Let \mathcal{O} be Kleene's system of ordinal notations. Every $a \in \mathcal{O}$ automatically produces a fundamental sequence for the corresponding ordinal. Therefore, the notation $a \in \mathcal{O}$ automatically generates the a-th fast growing function f_{a} in a straightforward manner. Note that f_{a} depends on the notation a, but not on the ordinal $|a|_{\mathcal{O}}$.

Put α_{0} as the notation for the ordinal 0 , and

$$
\alpha_{n+1}=\min \left\{m \in \mathcal{O} \mid m>\alpha_{n} \text { and }|m|_{\mathcal{O}}>\left|\alpha_{n}\right|_{\mathcal{O}}\right\}
$$

The sequence $\left(\left|\alpha_{n}\right|_{\mathcal{O}}\right)_{n<\omega}$ is clearly a fundamental sequence for ω_{1}^{CK}. Then, we define

$$
f_{\omega_{1}^{\mathrm{CK}}}(n)=f_{\alpha_{n}}(n)
$$

Even if we use the above natural fundamental sequence $\left(\alpha_{n}\right)_{n}$ (or $\left.\left(\gamma_{n}\right)_{n}\right)$, we show that it is possible that $f_{\omega_{1}^{\mathrm{CK}}}$ may be very slow growing. This is due to the basic observation that the definition of \mathcal{O} (hence $f_{\omega_{1}^{\mathrm{CK}}}$) heavily depends on a given numbering of partial computable functions.

Proposition 1. There is an admissible numbering of partial computable functions such that $f_{\omega_{1}^{\mathrm{CK}}}$ is dominated by the $(\omega+3)$ rd fast growing function $f_{\omega+3}$.
Proof. Let Φ be a canonical admissible numbering of partial computable functions. One can assume that for almost all e there is d with $e<d<2 e$ such that $\Phi_{d}(0)=e$ and $\Phi_{d}(n+1)=2^{\Phi_{d}(n)}$. In other words, if e is a code of an ordinal α, then $\Phi_{d}(n)$ is a code of $\alpha+n$; hence $3 \cdot 5^{d}$ is a code for $\alpha+\omega$. For example, in a usual programming language, there is a constant c (independent of e) such that the length $|d| \approx \log _{2}(d)$ of such a program d is bounded by $|e|+c$.

We construct a new numbering Ψ by defining

$$
\Psi_{2 e}(n)= \begin{cases}2 \uparrow \uparrow n, & \text { if } n \leqslant f_{\omega+3}^{(3)}\left(3 \cdot 5^{2 e}+3\right) \\ \Phi_{e}, & \text { otherwise }\end{cases}
$$

and $\Psi_{2 e+1}=\Phi_{e}$. It is easy to check that Ψ is admissible. We now assume that the new numbering Ψ is used to define \mathcal{O} (hence $\left.\left(\alpha_{n}\right)_{n}\right)$.

We first claim that $\alpha_{n} \neq 3 \cdot 5^{2 e+1}$ for any n, e. If $3 \cdot 5^{2 e+1} \notin \mathcal{O}$, the claim trivially holds, so we assume $3 \cdot 5^{2 e+1} \in \mathcal{O}$. Then, the function $\Psi_{2 e+1}$ is increasing w.r.t. $<_{\mathcal{O}}$; hence $2 \uparrow \uparrow n \leqslant_{\mathcal{O}} \Psi_{2 e+1}(n)$ for any n. This implies that $\Psi_{2 e}$ is also increasing w.r.t. $<_{\mathcal{O}}$, which means $3 \cdot 5^{2 e} \in \mathcal{O}$. Since $\Psi_{2 e}(n)=\Psi_{2 e+1}(n)$ holds for almost all n, we have $\left\{a: a<_{\mathcal{O}} 3 \cdot 5^{2 e}\right\}=\left\{a: a<_{\mathcal{O}} 3 \cdot 5^{2 e+1}\right\}$. Thus, $3 \cdot 5^{2 e+1}$ cannot be equal to the least m such that $\alpha_{n-1}<m$ and $\left|\alpha_{n-1}\right|_{\mathcal{O}}<|m|_{\mathcal{O}}\left(\right.$ or $\left.\alpha_{n-1}<_{\mathcal{O}} m\right)$.

