Let \mathcal{O} be Kleene's system of ordinal notations. Every $a \in \mathcal{O}$ automatically produces a fundamental sequence for the corresponding ordinal. Therefore, the notation $a \in \mathcal{O}$ automatically generates the *a*-th fast growing function f_a in a straightforward manner. Note that f_a depends on the notation *a*, but not on the ordinal $|a|_{\mathcal{O}}$.

Put α_0 as the notation for the ordinal 0, and

$$\alpha_{n+1} = \min\{m \in \mathcal{O} \mid m > \alpha_n \text{ and } |m|_{\mathcal{O}} > |\alpha_n|_{\mathcal{O}}\}.$$

The sequence $(|\alpha_n|_{\mathcal{O}})_{n < \omega}$ is clearly a fundamental sequence for ω_1^{CK} . Then, we define

$$f_{\omega_1^{\mathrm{CK}}}(n) = f_{\alpha_n}(n).$$

Even if we use the above natural fundamental sequence $(\alpha_n)_n$ (or $(\gamma_n)_n$), we show that it is possible that $f_{\omega_1^{CK}}$ may be very slow growing. This is due to the basic observation that the definition of \mathcal{O} (hence $f_{\omega_1^{CK}}$) heavily depends on a given numbering of partial computable functions.

Proposition 1. There is an admissible numbering of partial computable functions such that $f_{\omega_{\Gamma K}}$ is dominated by the $(\omega + 3)$ rd fast growing function $f_{\omega+3}$.

Proof. Let Φ be a canonical admissible numbering of partial computable functions. One can assume that for almost all e there is d with e < d < 2e such that $\Phi_d(0) = e$ and $\Phi_d(n+1) = 2^{\Phi_d(n)}$. In other words, if e is a code of an ordinal α , then $\Phi_d(n)$ is a code of $\alpha + n$; hence $3 \cdot 5^d$ is a code for $\alpha + \omega$. For example, in a usual programming language, there is a constant c (independent of e) such that the length $|d| \approx \log_2(d)$ of such a program d is bounded by |e| + c.

We construct a new numbering Ψ by defining

$$\Psi_{2e}(n) = \begin{cases} 2 \uparrow \uparrow n, & \text{if } n \leq f_{\omega+3}^{(3)}(3 \cdot 5^{2e} + 3), \\ \Phi_e, & \text{otherwise.} \end{cases}$$

and $\Psi_{2e+1} = \Phi_e$. It is easy to check that Ψ is admissible. We now assume that the new numbering Ψ is used to define \mathcal{O} (hence $(\alpha_n)_n$).

We first claim that $\alpha_n \neq 3 \cdot 5^{2e+1}$ for any n, e. If $3 \cdot 5^{2e+1} \notin \mathcal{O}$, the claim trivially holds, so we assume $3 \cdot 5^{2e+1} \in \mathcal{O}$. Then, the function Ψ_{2e+1} is increasing w.r.t. $<_{\mathcal{O}}$; hence $2 \uparrow \uparrow n \leq_{\mathcal{O}} \Psi_{2e+1}(n)$ for any n. This implies that Ψ_{2e} is also increasing w.r.t. $<_{\mathcal{O}}$, which means $3 \cdot 5^{2e} \in \mathcal{O}$. Since $\Psi_{2e}(n) = \Psi_{2e+1}(n)$ holds for almost all n, we have $\{a : a <_{\mathcal{O}} 3 \cdot 5^{2e}\} = \{a : a <_{\mathcal{O}} 3 \cdot 5^{2e+1}\}$. Thus, $3 \cdot 5^{2e+1}$ cannot be equal to the least msuch that $\alpha_{n-1} < m$ and $|\alpha_{n-1}|_{\mathcal{O}} < |m|_{\mathcal{O}}$ (or $\alpha_{n-1} <_{\mathcal{O}} m$).

