 2<N such that [[A]] ⊂ [[B]]
and

µ∗([[A]]) = µ∗([[B]]) = sup

{∑
σ∈B′

µ(σ) : B′ is a finite prefix-free subset of B

}
.

Note that if A is finite, one can compute the value µ∗([[A]]) in the following
way. For an outer premeasure µ : 2<N → [0, 1], we have µ(σ) = µ∗([[σ]]) for
any σ ∈ 2<N, and, moreover, for any finite set A ⊂ 2<N there exists a finite
set B ⊂ 2<N such that µ∗([[A]]) =

∑
σ∈B µ(σ) and every σ in B has some

extension in A by subadditivity. This implies that for a computable outer
premeasure µ and a c.e. open set U ⊂ 2N, µ∗(U) is left-c.e. uniformly in
indices of µ and U . In the case that µ is an exactly computable rational-
valued outer premeasure, the above B can be computed uniformly in an
index of µ and A. Therefore, µ∗([[A]]) can be computed uniformly.

Proof of Lemma 12. Let F : N → A be a computable function onto A. We
define B =

∪
s∈NBs recursively as follows: Fix s ∈ N. Suppose that we

have constructed Bt for any t < s. Choose the shortest τ ⊂ F (s) such that
µ∗([[{F (s)} ∪

∪
t<sBt]]) = µ∗([[{τ} ∪

∪
t<sBt]]). Define Bs = {τ} ∪

∪
t<sBt.

Let As = {F (t) : t ≤ s} and Cs = {σ ∈ Bs : (∀τ ⊊ σ)[τ ̸∈ Bs]} for any
s ∈ N. By induction on s ∈ N, it is easy to see that [[As]] ⊂ [[Bs]] = [[Cs]],
µ∗([[As]]) = µ∗([[Bs]]) =

∑
σ∈Cs

µ(σ) and for any finite prefix-free subset D
of Bs,

∑
σ∈D µ(σ) ≤

∑
σ∈Cs

µ(σ) hold. Thus [[A]] ⊂ [[B]] and µ∗([[A]]) ≥∑
σ∈D µ(σ) hold for any finite prefix-free subset D of B. We need to show

that for any n ∈ N there exists a finite prefix-free subset Dn of B such
that µ∗([[B]]) − n−1 ≤

∑
σ∈Dn

µ(σ). Fix n ∈ N. Choose any prefix-free
subset D of B with [[D]] = [[B]]. Let Dn be a finite subset of D such that
(
∑

σ∈D µ(σ))− n−1 ≤
∑

σ∈Dn
µ(σ). □

2.2. Semimeasures. In 1973, L. A. Levin [28] gave a characterization of
Martin-Löf µ-randomness for an arbitrary computable probability measure
µ on 2N by using the notion of semimeasure. Namely, an infinite binary
sequence x is Martin-Löf µ-random if and only if the supremum of the ra-
tios of the a priori probability of [[x ↾ n]] to the µ-probability of [[x ↾ n]]
is bounded. In this subsection, we generalize Levin’s theorem for arbitrary
outer measure, constructed by Method I, from a computable outer premea-
sure defined on all clopen sets, and we characterize effective strong measure
zero and strong Martin-Löf measure zero in terms of semimeasure.

Definition 13. A function ν : 2<N → [0,∞) is called a semimeasure if
ν(σ) ≥ ν(σ0) + ν(σ1) holds for any σ ∈ 2<N. A left-c.e. semimeasure
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ν : 2<N → [0,∞) is called optimal if for any left-c.e. semimeasure ν ′ : 2<N →
[0,∞), there exists a natural number c such that ν ′(σ) ≤ cν(σ) for any
σ ∈ 2<N.

By the definition, every semimeasure is necessarily monotone. Levin
found the following fact.

Theorem 14 (Levin). There exists an optimal left-c.e. semimeasure νopt :
2<N → [0, 1].

Levin [28] showed that for every computable probability measure µ on
2N, a real x ∈ 2N is not Martin-Löf µ-random if and only if we have

lim sup
n→∞

νopt(x ↾ n)
µ(x ↾ n) = ∞.

In this case, we say that the ratio of νopt to µ is unbounded at a point
x. The following theorem generalizes Levin’s theorem to an arbitrary outer
measure constructed by Method I, from a computable outer premeasure
defined on all clopen sets.

Theorem 15 (essentially, Higuchi/Hudelson/Simpson/Yokoyama [20, The-
orem 2.8]). Let µ : 2<N → (0, 1] be a computable outer premeasure. A subset
X of 2N is of Martin-Löf µ-zero if and only if the ratio of νopt to µ is
unbounded at any x ∈ X.

Proof. We follow the argument of [20, Theorem 2.8]. By Lemma 11, we may
assume that µ is positive rational valued, and exactly computable.

First, suppose that X is of Martin-Löf µ-zero. Choose a computable de-
scending sequence {Un}n∈N of c.e. open sets such that X ⊂

∩
n∈N Un and

µ∗(Un) ≤ 2−n for any n ∈ N. By Lemma 12, there is a computable se-
quence {Bn}n∈N of c.e. subsets of 2<N such that Un ⊂ [[Bn]] and µ

∗(Un) =
µ∗([[Bn]]) = sup{

∑
σ∈B′ µ(σ) : B′ is a finite prefix-free subset of Bn} for any

n ∈ N. Let Bσ
n = {τ ∈ Bn : τ ⊃ σ} for any σ ∈ 2<N and n ∈ N. For a

natural number n, define νn : 2<N → [0, 1] by

νn(σ) = sup

{∑
τ∈B′

µ(τ) : B′ is a finite prefix-free subset of Bσ
n

}
.

Then νn is left-c.e., uniformly in n ∈ N. For any finite prefix-free M ⊂ Bσ0
n

and any finite prefix-free N ⊂ Bσ1
n , M ∪ N is a finite prefix-free subset of

Bσ
n , and, therefore,

νn(σ) ≥
∑

τ∈M∪N
µ(τ) =

∑
τ∈M

µ(τ) +
∑
τ∈N

µ(τ)

holds. Thus νn(σ) ≥ νn(σ0) + νn(σ1) holds for all σ ∈ 2<N. In other words,
νn is semimeasure. Define ν : 2<N → [0, 1] by ν(σ) =

∑
n∈N ν2n(σ)2

n−1.

Here, note that ν2n(σ) ≤ ν2n(∅) = µ∗(U2n) ≤ 2−2n. Hence, ν(σ) ≤ 1.
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Then, ν is a semimeasure since so is ν2n for any n ∈ N, and ν is left-
c.e., since ν2n is left-c.e. uniformly in n. If σ ∈ B2n, then 2n−1µ(σ) =
2n−1ν2n(σ) ≤ ν(σ). Thus supσ⊊f ν(σ)/µ(σ) = ∞ for any f ∈ X since
X ⊂

∩
n∈N Un ⊂

∩
n∈N[[Bn]].

Second, suppose that there exists a left-c.e. semimeasure ν : 2<N → [0, 1]
such that supσ⊊f ν(σ)/µ(σ) = ∞ holds for any f ∈ X. For a natural

number n, let An = {σ ∈ 2<N : ν(σ) > µ(σ)2n}. Since ν is left-c.e. and
µ is computable, An is c.e. uniformly in n ∈ N. For any n ∈ N, we have
[[An]] ⊃ [[An+1]] ⊃ X, and σ ∈ An implies µ(σ) < ν(σ)2−n. Define Bn =
{σ ∈ An : (∀τ ⊊ σ)[τ ̸∈ An]} for each n ∈ N. Since any two distinct element
in Bn are incomparable and ν is a semimeasure, the inequation

µ∗([[An]]) ≤
∑
σ∈Bn

µ(σ) <
∑
σ∈Bn

ν(σ)2−n ≤ ν(∅)2−n ≤ 2−n

holds. Thus X is of Martin-Löf µ-zero via {[[An]]}n∈N. □

Corollary 16. A subset X of 2N is of strong Martin-Löf measure zero if
and only if for any computable atomless outer premeasure µ : 2<N → (0, 1],
the ratio of νopt to µ is unbounded at any point x ∈ X.

Omitting “computable”, “left-c.e.” and “Martin-Löf” appeared in the
proof of Theorem 15, we have a proof of the following corollary.