Assume that $\alpha_{n}=2^{b}$ for some b and $n>0$. We claim that $\alpha_{n-1}=b$. First, $\left|\alpha_{n-1}\right|_{\mathcal{O}}<\left|\alpha_{n}\right|_{\mathcal{O}}=|b|_{\mathcal{O}}+1$ implies $\left|\alpha_{n-1}\right| \leqslant|b|_{\mathcal{O}}$. If $\alpha_{n-1}>b$ then $\left|\alpha_{n-2}\right|_{\mathcal{O}}<\left|\alpha_{n-1}\right|_{\mathcal{O}} \leqslant$ $|b|_{\mathcal{O}}$ is chosen as α_{n-1}, a contradiction. Thus, we can assume $\alpha_{n-1} \leqslant b$. Note that $\left|\alpha_{n-1}\right|_{\mathcal{O}}<|b|_{\mathcal{O}}$ is impossible; otherwise b must be chosen as α_{n} by our assumption $\alpha_{n-1} \leqslant b$. Hence, $\left|\alpha_{n-1}\right|_{\mathcal{O}}=|b|_{\mathcal{O}}$. If $\alpha_{n-1}<b$, we have $2^{\alpha_{n-1}}<2^{b}$; hence $2^{\alpha_{n-1}}$ is chosen as α_{n}. As a consequence, we obtain $\alpha_{n-1}=b$.

Hence, if α_{n} codes an ordinal $\lambda+p$ for some limit λ and finite p, then we have a sequence $\alpha_{n-p}<_{\mathcal{O}} \alpha_{n-p+1}<_{\mathcal{O}} \cdots<_{\mathcal{O}} \alpha_{n}$ which codes $\lambda<\lambda+1<\cdots<\lambda+p$. Put $m=n-p$. Then α_{m} is of the form $3 \cdot 5^{2 e}$. If m is sufficiently large, as mentioned above, there is d with $e<d<2 e$ such that $3 \cdot 5^{2 d}$ codes the ordinal $\lambda+\omega$. Then
$3 \cdot 5^{2 d}<3 \cdot 5^{2 e}<\exp _{2}^{(4)}(e):=2^{2^{2^{2^{e}}}} ;$ hence, the number $3 \cdot 5^{2 d}$ coding $\lambda+\omega$ has higher priority than the number $\exp _{2}^{(4)}(e)$ coding $\lambda+4$. In other words, we must have $p \leqslant 3$.

We now calculate $f_{\omega_{1}^{\mathrm{CK}}}(n)$. As observed above, for almost all n, α_{n} is of the form $\exp _{2}^{(p)}\left(3 \cdot 5^{2 e}\right)$ for some $p \leqslant 3$. If $p=0$, as α_{n} is <-increasing, we clearly have $n \leqslant 3 \cdot 5^{2 e}$. Hence, for any $p \leqslant 3$, we have $n \leqslant 3 \cdot 5^{2 e}+3$. If $p=0$, our definition of $\Psi_{2 e}$ ensures that $f_{\alpha_{n}}(m)=f_{m}(m)=f_{\omega}(m)$ for any $m \leqslant f_{\omega+3}^{(3)}(a+3)$, where $a=3 \cdot 5^{2 e}$. If $m \leqslant f_{\omega+3}^{(2)}(a+3)$, then

$$
f_{\omega}^{(m)}\left(f_{\omega+3}^{(2)}(a+3)\right) \leqslant f_{\omega+1}\left(f_{\omega+3}^{(2)}(a+3)\right) \leqslant f_{\omega+3}^{(2)}(a+3)
$$

and thus, if $p=1$, then $f_{\alpha_{n}}(m)=f_{a}^{(m)}(m)=f_{\omega}^{(m)}(m)=f_{\omega+1}(m)$ for any such m. Similarly, one can observe that, if $p=2$, then $f_{\alpha_{n}}(m)=f_{\omega+2}(m)$ for any $m \leqslant f_{\omega+3}(a+3)$, and if $p=3$, then $f_{\alpha_{n}}(m)=f_{\omega+3}(m)$ for any $m \leqslant a+3$. In any case, we have $f_{\alpha_{n}}(n) \leqslant$ $f_{\omega+3}(n)$ since $n \leqslant a+3$ as observed above. Consequently, $f_{\omega_{1}^{\mathrm{CK}}}(n)=f_{\alpha_{n}}(n) \leqslant f_{\omega+3}(n)$ for almost all n, that is, $f_{\omega_{1}^{\mathrm{CK}}}$ is dominated by $f_{\omega+3}$.

