
Let O be Kleene’s system of ordinal notations. Every a P O automatically produces
a fundamental sequence for the corresponding ordinal. Therefore, the notation a P O
automatically generates the a-th fast growing function fa in a straightforward manner.
Note that fa depends on the notation a, but not on the ordinal |a|O.

Put α0 as the notation for the ordinal 0, and

αn`1 “ mintm P O | m ą αn and |m|O ą |αn|Ou.

The sequence p|αn|Oqnăω is clearly a fundamental sequence for ωCK
1 . Then, we define

fωCK
1

pnq “ fαnpnq.

Even if we use the above natural fundamental sequence pαnqn (or pγnqn), we show that
it is possible that fωCK

1
may be very slow growing. This is due to the basic observation

that the definition of O (hence fωCK
1

) heavily depends on a given numbering of partial
computable functions.

Proposition 1. There is an admissible numbering of partial computable functions such
that fωCK

1
is dominated by the pω ` 3qrd fast growing function fω`3.

Proof. Let Φ be a canonical admissible numbering of partial computable functions. One
can assume that for almost all e there is d with e ă d ă 2e such that Φdp0q “ e and
Φdpn`1q “ 2Φdpnq. In other words, if e is a code of an ordinal α, then Φdpnq is a code of
α ` n; hence 3 ¨ 5d is a code for α ` ω. For example, in a usual programming language,
there is a constant c (independent of e) such that the length |d| « log2pdq of such a
program d is bounded by |e| ` c.

We construct a new numbering Ψ by defining

Ψ2epnq “

#

2 ÒÒ n, if n ď f
p3q

ω`3p3 ¨ 52e ` 3q,

Φe, otherwise.

and Ψ2e`1 “ Φe. It is easy to check that Ψ is admissible. We now assume that the new
numbering Ψ is used to define O (hence pαnqn).

We first claim that αn “ 3 ¨ 52e`1 for any n, e. If 3 ¨ 52e`1 R O, the claim trivially
holds, so we assume 3 ¨ 52e`1 P O. Then, the function Ψ2e`1 is increasing w.r.t. ăO;
hence 2 ÒÒ n ďO Ψ2e`1pnq for any n. This implies that Ψ2e is also increasing w.r.t. ăO,
which means 3 ¨ 52e P O. Since Ψ2epnq “ Ψ2e`1pnq holds for almost all n, we have
ta : a ăO 3 ¨ 52eu “ ta : a ăO 3 ¨ 52e`1u. Thus, 3 ¨ 52e`1 cannot be equal to the least m
such that αn´1 ă m and |αn´1|O ă |m|O (or αn´1 ăO m).

Assume that αn “ 2b for some b and n ą 0. We claim that αn´1 “ b. First,
|αn´1|O ă |αn|O “ |b|O ` 1 implies |αn´1| ď |b|O. If αn´1 ą b then |αn´2|O ă |αn´1|O ď

|b|O is chosen as αn´1, a contradiction. Thus, we can assume αn´1 ď b. Note that
|αn´1|O ă |b|O is impossible; otherwise b must be chosen as αn by our assumption
αn´1 ď b. Hence, |αn´1|O “ |b|O. If αn´1 ă b, we have 2αn´1 ă 2b; hence 2αn´1 is chosen
as αn. As a consequence, we obtain αn´1 “ b.

Hence, if αn codes an ordinal λ ` p for some limit λ and finite p, then we have a
sequence αn´p ăO αn´p`1 ăO ¨ ¨ ¨ ăO αn which codes λ ă λ ` 1 ă ¨ ¨ ¨ ă λ ` p. Put
m “ n ´ p. Then αm is of the form 3 ¨ 52e. If m is sufficiently large, as mentioned
above, there is d with e ă d ă 2e such that 3 ¨ 52d codes the ordinal λ ` ω. Then

1



3 ¨ 52d ă 3 ¨ 52e ă exp
p4q

2 peq :“ 22
22

e

; hence, the number 3 ¨ 52d coding λ ` ω has higher

priority than the number exp
p4q

2 peq coding λ ` 4. In other words, we must have p ď 3.
We now calculate fωCK

1
pnq. As observed above, for almost all n, αn is of the form

exp
ppq

2 p3 ¨ 52eq for some p ď 3. If p “ 0, as αn is ă-increasing, we clearly have n ď 3 ¨ 52e.
Hence, for any p ď 3, we have n ď 3 ¨52e `3. If p “ 0, our definition of Ψ2e ensures that

fαnpmq “ fmpmq “ fωpmq for any m ď f
p3q

ω`3pa`3q, where a “ 3¨52e. If m ď f
p2q

ω`3pa`3q,
then

f pmq
ω

´

f
p2q

ω`3pa ` 3q

¯

ď fω`1

´

f
p2q

ω`3pa ` 3q

¯

ď f
p2q

ω`3pa ` 3q

and thus, if p “ 1, then fαnpmq “ f
pmq
a pmq “ f

pmq
ω pmq “ fω`1pmq for any such m.

Similarly, one can observe that, if p “ 2, then fαnpmq “ fω`2pmq for anym ď fω`3pa`3q,
and if p “ 3, then fαnpmq “ fω`3pmq for any m ď a` 3. In any case, we have fαnpnq ď

fω`3pnq since n ď a ` 3 as observed above. Consequently, fωCK
1

pnq “ fαnpnq ď fω`3pnq

for almost all n, that is, fωCK
1

is dominated by fω`3. □