Corollary 17. Let µ : 2<N → (0, 1] be an outer premeasure. A subset X of
2N is of µ-zero if and only if there is a semimeasure ν : 2<N → [0, 1] such
that the ratio of ν to µ is unbounded at any x ∈ X.

By Theorem 4, Remark 5, Corollary 17, and the proof of Corollary 16, we
have another characterizations of effective strong measure zero and strong
measure zero.

Corollary 18. A subset X of 2N is of (effective) strong measure zero if and
only if, for any (computable) atomless outer premeasure µ : 2<N → (0, 1],
there exists a semimeasure ν : 2<N → [0, 1] such that the ratio of ν to µ is
unbounded at any x ∈ X.

2.3. Kolmogorov complexity. The main theorem in algorithmic random-
ness theory is that the notion of Martin-Löf randomness is characterized as
“incompressibility” in the sense of Kolmogorov complexity. In this subsec-
tion, we characterize the notion of strong Martin-Löf measure zero by using
the notion of Kolmogorov complexity and a priori complexity. Hereafter,
K : 2<N → N denotes a prefix-free Kolmogorov complexity.

Definition 19 (Kjos-Hanssen/Merkle/Stephan [26], Kanovich [23, 24]). An
infinite binary string f ∈ 2N is called complex if there exists a computable
unbounded increasing function F : N → N such that K(σ) ≥ F (|σ|) for any
σ ⊊ f .
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Definition 20 (Levin [28]). We define a right-c.e. function KA : 2<N →
[0,∞) by KA(σ) = − log2 νopt(σ). We call KA a priori complexity or a
priori entropy.

Actually, we can replace prefix-free Kolmogorov complexity K with a
priori complexity KA to define “complex”. In other words, f ∈ 2N is complex
if and only if there exists a computable unbounded increasing function F :
N → N such that KA(σ) ≥ F (|σ|) for any σ ⊊ f . See, for instance, [20,
Remark 7.2].

Theorem 21 (Kihara/Miyabe). A subset X of 2N is of strong Martin-Löf
measure zero if and only if X includes no complex element.

Proof. By Corollary 16, we know that X is of strong Martin-Löf measure
zero if and only if supσ⊊f νopt(σ)/µ(σ) = ∞ for any f ∈ X and any com-

putable atomless outer premeasure µ : 2<N → (0, 1]. Since the function log2
is strictly increasing, it is equivalent to that supσ⊊f (−KA(σ) − log2 µ(σ))
diverges to infinity for any f ∈ X and any computable atomless outer
premeasure µ : 2<N → (0, 1]. By Lemma 10, it is equivalent to that
supσ⊊f (−KA(σ) + F (|σ|) diverges to infinity for any f ∈ X and any com-
putable increasing unbounded function F : N → [0,∞). Here, we can clearly
replace F : N → [0,∞) with F : N → N. As a result, we now know that X
is of strong Martin-Löf measure zero if and only if

(1) sup
σ⊊f

(−KA(σ) + F (|σ|) = ∞

holds for any f ∈ X and any computable increasing unbounded function
F : N → N.

First, suppose that X is of strong Martin-Löf measure zero. To see that
X includes no complex element, fix f ∈ X and a computable unbounded
increasing function F : N → N. We show that KA(σ) < F (|σ|) for some
σ ⊊ f . By (1), there exists a finite binary string σ ⊊ f such that −KA(σ)+
F (|σ|) > 0. Thus we have KA(σ) < F (|σ|).

Second, suppose that X is not of strong Martin-Löf measure zero. Choose
a computable increasing unbounded function F : N → N which fails to
satisfy (1). Choose f ∈ X and c ∈ N such that −KA(σ) + F (|σ|) < c holds
for any σ ⊊ f . We have KA(σ) ≥ F (|σ|) − c for any σ ⊊ f . Hence the
function (n 7→ max{F (n)− c, 0}) witnesses that f is complex.

□

2.4. Martingales. As is well known, in 1930s, Jean Ville introduced the
notion of martingale to characterize the property of measure zero. More pre-
cisely, the property of measure zero with respect to any generalized Bernoulli
measure generated by a sequence of biased coins is characterized by using
a generalized betting process based on a sequence of odds in terms of mar-
tingale. These characterizations will be straightforwardly generalized to all
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outer measures on Cantor space, constructed by Method I, from a com-
putable outer premeasure defined on all clopen sets, by introducing the no-
tion of odds-function. In the rest of this section, we introduce special kinds
of martingales, and characterize effective strong measure zero and strong
Martin-Löf measure zero in terms of martingales.

Definition 22. Any function O : 2<N → [1,∞) is said to be odds. Let M
be a function from 2<N into [0,∞). The functionM is called a O-martingale
if

M(σ) =
M(σ0)

O(σ0)
+
M(σ1)

O(σ1)

holds for any σ ∈ 2<N. The function M ′ is called a O-supermartingale if

M ′(σ) ≥ M ′(σ0)

O(σ0)
+
M ′(σ1)

O(σ1)

holds for any σ ∈ 2<N.

When O is the constant function 2, i.e., O(σ) = 2 for any σ ∈ 2<N, then
O-martingales are martingales, and O-supermartingales are supermartin-
gales in the usual sense. (Here, M : 2<N → [0,∞) is a martingale if
2M(σ) =M(σ0) +M(σ1) for any σ ∈ 2<N. Similarly, M ′ : 2<N → [0,∞) is
a supermartingale if 2M ′(σ) ≥M ′(σ0) +M ′(σ1) for any σ ∈ 2<N.)

Intuitively, a O-martingale M is a strategy of a gambler for the following
game: at stage s the gambler has a history σ ∈ {0, 1}s of the game and
a capital M(σ). The gambler should divide M(σ) into two M(σ0)/O(σ0),
M(σ1)/O(σ1) to bet on the next {0, 1}-value. The capital at stage s+ 1 is
M(σ0) = O(σ0) ·M(σ0)/O(σ0) if the value is 0, and M(σ1) otherwise. Of
course, the history at stage s+ 1 is σi if the value is i ∈ {0, 1}.

Definition 23. For odds O : 2<N → [1,∞) and an O-supermartingale
M : 2<N → [0,∞), define µO : 2<N → (0, 1] and νOM : 2<N → [0,∞)
by µO(σ) = (

∏
τ⊂σ O(τ))−1 and νOM (σ) = M(σ)µO(σ). Conversely, for a

monotone function µ : 2<N → (0, 1] and a semimeasure ν : 2<N → [0,∞),
define Oµ : 2<N → [1,∞) by

Oµ(∅) =
1

µ(∅)
, Oµ(σi) =

µ(σ)

µ(σi)

and define Mµ
ν : 2<N → [0,∞) by Mµ

ν (σ) = ν(σ)/µ(σ).

To state the next proposition, let us denote F and G for the functions
(O,M) 7→ (µO, ν

O
M ) and (µ, ν) 7→ (Oµ,M

µ
ν ), respectively.

Proposition 24. F ◦ G and G ◦ F are identity functions.

Lemma 25. Let O : 2<N → [1,∞) be odds and let M : 2<N → [0,∞) be
an O-supermartingale. Then µO : 2<N → (0, 1] is a monotone function and
νOM : 2<N → [0,∞) is a semimeasure. Moreover, µO is an outer premeasure

provided O(σ0)−1 +O(σ1)−1 ≥ 1 holds for any σ ∈ 2<N.
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Proof. It is easy to see that µO is monotone. We know that νOM is a semimea-
sure by the following inequalities:

νOM (σ0) + νOM (σ1) =M(σ0)µO(σ0) +M(σ1)µO(σ1)

=

(
M(σ0)

O(σ0)
+
M(σ1)

O(σ1)

)
µO(σ) ≤M(σ)µO(σ) = νOM (σ).

Suppose that the odds O satisfies O(σ0)−1 + O(σ1)−1 ≥ 1 for any σ ∈
2<N. Using this assumption and the definition of µO, we have the following
inequalities: µO(σ0)+µO(σ1) = µO(σ)(O(σ0)−1+O(σ1)−1) ≥ µO(σ). Thus
µO is an outer premeasure. □

Conversely, we have the following theorem.