Assume that $\alpha_n = 2^b$ for some b and n > 0. We claim that $\alpha_{n-1} = b$. First, $|\alpha_{n-1}|_{\mathcal{O}} < |\alpha_n|_{\mathcal{O}} = |b|_{\mathcal{O}} + 1$ implies $|\alpha_{n-1}| \le |b|_{\mathcal{O}}$. If $\alpha_{n-1} > b$ then $|\alpha_{n-2}|_{\mathcal{O}} < |\alpha_{n-1}|_{\mathcal{O}} \le |b|_{\mathcal{O}}$ is chosen as α_{n-1} , a contradiction. Thus, we can assume $\alpha_{n-1} \le b$. Note that $|\alpha_{n-1}|_{\mathcal{O}} < |b|_{\mathcal{O}}$ is impossible; otherwise b must be chosen as α_n by our assumption $\alpha_{n-1} \le b$. Hence, $|\alpha_{n-1}|_{\mathcal{O}} = |b|_{\mathcal{O}}$. If $\alpha_{n-1} < b$, we have $2^{\alpha_{n-1}} < 2^b$; hence $2^{\alpha_{n-1}}$ is chosen as α_n . As a consequence, we obtain $\alpha_{n-1} = b$.

Hence, if α_n codes an ordinal $\lambda + p$ for some limit λ and finite p, then we have a sequence $\alpha_{n-p} <_{\mathcal{O}} \alpha_{n-p+1} <_{\mathcal{O}} \cdots <_{\mathcal{O}} \alpha_n$ which codes $\lambda < \lambda + 1 < \cdots < \lambda + p$. Put m = n - p. Then α_m is of the form $3 \cdot 5^{2e}$. If m is sufficiently large, as mentioned above, there is d with e < d < 2e such that $3 \cdot 5^{2d}$ codes the ordinal $\lambda + \omega$. Then

 $3 \cdot 5^{2d} < 3 \cdot 5^{2e} < \exp_2^{(4)}(e) := 2^{2^{2^{2^e}}}$; hence, the number $3 \cdot 5^{2d}$ coding $\lambda + \omega$ has higher priority than the number $\exp_2^{(4)}(e)$ coding $\lambda + 4$. In other words, we must have $p \leq 3$.

We now calculate $f_{\omega_1^{CK}}(n)$. As observed above, for almost all n, α_n is of the form $\exp_2^{(p)}(3 \cdot 5^{2e})$ for some $p \leq 3$. If p = 0, as α_n is <-increasing, we clearly have $n \leq 3 \cdot 5^{2e}$. Hence, for any $p \leq 3$, we have $n \leq 3 \cdot 5^{2e} + 3$. If p = 0, our definition of Ψ_{2e} ensures that $f_{\alpha_n}(m) = f_m(m) = f_{\omega}(m)$ for any $m \leq f_{\omega+3}^{(3)}(a+3)$, where $a = 3 \cdot 5^{2e}$. If $m \leq f_{\omega+3}^{(2)}(a+3)$, then

$$f_{\omega}^{(m)}\left(f_{\omega+3}^{(2)}(a+3)\right) \leqslant f_{\omega+1}\left(f_{\omega+3}^{(2)}(a+3)\right) \leqslant f_{\omega+3}^{(2)}(a+3)$$

and thus, if p = 1, then $f_{\alpha_n}(m) = f_a^{(m)}(m) = f_{\omega}^{(m)}(m) = f_{\omega+1}(m)$ for any such m. Similarly, one can observe that, if p = 2, then $f_{\alpha_n}(m) = f_{\omega+2}(m)$ for any $m \leq f_{\omega+3}(a+3)$, and if p = 3, then $f_{\alpha_n}(m) = f_{\omega+3}(m)$ for any $m \leq a+3$. In any case, we have $f_{\alpha_n}(n) \leq f_{\omega+3}(n)$ since $n \leq a+3$ as observed above. Consequently, $f_{\omega_1^{\Gamma K}}(n) = f_{\alpha_n}(n) \leq f_{\omega+3}(n)$ for almost all n, that is, $f_{\omega_1^{\Gamma K}}$ is dominated by $f_{\omega+3}$.