Lemma 26. Let µ : 2<N → (0, 1] be a monotone function and let ν :
2<N → [0,∞) be an semimeasure. Then Oµ : 2<N → [1,∞) is odds and
Mµ

ν : 2<N → [0,∞) is an Oµ-supermartingale. If µ is an outer premeasure,
then Oµ(σ0)

−1 +Oµ(σ1)
−1 ≥ 1 holds for any σ ∈ 2<N.

Proof. It is clear thatOµ is odds. We know thatMµ
ν is anOµ-supermartingale

by the following inequalities:

Mµ
ν (σ0)

Oµ(σ0)
+
Mµ

ν (σ1)

Oµ(σ1)
=
ν(σ0)

µ(σ0)
· µ(σ0)
µ(σ)

+
ν(σ1)

µ(σ1)
· µ(σ1)
µ(σ)

=
ν(σ0) + ν(σ1)

µ(σ)
≤ ν(σ)

µ(σ)
=Mµ

ν (σ).

Suppose that µ is an outer premeasure. We have the following inequalities:
Oµ(σ0)

−1 +Oµ(σ1)
−1 = µ(σ)−1(µ(σ0) + µ(σ1)) ≥ µ(σ)−1µ(σ) = 1. □

Definition 27. Let O be odds. An O-supermartingale M succeeds on a
subset X of 2N if the capital supσ⊊f M(σ) diverges to infinity for all f ∈ X.

Intuitively, if M succeeds on X, then a gambler earns however he or she
wants when the infinite {0, 1}-sequence of the game is in X and the gambler
use M as his or her strategy.

Definition 28. We say that odds O is fair if O(σ0)−1+O(σ1)−1 = 1 holds
for each σ ∈ 2<N.

Remark 29. By the same argument from Lemma 25 and 26, it is easy to
see that µO is a measure whenever O is fair, and that Oµ is fair whenever µ
is a measure. Moreover, for fair odds O, if an O-martingale M succeeds on
X ⊆ 2N, then there is also an O-martingale M ′ such that limn→∞M(f ↾ n)
diverges to infinity for all f ∈ X. Here, if an outer premeasure µ satisfies
µ(σ) = µ(σ0) + µ(σ1), then it is called a measure.

Definition 30. Odds O : 2<N → [1,∞) is said to be acceptable if the value∏
σ⊊f O(σ) diverges to infinity for any f ∈ 2N.
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Intuitively, If odds O is acceptable, then a gambler can earn however he
or she wants when he or she bets properly for any infinite binary sequence.

Note that odds O is acceptable if and only if µO is atomless by the def-
inition of µO. Also, a monotone function µ is atomless if and only if Oµ is
acceptable. Now we give our characterizations of effective strong measure
zero and strong Martin-Löf zero in terms of martingales.

Theorem 31. A subset X of 2N is of effective strong measure zero if and
only if, for any computable acceptable odds O : 2<N → [1,∞), there exists
an O-supermartingale M : 2<N → [0,∞) such that M succeeds on X.

Proof. Recall from Corollary 18 that the property of effective strong measure
zero is characterized in terms of semimeasure.

First, suppose that X satisfies the semimeasure condition in Corollary
18. Fix computable acceptable odds O : 2<N → [1,∞). Define O′ : 2<N →
[1, 2] by O′(σ) = max{O(σ), 2}. Then O′ is computable acceptable odds.
Moreover, O′(σ0)−1 + O′(σ1)−1 ≥ 1 for any σ ∈ 2<N. Thus, by Lemma
25, µ = µO′ : 2<N → (0, 1] is a computable atomless outer premeasure.
By our assumption, there exists a semimeasure ν : 2<N → [0, 1] such that
supσ⊊f ν(σ)/µ(σ) diverges to infinity for all f ∈ X. By Lemma 26,M =Mµ

ν

is an O′-supermartingale since Proposition 24 implies OµO′ = O′. Moreover,

we can see that M succeeds on X since M(σ) = ν(σ)/µ(σ) for any σ ∈ 2<N.
By the definition of O′, we have O′(σ) ≤ O(σ) for any σ ∈ 2<N. Thus

M(σ0)

O(σ0)
+
M(σ1)

O(σ1)
≤ M(σ0)

O′(σ0)
+
M(σ1)

O′(σ1)
≤M(σ)

for any σ ∈ 2<N. This implies that M is O-supermartingale.
We next show the converse direction. Suppose thatX satisfies the martin-

gale condition, and we will show that X satisfies the semimeasure condition
in Corollary 18. Fix a computable atomless outer premeasure µ : 2<N →
(0, 1]. By our assumption, choose an Oµ-supermartingale M : 2<N → [0,∞)
such that M succeed on X. Choose n ∈ N such that n > M(∅). Define an
Oµ-supermartingale M ′ by M ′(σ) =M(σ)/n. Note that M ′(∅) ≤ 1 and M ′

also succeeds on X. Put ν = ν
Oµ

M ′ . Then ν : 2<N → [0,∞) is a semimeasure
by Lemma 25, and we can also see supσ⊊f ν(σ)/µ(σ) = ∞ for all f ∈ X,
since we have M ′(σ) = ν(σ)/µ(σ) by the following equality

ν(σ) = ν
Oµ

M ′ =M ′(σ)µOµ(σ) =M ′µ(σ)

for any σ ∈ 2<N, where the last equation follows from Proposition 24. More-
over, ν(σ) ≤ 1 for any σ ∈ 2<N since ν is monotone and ν(∅) =M ′(∅)/µ(∅) ≤
1. Thus we have the desired condition. □

Note that Mµ
ν is left-c.e. if µ is computable and ν is left-c.e., and νOM

is left-c.e. if O is computable and M is left-c.e. Hence, we have the same
characterization for strong Martin-Löf zero.
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2.5. Characterizations. The characterization results in this section is sum-
marized as follows.

Corollary 32. For a subset X of 2N, the following are pairwise equivalent:

(1) X is of (effective) strong measure zero.
(2) X is of µ-zero for any (computable) atomless outer premeasure µ :

2<N → [0, 1].
(3) Every (computable) atomless outer premeasure µ : 2<N → (0, 1] has

a semimeasure ν : 2<N → [0, 1] such that the ratio of ν to µ is
unbounded at any x ∈ X.

(4) For any (computable) acceptable odds O : 2<N → [1,∞), there exists
an O-supermartingale M : 2<N → [0,∞) such that M succeeds on
X.

Recall that νopt : 2
<N → [0, 1] denotes a fixed optimal left-c.e. semimea-

sure.

Corollary 33. For a subset X of 2N, the following are pairwise equivalent:

(1) X is of strong Martin-Löf measure zero.
(2) X contains no complex element.
(3) The ratio of νopt to µ is unbounded at any x ∈ X for any computable

atomless outer premeasure µ : 2<N → (0, 1].
(4) For any computable acceptable odds O : 2<N → [1,∞), there exists a

left-c.e. O-supermartingale M : 2<N → [0,∞) such that M succeeds
on X.

Note that by applying Corollary 33 to a singleton, we can obtain the
similar characterizations of complex strings in terms of semimeasures and
martingales. We also have the similar results for universal measure zero sets
(see Remark 8). For instance, we have the following results.

Corollary 34. For a subset X of 2N, the following are pairwise equivalent:

(1) X is of universal measure zero.
(2) For any atomless measure µ : 2<N → (0, 1], there exists a semimea-

sure ν : 2<N → [0, 1] such that the ratio of µ and ν is unbounded
(equivalently, lim infn→∞ ν(x ↾ n)/µ(x ↾ n) diverges to infinity) at
any x ∈ X.

(3) For any acceptable fair odds O, there exists an O-supermartingale
M : 2<N → [0,∞) such that M succeeds on X.

Corollary 35. For x ∈ 2N, the following are pairwise equivalent:

(1) x is contained in NCRcomp.
(2) The ratio of νopt to µ is unbounded (equivalently, lim infn→∞ νopt(x ↾

n)/µ(x ↾ n) diverges to infinity) at x for any computable atomless
measure µ : 2<N → (0, 1].

(3) For any computable acceptable fair odds O, there is a left-c.e. O-
super-martingale M : 2<N → [0,∞) which satisfies supσ⊊xM(σ) =
∞.
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Contrary to the case of universally measure zero, the divergence of the
infimum limit of the universal prediction νopt(x ↾ n)/µ(x ↾ n) does not
characterize the notion of strong measure zero. To see this, it suffices to show
the following proposition concerning martingales. A real is called weakly 2-
generic if it is contained in all dense open sets which are c.e. relative to the
halting problem ∅′.

Proposition 36. Let µ : 2<N → (0, 1] be the outer premeasure defined as

µ(σ) = 2−⌊|σ|/3⌋. Then, for every weakly 2-generic real g ∈ 2N, the singleton
{g} is of strong Martin-Löf measure zero, but lim infn→∞M(g ↾ n) ≤ 1 for
any Oµ-supermartingale M .

Proof. We write O for Oµ. Note that O(σ) = 1 if |σ| mod 3 is 0 or 1, and
O(σ) = 2 otherwise. Let {(Os,Ms)}s∈N be an computable enumeration of all
pairs of partial computable acceptable odds and its optimal left-c.e. super-
martingale. By S we denote the set of all indices s such that Os is total. Let
{Ns}s∈N be a computable enumeration of all left-c.e. O-supermartingales.
Note that for any computable f , each martingale Ms succeeds on {f} for
any s ∈ S. Thus, for each s ∈ S and n ∈ N the set

Ds,n = {f ∈ 2N :Ms(σ) ≥ n for some σ ⊂ f}

is dense. To see this, for given σ ∈ 2<N, concatenate sufficiently many zeros.
Clearly, Ds,n is c.e. open for each s ∈ S and n ∈ N. Moreover,

Es,n = {f ∈ 2N : Ns(σ) < 1 for some σ ⊂ f of length ≥ n}

is also dense, for each s, n ∈ N. Since Ns is O-supermartingale, for any
τ ∈ 2<N with |τ | mod 3 = 0, there exists τ ′ ∈ {0, 1}3 such that Ns(ττ

′) ≤
Ns(τ)/2. By iterating this procedure, we easily find a string σ ⊃ τ with
[[σ]] ⊆ Es,n. Note that Es,n is ∅′-c.e. open for each s, n ∈ N.

□

3. Effectively Closed Sets

In the rest of the paper, we pay attention to effective strong measure
zero Π0

1 subsets of 2N. It is shown that effective strong measure zero and
strong Martin-Löf measure zero coincide in the case of Π0

1 sets. Moreover,
within the class of the Π0

1 sets, we characterize the property of effective
strong measure zero as a kind of effective perfect set property. We also
investigate the Muchnik degrees of effective strong measure zero Π0

1 sets. See
Simpson [34, 35] for basic facts on the Muchnik degrees of Π0

1 sets in Cantor
space. We show that any non-zero Muchnik degree of Π0

1 sets of effective
strong measure zero is incomparable with the Muchnik degrees of the set of
Martin-Löf random reals and the set of autocomplex reals. Consequently, if
P ⊆ 2N is a nonempty effective strong measure zero Π0

1 set consisting only
of noncomputable elements, then some Martin-Löf random real computes
no element in P , and P has an element that computes no autocomplex real.
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3.1. Combinatorial Theorem. We first show the following combinatorial
theorem. While we use the theorem to characterize closed subsets of 2N of
effective strong measure zero in the next subsection, the theorem itself is
interesting.

Theorem 37 (Higuchi/Kihara [21, Theorem 1]). Let T ⊂ N<N be a finitely
branching tree. Suppose that [T ] \ [[A]] is nonempty for any A ⊂ T \ {∅}
with #(A ∩ {0, 1}n+1) ≤ #(T ∩ {0, 1}n) for any n ∈ N. Then there exists a
length-preserving embedding of 2<N into T .

Proof. Let φ(T ′) denote the condition that [T ′] \ [[A]] is nonempty for any
A ⊂ T ′ \ {∅} with #(A ∩ {0, 1}n+1) ≤ #(T ∩ {0, 1}n) for any n ∈ N. For
σ ∈ T , we define T (σ) = {τ ∈ N<N : στ ∈ T}. It suffices to show that for
any σ ∈ T with φ(T (σ)) there exist at least two immediate successors σi,
σj of σ in T with φ(T (σi)) and φ(T (σj)).

Fix σ ∈ T with φ(T (σ)). Let σk0, σk1, · · · , σkn ∈ T be all immediate
successors of σ in T with k0 < k1 < · · · < kn. Suppose that there is at most
one immediate successor of σ in T with the property φ. Let i ≤ n satisfy
φ(σki) if there is such a natural number. For any j ∈ {0, 1, · · · , n} \ {i},
choose Aj witnessing ¬φ(T (σkj)). It is easy to see that {ki} ∪

∪
j ̸=i{kjτ :

τ ∈ Aj} witnesses that ¬φ(T (σ)). We have a contradiction. Thus there
exist at least two immediate successors of σ in T with the property φ. □
3.2. Perfect Set Property. Recall that a perfect subset of 2N means a
nonempty closed set with no isolated point. This notion is effectivized as
follows.

Definition 38 (Binns [7]). A perfect subset P of 2N is said to be computably
perfect if there exists a computable function F : N → N such that

(∀n ∈ N)(∀f ∈ P )(∃g ∈ P )[n ≤ |f ∩ g| ≤ F (n)].

A subset of 2N is said to be diminutive if it contains no computably perfect
subset.

In the case of Π0
1 subsets of 2N, Binns [7] noticed the following fact.

Proposition 39 (Binns [7, Lemma 2.4]). If a Π0
1 subset of 2N contains a

computably perfect subset, then it contains a computably perfect Π0
1 subset.

To show one direction of the equivalence between effective strong measure
zero and diminutiveness for closed subsets of 2N, we will use the next lemma.

Lemma 40. A perfect subset P of 2N is computably perfect if and only if
there exists a computable function F : N → N such that for any n ∈ N and
any f ∈ P there exists an element g ∈ P such that F (n) ≤ |f ∩g| < F (n+1)
holds.

Proof. If a computable function F : N → N witnesses that P is computably
perfect, then a computable function F ′ : N → N defined by F ′(0) = 0
and F ′(n + 1) = F (F ′(n) + 1) witnesses that the latter condition holds.
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Conversely, if a computable function F : N → N witnesses that the latter
condition holds, then n 7→ F (n+ 1) witnesses that P is computably perfect
since n ≤ F (n) < F (n+ 1) for any n ∈ N. □
Corollary 41 (Higuchi/Kihara [21, Proposition 3]). Every computably per-
fect subset of 2N is not of effective strong measure zero.

Proof. Let P be a computable perfect subset of 2N. If a computable function
F witnesses the latter condition in Lemma 40 holds, then {F (n + 1)}n∈N
witnesses that P is not of effective strong measure zero. □

Since effective strong measure zero is preserved under taking subsets, we
have the following corollary.

Corollary 42. Every effective strong measure zero subset of 2N is diminu-
tive.

The same argument clearly implies Besicovitch’s old result [3, Theorem
2] that every strong measure zero set of reals has no perfect subset. Using
Theorem 37, we show that the converse also holds for closed subsets of
2N. Although there is no uncountable closed set with no perfect subset, we
know a huge number of uncountable effectively closed (i.e., Π0

1) sets with no
computably perfect subsets (see also Binns [5, 6]).

Theorem 43 (Higuchi/Kihara [21, Theorem 2]). A closed subset of 2N is
diminutive if and only if it is of effective strong measure zero.

Proof. It remains to show the “only if” part. Fix a closed subset C of
2N. Suppose that a computable sequence {ki}i∈N witnesses that C is not
of effective strong measure zero. We show that C contains a computably
perfect subset. We may safely assume that ki < ki+1 for all i ∈ N. Define
F : N → N recursively by F (0) = 0 and F (n + 1) = F (n) + 2kF (n) for

all n ∈ N. Note that kF (n) ≥ n and kF (n+1) − kF (n) ≥ 2kF (n) for all n ∈
N. Define {Tn}n∈N by T0 = {∅} and Tn+1 = Ext(C) ∩ {0, 1}kF (n+1) . Let
T =

∪
n∈N Tn. Since C is closed, note that C =

∩
n∈N[[Tn]]. Since C is of

effective strong measure zero, C \ [[A]] is nonempty if A ⊂ T \ {∅} satisfies

that #(A ∩ {0, 1}kF (n+1)) ≤ #(Ext(C) ∩ {0, 1}kF (n)) ≤ 2kF (n) for all n ∈ N.
Naturally, (T,⊂) can be seen as a graph of a finitely branching tree and
can be embedded into N<N so that the image form a finitely branching
tree on N with the assumption of Theorem 37. Thus 2<N has a length-
preserving embedding into (T,⊂) by Theorem 37. This implies that C has
a computably perfect subset witnessed via n 7→ kF (n+1). □

Binns [7, Theorem 2.13] showed that a Π0
1 subset P of 2N is diminutive

if and only if P contains no complex element. We can give another proof of
this equivalence using Theorem 4 and Theorem 43 as well as the following
theorem.

Theorem 44. A effective strong measure zero Π0
1 subset of 2N is of strong

Martin-Löf measure zero.
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Proof. Fix a Π0
1 subset P of 2N of effective strong measure zero. Given

a computable atomless outer premeasure µ : 2<N → [0, 1] and a natural
number n ∈ N, there exists a finite subset A of 2<N such that

∑
σ∈A µ(σ) <

2−n and P ⊂ [[A]] since P is of effective strong measure zero and P is
compact. Such a finite subset can be found uniformly in n ∈ N. Thus there
exists a computable descending sequence {Un}n∈N of c.e. open sets such that
X ⊂

∩
n∈N Un and µ∗(Un) ≤ 2−n for any n ∈ N. □

Now we have the following characterization of effective strong measure
zero for Π0

1 subsets of 2N by Theorem 4, Theorem 43, Theorem 44 and a
result from Binns [7, Theorem 2.13].

Corollary 45. For a Π0
1 subset P of 2N, the following are pairwise equiva-

lent:

(1) P is of effective strong measure zero.
(2) P is of strong Martin-Löf measure zero.
(3) P is diminutive.
(4) P contains no complex element.
(5) There exists a real x ∈ 2N such that no element of P wtt-computes

x.
(6) The ratio of νopt to µ is unbounded at any x ∈ P for any computable

atomless outer premeasure µ : 2<N → (0, 1].
(7) For any computable acceptable odds O : 2<N → [1,∞), there exists a

left-c.e. O-supermartingale M : 2<N → [0,∞) such that M succeeds
on P .

3.3. Lattice Operators. We here see relation between effective strong
measure zero and lattice operators.

Theorem 46. For subsets P and Q of 2N, P + Q is of effective strong
measure zero if and only if so are P and Q. The same holds for strong
Martin-Löf measure zero.

Proof. Since it is clear that P +Q contains a complex element if and only if
so is one of P and Q, the proposition holds for strong Martin-Löf measure
zero by Theorem 33. By the definition of effective strong measure zero, P
and Q are of effective strong measure zero if and only if so are 0P and 1Q.
Since P +Q is the disjoint union of 0P and 1Q, P +Q is of effective strong
measure zero if and only if so are 0P and 1Q by Theorem 4. □
Theorem 47. For nonempty subsets P and Q of 2N, if P × Q is of effec-
tive strong measure zero, then so are P and Q. The same holds for strong
Martin-Löf measure zero.

Proof. We just show the case of strong Martin-Löf measure zero. Suppose
that one of P and Q is not of strong Martin-Löf measure zero. We may
safely assume that P is not of strong Martin-Löf measure zero. Choose a
computable atomless outer premeasure µ : 2<N → [0, 1] as a witness of this
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fact. Define a computable atomless outer premeasure µ′ : 2<N → [0, 1] by
µ′(σ) = µ(σ0) for any σ ∈ 2<N, where σ = σ0 ⊕ σ1. If a subset A of 2<N

satisfies P ×Q ⊂ [[A]], then B = {σ0 : (∃σ1)[σ0 ⊕ σ1 ∈ A]} satisfies P ⊂ [[B]]
and

∑
σ∈B µ(σ) ≤

∑
σ∈A µ

′(σ). Hence P × Q is not of strong Martin-Löf
measure zero. □

We do not know whether the converse of the preceding theorem holds or
not. However, if we restrict the statement to Π0

1 subsets, then we can prove
as we shall see below. To show this, we need the following lemma.

Lemma 48 (Higuchi/Kihara [21, Lemma 1]). Let P be a Π0
1 subset of 2N

of effective strong measure zero. Given a computable sequence {ai}i∈N of
naturals, we can (uniformly) find a computable increasing function F : N →
N and a computable sequence of finite strings σi, i ∈ N, of the length ai such
that [[σF (n)]], [[σF (n)+1]], · · · , [[σF (n+1)−1]] are an open cover of P .

Proof. For any n ∈ N there are finitely many finite strings σn+i, i ≤ m,
of the length an+i such that {[[σn+i]]}i≤m is an open cover of P , since P is
compact and of effective strong measure zero. Moreover, we can find such
sequences uniformly in a given n ∈ N since P is Π0

1. From this, it is clear
that the lemma holds. □

Theorem 49 (Higuchi/Kihara [21, Theorem 3]). If P and Q are Π0
1 subsets

of 2N of effective strong measure zero, then so is P ×Q.

Proof. To show that P × Q is of effective strong measure zero, fix a com-
putable sequence {bi}i∈N of naturals. Let {ai}i∈N be a strictly increasing
computable sequence of natural numbers such that bi ≤ 2ai for all i ∈ N
and, applying Lemma 48 to P and {ai}i∈N, take a computable function F
and a computable sequence {σi}i∈N as in Lemma 48. Here we can safely
assume that F (0) = 0. Since Q is also of effective strong measure zero,
there exist finite strings τn, n ∈ N, of the length aF (n+1) which generate an
open cover of Q. For each i ∈ N, define ρi = σi⊕ (τni ↾ |σi|), where ni is the
unique natural number such that F (ni) ≤ i < F (ni + 1). Since |σ| = ai, we
have |ρi| = 2ai for all i ∈ N.

It suffices to show that {ρi}i∈N generates an open cover of P × Q. Fix
f ⊕ g ∈ P × Q. Since g ∈ Q, there exists n ∈ N such that τn ⊂ g. By
the choice of finite strings σi, F (n) ≤ i < F (n + 1), there exists m with
F (n) ≤ m < F (n + 1) such that σm ⊂ f . We have ρm ⊂ f ⊕ g and, thus,
P ×Q ⊂

∪
i∈N[[ρi]]. □

Corollary 50 (Higuchi/Kihara [21, Corollary 2]). For nonempty Π0
1 subsets

P and Q of 2N, the following are pairwise equivalent:

(1) P and Q are of effective strong measure zero.
(2) P +Q is of effective strong measure zero.
(3) P ×Q is of effective strong measure zero.
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3.4. Closure Properties. Some closure properties of a concept for Π0
1 sub-

sets of 2N are sometimes useful when we study degree structures of nonempty
Π0

1 subsets of 2N. It is straightforward to see that effective strong measure
zero is closed under taking subsets. We shall see that effective strong mea-
sure zero is also closed under taking the images of computable functions for
Π0

1 subsets of 2N.
For a partial computable function Φ on 2N, a finite binary string σ and a

natural number n, we use Φ(σ;n) to denote the computation of Φ with an
oracle σ, an input n and step |σ| and we use Φ(σ) to denote the finite string
τ of the maximum length such that Φ(σ;n) = τ(n) for all n < |τ |.

Theorem 51 (Higuchi/Kihara [21, Theorem 4]). The image Φ(P ) of a Π0
1

subset P of 2N of effective strong measure zero under a computable function
Φ : P → 2N is again of effective strong measure zero.

Proof. Fix a Π0
1 subset P of 2N of effective strong measure zero and a com-

putable function Φ : P → 2N, and assume, contrary to our theorem, Φ(P ) is
not of effective strong measure zero. Let a computable sequence {ki}i∈N of
naturals be a witness of this assumption. Since P is Π0

1, we can find a com-
putable sequence {k′i}i∈N of naturals such that |σ| ≥ k′i implies |Φ(σ)| ≥ ki
for all σ ∈ Ext(P ). Using the effective strong measure zero of P , choose a
sequence of finite strings σi of length k

′
i such that P ⊂

∪
i∈N[[σi]]. We have an

open cover {[[Φ(σi)]]}i∈N of Φ(P ), contradicting our assumption that {ki}i∈N
witnesses that Φ(P ) is not of effective strong measure zero. Thus Φ(P ) is
of effective strong measure zero. □

A subset X of NN is called computably bounded (c.b.) if there is a com-
putable function F : N → N with g(n) < F (n) for any g ∈ X and n ∈ N. It
is well-known that every c.b. Π0

1 set is computably homeomorphic to a Π0
1

subset of 2N.

Remark 52. We can extend Definition 1 and Definition 38 to c.b. subsets of
NN in the straightforward way. Also, Theorem 43, Corollary 50 and Theorem
51 can be easily extended to c.b. closed or Π0

1 subsets of NN. We shall use
these extended theorems later.

Theorem 53 (Simpson [34, Theorem 4.7]). Let P ⊂ NN be a nonempty
c.b. Π0

1 set and let Φ : P → NN be a computable function. Then Φ(P ) is a
nonempty c.b. Π0

1 subset of NN.

Theorem 54 (Simpson [34, Lemma 6.9]). Let M ⊂ NN and let P ⊂ NN be
a nonempty c.b. Π0

1 set. If M ≤w P , then P contains a nonempty c.b. Π0
1

subset Q with M ≤s Q.

We prove the following theorem using the technique of the proof of Corol-
lary 2.16 in Binns [5].

Theorem 55 (Higuchi/Kihara [21, Theorem 7]). Let A be a set of nonempty
c.b. Π0

1 subsets of NN which is closed under taking nonempty Π0
1 subset and
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taking the images of computable functions. Let P ⊂ NN and let Q ∈ A. If
P ≤w Q, then some subset of P is in A.

Proof. Suppose that P ≤w Q. By Theorem 54, there exists a computable
function Φ : Q′ → P for some nonempty Π0

1 subsetQ
′ ofQ. The image Φ(Q′)

is a nonempty c.b. Π0
1 subset of P by Theorem 53. We have Φ(Q′) ∈ A by

the closure properties of A. □

Applying the theorem to A as the set of all nonempty Π0
1 subsets of 2N of

effective strong measure zero, we have the following corollary.

Corollary 56 (Higuchi/Kihara [21, Corollary 3]). If a subset P of 2N is
Muchnik reducible to a nonempty Π0

1 subset of 2N of effective strong measure
zero, then P contains a nonempty Π0

1 subset of effective strong measure zero.

3.5. MLR and DNC. We denote MLR the set of all Martin-Löf random
elements of 2N and denote DNC the set of all diagonally non-computable
elements of NN. Here a real f ∈ N is Martin-Löf random if {f} is not of
Martin-Löf λ-zero, where λ denotes the fair-coin measure, and a real f ∈ N
is diagonally non-computable if f(e) ̸= Φe(e) holds for any e ∈ N, where
{Φe}e∈N is a fixed standard effective enumeration of all computable partial
function from N to N. Note that the Muchnik degree of the diagonally non-
computable functions can be characterized in terms of Kolmogorov complex-
ity, since a real x ∈ 2N is autocomplex if and only if it computes a diagonally
non-computable function.

Simpson [34] proved that MLR is Muchnik incomparable with any perfect
thin Π0

1 subset of 2N. We use the technique of his proof to show that MLR
and DNC are incomparable with any nonempty Π0

1 subset of 2N of effective
strong measure zero with no computable element. We use the facts that
every nonempty Π0

1 subset of MLR is Muchnik equivalent to MLR and that
MLR contains a nonempty Π0

1 subset. See [34].

Theorem 57. Let P ⊂ MLR be a nonempty Π0
1 set and let Φ : P → NN

be a computable function. If Φ(P ) contains no computable element, then
Φ(P ) ≡w P .

Proof. By Simpson [34, Corollary 4.9], we know that Φ(f) ≤tt f for all
f ∈ P , where ≤tt refers to the truth-table reducibility. Additionally, by
Demuth [11, Lemma 30], we know that, for any f ∈ P , Φ(f) is Turing
equivalent to an element of MLR. Thus MLR ≤w Φ(P ) ≤w P ≡w MLR
holds. Hence Φ(P ) ≡w P . □

Theorem 58 (Higuchi/Kihara [21, Theorem 9]). Let A be a set of nonempty
c.b. Π0

1 subsets of NN which is closed under taking nonempty Π0
1 subset and

taking the images of computable functions. Let P ⊂ NN be Muchnik reducible
to MLR and let Q ∈ A contain no computable element. Suppose that every
c.b. Π0

1 subset of P is not in A. Then P and Q are Muchnik incomparable.
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Proof. Since P ≤w Q implies that P contains a nonempty Π0
1 subset in A by

Theorem 55, we have P ̸≤w Q. Suppose that Q ≤w P . Since P ≤w MLR, we
have Q ≤w MLR. Choose a nonempty Π0

1 set R ⊂ MLR and a computable
function Φ : R→ Q. By Theorem 54 and Theorem 57, we have R ≡w Φ(R).
By the closure properties of A, we have Φ(R) ∈ A. On the other hand, we
have P ≤w R ≡w Φ(R). A contradiction. Thus Q ̸≤w P . □

Proposition 59. Every nonempty Π0
1 subset of MLR contains a computably

perfect subset.

Proof. By Simpson [34, Lemma 8.9], every nonempty Π0
1 subset of MLR is of

positive measure. By Hertling [19, Proposition 8], we know that any closed
subset of 2N of positive measure contains a computably perfect subset. Thus
the proposition holds. □

Applying Theorem to P = MLR and A as the set of all nonempty c.b.
Π0

1 subsets of NN of effective strong measure zero, we have the following
corollary.

Corollary 60 (Higuchi/Kihara [21, Corollary 4]). Let Q be an Π0
1 subset of

2N of effective strong measure zero with no computable element. Then Q is
Muchnik incomparable with MLR.

Proposition 61. Every nonempty c.b. Π0
1 subset of DNC is computably

perfect.

Proof. Let P ⊂ DNC be a nonempty c.b. Π0
1 set. Using Recursion Theorem,

given a σ ∈ 2<N, we can effectively find nσ such that {nσ}(nσ) is the unique
value of f(nσ) for some s ∈ N and some f ∈ Ps ∩ [[σ]] (if exist) such that,
for any f, g ∈ Ps ∩ [[σ]], f(nσ) = g(nσ), where Ps is a clopen set which is
the s-th approximation of P . Then the computable function m 7→ max{nσ :
σ ∈ 2<N & |σ| = m} witnesses that P is computably perfect. □

It is well-known that DNC ≤w MLR. See, for instance, Giusto/Simpson
[18, Lemma 6.18]. Thus applying the theorem to P = DNC and A as the
set of all nonempty c.b. Π0

1 subsets of NN of effective strong measure zero,
we have the following corollary.

Corollary 62 (Higuchi/Kihara [21, Corollary 5]). Let Q be a Π0
1 subset of

2N of effective strong measure zero with no computable element. Then Q is
Muchnik incomparable with DNC.

Remark 63. Indeed, one direction of Corollary 62, i.e., DNC is Muchnik
reducible to no diminutive Π0

1 subset of 2N, can be obtained easily using
Theorem 2.12 and Corollary 2.14 of Binns [7].

Remark 64. By Binns [7, Theorem 3.8, Theorem 3.9] and Binns [6], we
have that thinness or smallness imply diminutiveness. Thus Corollary 60
and Corollary 62 hold even when we replace the property “of effective
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strong measure zero” with the properties “thin” or “small”. Here, Simp-
son [34, Theorem 9.15] showed that MLR is Muchnik incomparable with
any nonempty thin perfect Π0

1 subset of 2N.

4. Smallness and Kolmogorov Complexity

As is well known, if a nonempty Π0
1 subset of Cantor space consists only

of noncomputable elements, then it must be perfect. As seen in Corollary
45 (Binns [7]), a nonempty Π0

1 set has a complex element if and only if it
has a computably perfect subset (or equivalently, it is not of effective strong
measure zero). Then, if a Π0

1 set is not of effective strong measure zero,
does it contain a real all of whose initial segments are sufficiently complex?
Conversely, does every nonempty effective strong measure zero Π0

1 set have
an anticomplex element? In this section, we construct two counterexamples
related to the above two questions.

4.1. Nonbasis Theorem. A Π0
1 subset P of 2N is small [5] if Brl(P ) is not

dominated by any computable function. A Π0
1 subset P of 2N is very small

[5] if Brl(P ) dominates all computable functions. An infinite binary string
f ∈ 2N is 1-generic if for any c.e. open set U , either f ∈ U or [[σ]] ∩ U = ∅
for some σ ⊊ f . The previous works on measure theoretic smallness of Π0

1

sets implies the following non-basis theorem:

Theorem 65 (Small Non-Basis Theorem [21, Theorem 10]). If a small Π0
1

set P ⊆ 2N contains no computable element, then we have the following:

(1) No element of P is complex.
(2) No element of P is computable in a 1-generic real.

Proof. By Binns [6, 7], every small Π0
1 set is diminutive. Moreover, by

Cenzer/Kihara/Weber/Wu [10, Theorem 3.5], every such small Π0
1 set is

immune. By Binns [7, Theorem 2.13], every element of diminutive Π0
1 set

is non-complex. By Demuth/Kučera [12], every 1-generic real computes no
element of an immune Π0

1 set.
□

Definition 66. A real x ∈ 2N is infinitely often complex [22], abbreviated
as i.o. complex, if there is a computable function f : N → N such that
K(x ↾ f(n)) ≥ n for infinitely many n ∈ N. A real x ∈ 2N is anti-complex
[15] if it is not i.o. complex. A real x ∈ 2N is K-trivial if there is a constant
c ∈ N such that K(x ↾ n) ≤ K(n) + c for any n ∈ N. A real x ∈ 2N

is infinitely often K-trivial [2], abbreviated as i.o. K-trivial, if there is a
constant c ∈ N such that K(x ↾ n) ≤ K(n) + c for infinitely many n ∈ N. A
real x ∈ 2N is Schnorr trivial [13] if, for any computable measure machine
M , there is a computable measure machine N and a constant c ∈ N such
that KN (x ↾ n) ≤ KM (n) + c for any n ∈ N.

Kjos-Hanssen/Merkle/Stephen [26] showed that a real x ∈ 2N is complex
if and only if there exists a computable function f : N → N such that
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K(x ↾ f(n)) ≥ n holds for any n ∈ N. Consequently, every complex real is
i.o. complex. Franklin/Stephan [17] showed that a real x is Schnorr trivial
if and only if it is computably tt-traceable, i.e., there is an order h such that,
for every g ≤tt x, there is a computable trace {Tn}n∈N with bound h and
g ∈ Tn for each n ∈ N. Moreover, Franklin/Greenberg/Stephan/Wu [15]
showed that a real x is anti-complex if and only if it is c.e. wtt-traceable,
i.e., there is an order h such that, for every g ≤wtt x, there is a c.e. trace
{Tn}n∈N with bound h and g ∈ Tn for each n ∈ N.
Theorem 67 (Very Small Non-Basis Theorem, see also Binns/Kjos-Hanssen
[8]). If a very small Π0

1 set P ⊆ 2N contains no computable element, then
we have the following:

(1) Every element of P is Schnorr trivial. In particular, every element
of P is anti-complex.

(2) No element of P is computable in a 1-generic real.

Proof. It suffices to show that every element x ∈ P is computably tt-
traceable. Fix g ≤tt x. Then there is a total computable functional Ψ and a
computable order h such that g(n) = Ψx↾h(n)(n) for any n ∈ N. As P is very
small, the function n 7→ #{x ↾ h(n) : x ∈ P} is majorized by a computable
function h⋆. Let {Ps}s∈N be a computable approximation of P , and then,
for each n ∈ N, wait for stage s(n) when #{x ↾ h(n) : x ∈ Ps(n)} ≤ h⋆(n)+1.

Then, #{Ψx↾h(n)(n) : x ∈ Ps(n)} is also bounded by h⋆(n) + 1. Moreover,

{Ψx↾h(n)(n) : x ∈ Ps(n)}n∈N is a computable trace, since Ψ is a total com-
putable functional.

□
Note that Franklin [16] showed that there is a 1-generic real which is

Turing equivalent to a Schnorr trivial real.

4.2. A Perfect Set which is Not Small. The Small Non-Basis Theorem
65 may have some applications. Barmpalias/Vlek [2] showed that, if a real is
computable in a 1-generic, then it is i.o. K-trivial; and there is a Π0

1 subset
of 2N consisting of i.o. K-trivial reals but does not contain any K-trivial
reals. First we construct a perfect set consisting of non-generic reals which
are both complex and i.o. K-trivial. Here, note that, if a reals is complex,
then it is not K-trivial.

Theorem 68. There is a perfect Π0
1 set P ⊆ 2N which satisfies the following:

(1) Every element of P is i.o. K-trivial.
(2) Every element of P is complex.
(3) No element of P is computable in a 1-generic real.

Proof. It suffices to construct a computably perfect immune Π0
1 set of reals

which are i.o. K-trivial and tt-DNC. Here, a real x is tt-DNC if there is a
function f ≤tt x which is diagonally noncomputable, i.e., for every e ∈ N,
if φe(e) converges, then f(e) ̸= φe(e) holds. Kjos-Hanssen/Markle/Stephan
[26] showed that a real is complex if and only if it is tt-DNC.
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Claim 69. For some computable order h, we have an infinite computable
tree T0 ⊆ 2<N such that every infinite path through T0 is i.o. K-trivial, and
every string σ ∈ T0 of length h(n) has at least three extensions τ ∈ T0 of
length h(n+ 1), for each n ∈ N.
Proof. As pointed out by Barmpalias-Vlek [2, Lemma 2.6], there is a c.e. dense
set V of strings σ such that K(σ) ≤ K(|σ|) + d (by concatenating many ze-
ros). For all σ ∈ {0, 1}n, wait for a string τσ extending σ to be enumerated
into V . Then, g(n) is defined to be max{|τσ| : σ ∈ {0, 1}n}. Now, we

assume that h(n) has been already defined, and T0∩{0, 1}≤h(n) has been al-
ready determined. For each string σ ∈ T0, there are at least four extensions
τσ00, τσ01, τσ10, τσ11 of length ≤ g(h(n) + 2). Define h(n+ 1) = g(h(n) + 2),
extend all τσij for i, j < 2 to strings of length h(n+1), and enumerate them
into T0.

□
Without loss of generality, we may assume that T0 has at least three string

of length h(0). For each e ∈ N, if there is a string τ ∈We of length ≥ h(e),
then define σe = τ ↾ h(e). Otherwise, σe is undefined. Let V be the set of all
indices e such that σe is defined. Then, define T1 to be T1 = T0 \

∪
e∈V [[σe]].

For each e ∈ N, let D be the set of all indices e such that φe(e) converges
and |φe(e)| = h(e). Then, define T2 to be T2 = T1 \

∪
e∈D[[φe(e)]]. Clearly,

T2 is co-c.e.

Claim 70. T2 is infinite.

Proof. At most two strings of each length h(n) can be removed from T0,
while each string in T0 of length h(n) must have at least three extensions in
T0 of length h(n+ 1).

□
Claim 71. [T1] is immune, hence [T2] is also immune.

Proof. If We is infinite, then there is a string τ ∈We of length greater than
h(e). Hence, σe must be defined. By the definition of T1, the string σe has
no extension in [T1].

□
Claim 72. For every infinite path x through T2, the function n 7→ x ↾ h(n)
is diagonally noncomputable. In particular, every infinite path through T2 is
tt-DNC.

Proof. If φe(e) is defined to be x ↾ h(e), then, by our definition of T2, the
string x ↾ h(e) must be removed from T2. Note that the function n 7→
x ↾ h(n) is tt-reducible to x, since h is computable. Thus, such x must be
tt-DNC.

□
Consequently, P = [T2] is an immune Π0

1 set consisting of reals which are
i.o. K-trivial and tt-DNC. By Demuth/Kučera [12] and the immunity of P ,
the set P has no element computable in a 1-generic.
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□

4.3. Small, but Not Very Small. As mentioned by Barmpalias/Vlek [2],
if a real is not complex, then it is i.o. K-trivial. Next we construct a perfect
set consisting of non-generic reals which are i.o. complex, but not complex.

Theorem 73. There is a perfect Π0
1 set P ⊆ 2N which satisfies the following:

(1) No element of P is complex.
(2) Every element of P is i.o. complex.
(3) No element of P is computable in a 1-generic real.

Proof. It suffices to construct a small Π0
1 set consisting of reals which are

not c.e. wtt-traceable. Here, recall that a real x is c.e. wtt-traceable if there
is a computable order b such that, for every f ≤wtt x, there is a c.e. trace
{Tn}n∈N with bound b such that f(n) ∈ Tn holds for any n ∈ N. Note that
the bound b can be replaced by any computable order. Hereafter, we fix
a computable order b such that the sequence {b(n + 1) − b(n)}n∈N is non-
decreasing and unbounded, and let Bn be the half-open interval [b(n), b(n+
1)) for each n ∈ N. Recall that a real is c.e. wtt-traceable if and only if it is
anti-complex.

Claim 74. Assume that, for every partial computable function ψ, there is
u ∈ N such that ψ(n) ̸= x ↾ n holds for all n ∈ Bu. Then, x is i.o. complex.

Proof. Otherwise, x is c.e. wtt-traceable. Then, as the function u 7→ x ↾
b(u+1) is wtt-reducible to x, there is a c.e. trace {Tu}u∈N with bound #Bu.
Hence, we have a partial computable function φ defining {Tu}u∈N in the
sense that Tu is the set consisting of φ(n) with n ∈ Bu. Then, for each
u ∈ N, there is n ∈ Bu with φ(n) = x ↾ b(u + 1). However, this implies
ψ(n) = φ(n) ↾ n = x ↾ n.

□

Requirements. We need to construct a Π0
1 set P = [TP ] ⊆ 2N satisfying the

following trace-avoiding requirements {Te}e∈N and smallness requirements
{Se}e∈N:

Te : (∃u) [(∀n ∈ Bu) |Φe(n)| = n ⇒ (∀n ∈ Bu) Φe(n) ̸∈ TP ],

Se : Φe total unbounded =⇒ (∃n) [Φe(n),Φe(n+ 1)] ∩ Brl(P ) = ∅.

Here, {Φe}e∈N is an effective enumeration of all partial computable functions,
and [l, r] denotes the interval {m : l ≤ m ≤ r}. The priority ordering is
defined as Tn < Sn < Tn+1 for any n ∈ N. For strategies Q and R, if
Q < R, then R is said to be lower priority strategy than Q, and Q is higher
priority strategy than R.

Strategy Te. This strategy may have a parameter u(e, s), at each stage
s ∈ N. At stage s + 1, if u(e, s) is undefined, then choose sufficiently large
u(e, s + 1) ∈ N such that any element contained in Bu(e,s+1) has not been
mentioned in our construction. If u(e, s) has been already defined, then set
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u(e, s + 1) = u(e, s). Then each string σ of length ≤ maxBu(e,s+1) will
be protected from any trimming action by all lower priority strategies. If
Φe(n) converges and |Φe(n)| = n holds for some n ∈ Bu(e,s+1), the strategy
Te removes the string Φe(n) from P . Formally, define Ps+1 as follows:

Ps+1 = Ps \
∪

{[[Φe(n)]] : Φe(n) ↓ and |Φe(n)| = n ∈ Bu(e,s+1)}.

Strategy Se. This strategy may have a parameter le,s, at each stage s ∈ N.
At stage s + 1, if le,s is undefined, then choose sufficiently large le,s+1 ∈ N
which has not been mentioned in our construction. If le,s has been already
defined, then set le,s+1 = le,s. Wait for le,s+1 < Φe,s+1(n) ↓≤ Φe,s+1(n+1) ↓
for some n ∈ N. Here, Φe,s+1(n) ↓= y denotes the e-th partial computable
function halts by stage s + 1, and outputs y ∈ N. If it does not happen,
then the strategy Se makes no action at this stage. Whenever it happens,
for each string σ of length Φe,s+1(n), choose the living leftmost string L(σ)
of length Φe,s+1(n + 1) extending σ. Then, by the trimming action of the
strategy Se, all strings which extend some strings σ of length Φe,s+1(n) but
are incomparable with L(σ) are removed from P . Formally, define Ps+1 as
follows:

Ps+1 = Ps \
∪

{[[τ ]] : (∃σ) |σ| = Φe,s+1(n) & σ ⊂ τ | L(σ)}.

After the action, the strategy Se injures all lower priority strategies by forc-
ing all parameters of lower priority strategies to be undefined.

Claim 75. P =
∩

s Ps is nonempty.

Proof. Each strategy chooses some intervals of heights: the Te strategy
chooses an interval Bu(e,s); and the Se strategy chooses [Φe,s(n),Φe,s(n+1)].
Eventually, these intervals are pairwise disjoint. For each such n ∈ Bu(e,s),
at most one string of length n is removed from P by the trimming action
executed by each Kc strategy. By the action of Se strategy, some string of
length in [Φe,s(n),Φe,s(n+ 1)] also survives.

□
Claim 76. Every strategy is injured at most finitely often.

Proof. Inductively assume that some strategy is never injured after some
stage s. Then, by our construction, the T -strategies injure no other strate-
gies, and each S-strategy can act and injure lower priority strategies at most
one time, after stage s.

□
Claim 77. The requirements Te are satisfied.

Proof. Since Te is injured at most finitely often, u(e) = lims u(e, s) converges.
By the action of Te strategy, if |Φe(n)| = n ∈ Bu(e), then Φe(n) is removed
from P .

□
Claim 78. The requirements Se are satisfied.
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Proof. Since Se is injured at most finitely often, l⋆ = lims le,s converges.
If Φe is total and unbounded, then l⋆ < Φe(n) ↓ must happens for some
n ∈ N. If Φe(n + 1) < Φe(n), then there is no problem. Assume that
Φe(n) ≤ Φe(n + 1). By the action of Se strategy, every string σ ∈ P of
length Φe(n) has just one extension in P of length Φe(n + 1). In other
words, [Φe(n),Φe(n+ 1)] ∩ Brl(P ) = ∅.

□

By Claim 74, the T -strategies ensure that every element of P =
∩
Ps is i.o.

complex, and the S-strategies ensure that P is small, by Binns [6, Theorem
2.10]. Note that every i.o. complex reals is not computable. Hence, by Small
Basis Theorem 65, every element of P is neither complex nor computable in
a 1-generic real, as desired.

□

Remark 79. As proved by Binns [5], there is a Muchnik degree that con-
tains a small Π0

1 set but no very small Π0
1 set in 2N. By combining with Very

Small Nonbasis Theorem 67, our previous proof provides an alternative proof
for Binns’ result.

5. Conclusion

Our underlying idea is inspired by the basic observation from algorithmic
randomness theory that a real is captured by an effectively-small set if and
only if it is “effective-ish.” Concretely speaking, a real x is captured by
an effectively null set if and only if it is not algorithmically random (i.e.,
effectively compressible, or equivalently, effectively predictable), and it is
captured by a set of effective Hausdorff (resp., packing) dimension s if and
only if its compression ratio lim inf K(x ↾ n)/n (resp., lim supK(x ↾ n)/n) is
less than or equal to s.

Therefore, algorithmic randomness theory is sometimes viewed as measure
(dimension) theory of arbitrary “individual reals” (but not a theory of “sets
of reals”). In this way, an effectivization of measure-theoretic or set-theoretic
smallness is clearly related to an effective property of individual reals. Of
course, there are many set-theoretic smallness notions other than strong
measure zero. This motivates us to study the “set theory of individual reals.”
The typical question is: given a smallness property P (in set theory), is there
a degree-theoretic (or randomness-theoretic) characterization of “effectively
P”?

More specifically, one may consider the case where P is chosen as be-
ing Hausdorff (packing) h-null for all dimension functions h. Of course, our
research has followed this thread, because a set is of (effectively) strong mea-
sure zero if and only if it is Hausdorff h-null for all (computable) dimension
functions h. Recently, Kihara and Miyabe [25] applied a result on strong
measure zero to characterize a randomness-theoretic lowness property for in-
dividual reals. Moreover, they pointed out the relationship between Binns’
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notion of very smallness and the notion of effective packing h-nullness for
all computable dimension functions h.

One can also refine our typical question described above. Model-theoretically,
the concept of “effectively P” could be rephrased as the relativized concept
PU in the computable universe U . By generalizing this idea, one can also
study the concept of PM for an inner model M, in V , of a weak system. For
instance, it is natural to ask about the relationship between the α-degree
structure and the property PLα for an admissible ordinal α. In respect to
this direction, for instance, it may be important to study the distribution of
the reals contained in a ∆1

1 or Π1
1 strong measure zero set in the hyperde-

grees.
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